
Towards a real-time 3D object
recognition pipeline on mobile
GPGPU computing platforms
using low-cost RGB-D sensors

José García Rodríguez
Sergio Orts Escolano

June 2015

2

UNIVERSITY OF ALICANTE

Bachelor’s Degree in Computer Engineering

Bachelor’s Thesis

Towards a real-time 3D object recognition pipeline on mobile
GPGPU computing platforms using low-cost RGB-D sensors

Author

Alberto García García

Supervisors

José García Rodríguez, PhD.
Sergio Orts Escolano, PhD.

Department of Computer Technology (DTIC)

Alicante, June 9, 2015

2

3

This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

4

i

Let the future tell the truth.
Let the future evaluate each one according to his work and accomplishments.

The present is theirs; the future, for which I have really worked, is mine.
Nikola Tesla

ii

Acknowledgments

For the lazy reader who does not want to be bored with irrelevant details, here
you have a generic acknowledgment so that you do not lose any second of
your precious time: thanks to anyone who has contributed direct or indirectly
to this project, it wouldn’t have been possible without you.

For those of you who would like to stop for a while, and listen to what a ran-
dom student has to say after finishing one of the most important stages of his
life: sorry for the mess, and please play Time by Pink Floyd in the background
(a live version if possible) while you read to make it at least worthwhile.

It is difficult to overstate my gratitude to my supervisors, Jose and Sergio.
Your enthusiasm, knowledge and great efforts to help me with absolutely ev-
erything made this possible. Wherever I end up in a few years, I wouldn’t be
there if it wasn’t for you. I could not wish for better or friendlier supervisors.

In this regard, I would also like to thank Higinio, who introduced me to
the research community and offered his help when I was just a freshman, and
Jerónimo for his support when we were working together.

I wish to thank all my colleagues for the experiences we have shared. We
have been together four though years but we had a lot of fun in the process.
Thanks Manu, Caye, Víctor, Alex, Ginés, Jorge, Brayan, Sergiu, Pablo and Javi.
You made it worth every single day. Also thanks to all the good people that I
have met either in the classroom or in the laboratory: Marcelo, Vicente, Óscar,
Joan Carles, Pablo, Paco, Jose Manuel, Fran, Joselu and Jesús. Always ready
for a cup of coffee or a beer.

In addition, would like to express my sincere gratitude to all those good
teachers and professors who love their work and try to get the best out of us,
either in the University or either in highschool. In particular, thanks to my
former teachers and now friends Carlos and Jose Juan, you belong to the rare
kind of teachers who are able to inspire students, so never stop lecturing.

iii

iv

Also thanks to NVIDIA for their generous hardware donation, which al-
lowed us to carry out this project using their Jetson TK1 platform.

I would also like to thank the food franchise Mucho+QuePizza for providing
3x1 offers in familiar size pizzas with five ingredients. Additionally, thanks
to Foster’s Hollywood for their Bacon Cheese Fries, the Director’s Choice burger
and the Banana Split dessert. I couldn’t have completed this work without the
necessary nutrients.

Last but not least, I wish to thank my parents and brother. They bore me,
raised me, supported me, taught me, and loved me. To them I dedicate this
thesis.

Abstract

In this project, we propose the implementation of a 3D object recognition sys-
tem which will be optimized to operate under demanding time constraints.
The system must be robust so that objects can be recognized properly in poor
light conditions and cluttered scenes with significant levels of occlusion.

An important requirement must be met: the system must exhibit a rea-
sonable performance running on a low power consumption mobile GPU com-
puting platform (NVIDIA Jetson TK1) so that it can be integrated in mobile
robotics systems, ambient intelligence or ambient assisted living applications.

The acquisition system is based on the use of color and depth (RGB-D) data
streams provided by low-cost 3D sensors like Microsoft Kinect or PrimeSense
Carmine.

The range of algorithms and applications to be implemented and integrated
will be quite broad, ranging from the acquisition, outlier removal or filtering of
the input data and the segmentation or characterization of regions of interest
in the scene to the very object recognition and pose estimation.

Furthermore, in order to validate the proposed system, we will create a
3D object dataset. It will be composed by a set of 3D models, reconstructed
from common household objects, as well as a handful of test scenes in which
those objects appear. The scenes will be characterized by different levels of
occlusion, diverse distances from the elements to the sensor and variations on
the pose of the target objects. The creation of this dataset implies the additional
development of 3D data acquisition and 3D object reconstruction applications.

The resulting system has many possible applications, ranging from mobile
robot navigation and semantic scene labeling to human-computer interaction
(HCI) systems based on visual information.

v

vi

Resumen

En este proyecto proponemos el diseño y la implementación de un sistema
de reconocimiento de objetos 3D optimizado para funcionar bajo restricciones
temporales exigentes. El sistema debe permitir un reconocimiento robusto de
objetos en escenas con iluminación deficiente y oclusión entre los elementos
que las conforman.

Se plantea como requisito que el sistema funcione con un rendimiento ade-
cuado sobre una plataforma de computación GPU móvil de bajo consumo
(NVIDIA Jetson TK1) para permitir su utilización en aplicaciones de robótica
móvil, de ambientes inteligentes o de vida asistida por el entorno.

El sistema de adquisición de datos se basa en el procesamiento de flujos de
información de color y profundidad (RGB-D) proporcionados por sensores de
bajo coste como Microsoft Kinect y PrimeSense Carmine.

El abanico de algoritmos y aplicaciones a implementar e integrar cubrirá
varios niveles, desde la adquisición y mejora o filtrado de los datos de entrada,
pasando por la segmentación y caracterización de zonas de interés en la escena
y terminando por la detección y el reconocimiento de los objetos así como la
estimación de su pose.

Adicionalmente, para poder validar el sistema, crearemos un dataset de ob-
jetos compuesto por un conjunto de modelos 3D reconstruidos a partir de obje-
tos reales así como una serie de escenas en las que aparecen dichos objetos con
diversos niveles de oclusión, diferentes distancias al sensor y poses distintas.
La creación de este dataset implica el desarrollo de herramientas adicionales
de captura de datos procedentes de los sensores previamente mencionados y
de reconstrucción de objetos.

El sistema resultante puede ser de aplicación a múltiples sistemas, ya sea de
navegación robótica, etiquetado semántico de escenas e incluso para sistemas
de interacción hombre-máquina basados en información visual.

vii

viii

Contents

1 Introduction 1
1.1 Outline . 1
1.2 Motivation . 2
1.3 Related works . 2

1.3.1 3D object recognition pipeline 6
1.3.1.1 Keypoint detection 7
1.3.1.2 Local surface feature description 9
1.3.1.3 Surface matching 11

1.3.2 3D local feature descriptors 13
1.3.2.1 Spin Images (SI) 14
1.3.2.2 Fast Point Feature Histogram (FPFH) 16
1.3.2.3 3D Shape Context (3DSC) 18
1.3.2.4 Unique Shape Context (USC) 19
1.3.2.5 3D Tensor (Tensor) 20
1.3.2.6 Signature of Histograms of Orientations (SHOT) 21
1.3.2.7 Rotational Projection Statistics (RoPS) 22
1.3.2.8 Tri-Spin-Image (TriSI) 23

1.3.3 Real-time object recognition with low-cost sensors 25
1.3.4 Fusion of photometric and geometric information 27

1.4 Proposal . 28
1.5 Goals . 28
1.6 Structure . 32

2 Methodology 33
2.1 Introduction . 33
2.2 Technologies . 34

2.2.1 Software . 34

ix

x CONTENTS

2.2.1.1 OpenNI . 35
2.2.1.2 Point Cloud Library 36
2.2.1.3 OpenMP . 37
2.2.1.4 NVIDIA CUDA 38

2.2.2 Hardware . 40
2.2.2.1 Jetson TK1 . 40
2.2.2.2 Depth sensors 43

2.3 Experimentation . 47
2.3.1 Measuring performance 47
2.3.2 Test systems . 47

3 A 3D object recognition pipeline 49
3.1 Introduction . 49
3.2 3D object recognition pipeline on CPU 50

3.2.1 Preprocessing . 51
3.2.1.1 Bilateral filtering 51
3.2.1.2 Normal estimation 53
3.2.1.3 Plane segmentation 55
3.2.1.4 Resolution computation 59
3.2.1.5 k-d tree generation 60

3.2.2 Keypoint Detection . 61
3.2.2.1 Uniform Sampling 61
3.2.2.2 Intrinsic Shape Signatures 62
3.2.2.3 Scale Invariant Feature Transform 64

3.2.3 Descriptor Extraction . 65
3.2.3.1 FPFH . 65
3.2.3.2 SI . 65
3.2.3.3 3DSC . 66
3.2.3.4 USC . 67
3.2.3.5 SHOT . 67
3.2.3.6 CSHOT . 68
3.2.3.7 RoPS . 68

3.2.4 Feature Matching . 70
3.2.5 Correspondence Grouping 71
3.2.6 Pose Estimation and Alignment 73
3.2.7 Hypothesis Verification 75
3.2.8 Offline training . 77

CONTENTS xi

3.3 Descriptors and pipeline performance study 78
3.3.1 Model reconstruction . 78
3.3.2 Evaluation scenes . 80
3.3.3 Performance study methodology 81
3.3.4 Results . 83

3.3.4.1 Precision . 83
3.3.4.2 Efficiency . 84

3.3.5 Discussion . 85
3.4 Jetson TK1 sequential experimentation 86

3.4.1 Results . 87
3.4.2 Discussion . 87

3.5 CPU optimizations . 88
3.5.1 High-dimensionality optimized k-d tree 89
3.5.2 Multi-core acceleration . 90
3.5.3 Organized normal estimation 92
3.5.4 Bounding box clipping . 93

3.6 GPU optimizations . 94
3.6.1 Cloud projection . 95
3.6.2 Normal estimation . 97
3.6.3 Bilateral filter . 97
3.6.4 Cloud resolution . 98
3.6.5 Results . 99

4 Conclusions 103
4.1 Conclusions . 103
4.2 Highlights . 105
4.3 Future work . 106

Appendix A 3D Object Reconstruction 107
A.1 Introduction . 107
A.2 Acquisition . 108
A.3 Reconstruction . 109

A.3.1 Preprocessing . 112
A.3.2 Transformation and registration 120
A.3.3 Mesh reconstruction . 122

A.4 Conclusions . 124

Bibliography 127

xii CONTENTS

List of Figures

1.1 Local 3D recognition pipeline . 7
1.2 Keypoints detected using SIFT keypoint estimation 8
1.3 Multiple Local Reference Frames at the same keypoint 10
1.4 Descriptor support sizes . 11
1.5 Mian tensor grid and bins . 12
1.6 Spin Image oriented point basis created at a vertex 15
1.7 Spin Image addition of a point to the 2D array 15
1.8 Spin images and 2D arrays for a duckling model 16
1.9 Point Feature Histograms neighborhood 3D sphere 17
1.10 Fast Point Feature Histograms neighborhood 18
1.11 3D Shape Context support . 19
1.12 3D Tensor computation illustration 21
1.13 SHOT signature structure . 21
1.14 TriSI spin sheet . 23
1.15 TriSI feature . 24
1.16 SICK S3000 laser scanner . 25
1.17 SR4000 camera and capture techniques schema 26
1.18 Kinect V1 and V2 cameras . 26
1.19 PrimeSense Carmine and Asus Xtion Pro cameras 27
1.20 Project timeline . 29
1.21 Gantt diagram for Task 1: State of the art 30
1.22 Gantt diagram for Task 2: CPU Implementation 30
1.23 Gantt diagram for Task 3: CPU optimizations 31
1.24 Gantt diagram for Task 4: GPU implementation 32

2.1 OpenNI 2.0 SDK Architecture . 35
2.2 Point Cloud Library (PCL) logo 36

xiii

xiv LIST OF FIGURES

2.3 Point Cloud Library (PCL) dependency graph 36
2.4 OpenMP language extensions . 37
2.5 CUDA hierarchy of threads . 38
2.6 CUDA SDK stack . 39
2.7 Jetson TK1 layout. 40
2.8 GK110 SMX block diagram . 42
2.9 Speckle pattern and depth map 44
2.10 Kinect mathematical model . 45
2.11 The indirect Time-of-Flight method 46

3.1 Object recognition pipeline CPU implementation 50
3.2 Comparison of a raw cloud and a bilateral filtered one 52
3.3 Comparison of normals of a raw cloud and a bilateral filtered one 54
3.4 OMPS/OCSS segmentation and refinement 55
3.5 Sample scene segmented with OMPS and OCCS 58
3.6 Clusters extracted by OMPS/OCCS 58
3.7 Example of a 2D k-d tree. (Figure reproduced from Wikipedia). . 60
3.8 Keypoints extracted with uniform sampling 61
3.9 Keypoints extracted with uniform sampling (II) 62
3.10 Keypoints extracted with ISS . 63
3.11 Keypoints extracted with SIFT . 64
3.12 Correspondence grouping . 71
3.13 ICP cloud aligment step by step 73
3.14 Global Hypothesis Verification example 75
3.15 GHV example with multiple accepted hypotheses 77
3.16 Partial views of the Tasmanian object 79
3.17 Reconstructed Tasmanian and Colacao models 79
3.18 Set of test scenes captured with Primesense Carmine 80
3.19 Example of true positive on validation scene 81
3.20 Example of false positive on validation scene 82
3.21 Example of false negative on validation scene 82
3.22 Descriptor metrics in the ROC space 83
3.23 Extraction times for each descriptor and test scene. 84
3.24 Mean execution times percentages for each phase using SHOT. . 85
3.25 Mean execution times for all phases, Intel i5 vs Jetson TK1 . . . 87
3.26 Phase time distribution using SHOT on Jetson TK1. 88
3.27 Depth, RGB map and point cloud 97

LIST OF FIGURES xv

A.1 Partial view point cloud captured with PrimeSenses Carmine . 110
A.2 RGB images of partial views (0, 16, 32 and 48). 110
A.3 Depth maps of partial views (0, 16, 32 and 48). 111
A.4 Original and segmented point cloud 115
A.5 Radius Outlier Removal filter example 116
A.6 Effects of the Statistical Outlier Removal filter 117
A.7 Extracted Euclidean clusters from a point cloud 119
A.8 Noisy partial view before and after filtering 119
A.9 Turntable center picked from an empty view. 120
A.10 Turntable section plane fitting. 121
A.11 Fully registered point clouds of an object. 122
A.12 Reconstructed meshes with Poisson Mesh Reconstruction 125

xvi LIST OF FIGURES

List of Tables

2.1 Comparison of depth sensors. 46

3.1 Rates results obtained for the selected descriptors 83
3.2 Descriptor extraction times for each validation scene 84
3.3 SHOT execution times for the whole pipeline 85
3.4 SHOT-based pipeline execution times on Jetson TK1 87
3.5 Execution times for the high-dimensional optimized matching

phase . 90
3.6 Execution times for the OpenMP optimized matching phase . . 91
3.7 Execution times for the OpenMP optimized SHOT 92
3.8 Execution times for the integral images optimized normal esti-

mation . 93
3.9 Execution times for the bounding box optimized pipeline 94
3.10 GPU accelerated stages runtimes with different block configura-

tions . 100
3.11 Runtime comparison between GPU accelerated stages and CPU

ones. 101

xvii

xviii LIST OF TABLES

List of Listings

2.1 Simple OpenMP loop parallelization example. 37

2.2 Simplified CUDA kernel for vector addition. 39

3.1 Bilateral filtering with PCL. 52

3.2 Normal estimation implementation with PCL. 54

3.3 Implementation of OMPS with PCL. 57

3.4 Implementation of OCCS with PCL. 58

3.5 Cloud resolution computation with PCL. 59

3.6 Building k-d trees for point clouds with PCL. 60

3.7 Implementation of Uniform Sampling with PCL. 61

3.8 Implementation of ISS keypoint detector with PCL. 63

3.9 SIFT detector implementation with PCL. 64

3.10 FPFH descriptor implementation with PCL. 65

3.11 SI descriptor implementation with PCL. 66

3.12 3DSC descriptor implementation with PCL. 66

3.13 USC descriptor implementation with PCL. 67

3.14 SHOT descriptor implementation with PCL. 68

3.15 CSHOT descriptor implementation with PCL. 68

3.16 ROPS descriptor implementation with PCL. 69

3.17 Finding correspondences with PCL. 70

3.18 Correspondence grouping using GCG with PCL. 72

3.19 Cloud alignment using ICP with PCL. 74

3.20 Implementation of GHV with PCL. 76

3.21 High-dimensionality optimized correspondence search. 89

3.22 Multi-core optimized correspondence search with four threads. 91

3.23 Multi-core optimized SHOT with OpenMP. 92

3.24 Integral Image Normal Estimation with PCL. 93

3.25 Bounding box filter implemented with PCL. 94

xix

xx LIST OF LISTINGS

3.26 OpenNI 2 grabber for getting depth and RGB images. 95
3.27 Bilateral filter CUDA kernel. 98
3.28 Cloud resolution CUDA kernel. 99
A.1 Grabbing point clouds with PCL and OpenNI. 109
A.2 Bounding box filtering using PassThrough. 112
A.3 Plane model segmentation . 113
A.4 Chroma key filtering . 113
A.5 Radius Outlier Removal filtering. 115
A.6 Statistical Outlier Removal filtering. 116
A.7 Euclidean Cluster Extraction filter 117
A.8 Voxel Grid filtering. 118
A.9 Transformation to translate a point cloud. 120
A.10 Transformation to rotate a point cloud. 121
A.11 ICP alignment with PCL. 122
A.12 Poisson Mesh Reconstruction with PCL. 122

List of Algorithms

1 Pseudo-code of the GPU-based point cloud projection algorithm. 96
2 Pseudo-code of the GPU-based normal estimation algorithm . . 97

3 General reconstruction process. 111

xxi

xxii LIST OF ALGORITHMS

Chapter 1

Introduction

This first chapter introduces the main topic of this work. It is orga-
nized in six different sections: Section 1.1 sets up the framework for the
activities performed during this project, Section 1.2 introduces the mo-
tivation of this work, Section 1.3 elaborates a state of the art of existing
3D object recognition systems, Section 1.4 lays down the proposal devel-
oped in this work, Section 1.5 presents the main and specific goals of this
project. Finally, Section 1.6 details the structure of this document.

1.1 Outline

In this bachelor thesis we have performed a theoretical and practical research
focused on the problem of 3D object recognition in cluttered and occluded
environments under demanding time constraints. The project comprises the
study of 3D object recognition systems and 3D feature descriptors; all of it com-
bined with 3D data acquisition by means of low-cost sensors, like the Microsoft
Kinect 2 device, and the data processing capabilities of low power consumption
parallel computing platforms such as the NVIDIA Jetson TK1.

The main goal is the proposal, design and development of an efficient and
accurate solution for the 3D object recognition in cluttered scenes problem with
the addition of time constraints to make the system able to run in real time so
that it can be integrated on a low-cost mobile robotic platform.

This work has been performed under the frame of the following national
project: SIRMAVED: Development of a comprehensive robotic system for monitor-
ing and interaction for people with acquired brain damage and dependent people, ID

1

2 CHAPTER 1. INTRODUCTION

code (DPI2013-40534-R), funded by the Ministerio de Economía y Competi-
tividad (MEC) of Spain with professors José García-Rodríguez and Miguel Án-
gel Cazorla-Quevedo from the University of Alicante as main researchers.

Moreover, part of this work was done during an eight month research col-
laboration programme in the Department of Computer Technology (DTIC) at the
University of Alicante. This collaboration was funded by the Ministerio de Ed-
ucación, Cultura y Deporte (MECD) of Spain by means of a research grant for
the project: Implementation of 3D vision algorithms under time constraints: human-
computer interaction and object recognition applications. The work carried out was
led and supervised by professor José García-Rodríguez and postdoctoral re-
searcher Sergio Orts-Escolano from the Industrial Informatics and Computer Net-
works research group.

1.2 Motivation

This document presents the results of the work carried out to prove the knowl-
edge acquired during the Bachelor’s Degree in Computer Engineering, taken be-
tween the years 2011-2015 at the University of Alicante. The motivation of this
work arises from the collaboration with the Department of Computer Technology
in research tasks related to computer vision, high performance computing and
the SIRMAVED project.

The main goal of the previously mentioned SIRMAVED project is the devel-
opment of a robotic system for monitoring dependent people or persons with
acquired brain damage and interacting with them to perform common daily
tasks like recognition and manipulation of small sized objects. In order to do
that, the integration of multiple technologies is required; particularly, an object
recognition system is needed to identify instances in the environment before
handling or grasping them. In that sense, it is necessary to design and de-
velop an onboard 3D object recognition system which must be able to operate
on cluttered and occluded environments. The system must meet low power,
small size and real-time performance requirements.

1.3 Related works

In the context of computer vision, object recognition is the process of detecting
and identifying objects in images or video sequences as well as determining

1.3. RELATED WORKS 3

their pose, that is, their positions and orientations. This task is still one of
the hardest challenges of computer vision systems so that multiple approaches
have been taken and implemented over many years of research in the field.

Traditionally, object recognition systems made use of bidimensional images
with intensity information. Those systems apply machine learning and match-
ing algorithms which are based either on significant features of the objects or
their appearance. However, technological advances made during last years
have caused a huge increase in the use of tridimensional information in the
field of computer vision in general and, in particular, in object recognition sys-
tems; this is due to the capability of acquiring real-time 3D data and efficiently
process all this information.

Nowadays, the use of 3D information for this task is in a state of continuous
evolution, still far behind of the maturity achieved by the systems which make
use of 2D intensity images. Nevertheless, despite being a relatively mature
area thanks to the extensive research performed during the last decades [1],
the use of 2D images exhibits a number of problems which hinder the progress
in lines of research that follow this approach. Oppositely, the use of range
images or point clouds, which offer 2.5D/3D information, presents many sig-
nificant benefits over traditional 2D ones. Some of the main advantages are the
following ones [2]: (1) they provide more geometrical information thus remov-
ing surface ambiguities, (2) many of the features that can be extracted are not
affected by illumination or even scale changes, (3) pose estimation is more ac-
curate due to the increased amount of geometrical information. Therefore, the
use of 3D images has become a solid choice to overcome the inherent hurdles
of the traditional 2D methods.

In addition, recent advances in low-cost range sensors such as the Microsoft
Kinect device [3] have enabled a widespread adoption of this technology and
have increased the usage of 3D information. Accessibility and affordability
are two of the key factors which have contributed to the development of this
research area.

Together with the technological development of tridimensional informa-
tion acquisition systems, another key factor in the evolution of the 3D object
recognition field is the creation and development of computing devices which
are able to process, in an efficient manner, the huge amount of data represent-
ing the tridimensional information provided by range sensors. In this sense,
the continuous improvements introduced in the fields of General Purpose com-
putation on GPUs (GPGPU) and low power consumption parallel computing

4 CHAPTER 1. INTRODUCTION

devices like the NVIDIA Jetson TK1 platform [4] have made available to the re-
searchers the necessary computational resources for the execution of 3D object
recognition algorithms under time constraints.

The combination of these three factors (the advantages of 3D images, low-
cost sensors and parallel computing devices) has transformed this area into
one of the most active at the moment; therefore, creating a robust 3D object
recognition system, which is also able to work in real time, has become one of
the main goals towards which many efforts of computer vision researchers are
directed [5].

Regardless of the kind of input data, object recognition methods are di-
vided into four broad categories depending on the approach taken to describe
the object: (1) model-based, (2) shape-based, (3) appearance-based and (4)
feature-based methods. Model-based methods try to approximately repre-
sent the object as a collection of geometric primitives. Shape-based methods
represent the object by using its contour or other shape cues. The main idea
behind appearance-based methods is the representation of individual object
views as points in one or more multidimensional spaces whose basis are ob-
tained through the statistical analysis of the image training set; unknown views
are then projected to those spaces and then they are classified according to the
nearest view among the ones projected by the training set. Appearance-based
methods are attractive due to their robustness against shape or pose changes;
in addition, they do not need to compute image features nor geometric prim-
itives in order to perform the matching. However, their main drawbacks in-
clude the necessity of dense sampling of training views and the lack of ro-
bustness against occlusion [6]. On the other hand, feature-based methods are
frequently used due to their robustness when dealing with cluttered scenes
and partial occlusions. Those methods focus on extracting features, i.e., pieces
of information which describe simple but significant properties of the object;
after the feature extraction phase, machine learning techniques are applied to
train a system with those known features so that it becomes able to classify
features extracted from unknown objects [7]. Nowadays, appearance-based
and feature-based methods are the most popular choices. Since our proposal
is mainly focused on object recognition in cluttered environments with occlu-
sions, we will proceed with an in-depth review of feature-based approaches.

Feature-based 3D object recognition methods can be classified into two
broad categories according to the way they process the object itself: global
feature based methods and local feature based ones. On the one hand, global

1.3. RELATED WORKS 5

methods are characterized by dealing with the object as a whole. They define a
set of global features which effectively describe the whole object. Those meth-
ods are widely used in the context of tridimensional shape classification [8], but
their global approach renders them unsuitable for recognizing partially visible
objects in cluttered and occluded scenes. On the other hand, local feature based
methods describe local surface patches of the object which are located around
highly distinctive points named keypoints. In this sense, local feature based
methods are able to cope with cluttered environments and occlusions [9] since
they do not need the whole object to describe and use its information. Since
this work is framed under the area of 3D object recognition in cluttered envi-
ronments with temporal constraints, we will focus this review on local feature
based 3D object recognition methods.

At the present time, local feature based 3D object recognition is one of the
main research areas in the computer vision field. In addition, the inclusion
of temporal constraints to this recognition process has many practical appli-
cations in multiple areas like robotics, biometric analysis, surveillance, auxil-
iary medical systems, mobile systems manipulation, automatic assembly and
many others [10, 11, 12, 13, 14, 15, 16, 17]. In the latter years, computer vision
in general and object recognition in particular are increasingly becoming more
mature. As the techniques have become more powerful, the industry has been
able to create a wide variety of computer vision products and services [18].

There exist many reviews about 3D object recognition in the literature, in-
cluding the seminal works of Besl and Rain [19], Brady et al. [20], Arman et al.
[21], Campbell and Flynn [6], and Mamic and Bennamoun [22]. All of them
perform a general review of the 3D object recognition problem with varying
levels of detail. However, none of them addresses recent progresses on the
problem nor are significantly focused on the problem that concerns us: local
surface feature based 3D object recognition methods.

The work of Guo et al. [2] is characterized by its comprehensive analysis
of different local surface feature based 3D object recognition methods which
were published between the years 1992 and 2013. In that review, they explain
the main advantages and drawbacks of each one of them. They also provide an
in-depth survey of the techniques used in each phase of a 3D object recognition
pipeline, from the keypoint extraction stage to the surface matching phase,
including the extraction of local surface descriptors. The freshness and the
level of detail of the work make it the most remarkable review (the only one,
according to the authors) focused on local surface feature based methods.

6 CHAPTER 1. INTRODUCTION

It is important to remark the part of the review devoted by Guo et al. in their
work to enumerate, taking into account the most recent works, a set of possible
future research directions about local surface feature based 3D object recogni-
tion, including the following ones: (1) the creation of a benchmarking method
for existing methods, (2) non-rigid object recognition, (3) fusion of photomet-
ric and geometric information (RGB-D), (4) object recognition from 3D video
sequences and (5) the creation or adaptation of current methods to make them
able to work with low resolution images provided by low-cost sensors like
Microsoft Kinect.

Our work follows some of the research directions suggested by Guo et al.
[2]. On the one hand, we will try to fuse photometric and geometric informa-
tion into a 3D descriptor to obtain a robust object recognition system on mul-
tiple scenarios in which the use of exclusively one kind of information would
fail. On the other hand, we will use depth and color data streams provided by
low-cost sensors. Our main goal is to achieve a system’s implementation that
deals with demanding time constraints, i.e., real-time recognition tasks.

Given the posed problems, we will perform a brief review of the state of
the art of each of them, in order to properly contextualize our proposal. In
this sense, this general review about the state of the art of object recognition
will be further divided into the following sections: Section 1.3.1 describes the
local surface feature based methods, including their main stages and the core
techniques used in them. Section 1.3.2 reviews a set of 3D descriptors which
are currently used for object recognition applications. Section 1.3.3 explores
the possibilities of using low-cost 3D sensors in object recognition systems to
achieve real-time implementations. Section 1.3.4 reviews the current state of
the systems which make use of feature descriptors that append photometric
information to the traditional geometric one in order to improve the recogni-
tion rate.

1.3.1 3D object recognition pipeline

As we previously stated, local surface feature based object recognition meth-
ods codify, by means of a descriptor, the information provided by high descrip-
tive regions of the object. These descriptors are later compared to elaborate
hypotheses which are assessed to extract conclusions about unknown objects.
The main advantage of these kind of methods is their ability to recognize ob-
jects in cluttered scenes with a certain level of occlusion.

1.3. RELATED WORKS 7

Traditionally, local surface feature based methods are structured in three
main stages [2]: keypoint detection, local surface feature description and surface
matching. During the keypoint detection phase, a highly descriptive 3D point
set is selected so that those points which do not provide enough information
to discriminate the surface are discarded. The local surface feature description
stage consists of the creation of descriptors, i.e., codifications of the charac-
teristic information of the surface, around the selected keypoints. At last, the
surface matching process takes place. The descriptors extracted from a particu-
lar scene are compared with those obtained from isolated objects to determine
the possible matchings. Later, those matchings are used to generate a set of
hypotheses which are grouped, refined and verified to classify the descriptors
thus recognizing the objects represented by scene surfaces.

Figure 1.1: Local 3D recognition pipeline (Figure reproduced from [23]).

After this brief introduction to local surface feature based methods, we will
provide a detailed description of each of the main three phases.

1.3.1.1 Keypoint detection

The first stage of a local feature based recognition system is typically devoted
to the selection of a set of characteristic points of the surface around which the
surface information will be encoded into descriptors. This selection guarantees
the extraction of local and significant object surface information. In addition,
the keypoint detection has two main goals: on the one hand, reducing the
computational complexity of encoding the information of the whole surface
instead of local patches; on the other hand, discard ambiguous regions which
do not provide enough information.

8 CHAPTER 1. INTRODUCTION

Figure 1.2: Keypoint detection using curvature SIFT. Detected keypoints are
marked using blue dots. (Left) Complete Stanford bunny model. (Right)
3D partial view of a Mario Bros model. (Figure reproduced from A three-
dimensional representation method for noisy point clouds based on growing self-
organizing maps accelerated on GPUs [24]).

The simplest way to perform that selection is applying some kind of mesh
decimation or surface sparse sampling techniques. However, those methods
do not take into account the information richness of those keypoints so the se-
lected points may end up having a low distinctiveness and repeatability. In
this sense, keypoint detection methods must enforce three constraints on the
detected keypoints in order to guarantee the uniqueness of the local descrip-
tors extracted from the keypoints’s surrounding surfaces [25]: (1) repeatability
between different views of the same object, (2) a unique 3D coordinate basis
defined from the neighborhood surface, and (3) enough distinctive informa-
tion in that neighborhood surface.

Depending on how keypoint detection methods deal with the scale, we can
classify them into two different categories [26]: fixed-scale and adaptive-scale.
Fixed-scale methods choose points which are highly distinctive within a neigh-
borhood whose size is fixed as an input parameter to the method. Those meth-
ods are divided into two categories depending on which measures are used
to determine the distinctiviness of a keypoint [2]: curvature based methods

1.3. RELATED WORKS 9

(CBM) and other surface variation measure methods (OSV). Adaptive-scale
methods create a scale space for each 3D image and then select those points
which are distinctive within a neighborhood, whose size is adaptively deter-
mined, in both spatial and scale spaces. Those methods are classified into four
different categories depending on the way they build the scale space [2]: trans-
form based methods (TB), coordinate smoothing based (CS), surface variation
based (SV), and geometric attribute smoothing based ones (GAS). For an in-
depth description of the techniques, the reader is encouraged to consult the
review by Guo et al. [2].

Adaptive-scale methods are the most popular ones due to their ability to
detect the scale of the keypoint. This information improves the precision of the
whole system when dealing with scale changes in the scenes. However, they
tend to be temporally and spatially complex. Fixed-scale methods are simpler
and less complex from a computational point of view but they do not take scale
into account and the best neighborhood size has to be empirically determined.

In conclusion, this stage increments the efficiency and sometimes the preci-
sion of the following phases of the object recognition system.

1.3.1.2 Local surface feature description

The second phase of a local feature based recognition system consists of de-
scribing the features of the local surface around the detected keypoints. As we
said before, keypoints are stable locations of the shape whose neighborhood
surface features are highly distinctive. A feature is a persistent element of a
surface which captures its relevant information [27]. In this stage, the features
of each local surface patch are encoded into a descriptor. These shape repre-
sentations are used to train the object recognition during the learning phase or
to recognize during the surface matching stage, i.e, generate a set of possible
hypotheses about unknown objects.

Feature descriptors must be distinctive and robust so pose invariance is re-
quired. In order to make that happen, the most common solution consists of
defining the descriptor with respect to a local frame instead of a global one.
The vast majority of descriptors define first a local reference frame at a key-
point and then express the local neighborhood surface features with respect
to it. A local reference frame (LRF) is a basis of three orthogonal unit vectors
defined upon a local support [28]. They provide a way to achieve invariance to
rigid transformations (rotations and translations) and increase the robustness

10 CHAPTER 1. INTRODUCTION

against noise and clutter.

Figure 1.3: Different Local Reference Frames obtained by enforcing the right
hand rule. The orthogonal unit vectors are shown in blue, green and red (de-
noted by λ1, λ2 and λ3 respectively). The keypoint is located at the origin, the
blue area is the local surface neighborhood. (Figure reproduced from [28]).

Sometimes, a single LRF might provide an ambiguous definition; in those
cases, feature descriptors resort to defining multiple LRFs at each keypoint to
provide various descriptions at the same keypoint thus removing the possible
ambiguities. Figure 1.3 shows an example of multiple LRFs at the same key-
point. However, defining more LRFs increases the complexity of the system
since it has to compute more descriptors and the matching phase has to solve
the ambiguity problem [28].

In the same way as the keypoints, the quality of a local reference frame
depends on its repeatability and robustness to noise. Using a repeatable and
robust LRF raises the distinctiveness of the descriptor dramatically increasing
the performance of the surface matching phase [29]. In that sense, the quality
of the LRF has a significant impact on the effectiveness of the whole object
recognition system [30].

Once the LRF is computed, another key parameter of a surface descriptor is
its support size, i.e., the size of the region around the keypoint whose features
will be encoded. Examples of different supports are shown on Figure 1.4. De-
pending on the support size, descriptors can be classified into three categories:
pointwise, local/regional and global descriptors. The first ones are simple and
straightforward but they are not able to deal with noise or occlusions since they
do not provide enough information. Global descriptors are highly descriptive
and they are also extremely invariant and robust to noise due to the amount of
considered information, but they need the complete surface to be computed so
they are not suitable for recognition with clutter or occlusions. Local descrip-
tors do not need the whole surface to be computed so they are able to handle
occlusions and clutter. Their locality depends on the size of the support so they
can be adapted to increase their distinctiveness and robustness to noise while

1.3. RELATED WORKS 11

Figure 1.4: Different support sizes for a descriptor over the popular Armadillo
model from the Stanford 3D scanning repository [31] : global descriptor (red),
local descriptor (blue) and pointwise descriptor (green).

keeping their clutter and occlusion handling capability. Local surface feature
based methods use local descriptors.

Choosing the right size for the support is critical for local feature descrip-
tors. As we said before, their strength lies on their adaptability. Increasing the
neighborhood size increments the amount of information that can be encoded
making it more distinctive. However, it also increases the sensitivity to noise
and occlusions.

Once the LRFs and the support size are defined, the last step for creating
the descriptor consists of enconding the information, with respect to the LRF,
of the local surface delimited by the support around the keypoint. According
to the information encoding method, descriptors can be classified into three
categories [2]: signature based, histogram based, and transform based descrip-
tors. Signature based methods encode geometric measures for each point of
a subset of the neighborhood. Histogram based methods accumulate geomet-
ric measures into histograms according to a specific domain. Transform based
methods transform the 3D image to another domain and encode the local sur-
face information in it.

1.3.1.3 Surface matching

The last stage of a typical local feature based object recognition system is named
surface matching. In this stage, the feature descriptors extracted from the scene

12 CHAPTER 1. INTRODUCTION

Figure 1.5: Example of an histogram based 3D descriptor: the Mian tensor
which divides the support into bins and accumulates the area of surface which
intersects each one of them. (a) 3D basis (LRF) and support defined over the
surface of the dog. (b) A 10x10x10 support grid defined over the surface of
the dog centered at the LRF origin. (c) A zoomed in view of eight bins around
the LRF origin. (d) A single bin intersecting three triangular faces. The shaded
area is the intersection. (Figure reproduced from [16]).

are matched against the descriptors of the trained system to generate a set of
hypotheses by voting for the possible candidates. At last, those hypotheses are
verified to identify the different objects in the scene. In this sense, this stage can

1.3. RELATED WORKS 13

be subdivided into three phases [2]: feature matching, hypothesis generation
and verification.

The goal of the feature matching phase is to obtain a set of correspondences
between the extracted scene descriptors and the ones from the models used to
train the system. In order to do that, a matching strategy and a search method
must be defined. The most used strategy is the nearest neighbor (NN) search.
The simplest search method is the brute-force one; however, comparing each
scene descriptor with all the stored ones is extremely inefficient. Efficient data
structures or index based methods are commonly used to alleviate the com-
plexity of the search. Hash tables and k-d trees are the most popular alterna-
tives.

Once a set of correspondences between the scene descriptors and the stored
ones has been established, the system must determine the possible candidate
object models that might be present in the scene due to those correspondences
and then generate transformation hypotheses for each one of them. However,
those transformations tend to be inaccurate because of false matches. The most
common techniques that are used to generate transformation hypotheses and
improve their accuracy are geometric consistency, random sample consensus and
pose clustering.

In the end, the generated hypotheses are accepted or rejected during the
verification phase. The goal is to discard false hypotheses, i.e., transforma-
tions whose accuracy fall below a predefined threshold. The most commonly
used methods are the so called individual verification ones. They align the
candidate model with the scene using the transformation hypothesis, then the
alignment is refined with registration methods like the Iterative Closest Point
algorithm. The hypothesis is accepted if its error is below certain threshold.
Then the scene points which correspond to the aligned model are segmented
thus recognizing the object.

1.3.2 3D local feature descriptors

Local surface feature descriptors are a key part of an accurate and robust ob-
ject recognition system. As we previously stated, using local surface features
is the current trend due to their robustness to clutter and occlusions. These de-
scriptors encode the characteristics of the local neighborhood of feature points.
Since they do not need the whole object for describing it, they are therefore
suitable for partially visible object recognition under clutter conditions.

14 CHAPTER 1. INTRODUCTION

Arguably, the most important characteristic of a local feature descriptor is
pose invariance. This is due to the fact that recognition systems must be able
to detect objects which can be scanned from different viewpoints or appear in
a scene with any arbitrary pose. A common way to achieve pose invariance is
to resort to a reference axis or define a local reference frame. Both solutions are
object-centered coordinate systems. In contrast with viewer-centered coordi-
nate systems, object-centered ones are view-independent thus making the sur-
face descriptions invariant to pose. Besides that, each descriptor delimits and
describes the local surface using various techniques so that the performance of
the system may vary.

Throughout this section we will describe the following 3D local feature de-
scriptors: SI, SHOT, FPFH, 3DSC, USC, Tensor, RoPS and TriSI. These descrip-
tors were chosen following popularity, novelty and performance criteria.

1.3.2.1 Spin Images (SI)

Spin Images (SIs) is a descriptor initially introduced by Johnson [32] for surface
matching and object recognition systems. In order to achieve pose invariance,
Spin Images resort to defining local coordinate systems at oriented points (3D
surface points with an associated direction). Oriented points are defined by a
surface vertex p and its surface normal n thus formulating the local coordinate
system (p, n). Then the plane P through p is defined as perpendicular to n
and the line L through p as parallel to n. This creates a cylindrical coordinate
system (α, β) in which α is the perpendicular distance of a point x to L while β

is the signed perpendicular distance of x to P. Figure 1.6 shows the creation of
the coordinate system.

The next step of the descriptor consists of creating a spin map S0 by pro-
jecting the 3D points of the mesh to the oriented point basis. Given a point x
the projection function S0(x) gives us the coordinates (α, β) in the basis (p, n).
Once the points have been projected, a 2D array representing the spin image
is generated using the oriented point basis. This array is divided into bins so
that a histogram-like representation is generated. Then, the corresponding bin
for each projected point SO(x) is calculated taking into account its (α, β) co-
ordinates. If the point x meets some established constraints, i.e., distance of x
to O or angle between O and the surface normal of x (namely, the support an-
gle), the array is updated by incrementing the four surrounding bins of the bin
which corresponds to x. The contribution of x to the four surrounding bins is

1.3. RELATED WORKS 15

Figure 1.6: An oriented point basis created at a vertex in a surface mesh. The
position of the oriented point is the 3-D position of the vertex, and the direction
of the oriented point is the surface normal at the vertex. (Figure reproduced
from [32]).

determined by using bilinear interpolation so that the array is less sensitive to
the position of the point thus dealing with noisy data. Figure 1.7 illustrates the
2D array generation process and 1.8 shows three 2D arrays and spin images
generated using three points on the surface of a duckling model.

Regarding to the spin image generation, there are three parameters which
control the process: support angle, image width and bin size. The bin size
controls the descriptiveness of the spin image while the width determines the
amount of information taken into account. The support angle controls the ef-
fect of self-occlusion and clutter. It is important to remark that spin images are
not scale invariant [32].

Figure 1.7: The addition of a point to the 2-D array representation of a spin-
image. From left to right: projection, 2D array generation and contribution
calculation with bilinear interpolation. (Figure reproduced from [32]).

16 CHAPTER 1. INTRODUCTION

Figure 1.8: Spin images and 2D arrays for three oriented points on the surface
of a duckling model. Darker areas correspond to bins with higher number of
points projected into them. (Figure reproduced from [32]).

1.3.2.2 Fast Point Feature Histogram (FPFH)

The Fast Point Feature Histograms (FPFH) [33] descriptor is an efficient variant
of the original Point Feature Histograms (PFH) [34] both introduced by Rusu
et al.. The PFH descriptor tries to encode the geometrical properties of the
neighborhood of a keypoint generalizing the mean curvature around that point
and storing the information on a multi-dimensional histogram. This generates
a pose invariant descriptor which is also able to deal with different resolutions
and levels of noise.

The first step for computing the descriptor of a determined point consists
of delimiting its neighborhood. In order to do that, a 3D sphere with radius
r is placed with its center at the keypoint. All its neighbors whose distance is
smaller than the radius r are taken into account for the next step. Figure 1.9
shows this process.

Then, for each pair of points ps and pt (s 6= t and ps being the point with
a smaller angle between its normal and the line connecting both points) in the

1.3. RELATED WORKS 17

Figure 1.9: Neighborhood for keypoint pq in red, delimited by a 3D sphere
represented by a dotted circle. (Figure reproduced from Pointclouds.org).

neighborhood, a triplet (α, φ, θ) is computed. In order to do that, a fixed coordi-
nate frame (u, v, w) at one of the points is defined to achieve pose invariance.
Being u = nps , v = u × (pt − ps) and w = u × v where nps is the normal
associated to ps.

Once the coordinate frame has been established, the difference between
the normals of both points are expressed as a set of angular features, i.e., the

triplet (α, φ, θ) that we mentioned earlier: α = v · npt , φ = u · pt − ps

d
and

θ = arctan(w · npt , u · npt). where d is the distance from ps to pt and npt the
normal associated to pt.

Having all the triplets computed for each pair of points in the neighbor-
hood, the actual descriptor is generated by binning that set of triplets into the
point feature histogram. In order to do that, the value range of each feature
(α, φ and θ) is divided into b subintervals. This way, a histogram with b3 bins
is created. The histogram is generated by counting the number of occurrences
in each subinterval. The computational complexity of the PFH descriptor for
a cloud with n points is O(nk2) where k is the number of neighbors for each
point.

The Fast Point Feature Histograms (FPFH) is a simplified version of this
process which reduces the computational complexity to O(nk) and keeps most
of the representational power of the PFH descriptor. The FPFH first computes
a set of triplets (α, φ, θ) between the keypoint and its neighbors and then gener-
ates a histogram called Simplified Point Feature Histogram (SPFH). Then that
simplified histogram and the weighted ones of the keypoint’s neighbors are

combined to form the final histogram: FPFH(p) = SPFH(p)+
1
k

k

∑
i=1

1
wk

SPFH(pk)

18 CHAPTER 1. INTRODUCTION

Figure 1.10: FPFH Neighbors of the current keypoint pq in red linked by pink
lines. For those points, each neighborhood is delimited by a colored circle.
Bold lines represented relationships which are computed twice. (Figure repro-
duced from Pointclouds.org).

where p is the current point, pk are the neighbors of p and wk is a score given
to the (p, pk) pair which is usually a distance in some given metric space.

1.3.2.3 3D Shape Context (3DSC)

The 3D Shape Context descriptor [35] was originally introduced by Frome et al.
as a three dimensional extension of 2D shape contexts introduced by Belongie
et al. [36]. 3DSC builds a 3D sphere as the support for the descriptor and then
divides it into bins to generate a histogram-like representation. That sphere
is centered on the keypoint p and its north pole is oriented with the surface
normal of that point. The sphere is then divided into bins by logarithmically
spaced boundaries along the radial dimension and equally spaced ones in the
azimuth and elevation dimensions. Figure 1.11 shows the support of the 3DSC
descriptor.

Frome et al. perform J + 1 radial divisions R = {R0, ..., RJ}, K + 1 eleva-
tion divisions θ = {θ0, ..., θK} and L + 1 azimuthal ones φ = {φ0, ..., φL}. In
this way, each bin corresponds to one element in the J × K × L feature vector
(R, θ, φ). Each bin (j, k, l) accumulates the weighted count w(pi) for each point
pi whose spherical coordinates relative to the keypoint or sphere center p fall
within the corresponding ranges [Rj, Rj+1), [θk, θk+1) and [φl , φl+1). Each point
pi contributes with a certain amount to the bin count following Equation 1.1.
In this sense, the contribution of a certain point depends on the volume of the

1.3. RELATED WORKS 19

Figure 1.11: 3D Shape Context support sphere. (Figure reproduced from [35]).

bin V(j, k, l) and the local point density around that bin pi, which is estimated
as the count of points in a sphere of radius δ around pi.

w(pi) =
1

pi
3
√

V(j, k, l)
(1.1)

1.3.2.4 Unique Shape Context (USC)

The Unique Shape Context (USC) is a modified version of the 3DSC descriptor
which was introduced by Tombari et al. [37] in order to improve its accuracy
and reduce its memory footprint. Tombari et al. identified that the lack of
uniqueness of the local reference frame reduces the accuracy of the descriptor
and increases its memory footprint since the computation of multiple descrip-
tors at each feature point is required in order to achieve a unique description
at each point.

The USC is an improved 3DSC which does not need to compute the de-
scriptor over multiple rotations on azimuth directions. This improvement con-
sists of employing an unique and unambiguous local reference frame which
yields a repeatable normal axis and two unique directions lying on the tan-
gent plane. In this sense, only a single descriptor has to be computed over
the rotation indicated by the vectors over the tangent plane thus reducing the
memory footprint of the descriptor and increasing the overall accuracy of the
recognition process.

The unambiguous local reference frame is computed as follows. Given a
keypoint p and a spherical support centered on it with a determined radius
R (note that this support is the same that is later employed to compute the
descriptor), the covariance matrix M of the points of the neighborhood is com-

20 CHAPTER 1. INTRODUCTION

puted as shown on Equation 1.2 where di = ||pi − p||2 and Z = ∑
i:di≤R

(R− di).

Note that smaller weights are assigned to distant points in the covariance ma-
trix since those are likely lying out of the region of interest.

M = 1/Z ∑
i:di≤R

(R− di)(pi − p)(pi − p)T (1.2)

Then, the Total Least Squares estimation of the three unit vectors of the
local reference frame is obtained by computing the eigenvector decomposi-
tion of the covariance matrix. Also, a sign disambiguation step is performed
to overcome the eigenvector decomposition ambiguity so that a unique and
repeatable local reference frame is generated. Once the LRF is obtained, the
descriptor is computed using that reference frame in the same way as 3DSC
does.

1.3.2.5 3D Tensor (Tensor)

The Tensor is a 3D local feature descriptor introduced by Mian et al. [16] which
relies on building a three dimensional histogram that accumulates the amount
of surface intersecting each bin instead of just holding a point count. This
means that the descriptor computation requires a triangular mesh which is
usually decimated for performance reasons. First of all, the vertices of the mesh
are paired such that they satisfy certain distance and angle constraints: two
vertices are paired only if their distance falls in a predefined interval [dmin, dmax]

and if the angle between their normals θ is greater than 5 degrees. In order to
avoid the combinatorial explosion of pairs, each vertex is only paired with the
nearest three ones which satisfy the previous constraints.

Then, for each pair of vertices a coordinate basis is defined. The origin is
established at the center of the line which joins both vertices. The average of
the normals of the vertices makes the z-axis, the cross product of them makes
the x-axis and again the cross product of the z-axis and the x-axis makes the
y-axis. Once the coordinate based is established, a thee-dimensional grid is
defined at its origin with a certain number of bins (usually 10x10x10) and a
predefined bin size (normally derived as dmin/5). Once the grid has been de-
fined, the Hodgman’s polygon clipping algorithm is used to find the surface
area of intersection of each bin and the mesh. Each bin holds the amount of
surface area of the mesh which intersects that bin. Since most bins tend to be
empty, the tensor is compressed to a sparse form.

1.3. RELATED WORKS 21

Figure 1.12: Tensor computation. (Figure reproduced from [15]).

1.3.2.6 Signature of Histograms of Orientations (SHOT)

SHOT is a descriptor originally introduced by Tombari et al. [30] which en-
codes a signature of histograms representing topological traits of points within
a spherical support. The signature structure of the SHOT descriptor is an
isotropic spherical grid which encompasses partitions along the radial, az-
imuth and elevation axes as shown on Figure 1.13. The usual number of spatial
bins is 32 (8 azimuth divisions, 2 elevation and radial divisions) generating a
small cardinality descriptor. For each volume or spatial bins, a local histogram
is computed. Then all local histograms are grouped together to form the actual
descriptor which lays at the intersection between a histogram-based method
and a signature-based one.

Figure 1.13: SHOT signature structure. (Figure reproduced from [30]).

For each one-dimensional local histogram, point counts are accumulated
into bins according to a function of the angle θi between the normal at each

22 CHAPTER 1. INTRODUCTION

point within the volume ni and the normal at the keypoint n or center of the
support. The function used to accumulate point counts is cos θi which can be
computed fast as ni · n.

It is important to remark that before creating the volumes and comput-
ing the descriptor, a mechanism like the one used for the USC descriptor is
employed to generate a repeatable and unambiguous local reference frame:
eigenvector decomposition of the covariance matrix of the point coordinates
within the support.

1.3.2.7 Rotational Projection Statistics (RoPS)

Rotational Projection Statistics is a local feature descriptor proposed by Guo
et al. in their paper [38] with the main goal of developing a method robust
to noise and variations in mesh resolutions. RoPS first crops a local surface
of the mesh using a sphere of radius r centered at a keypoint p which can be
detected with any available method. Next, a LRF is generated by calculating
the eigenvectors of the covariance matrix of the local surface. In order to build
the covariance matrix, RoPS needs a surface mesh S which contains N triangles
and M vertices.

Once the LRF has been computed, the neighboring points within the sup-
port radius are relocated in the LRF to achieve pose invariance. This results
in a transformed point cloud Q′. Then, a feature descriptor is generated by
encoding the information of that local surface from different viewpoints.

In order to do that, the neighboring points are rotated around the LRF x-
axis by an angle θk and then they are projected onto the local xy, yz and xz
planes using the LRF axes. Each plane is partitioned into L × L bins which
count up the number of points which fall in them. This results in a distribution
matrix D which partially records the local surface information from a particu-
lar viewpoint. To make the feature descriptor compact, four central moments
and Shannon entropy are calculated for each D. These values are concatenated
to form a sub-feature fx(θk).

However, performing this step only on one axis and one rotation yields a
low descriptive descriptor. In order to overcome this problem, the informa-
tion of the local surface is recorded from various viewpoints. The neighboring
points are rotated around the local x-axis by a series of angles θk, k = 1, 2, ..., T
to generate a set of sub-features for the x-axis { fx(θk)}, k = 1, 2, ..., T. The
process is repeated rotating Q′ around the y and z axes to generate the set of

1.3. RELATED WORKS 23

sub-features { fy(θk)} and { fz(θk)}, k = 1, 2, ..., T.
In the end, the overall feature descriptor is generated by concatenating all

these sub-features into a vector f .

f = { fx(θk), fy(θk), fz(θk)}, k = 1, 2, ..., T (1.3)

1.3.2.8 Tri-Spin-Image (TriSI)

The TriSI feature descriptor is an improvement of the RoPS descriptor [38] also
introduced by Guo et al.[39]. It consists of an improved LRF and a new 3D
local surface feature which is very robust to noise, varying mesh resolutions,
occlusions and clutter. This is achieved by encoding the information of a local
surface around three orthogonal axes using one spin image for each one of
them.

Guo et al. [39] first build a LRF which is an enhanced version of the one
presented in [38] but considering a different weighting strategy to increase the
robustness against noise and outliers. In the end, the LRF is constituted by the
keypoint Ok and three unambiguous vectors {~v1, ~v2, ~v3}.

Figure 1.14: TriSI spin sheet. (Figure reproduced from [39]).

Once the LRF has been defined, the information of the local surface is en-
coded by three signatures {SI1, SI2, SI3} around the three axes {~v1, ~v2, ~v3}. A
signature SI1 is generated by encoding the point distribution around ~v1 using
a spin image approach. A point q of the local surface is mapped to a 2D space
represented by two parameters (α, β). α represents the perpendicular distance
of q from the line that passes through Ok and is parallel to ~v1, while β is the

24 CHAPTER 1. INTRODUCTION

signed perpendicular distance to the plane that goes through Ok and is per-
pendicular to ~v1. Figure 1.14 shows a graphical representation of α and β for a
point q whose mapping is being calculated for SI1 using the coordinate system
defined by Ok and ~v1.

Equations 1.4 and 1.5 show the operations needed to compute both α and
β to obtain the mapping for a point q when generating the signature SI1 using
~v1.

α =
√
||q−Ok||2 − (~v1 · (q−Ok))2 (1.4)

β = ~v1 · (q− p) (1.5)

Once all the points are mapped to their (α, β) coordinates, the 2D space is
discretized into bins which count the number of points falling in each one of
them, this process generates a 2D histogram. The contribution of each point
to the bin is bi-linearly interpolated to its neighboring bins so that the final
feature is less sensitive to positional noise that might affect the points of the
local surface.

The other two signatures SI2 and SI3 are generated following the same pro-
cess adopted to create SI1. In this case, SI2 and SI3 might be generated by
substituting the reference axis ~v1 in Equations 1.4 and 1.5 with ~v2 and ~v3 re-
spectively. ~v1 is used in Equations 1.4 and 1.5 for mapping a point q to the
2D coordinate system defined by Ok and ~v1, by substituting ~v1 with ~v2 and ~v3

the coordinate system is changed to be defined by (Ok, ~v2) and (Ok, ~v3) respec-
tively.

Figure 1.15: An illustration of a TriSI feature. (Figure reproduced from [39]).

1.3. RELATED WORKS 25

In the end, the three signatures are concatenated to obtain a high discrimi-
native feature f = SI1, SI2, SI3. Because the three axes are orthogonal to each
other, the information from the three signatures is complementary and rela-
tively non-redundant. As a last step, to make the feature vector compact, f is
compressed by projecting it onto a PCA subspace.

1.3.3 Real-time object recognition with low-cost sensors

In general, object recognition methods exhibit a considerable execution time,
mainly due to two factors: (1) most methods make use of high precision tridi-
mensional information which implies a high computational cost because of
the complexity of the data that must be processed and (2) this high precision
information is often provided by sweeping range laser scanners which are ex-
tremely slow and require a lot of time to perform a complete sweep and pro-
vide a full capture [40].

Figure 1.16: SICK S3000 laser scanner. (Image reproduced from Sick.com).

Those factors render impossible the use of traditional object recognition
systems when demanding time constraints must be met. In our context of
mobile robotics and continuous interaction with the user, traditional systems
are not able to satisfy the requirements regarding to execution time, low power
consumption and cost.

Besides the laser scanning, time-of-flight cameras (ToF), such as the SR4000
camera from Mesa Imaging, provide depth maps by using a modulated light
source. Devices which make use of this technology are able to achieve con-
siderable higher capture rates per second than sweeping laser scanners (see
Figure 1.17). Due to this fact, ToF devices are suitable for real-time robotic ap-

26 CHAPTER 1. INTRODUCTION

plications [41]. However, their high economic cost significantly reduces their
usage.

Figure 1.17: Left: SR4000 camera (Figure reproduced from SR4000 dataset [42]),
Right: basic functioning schema of ToF, stereoscopic 3D and laser scanner sys-
tems (Figure reproduced from Robotshop.com).

As an alternative to the already shown sensor devices, RGB-D cameras
emerged. These devices are characterized by their sensing technology which
is able to provide high quality and synchronized color and depth information.

Some successful examples of this kind of devices are the PrimeSense Carmine,
shown in Figure 1.19, and the Microsoft Kinect 1, shown in Figure 1.18. These
devices make use of active sensing techniques to provide robust depth esti-
mates in real-time. The basic functioning consists of projecting a known pat-
tern by using an infrared emitter, then the pattern reflected by the surfaces
is captured by an infrared sensor. Changes in the depth of the surfaces of the
scene deform the original pattern. Those deformed patterns are correlated with
the original ones to create an approximated depth map [43][44][45].

Figure 1.18: Left: first revision of the Kinect camera, Right: Kinect version 2.
(Figures reproduced from Wikipedia.org under Wikimedia Commons license).

This kind of sensors exhibit a set of advantages which makes them suitable
for real-time computer vision applications, including object recognition. Their

1https://www.microsoft.com/en-us/kinectforwindows/

https://www.microsoft.com/en-us/kinectforwindows/

1.3. RELATED WORKS 27

most remarkable advantages are a reduced size, low power consumption and
low economic cost so that they can be massively distributed. However, in or-
der to keep those advantages, many sacrifices are required: they provide high
quality depth maps but their range is quite limited in comparison with a high
precision laser scanner; in addition, depth maps are noisy due to limitations of
the technology. As we can observe, the advantages are significant but their as-
sociated drawbacks render the traditional approaches, which make use of high
precision data, unsuitable for working with low cost sensors. In that sense,
they have to be adapted to cope with those downsides.

Figure 1.19: Left: Asus Xtion Pro (Figure reproduced from Asus.com), Right:
PrimeSense Carmine 1.08 (Figure reproduced from Primesense.com).

1.3.4 Fusion of photometric and geometric information

The vast majority of current 3D object recognition methods exclusively work
with geometrical information to describe surfaces and detect objects in scenes
[2]. Photometric information (colors and textures) is usually ignored. How-
ever, there are multiple psychological studies which confirm that colors have a
significant influence on human vision when recognizing objects. In that sense,
color should be considered in order to improve the efficacy of current models
[46].

With the advent of low-cost 3D sensors which are capable of providing both
geometrical and photometric information, researchers have started to develop
tridimensional surface feature descriptors which include color and texure in-
formation. It is the case of the CSHOT descriptor [47] created by Tombari et al.
as a generalization of the SHOT descriptor [30]. Its goal is to take into account
mutiple kinds of surface information besides its geometry. Experiments show
that the CSHOT descriptor notably improves the precision of the recognition
system in scenes characterized by the presence of occlusions [47].

28 CHAPTER 1. INTRODUCTION

1.4 Proposal

After describing the motivation of this work and analyzing the state of the art
of 3D object recognition systems that exist nowadays or have been proposed,
we propose the implementation of a local surface feature based object recog-
nition system which will operate over data streams provided by low-cost 3D
sensors. This system will resort to the power of a mobile GPU parallel com-
puting platform (NVIDIA Jetson TK1 2) to be able to operate in real-time. In
addition, the system will be highly optimized for multi-threaded CPU exe-
cution on modern multi-processor architectures so that we can exploit all the
capabilities of heterogeneous CPU/GPU platforms.

1.5 Goals

The main goal of this project is the development of an interactive 3D object
recognition system. First, a sequential CPU pipeline will be implemented. That
system will be optimized for multi-threaded CPU execution. In addition, it will
be reimplemented to fit into a GPU computing platform to accelerate certain
phases.

An extensive state of the art of 3D object recognition systems will be carried
out. It will be mainly focused on 3D feature descriptors and real-time object
recognition.

Furthermore, we will analyze the precision and efficiency of all the imple-
mented surface descriptors. An extensive experimentation will be carried out
to determine which descriptor offers a good balance between precision and
runtime. That descriptor will be selected for the final implementation of the
system.

As a secondary goal, but directly related to the previous one, we will create
a 3D object dataset comprised of a set of reconstructed 3D object models and
a handful of validation scenes. For this purpose, we will develop a 3D object
reconstruction pipeline to generate models that will be used to train our sys-
tem. The test scenes will be utilized to assess the precision and runtime of our
proposed pipeline and its optimizations.

To sum up, the main goals of this project are the following ones:

• State of the art of existing 3D object recognition systems.

2https://developer.nvidia.com/meet-jetson-embedded-platform

https://developer.nvidia.com/meet-jetson-embedded-platform

1.5. GOALS 29

• 3D object dataset and evaluation scenes.

• CPU implementation of a 3D object recognition pipeline.

• Descriptor precision and performance analysis.

• Multi-threaded and optimized CPU implementation.

• GPU acceleration of certain stages of the pipeline.

Figure 1.20 shows the proposed timeline for accomplishing the aforemen-
tioned general goals. Note that in order to achieve the objectives, they will
be dealt with in a sequential manner. The project will start on Thursday 29th
January, 2015.

Figure 1.20: Project timeline.

Next, we will decompose the general goals into specific ones and distribute
them over the available time in form of tasks that will compose our project. In
addition, we will show detailed Gantt diagrams for each task, providing their
duration, dependencies and start/finish dates.

The first task will be 1. State of the art. This task spans 19 days of work
from January 29th to February 19th and consists of the following subtasks:

• 1.1. Selection of relevant descriptors

• 1.2. Description of selected descriptors

• 1.3. Document: Introduction

30 CHAPTER 1. INTRODUCTION

Figure 1.21 shows the Gantt diagram for the task 1. State of the art.

Figure 1.21: Gantt diagram for Task 1: State of the art.

The second task will be 2. CPU implementation. This task spans 30 days of
work from February 20th to March 26th and consists of the following subtasks:

• 2.1. Pipeline implementation with Point Cloud Library.

• 2.2. Inclusion of Point Cloud Library descriptors.

• 2.3. Refactoring and multi-object pipeline.

• 2.4. Comparison of descriptors.

• 2.5. Document: Proposal - CPU implementation.

Figure 1.22 shows the Gantt diagram for the task 2. CPU implementation.

Figure 1.22: Gantt diagram for Task 2: CPU Implementation.

1.5. GOALS 31

The third task will be 3. CPU optimizations. This task spans 30 days of
work from March 27th to April 30th and consists of the following subtasks:

• 3.1. Optimization study.

• 3.2. Optimization tools configuration.

• 3.3. Optimized CPU implementations.

• 3.4. CPU optimizations experimentation.

• 3.5. Document: Proposal - CPU optimizations.

Figure 1.23 shows the Gantt diagram for the task 3. CPU optimizations.

Figure 1.23: Gantt diagram for Task 3: CPU optimizations.

The fourth task will be 4. GPU implementation. This task spans 21 days of
work from April 30th to May 25th and consists of the following subtasks:

• 4.1. Descriptor improvement study.

• 4.2. Jetson TK1 configuration.

• 4.3. Port object recognition pipeline to Jetson TK1.

• 4.4. CUDA implementations.

• 4.5. Document: Proposal - GPU implementation.

• 4.6. Document: Methodology.

• 4.7. Document: Conclusions.

Figure 1.24 shows the Gantt diagram for 4. GPU implementation.

32 CHAPTER 1. INTRODUCTION

Figure 1.24: Gantt diagram for Task 4: GPU implementation.

1.6 Structure

This document is structured as follows: Chapter 1 outlined the project and
presented a detailed state of the art of each issue covered in this work. It ex-
posed the motivation of the work and its general and specific goals. Chapter 2
presents the methodology followed during the development of this project. It
exposes the different techniques, technologies and tools used to carry out this
work. Chapter 3 presents our proposed solution. It first describes the proposal
in depth. Then it presents the CPU implementation, the CPU optimizations
and the GPU implementation. The experiments and discussion for each part
of the implementation are detailed throughout the chapter. Finally, Chapter 4
details the conclusions extracted from this project and draws future work and
research directions.

Chapter 2

Methodology

In this chapter we will describe the methodology employed in this
work. It is organized into three different sections. Section 2.1 introduces
the purpose of this chapter. Section 2.2 explains the multiple technologies
that were used to obtain data, develop our applications or even improve
them. At last, Section 2.3 describes the experimentation methodology that
was followed to assess the different object recognition systems or phases.

2.1 Introduction

In order to carry out this project, we need the support of many different tech-
nologies. First, we need a set of data acquisition systems to feed our applica-
tions with 3D information. Subsequently, we need tools for developing those
applications and, as far as possible, ease and streamline the development pro-
cess. Section 2.2 describes both kinds of technologies that were used during
the development of the project.

In addition, we will eventually need to compare our systems with others
or even with itself in order to verify the improvements introduced by changes
in some of its phases. In this sense, objectively quantifying the performance
of the system turns out to be critical if we want to improve the system and
work on the right track. Section 2.3 deals with this problem and establishes the
experimentation methodology that will be followed during our tests.

33

34 CHAPTER 2. METHODOLOGY

2.2 Technologies

In this section we will describe the different technologies which were directly
or indirectly used during the development of this project. Subsection 2.2.1 de-
scribes the software tools and Subsection 2.2.2 focuses on hardware platforms
and devices.

2.2.1 Software

The object recognition system will be implemented using C/C++ as the pro-
gramming language of choice. We are going to use Visual Studio 2013 as the
IDE and Git (with a private repository hosted on BitBucket.org) for version con-
trol. CMake will be used for managing the build process of the project. We will
also make use of Boost libraries for some particular tasks and the STL contain-
ers, iterators and algorithms.

In order to manage the acquisition devices, we will resort to the Open Natu-
ral Interaction (OpenNI) project for handling the data streams from compatible
cameras like Microsoft Kinect and PrimeSense Carmine. The new Kinect 2.0 is not
compatible out of the box with it so we will make use of the Kinect for Win-
dows SDK 2.0 to obtain data from it. In addition, we will explore the use of
libfreenect2 and its corresponding driver since the aforementioned SDK is only
compatible with Microsoft Windows systems.

The Point Cloud Library (PCL) will be used to process the information pro-
vided by the sensors. The main reason for using this library is streamlining the
development process. We will make use of many algorithms which are inher-
ently complex. The purpose of this work is not implementing those algorithms
one by one but knowing and applying them with a higher purpose and even
improve them if possible. Since we are not going to reinvent the wheel, the
Point Cloud Library provides us with all the functionality and necessary tools to
implement our object recognition system at a higher level without losing time
with unnecessary details.

The CPU implementation will be optimized using Open Multi-Processing
(OpenMP) to get all the possible performance on multi-core processors (paral-
lel programming).

The GPU accelerated version will be implemented into a Jetson TK1 paral-
lel platform using Compute Unified Device Architecture (CUDA) for parallelizing
parts of the CPU implementation, and its environment for profiling and im-
proving the system.

2.2. TECHNOLOGIES 35

2.2.1.1 OpenNI

Open Natural Interaction (OpenNI) is an open source software project which
offers a set of APIs for accessing natural interaction devices. Its open source
framework is also referred as the OpenNI SDK and is has become the recog-
nized standard for developing computer vision middleware and 3D solutions.
The original OpenNI project, founded by PrimeSense, was shutdown when
Apple acquired PrimeSense in 2013. Since then, Occipital and Structure are
keeping a forked version of OpenNI named OpenNI 2.0 with their own SDK.

The OpenNI 2.0 API provides a single and unified interface for accessing
depth, RGB and IR streams from PrimeSense compatible depth sensors. It also
provides a simple interface which can be used by middleware libreries to in-
teract with depth sensors. In this sense, applications can make use of the basic
data provided by supported sensors and third party middleware such as skele-
tal tracking.

The architecture or stack of the OpenNI 2.0 SDK is shown in Figure 2.1.
As we can observe, the hardware abstraction layer provides a unified inter-
face so that the device driver layer is completely abstracted from the rest of
the OpenNI stack so OpenNI might be installed with different drivers for us-
ing various devices. The OpenNI Programmer’s Guide provides further useful
information about the API [48].

Figure 2.1: OpenNI 2.0 SDK Architecture.

36 CHAPTER 2. METHODOLOGY

2.2.1.2 Point Cloud Library

The Point Cloud Library (PCL) [49] is an open project which is meant to pro-
vide support for the common 3D building blocks that computer vision and
robotics applications might need. The library contains state-of-the-art algo-
rithms for filtering, feature estimation, surface reconstruction, registration, model
fitting and segmentation. In addition, the library is supported by an interna-
tional community of robotics and perception experts and more recently by the
OpenPerception organization. The PCL is released under the terms of the 3-
clause BSD license and it is open source software and more importantly, it is
cross-platform.

Figure 2.2: Point Cloud Library (PCL) logo.

From an architectural and implementation point of view, the PCL is a fully
templated, modern C++ library for 3D point cloud processing which makes
use of modern CPUs optimizations like SSE to achieve outstanding levels of
efficiency and performance. In addition, the library is based on Eigen and
provides support for OpenMP and Intel Threading Building Blocks libraries for
multi-core parallelization. Furthermore, all the modules and algorithms pass
data around using Boost shared pointers, thus avoiding the need to re-copy
data. For more information, we suggest reviewing the introductory paper 3D
is here: Point Cloud Library [49].

Figure 2.3: Point Cloud Library (PCL) dependency graph.

2.2. TECHNOLOGIES 37

2.2.1.3 OpenMP

Open Multi-Processing (OpenMP) is a set of compiler directives and callable
runtime library routines that extend Fortran and C/C++ to express shared-
memory parallelism [50]. It was designed to be a flexible standard and easily
implemented across different platforms. Nowadays, it is the industry-standard
API for high-level shared-memory parallel programming due to its simplicity
and effectiveness.

From the inside, its model uses multithreading to parallelize tasks using
threads, forked by a master thread, which run concurrently with a custom run-
time environment mapping those threads to cores. In this way, both task and
data parallelism can be achieved thanks to work sharing constructs provided
by the API.

The OpenMP standard comprises four distinct parts: control structures,
work sharing constructs, the data environment, synchronization and the run-
time library.

Figure 2.4: OpenMP language extensions (Figure reproduced from Wikime-
dia.org).

Listing 2.1 shows a brief example of OpenMP usage to parallelize a simple
vector addition by using the preprocessor directive omp parallel for.

Listing 2.1: Simple OpenMP loop parallelization example.

1 void sum_vectors(int *a, int *b, int *c) {
2 #pragma omp parallel for
3 for (int i = 0; i < N; i++)
4 c[i] = a[i] + b[i];
5 }

38 CHAPTER 2. METHODOLOGY

2.2.1.4 NVIDIA CUDA

The Compute Unified Device Architecture (CUDA) [51] is a parallel comput-
ing platform and programming model which allows using a GPU for general
purpose computing. From a software point of view, CUDA is a heterogeneous
programming model in which both the CPU (host) and GPU (device) are used.
The distinctive features of this model are simplicity and elegance. Programs
are written in the familiar C/C++, Fortran, Python and many more languages
whilst a set of extensions in the form of basic keywords is added to those lan-
guages in order to let the developer express the parallelism of the application
thus directing the compiler for mapping that portion of the application for
GPU execution on CUDA compatible devices.

A typical CUDA program is comprised of kernels, i.e., functions which are
executed in parallel across a set of GPU threads. Those threads are organized
in blocks of threads and grids of blocks. Figure 2.5 shows the aforementioned
hierarchy.

Figure 2.5: CUDA hierarchy of threads, blocks and grids with corresponding
per-thread, per-block and per-application memory spaces.

2.2. TECHNOLOGIES 39

Each thread within a block executes a copy of the kernel function. Threads
of the same block are concurrently executed and cooperate through memory
sharing and synchronization barriers. Blocks are further organized into grids
which are arrays of blocks which execute the same kernel.

As an illustration, the code sample shown on Listing 2.2 adds two vectors
A and B of N elements and stores the result into C by using the kernel VecAdd
which is executed on a grid of one block with N threads in that block. Each
thread computes the index of its corresponding element and adds it.

Listing 2.2: Simplified CUDA kernel for vector addition.

1 __global__ void VecAdd (float* A, float* B, float* C) {
2 int i = threadIdx.x;
3 C[i] = A[i] + B[i];
4 }
5 int main() {
6 // Memory allocation and copy...
7 // Kernel call with N threads
8 VecAdd<<<1, N>>>(A, B, C);
9 // Memory copy and free...

10 }

In addition to that programming model, CUDA also consists of a custom
driver for the GPU as well as a compiler (NVCC for C) which takes an inte-
grated CPU and GPU source code to produce GPU assembly code (PTX) and
CPU code for the host which is later compiled by a typical C compiler. What’s
more, the CUDA toolkit provides a profiler and a debugger for GPU programs.
The full CUDA SDK stack is shown in Figure 2.6.

Figure 2.6: CUDA SDK stack (GPU parts in green, blue for CPU ones).

40 CHAPTER 2. METHODOLOGY

2.2.2 Hardware

Apart from all the software tools used to develop the system, this one has to be
deployed into an embedded platform where many different devices will have
to cooperate to provide the necessary data streams.

We have chosen the NVIDIA Jetson TK1 parallel computing platform to
deploy our final and accelerated object recognition system due to its unprece-
dented performance for embedded computing systems. Also, many devices
will be used to acquire depth and RGB frames: Kinect and PrimeSense Carmine
(both PrimeSense compatible devices), and the recently introduced Kinect 2.0.
We will review the aforementioned hardware devices one by one during the
following sections.

2.2.2.1 Jetson TK1

During last years, general purpose computing on GPUs (GPGPU) has enabled
crucial acceleration of various applications in many fields. This fact has in-
creased the pace of the research progress and multiple lines of work which
were previously discarded due to their computational demands are now taken
into account.

Figure 2.7: Jetson TK1 layout (Figure reproduced from [52]).

Nowadays, the need for computing power is complemented by the need
for energetic efficiency (green computing). This characteristic is mainly rele-

2.2. TECHNOLOGIES 41

vant in those scenarios in which energy consumption is a critical factor but a
superior computing power still makes the difference. In this sense, embedded
computing has become a great target for bringing up the computational horse-
power provided by GPUs due to their increasing energetic efficiency. This is
where the Jetson TK1 platform [4] comes into play.

The following list shows the set of parts which compose the development
board, its layout is shown in Figure 2.7. A detailed list of features can be
consulted in [52], this summarized version was extracted from the quick start
guide [53].

• Processor: NVIDIA Tegra K1 Mobile Processor

– ARM Cortex A-15 CPU 2.32 GHz ARM quad-core

– NVIDIA Kepler GK20a GPU 192 CUDA cores

• Memory

– 2 GB DDR3L 933MHz EMC x16 64-bit data width system RAM

– 16 GB fast eMMC 4.51 storage

• Network: Realtek RTL8111GS (10/100/1000 BASE-T Ethernet)

• Audio: Realtek ALC5639 HD Audio (Microphone and headphone jacks)

• Input/Output:

– USB Type-A Host 3.0 / Micro USB connector

– Display HDMI connector

– Half mini-PCIe expansion slot

– SATA connector / 4-pin power connector

– RS232 serial port (DB9)

– SD card connector / JTAG connector / 2x I/O expansion headers

• Power: External 12V AC Adapter

The most important component of this development board is its NVIDIA
Tegra K1 mobile processor [4]. It was designed to revolutionize the possibili-
ties of embedded computing by integrating the power of GPU processing in
a consumption-aware platform. The technical details of the processor can be
consulted on its corresponding Technical Reference Manual [54].

42 CHAPTER 2. METHODOLOGY

Mainly, two components of this processor are responsible for its high com-
putational power together with its reduced energetic consumption: the ARM
Cortex A15 CPU and the NVIDIA Kepler GK20a GPU, both with a set of ad-
ditional features.

Figure 2.8: Block diagram of GK110 SMX, composed by 192 CUDA cores (sin-
gle precision), 64 double precision units, 32 special function units and 32 load-
/store units. (Figure reproduced from the document Next Generation CUDA
Compute Architecture: Kepler GK110 [55]).

On the one hand, the energetic efficiency is due to the fact that the CPU
is not a typical ARM Cortex A15, it includes an additional core named Bat-
tery Saver Core. The original four cores of the ARM Cortex A15 and this addi-
tional one compose the 4-PLUS-1 architecture designed by NVIDIA. The tech-
nical specifications of this architecture are fully described on its corresponding
whitepaper [56]. The 4-PLUS-1 architecture makes use of the vSMP (Variable
Symmetric Multiprocessing) technology. In this way, the Battery Saver Core is
responsible for executing normal tasks at low frequency while the other four

2.2. TECHNOLOGIES 43

main cores, which work at a higher clock speed, are activated when a compu-
tational demanding task is executed. This technology allows a selective acti-
vation of each one of the five cores to optimize the resources for the workload,
this has become a crucial optimization for mobile systems together with the
proven efficiency of four core architectures [57].

On the other hand, the main source of computational power is the NVIDIA
Kepler GK20a [55]. The architecture of this GPU is essentially the same as the
one of high-end graphics cards but it also includes a set of optimizations to
reduce power consumption while preserving performance. The GK20a fea-
tures 192 CUDA cores organized into a GPC (Graphics Processing Cluster)
with a single SMX (Advanced Symmetric Multiprocessor) and a memory con-
troller. Figure 2.8 shows a block diagram of an GK110 SMX. Beyond these
hardware improvements, this architecture supports a set of APIs specifications
like OpenGL 4.4, DirectX 11.2 and CUDA 6.

To sum up, thanks to the 4-PLUS-1 and GK20a architectures, the Tegra K1
processor provides high performance for both single and multithreaded ap-
plications on mobile systems with an extraordinary energetic efficiency and
supporting many graphics and computation APIs specifications. In this sense,
the Jetson TK1 board becomes an ideal platform for developing applications
for high performance embedded systems.

2.2.2.2 Depth sensors

Nowadays, many depth measurement techniques are available including ul-
trasonic waves, microwaves, and even light waves. The most popular devices
resort to light waves by making use of different strategies: triangulation, time-
of-flight, structured light or laser scan. In Section 1.3.3 we reviewed those dif-
ferent systems and we concluded that structured light sensors as the Prime-
Sense Carmine or the original Kinect were perfect for our application since
they offer a considerable quality with a reduced economic cost. In this sense,
we decided to use both sensors for this project.

The Kinect and Carmine sensors consist of an infrared laser emitter, an in-
frared camera and an RGB one. The laser emits a single beam which is split
into multiple ones by a diffraction grating in order to create a constant speckle
pattern. This pattern is projected onto the scene and its reflection is captured by
the infrared camera. The captured pattern is then correlated against a reference
one to obtain a disparity image. For each pixel, the distance to the sensor can

44 CHAPTER 2. METHODOLOGY

be computed from the corresponding disparity. Figure 2.9 shows the speckles
pattern projected by a Kinect device and the corresponding depth map for that
image.

Figure 2.9: Speckle pattern and depth map (Figure reproduced from [58]).

The depth measurement is performed by a process named depth triangu-
lation [59]. First, a set of reference patterns are obtained by projecting those
patterns on a plane at a know distance. Kinect and PrimeSense sensors use
three patterns for three different regions of distance: 0.8 - 1.2 meters, 1.2 - 2.0
meters and 2.0 - 3.5 meters. The nearest region has a higher accuracy than the
farthest one.

Later, the IR emitter projects those patterns onto unknown scenes. The
speckles are then projected onto surfaces whose distance to the sensor is dif-
ferent than the one of the reference plane for that pattern. Because of that, the
speckles on the captured infrared image will be shifted in the direction of the
baseline between the IR emitter and the perspective center of the IR camera
[58]. The shifts can be measured for all speckles using an image correlation
procedure to generate a disparity image which can be used to compute the
distance of each pixel to the sensor.

Figure 2.10 shows the mathematical model explained by Khoshelham et al.
[58] which illustrates the relationship that exists between the distance of an
object point k to the sensor and the measured disparity d, assuming a depth
coordinate system in which the origin is the perspective center of the IR cam-
era, the Z axis is orthogonal to the image plane, the X axis is perpendicular
to the Z one in the direction of the baseline b and the Y axis is orthogonal to
both of them creating a right handed coordinate system. As we have previ-
ously noted, if an object is displaced closer or further away from the sensor,
the speckle is displaced in the X axis direction thus allowing the measurement

2.2. TECHNOLOGIES 45

of the disparity.

Figure 2.10: Kinect mathematical model (Figure reproduced from [58]).

Applying triangle similarity rules we can extract the equivalences shown
on Equation 2.1 and Equation 2.2. Substituting D from Equation 2.2 into Equa-
tion2.1 we can express Zk (the depth of the point k in the scene) as shown on
Equation 2.3.

D
b

=
Zo − Zk

Zo
(2.1)

d
f
=

D
Zk

(2.2)

Zk =
Zo

1 +
Zo

f b
d

(2.3)

This mathematical model based on triangulation allows us to derive the
depth of a pixel from the measured disparity. The planimetric object coordi-
nates can be also computed as shown on Equations 2.4 and 2.5.

Xk = −Zk f (xk − xo + δx) (2.4)

46 CHAPTER 2. METHODOLOGY

Yk = −Zk f (yk − yo + δy) (2.5)

As we can see, many calibration parameters are involved in this mathe-
matical model: the focal length f , the principal point offsets (xo, yo), the lens
distortion coefficients (δx, δy), the base length b and the distance to the ref-
erence pattern Zo. These parameters are determined by a calibration process
whose explanation is beyond the scope of this work, readers may consult [58]
for a detailed analysis.

We will also make use of the recently introduced Kinect 2.0 device. This
scanner is a revised version of the original Kinect with a higher resolution,
wider field of view and other improvements. A comparison between the pre-
sented depth sensors is shown in Table 2.1.

Sensor Color Depth Min./Max. Dist. FOV (H/V) Power Consumption
Kinect 640x480 @30fps 320x240 40cm-4.5m 57/43 ◦ 12 W

Kinect 2.0 1920x1080 @30fps 512x424 50cm-4.5m 70/60 ◦ 12 W
Carmine 1.09 640x480 @30fps 640x480 0.35cm-1.4m 57.5/45 ◦ 2.25 W

Table 2.1: Comparison of depth sensors.

Figure 2.11: The indirect Time-of-Flight method (Figure reproduced from [60]).

This new camera makes use of the time of flight method. In this case, a
clock signal strobes an array of laser diodes whose beams go through diffusers
projecting short pulses of infrared light onto the scene. These pulses reflect
on the different surfaces and are captured by the IR camera of the Kinect 2.0.

2.3. EXPERIMENTATION 47

This IR camera is special because each pixel is divided into two parts which
act as accumulators of photons of laser light. The aforementioned clock signal
controls which half of each pixel is turned on and registering light pulses. Each
half is 180 degrees out of phase from the other one, so that when the first is on
the other is off and vice versa. At the same time, the laser light source is pulsed
in phase with the first pixel half. In this sense, the clock signal determines
which half is actively registering reflected light as shown in Figure 2.11. This
method is named indirect Time-of-Flight and the distance can be inferred by
comparing the ratio of light received in each pixel half, i.e., the more light that
arrives in the second accumulator against the first, the farther that part of the
scene is from the sensor [61].

2.3 Experimentation

In this section, we will briefly introduce the experimentation methodology
which will be followed during the rest of this document.

2.3.1 Measuring performance

We will measure the performance of our implementations from two points of
view: accuracy and efficiency. The first one will be analyzed using typical
classifier metrics: true positives, false positives, true negatives, false negatives,
precision and recall. The latter one will be measured by resorting to wall clock
execution time which will be obtained using C++ high-resolution timers from
the Boost library. A more detailed explanation of this methodology is deferred
to Section 3.3.3.

It is worth noting that all timing results are the average of 100 executions
which were performed to avoid possible performance issues that might arise
due to processes executing in background or system operations. A single ex-
ecution could be significantly affected by these circumstances. Assuming that
these effects do not always happen, we can obtain more reliable results by av-
eraging a set of executions.

2.3.2 Test systems

The test machine used for running the CPU related experiments is an Intel(R)
Core i5-3570 CPU @ 3.40 GHz (4 CPUs), 3.4GHz with 8 GiB RAM DDR3 1866

48 CHAPTER 2. METHODOLOGY

MHz and an ASUS P8H77-M Pro motherboard with a chipset Intel H77. The
operating system is Windows 8.1 Pro 64-bit (6.3, Build 9600). The programs
were compiled using the Visual Studio 2010 Professional integrated compiler
on Visual Studio 2013 Professional using Release settings for maximum speed
optimization.

The test machine for other CPU and GPU experiments was the Jetson TK1
board, previously described in Section 2.2.2.1. The operating system is a cus-
tom Ubuntu (Linux For Tegra r21.3) included in the NVIDIA Jetson Jetpack.
The programs were compiled using g++ 4.8.2 for ARM and nvcc from CUDA
Toolkit 6.5 with Release settings for speed optimization.

Chapter 3

A 3D object recognition
pipeline

In this chapter we will describe the implementation of our system pro-
posal introduced in Chapter 1. This chapter is organized in six sections.
Section 3.1 introduces our proposed solution. Section 3.2 describes the
CPU implementation of the recognition system. Section 3.3 shows the ex-
perimentation which was carried out to validate the CPU implementation
and assess its performance. Section 3.4 repeats this experimentation on
the Jetson TK1 to determine the performance of our system in that plat-
form. Section 3.5 describes the CPU optimizations and their results and
achieved speedup. Section 3.6 is devoted to the GPU implementation of the
aforementioned pipeline, including the experimentation and discussion.

3.1 Introduction

After reviewing the state of the art of 3D object recognition systems and defin-
ing the typical stages of a recognition pipeline we will develop a CPU imple-
mentation. This sequential implementation will be programmed in C++, mak-
ing use of the Point Cloud Library to perform 2D/3D image and point cloud
processing operations.

In addition, experiments will be carried out to determine the computational
load of each part of the system. This information will be used to accelerate the
whole pipeline by implementing the critical phases, which are suitable to be

49

50 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

parallelized in a GPU-based parallel computing platform like the Jetson TK1
using CUDA.

3.2 3D object recognition pipeline on CPU

The first step for implementing the object recognition system is the sequen-
tial CPU implementation of a full pipeline. Figure 3.1 shows a block diagram
of our proposed pipeline which is based on the one proposed by Aldoma et al.
[23]. This pipeline is divided into six main stages: keypoint extraction, descrip-
tor extraction, feature matching, correspondence grouping, instance alignment
and hypothesis verification. The system takes a scene point cloud as an in-
put and outputs the recognized models and their estimated poses. This whole
pipeline is described throughout Subsections 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.6 and
3.2.7. In addition, a preprocessing step is performed. It is described on Subsec-
tion 3.2.1.

Some parts of this pipeline are performed offline for training the system
with 3D reconstructed models. This step is described in Subsection 3.2.8.

Keypoint
Detection

Descriptor
Extraction

Feature
Matching Grouping Alignment Hypothesis

Verification

Scene point
cloud

Keypoint
Detection

Models point
clouds

Descriptor
Extraction

Figure 3.1: Object recognition pipeline implemented on the CPU. Red phases
are performed offline while blank ones are live as the sensor provides informa-
tion.

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 51

3.2.1 Preprocessing

Before entering the object recognition pipeline, point clouds go through a pre-
processing step whose goals are removing non-relevant information, reducing
the levels of noise, or computing additional information for later use. The
main preprocessing steps performed in our implementation are bilateral filter-
ing, normal estimation, plane segmentation, resolution computation and k-d
tree generation.

3.2.1.1 Bilateral filtering

Due to the technologies used by the different 3D acquisition devices, observed
surfaces are inherently noisy and some preprocessing steps are required to ex-
tract coherent information by minimizing this observation error. One of the
most popular noise reduction techniques is the bilateral filter [62] which is able
to remove the noise of the input data whilst preserving edge and curvature in-
formation. This filter was originally used in color and grayscale images but
has been recently adapted to work with depth maps and 3D point clouds.

The original bilateral filter is a non-linear and edge-preserving filter in which
the intensity value of each pixel in an image is replaced by a weighted aver-
age of the intensity values of the neighborhood pixels. The bilateral filter is a
combination of two Gaussian kernels, one which gives priority to pixels that
are close to the target pixel in the image plane, and a range kernel, which gives
priority to the pixels which have similar intensity values as the target pixel.
Thus, the new intensity value of a filtered pixel is given by Equation 3.1:

Pf =
1

Kp
∑

q∈ω

Vq f (||p− q||)g(||Vp −Vq||) (3.1)

Kp = ∑
p∈ω

f (||p− q||)g(||Vp −Vq||) (3.2)

where Kp is a normalization factor (see Equation 3.2), ω is the neighborhood
of the pixel, Vp and Vq are the intensity values of the target pixel and the current
neighbor respectively, q and p are the positions on the image plane of the target
pixel and the current neighbor respectively, and Pf is the new intensity value
of the target pixel. The function contains the domain and range kernels f (||p−
q||) and g(||Vp −Vq||) respectively. Those kernels, f and g are often Gaussian
functions with standard deviations σs and σr.

This filter turns out to be quite important in our system because reducing

52 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

the noise of the point cloud improves the normal estimation process produc-
ing more stable normals. Since most 3D feature descriptors are based on the
curvature of the geometry, obtaining stable normals indirectly increases the
precision of the system.

We integrated this filter in our pipeline by using the implementation pro-
vided by the Point Cloud Library. The library provides a special implementation
as a fast approximation of the bilateral filter, we will use this optimized method
due to its efficiency. Listing 3.1 shows the developed implementation using the
Point Cloud Library. Figure 3.2 shows the result of applying a bilateral filter to
a point cloud.

Listing 3.1: Bilateral filtering with PCL.

1 void filter_bilateral (
2 const pcl::PointCloud<TPoint>::ConstPtr & pSrcCloud,
3 const float & pSigmaR,
4 const float & pSigmaS,
5 pcl::PointCloud<TPoint>::Ptr & pDstCloud)
6 {
7 pcl::FastBilateralFilterOMP<TPoint> bf;
8 bf.setInputCloud(pSrcCloud);
9 bf.setSigmaR(pSigmaR);

10 bf.setSigmaS(pSigmaS);
11 bf.applyFilter(*pDstCloud);
12 }

Figure 3.2: Raw point cloud of a scene with the Tasmanian model on it (left) and
the same point cloud applying a bilateral filter with σs = 15.0 f and σr = 0.05 f
(right). In this case, the filtering is excessive and it leads to information loss.

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 53

3.2.1.2 Normal estimation

Estimating surface normal information is a key step for the object recognition
pipeline since they are often used to detect and describe point cloud features.
Computing the normals of a surface is trivial but doing so with a point cloud
is not so easy. Two options arise: transform the point cloud into a surface
mesh and then compute the normals or use approximations to infer the surface
normals from the point cloud directly. Since we don’t want to introduce any
overhead, we will approach this problem efficiently by using the point cloud
approximation.

The most popular estimation method approximates the normal to a point
on the surface by estimating the normal of the tangent plane to the surface
which is also estimated by fitting a plane to the neighborhood of the point
whose normal is being estimated using least squares fitting. The estimation of
this normal is reduced to a Principal Component Analysis (PCA) of the covari-
ance matrix C created using the neighbors pi of the point p whose normal is
being estimated:

C =
1
k

k

∑
i=1

(pi − ~p) · (pi − ~p)T , C · ~vj = λj · ~vj, j ∈ {0, 1, 2} (3.3)

where k is the number of neighbors considered, pi are neighbors, ~p is the
centroid of the neighborhood, λj is the j-th eigenvalue of the covariance ma-
trix, and ~vj the j-th eigenvector. The three eigenvalues are computed analyt-
ically and then if we have two of them which are close together and one sig-
nificantly smaller, the eigenvectors for the first two eigenvalues determine the
plane, while the eigenvector for the smallest eigenvalue determines the normal
to this plane. This normal is then oriented towards the viewpoint by flipping
it if needed to satisfy Equation 3.4.

~ni · (~vp − pi) > 0 (3.4)

where ~ni is the estimated normal, ~vp is the viewpoint and pi is the point
whose normal is ~ni. It is important to remark that this approach works prop-
erly when the point cloud was acquired from a single point of view, but the
re-orientation method does not hold if it has multiple acquisition viewpoints.

We integrated the normal estimation process in our pipeline by using the
implementation provided by the Point Cloud Library. The search complexity is
reduced by using a k-d tree. Figure 3.2 shows the developed implementation

54 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

using the Point Cloud Library. Figure 3.3 shows normals computed using this
normal estimation method and how the noise reduction affects their stability.

Listing 3.2: Normal estimation implementation with PCL.

1 void compute_normals (
2 const pcl::PointCloud<TPoint>::ConstPtr & pCloud,
3 const pcl::search::KdTree<TPoint>::Ptr & pKdTree,
4 pcl::PointCloud<TNormal>::Ptr & pNormals,
5 const float & pRadius)
6 {
7 pcl::NormalEstimation<TPoint, TNormal> ne;
8 ne.setSearchMethod(pKdTree);
9 ne.setRadiusSearch(pRadius);

10 ne.setInputCloud(pCloud);
11 ne.compute(*pNormals);
12 }

Figure 3.3: Normals of a raw point cloud of a scene with the Tasmanian model
on it (left) and normals of the same point cloud applying a bilateral filter with
σs = 15.0 f and σr = 0.05 f (right). The normals are much more stable thanks
to noise reduction. It is necessary to find a balance between noise removal and
geometric surface smoothing.

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 55

3.2.1.3 Plane segmentation

The vast majority of the information contained in the scene point cloud is ir-
relevant for recognizing objects since it does not represent objects at all and
does not provide any cue about them. In fact, this information is a burden in
terms of efficiency and precision for the following phases. For example, most
surfaces are useless but their points are still taken into account to detect key-
points and compute descriptors. In addition, this extra information usually
leads to bad matches and false hypotheses which have a negative impact on
performance and precision. In this sense, segmentation is a key step for a suc-
cessful detection and recognition so fast and efficient segmentation methods
are required if we want our system to run in real time.

When dealing with objects, removing irrelevant information and segment-
ing them out is a relatively easy problem if we assume that objects tend to lie
on flat surfaces. Most approaches for object segmentation detect planes in the
scene and remove them, then a refinement process is applied to cluster objects
so that they are easily segmented. The vast majority of the approaches rely on
RANSAC or convex hulls. However, RANSAC takes a lot of time and convex
hulls poorly represent the shape of many surfaces. Another approach is the
one presented by Trevor et al. [63] which is a combination of an efficient Or-
ganized Multi Plane Segmentation (OMPS) and Organized Connected Components
Segmentation (OCCS). This method achieves exceptional efficiency by taking
advantage of organized point clouds thus enabling real-time plane segmenta-
tion for typical RGB-D data.

Figure 3.4: Segmented planes with OMPS outlined in red, green and yellow
(left), and the result after refinement process (right). (Figure reproduced from
[63]).

56 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

The OMPS approach segments the scene to detect large connected com-
ponents corresponding to planar surfaces. The algorithm for computing the
connected components explores the neighborhood of each point exploiting the
organization of the point cloud to avoid searching in the whole point cloud for
neighbors. The algorithm works by partitioning a organized point cloud P into
a set of segments. A label L is assigned to each point of the organized cloud
P(x, y) denoted by L(x, y). Points which belong to the same segment will be
assigned the same label. In order to determine if two points, namely P(x1, y1)

and P(x2, y2), belong to the same segment they are compared using a predi-
cate C(P(x1, y2), P(x2, y2)). If the predicate is true then L(x2, y2) = L(x1, y1).
Otherwise, a new label is assigned to the point. The algorithm is similar to
the two-pass binary image labeling one [64] modified to label point cloud data
with continuous values based in some predicate [65].

In order to compute the predicate, the algorithm computes the Hessian-
normal planar equation (ax + by + cz + d = 0) for each point in the Euclidean
space. In order to do that, surface normals are required. After computing
them (see 3.2.1.2), a point p can be represented as p = {x, y, z, nx, ny, nz}.
This representation is extended by computing the perpendicular distance to
this point with normal (d in the planar equation) using the dot product nd =

(x, y, z) · (nx, ny, nz). In this sense, the point representation is augmented as
p = {x, y, z, nx, ny, nz, nd}. Using this point representation, the aforementioned
predicate yields true if the angular difference between the normals and the dis-
tance in the range or nd component fall below some predefined thresholds (see
Equations 3.5 and 3.6).

nP(x1,y1)
· nP(x2,y2)

< Thresholdnormal (3.5)

|dP(x1,y1)
− dP(x2,y2)

| < Thresholdrange (3.6)

After each point has been labeled, planes are fitted for each segment using
least square fitting with a minimum number of inliers to accept those planes.
The curvature of the segments is also computed to ensure that they are actu-
ally planar by filtering out segments whose curvature exceeds a determined
threshold.

Once planes are fitted, they are refined using the algorithm described in
[63] to be segmented out later as the last step of the OMPS method. In the end,

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 57

the OCCS method takes a greedy approach to euclidean clustering [33] using a
comparison function based on a distance threshold to extract euclidean clusters
which are supposed to be the final segmented objects.

The OMPS and OCCS segmentation methods were integrated in our pipeline
by using their respective PCL implementations: OrganizedMultiPlaneSegmenta-
tion and OrganizedConnectedComponentSegmentation. Listings 3.3 and 3.4 show
the implementations of the OMPS and the OCCS algorithms respectively.

Listing 3.3: Implementation of OMPS with PCL.

1 void segment_objects (
2 const pcl::PointCloud<TPoint>::ConstPtr & pCloud,
3 const pcl::PointCloud<TNormal>::ConstPtr & pNormals,
4 const int & pMinInliers,
5 const double & pAngularThreshold,
6 const double & pDistanceThreshold,
7 pcl::PointCloud<TPoint>::Ptr & pDstCloud)
8 {
9 pcl::OrganizedMultiPlaneSegmentation<TPoint, TNormal, pcl::Label> mps;

10 mps.setMinInliers(pMinInliers);
11 mps.setAngularThreshold(pAngularThreshold*0.017453);
12 mps.setDistanceThreshold(pDistanceThreshold);
13 mps.setInputNormals(normalCloud);
14 mps.setInputCloud(pCloud);
15

16 std::vector<pcl::PlanarRegion<TPoint>,
17 Eigen::aligned_allocator<pcl::PlanarRegion<TPoint>>> regions;
18 std::vector<pcl::ModelCoefficients> modelCoefficients;
19 std::vector<pcl::PointIndices> inlierIndices;
20 pcl::PointCloud<pcl::Label>::Ptr labels(new pcl::PointCloud<pcl::Label>);
21 std::vector<pcl::PointIndices> labelIndices;
22 std::vector<pcl::PointIndices> boundaryIndices;
23 mps.segmentAndRefine(
24 regions,
25 modelCoefficients,
26 inlierIndices,
27 labels,
28 labelIndices,
29 boundaryIndices);
30 [...]
31 }

The OrganizedMultiPlaneSegmentation outputs a set of labeled regions and
the indices of the points in the original point cloud which belong to each par-
ticular segment or region (labelIndices). This information is used to discard the
segmentation of those regions which contain less points than the specified in-
lier threshold.

Those planes which were filtered out are passed to the OCSS as a boolean
mask (planeLabels) for efficiency reasons. After the segmentation, the OCCS
provides a set of labels for the regions (euclideanLabels) and the indices of the
points in the original point cloud which belong to each segment (euclideanLa-
belIndices).

58 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

Listing 3.4: Implementation of OCCS with PCL.

1 [...]
2 pcl::PointCloud<pcl::Label> euclideanLabels;
3 std::vector<pcl::PointIndices> euclideanLabelIndices;
4 pcl::EuclideanClusterComparator<TPoint, TNormal, pcl::Label>::Ptr ecc(
5 new pcl::EuclideanClusterComparator<TPoint, TNormal, pcl::Label>());
6 ecc->setInputCloud(pCloud);
7 ecc->setLabels(labels);
8 ecc->setExcludeLabels(planeLabels);
9 ecc->setDistanceThreshold(pDistanceThreshold, false);

10 pcl::OrganizedConnectedComponentSegmentation<TPoint, pcl::Label> occs(
11 ecc);
12 occs.setInputCloud(pCloud);
13 occs.segment(euclideanLabels, euclideanLabelIndices);
14 [...]

Figure 3.5: Sample scene captured with PrimeSense Carmine (left), same scene
segmented with OMPS and OCCS (right) approximately 14% of the original
points.

Figure 3.6: Clusters extracted by OMPS/OCCS.

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 59

3.2.1.4 Resolution computation

The resolution of a point cloud is defined as the average distance between each
cloud point and its nearest neighbor. Estimating the spatial resolution of the
model cloud might be useful to achieve some kind of resolution invariance by
considering the different spatial parameters of the system as if they were given
in units of cloud resolution. Listing 3.5 shows how the resolution of a point
cloud is computed using PCL functions and a k-d tree to optimize the nearest
neighbors search.

Listing 3.5: Cloud resolution computation with PCL.

1 double compute_resolution (
2 const pcl::PointCloud<TPoint>::ConstPtr & pCloud,
3 const pcl::search::KdTree<TPoint>::ConstPtr & pKdTree)
4 {
5 double resolution = 0.0;
6 int points = 0;
7 int nres;
8

9 std::vector<int> indices(2);
10

11 std::vector<float> sqrDistances(2);
12

13 for (size_t i = 0; i < pCloud->size(); ++i)
14 {
15 // Skip NaNs
16 if (!pcl_isfinite((*pCloud)[i].x))
17 continue;
18

19 nres = pKdTree.nearestKSearch(i, 2, indices, sqrDistances);
20

21 if (nres == 2)
22 {
23 resolution += sqrt(sqrDistances[1]);
24 ++points;
25 }
26 }
27

28 if (points != 0)
29 {
30 resolution /= points;
31 }
32

33 return resolution;
34 }

Once the resolution has been computed, we can set all the parameters of
the system to express units in terms of cloud resolution. For example, instead
of defining a fixed 15mm support size for a descriptor we can define it as 15
times the resolution, thus achieving some kind of resolution invariance.

60 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

3.2.1.5 k-d tree generation

A k-d tree [66] is a data structure used for organizing a set of points in a k-
dimensional Euclidean space. They are a particular case of the Binary Space
Partitioning with additional constraints: only using perpendicular planes to
the axes of the coordinate system and storing a point in each node of the tree.
The main advantage of a k-d tree is the efficiency for performing range search
operations with O(log N) complexity.

The process for building a k-d tree is simple. A k-d tree is a binary tree, i.e.,
every non-leaf node has two children nodes, namely left and right. Each level
of the tree splits the space on a specific dimension. In our case, a 3D space,
all children of the root node on the first level will be split based on the first
dimension X so that points with greater X values will be placed on the right
subtree and those with lesser values will go to the left one. At the next level,
the recently created nodes will be split on the Y axis. Then on the Z axis and
then the splitting process gets back to the X axis. The median point is chosen
as the root at each level. A k-d tree for a point cloud can be created using the
PCL as shown in Listing 3.6. This tree will be used later by many stages of the
pipeline to perform efficient search operations.

Figure 3.7: Example of a 2D k-d tree. (Figure reproduced from Wikipedia).

Listing 3.6: Building k-d trees for point clouds with PCL.

1 pcl::search::KdTree<TPoint>::Ptr modelKdTree(
2 new pcl::search::KdTree<TPoint>);
3 modelKdTree->setInputCloud(model);

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 61

3.2.2 Keypoint Detection

The first step of the actual recognition pipeline consists of detecting a set of
feature points as a subset of the input point clouds. The contribution of the
keypoint extraction phase is twofold. On the one hand, if the keypoints are
properly detected, the information of their neighborhoods is representative
enough to effectively describe the underlying surface. On the other hand, it
reduces the number of descriptors needed by only computing them on the spe-
cific keypoints thus increasing the efficiency of the system. In this sense, the
detection of interest points is an important step to reduce the search space for
feature extraction and focus attention on significant structures. We have inte-
grated three different and well known keypoint extractors: Uniform Sampling,
Intrinsic Shape Signatures and Scale Invariant Feature Transform.

3.2.2.1 Uniform Sampling

Extracting keypoints with Uniform Sampling is simple and straightforward.
Basically, the algorithm creates a 3D voxel grid over the input cloud data and
approximates all the points which are present in the same voxel with their
centroid. Figure 3.8 shows a set of keypoints extracted with Uniform Sampling.

Figure 3.8: Keypoints extracted with uniform sampling in blue.

The Point Cloud library offers a simple implementation of this sampling.
Listing 3.7 shows the integration of uniform sampling using PCL.

62 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

Listing 3.7: Implementation of Uniform Sampling with PCL.

1 void detect_keypoints_uniform_sampling (
2 const pcl::PointCloud<TPoint>::ConstPtr & pSrcCloud,
3 pcl::PointCloud<TPoint>::ConstPtr &pDstCloud,
4 const float & pRadiusSearch)
5 {
6 pcl::PointCloud<int> sampledIndices;
7

8 pcl::UniformSampling<TPoint> us;
9 us.setInputCloud(pSrcCloud);

10 us.setRadiusSearch(pRadiusSearch);
11 us.compute(sampledIndices);
12

13 pcl::copyPointCloud(*pSrcCloud, sampledIndices.points, *pDstCloud);
14 }

Uniform Sampling is a quick and simple keypoint extractor but the key-
points provided as a result lack distinctiveness and repeatability. As shown in
Figure 3.9 the keypoint set describes poorly the underlying surface since they
are not detected using any intelligent strategy or underlying saliency.

Figure 3.9: Keypoints extracted with uniform sampling in blue. Notice the low
distinctiveness of the keypoints as they are detected everyhwere.

3.2.2.2 Intrinsic Shape Signatures

A more complex keypoint detector is available in PCL, the Intrinsic Shape Sig-
natures (ISS) detector. Originally, ISS is a descriptor proposed by Zhong [67]
but it is also considered a detector since the author included an algorithm for

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 63

choosing keypoints which fit the descriptor. The algorithm performs a search
through the surface and selects points with large variations in the principal
direction. Listing 3.8 shows the ISS implementation with PCL. A detection
example is shown in Figure 3.10.

Listing 3.8: Implementation of ISS keypoint detector with PCL.

1 void detect_keypoints_iss (
2 const pcl::PointCloud<TPoint>::ConstPtr & pCloud,
3 const float & pSalientRadius,
4 const float & pNonMaxRadius,
5 const int & pMinNeighbors,
6 const float & pThreshold21,
7 const float & pThreshold32,
8 const double & pResolution,
9 const pcl::search::KdTree<TPoint>::ConstPtr & pKdtree,

10 pcl::PointCloud<TPoint>::Ptr & pDstCloud)
11 {
12 pcl::ISSKeypoint3D<TPoint, TPoint> iss;
13 iss.setInputCloud(pCloud);
14 iss.setSearchMethod(pKdtree);
15 iss.setSalientRadius(pSalientRadius * pResolution);
16 iss.setNonMaxRadius(pNonMaxRadius * pResolution);
17 iss.setMinNeighbors(pMinNeighbors);
18 iss.setThreshold21(pThreshold21);
19 iss.setThreshold32(pThreshold32);
20 iss.compute(*pDstCloud);
21 }

Figure 3.10: Keypoints extracted with ISS in blue (salientRadius = 6, non-
MaxRadius = 4, minNeighbors = 5, threshold21 = 0.975, threshold32 = 0.975).

64 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

3.2.2.3 Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) is one of the most popular key-
point detectors since its introduction by Lowe [68]. The method was originally
proposed for 2D images but Flint et al. [69] presented a 3D version. It works
by building a scale space over a density function. The cloud is convolved with
a set of Gaussian filters with varying standard deviations, the adjacent convo-
luted images are subtracted to generate Difference of Gaussian (DoG) clouds.
At last, it looks for local maxima of a 3D version of the Hessian determinant
over that density function. Listing 3.9 shows its implementation with PCL and
Figure 3.11 shows a detection example.

Listing 3.9: SIFT detector implementation with PCL.

1 void detect_keypoints_sift (
2 const pcl::PointCloud<TPoint>::ConstPtr & pCloud,
3 const float & pMinScale,
4 const float & pNrOctaves,
5 const float & pNrScalesPerOctave,
6 const float & pMinConstrast,
7 const pcl::search::KdTree<TPoint>::ConstPtr & pKdtree,
8 pcl::PointCloud<TPoint>::Ptr & pDstCloud)
9 {

10 pcl::PointCloud<pcl::PointWithScale>::Ptr keypointsWithScale(
11 new pcl::PointCloud<pcl::PointWithScale>);
12 pcl::SIFTKeypoint<TPoint, pcl::PointWithScale> sift;
13 sift.setSearchMethod(pKdtree);
14 sift.setScales(pMinScale, pNrOctaves, pNrScalesPerOctave);
15 sift.setMinimumContrast(pMinConstrast);
16 sift.setInputCloud(pCloud);
17 sift.compute(*keypointsWithScale);
18 pcl::copyPointCloud(*keypointsWithScale, *pDstCloud);
19 }

Figure 3.11: Keypoints extracted with SIFT in blue (minScale = 0.005, nrOc-
taves = 8, scalesPerOctave = 8, minimumContrast = 0.005).

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 65

3.2.3 Descriptor Extraction

Once relevant keypoints have been detected, we have to describe their neigh-
borhoods by extracting a descriptor for each keypoint. This step of the pipeline
was described in depth during Section 1.3.1. In addition, the theoretical basis
of each descriptor was also described in Section 1.3.2. We have integrated a
subset of those descriptors, which are implemented in the Point Cloud Library,
into our pipeline: Fast Point Feature Histograms (FPFH), Spin Images (SI), Unique
Shape Context (USC), 3D Shape Context (3DSC), Signatures of Oriented Histograms
(SHOT), Color-SHOT (CSHOT) and Rotational Projection Statistics (ROPS).

3.2.3.1 FPFH

Details regarding the FPFH descriptor are described in Section 1.3.2.2. Listing
3.10 shows the integration of the FPFH descriptor using the PCL implementa-
tion.

Listing 3.10: FPFH descriptor implementation with PCL.

1 void compute_fpfh_descriptors (
2 const pcl::PointCloud<TPoint>::ConstPtr & pSrcCloud,
3 const pcl::PointCloud<TNormal>::ConstPtr & pNormals,
4 const pcl::PointCloud<TPoint>::ConstPtr & pKeypoints,
5 const pcl::search::KdTree<TPoint>::ConstPtr & pKdTree,
6 const float & pSearchRadius,
7 pcl::PointCloud<pcl::FPFHSignature33>::Ptr & pDstCloud)
8 {
9 pcl::FPFHEstimation<TPoint, TNormal, pcl::FPFHSignature33> fpfh;

10 fpfh.setSearchMethod(pKdTree);
11 fpfh.setInputCloud(pKeypoints);
12 fpfh.setInputNormals(pNormals);
13 fpfh.setRadiusSearch(pSearchRadius);
14 fpfh.setSearchSurface(pSrcCloud);
15 fpfh.compute(*pDstCloud);
16 }

3.2.3.2 SI

The Spin Images descriptor was previously defined in Section 1.3.2.1. Listing
3.11 shows how to extract SI descriptors using the implementation provided
by the Point Cloud Library. It is important to remark that our input clouds have
to be converted to PointXYZ clouds to be accepted by the SpinImageEstimation
class.

66 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

Listing 3.11: SI descriptor implementation with PCL.

1 void compute_spinimage_descriptors (
2 const pcl::PointCloud<TPoint>::ConstPtr & pSrcCloud,
3 const pcl::PointCloud<TNormal>::ConstPtr & pNormals,
4 const pcl::PointCloud<TPoint>::ConstPtr & pKeypoints,
5 const float & pSearchRadius,
6 pcl::PointCloud<SpinImage>::Ptr & pDstCloud)
7 {
8 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(
9 new pcl::PointCloud<pcl::PointXYZ>);

10 pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints(
11 new pcl::PointCloud<pcl::PointXYZ>);
12 pcl::copyPointCloud(*pSrcCloud, *cloud);
13 pcl::copyPointCloud(*pKeypoints, *keypoints);
14

15 pcl::SpinImageEstimation<pcl::PointXYZ, TNormal, SpinImage> si;
16 si.setInputCloud(keypoints);
17 si.setInputNormals(pNormals);
18 si.setRadiusSearch(pSearchRadius);
19 si.setImageWidth(8);
20 si.setSearchSurface(cloud);
21 si.compute(*pDstCloud);
22 }

3.2.3.3 3DSC

The fundamentals of the 3D Shape Context descriptor were previously explained
in Section 1.3.2.3. Listing 3.12 shows its integration using PCL. Input clouds are
expected to use the PointXYZ point type.

Listing 3.12: 3DSC descriptor implementation with PCL.

1 void compute_3dsc_descriptors(
2 const pcl::PointCloud<TPoint>::ConstPtr & pSrcCloud,
3 const pcl::PointCloud<TNormal>::ConstPtr & pNormals,
4 const pcl::PointCloud<TPoint>::ConstPtr & pKeypoints,
5 const float & pSearchRadius,
6 pcl::PointCloud<pcl::ShapeContext1980>::Ptr & pDstCloud)
7 {
8 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(
9 new pcl::PointCloud<pcl::PointXYZ>);

10 pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints(
11 new pcl::PointCloud<pcl::PointXYZ>);
12 pcl::copyPointCloud(*pSrcCloud, *cloud);
13 pcl::copyPointCloud(*pKeypoints, *keypoints);
14

15 pcl::ShapeContext3DEstimation<pcl::PointXYZ, TNormal,
16 pcl::ShapeContext1980> sc3d;
17 sc3d.setInputCloud(keypoints);
18 sc3d.setInputNormals(pNormals);
19 sc3d.setRadiusSearch(pSearchRadius);
20 sc3d.setMinimalRadius(pSearchRadius / 10.0);
21 sc3d.setPointDensityRadius(pSearchRadius / 5.0);
22 sc3d.setSearchSurface(cloud);
23 sc3d.compute(*pDstCloud);
24 }

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 67

3.2.3.4 USC

The functioning of Unique Shape Context descriptor was depicted in Section
1.3.2.4. Listing 3.13 shows the code needed to integrate that descriptor into
our pipeline using PCL. Also notice that point clouds are expected to use the
PointXYZ type.

Listing 3.13: USC descriptor implementation with PCL.

1 void PointCloudOperations::compute_usc_descriptors(
2 const pcl::PointCloud<TPoint>::ConstPtr & pSrcCloud,
3 const pcl::PointCloud<TNormal>::ConstPtr & pNormals,
4 const pcl::PointCloud<TPoint>::ConstPtr & pKeypoints,
5 const float & pSearchRadius,
6 pcl::PointCloud<pcl::UniqueShapeContext1960>::Ptr & pDstCloud)
7 {
8 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(
9 new pcl::PointCloud<pcl::PointXYZ>);

10 pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints(
11 new pcl::PointCloud<pcl::PointXYZ>);
12 pcl::copyPointCloud(*pSrcCloud, *cloud);
13 pcl::copyPointCloud(*pKeypoints, *keypoints);
14 pcl::UniqueShapeContext<pcl::PointXYZ, pcl::UniqueShapeContext1960,
15 pcl::ReferenceFrame> usc;
16 usc.setInputCloud(keypoints);
17 usc.setRadiusSearch(pSearchRadius);
18 usc.setMinimalRadius(pSearchRadius / 10.0);
19 usc.setPointDensityRadius(pSearchRadius / 5.0);
20 usc.setLocalRadius(pSearchRadius);
21 usc.setSearchSurface(cloud);
22 usc.compute(*pDstCloud);
23 }

It is important to remark that, in both 3DSC and USC implementations, we
have chosen a set of default values for the minimal radius and point density
radius parameters. In this case, the minimal and point density radiuses have
been set to a tenth and a fifth part of the search radius respectively. These
values were selected based on experiments presented in the original paper or
in the PCL implementation.

3.2.3.5 SHOT

The Signatures of Histograms descriptor was previously described during Sec-
tion 1.3.2.6. Listing 3.14 shows the integration of the SHOT descriptor using
the implementation provided by the PCL. In this case, no special parameters
have to be set. We can use a k-d tree as a search method. In addition, PCL pro-
vides a multi-core implementation named SHOTEstimationOMP. We show the
basic one that will be used during the experimentation for a fair comparison in
terms of efficiency.

68 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

Listing 3.14: SHOT descriptor implementation with PCL.

1 void compute_shot_descriptors (
2 const pcl::PointCloud<TPoint>::ConstPtr & pSrcCloud,
3 const pcl::PointCloud<TNormal>::ConstPtr & pNormals,
4 const pcl::PointCloud<TPoint>::ConstPtr & pKeypoints,
5 const pcl::search::KdTree<TPoint>::ConstPtr & pKdTree,
6 const float & pSearchRadius,
7 pcl::PointCloud<pcl::SHOT352>::Ptr & pDstCloud)
8 {
9 pcl::SHOTEstimation<TPoint, TNormal, pcl::SHOT352> shot;

10

11 shot.setSearchMethod(pKdTree);
12 shot.setInputCloud(pKeypoints);
13 shot.setInputNormals(pNormals);
14 shot.setRadiusSearch(pSearchRadius);
15 shot.setSearchSurface(pSrcCloud);
16 shot.compute(*pDstCloud);
17 }

3.2.3.6 CSHOT

As we have previously mentioned in Section 1.3.4, Color-SHOT is an extension
of SHOT which adds color information to the description. Listing 3.15 shows
the usage of the PCL interface SHOTColorEstimation for integrating the CSHOT
descriptor.

Listing 3.15: CSHOT descriptor implementation with PCL.

1 void compute_cshot_descriptors (
2 const pcl::PointCloud<TPoint>::ConstPtr & pSrcCloud,
3 const pcl::PointCloud<TNormal>::ConstPtr & pNormals,
4 const pcl::PointCloud<TPoint>::ConstPtr & pKeypoints,
5 const float & pSearchRadius,
6 pcl::PointCloud<pcl::SHOT1344>::Ptr & pDstCloud)
7 {
8 pcl::SHOTColorEstimation<TPoint, TNormal, pcl::SHOT1344> shot;
9

10 shot.setSearchMethod(pcl::search::KdTree<TPoint>::Ptr(
11 new pcl::search::KdTree<TPoint>));
12 shot.setInputCloud(pKeypoints);
13 shot.setInputNormals(pNormals);
14 shot.setRadiusSearch(pSearchRadius);
15 shot.setSearchSurface(pSrcCloud);
16 shot.compute(*pDstCloud);
17 }

3.2.3.7 RoPS

The Rotational Projection Statistics theoretical primer was exposed in Section
1.3.2.7. Listing 3.16 shows the integration of the ROPS descriptor using the
recently added implementation to the Point Cloud Library.

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 69

As we can observe, ROPSEstimation works with PointXYZ point clouds and
requires surface information in form of polygons so we used an efficient trian-
gulation algorithm named Greedy Projection Triangulation [70].

Listing 3.16: ROPS descriptor implementation with PCL.

1 void compute_rops_descriptors (
2 const pcl::PointCloud<TPoint>::ConstPtr & pSrcCloud,
3 const pcl::PointCloud<TNormal>::ConstPtr & pNormals,
4 const pcl::PointCloud<TPoint>::ConstPtr & pKeypoints,
5 const float & pSearchRadius,
6 pcl::PointCloud<ROPS135>::Ptr & pDstCloud)
7 {
8 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(
9 new pcl::PointCloud<pcl::PointXYZ>);

10 pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints(
11 new pcl::PointCloud<pcl::PointXYZ>);
12

13 pcl::copyPointCloud(*pSrcCloud, *cloud);
14 pcl::copyPointCloud(*pKeypoints, *keypoints);
15

16 pcl::PointCloud<pcl::PointNormal>::Ptr cloudWithNormals(
17 new pcl::PointCloud<pcl::PointNormal>);
18 pcl::concatenateFields(*cloud, *pNormals, *cloudWithNormals);
19 pcl::search::KdTree<pcl::PointNormal>::Ptr kdtreeNormals(
20 new pcl::search::KdTree<pcl::PointNormal>);
21 kdtreeNormals->setInputCloud(cloudWithNormals);
22

23 pcl::GreedyProjectionTriangulation<pcl::PointNormal> gp3;
24 pcl::PolygonMesh triangles;
25

26 gp3.setSearchRadius(0.025f);
27 gp3.setMu(2.5);
28 gp3.setMaximumNearestNeighbors(100);
29 gp3.setMaximumSurfaceAngle(M_PI / 4);
30 gp3.setMinimumAngle(M_PI / 18);
31 gp3.setMaximumAngle(2 * M_PI / 3);
32 gp3.setNormalConsistency(false);
33

34 gp3.setInputCloud(cloudWithNormals);
35 gp3.setSearchMethod(kdtreeNormals);
36 gp3.reconstruct(triangles);
37

38 pcl::ROPSEstimation<pcl::PointXYZ, ROPS135> rops;
39 rops.setSearchMethod(pcl::search::KdTree<pcl::PointXYZ>::Ptr(
40 new pcl::search::KdTree<pcl::PointXYZ>));
41 rops.setInputCloud(keypoints);
42 rops.setSearchSurface(cloud);
43 rops.setRadiusSearch(pSearchRadius);
44 rops.setNumberOfPartitionBins(5);
45 rops.setNumberOfRotations(3);
46 rops.setSupportRadius(pSearchRadius);
47 rops.setTriangles(triangles.polygons);
48 rops.compute(*pDstCloud);
49 }

We have used the default set of parameters recommended by the authors
in the PCL documentation for the number of rotations (3) and partition bins
(5).

70 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

3.2.4 Feature Matching

Once the local descriptors have been computed for each keypoint in the cloud,
we have to find correspondences between the descriptors extracted from the
stored models and the ones computed over the scene. The correspondences
are determined in a process named feature matching. Every descriptor in the
scene will be matched against the descriptors of each model in the database to
account for the presence of multiple instances of the same model.

The matching process consists of finding the nearest neighbor to a certain
descriptor in terms of Euclidean distance between them. Usually, descriptors
are encoded so that distance operations can be easily computed. In addition, a
maximum distance value can be enforced so that matchings are rejected if the
distance between descriptors exceeds a predefined threshold.

For this purpose, efficient search structures like k-d trees are often used to
perform nearest neighbor search operations. The Point Cloud Library imple-
ments a generic 3D spatial locator using k-d trees and the FLANN (Fast Li-
brary for Approximate Nearest Neighbor) library [71] for extreme efficiency. List-
ing 3.17 shows the implementation of the matching process using PCL and the
KdTreeFLANN locator.

Listing 3.17: Finding correspondences with PCL.

1 void find_correspondences (
2 const pcl::PointCloud<TDescriptor>::ConstPtr & pModelDescriptors,
3 const pcl::PointCloud<TDescriptor>::ConstPtr & pSceneDescriptors,
4 const float & pThreshold,
5 pcl::CorrespondencesPtr & pCorrespondences)
6 {
7 pcl::KdTreeFLANN<TDescriptor> kdtree;
8 kdtree.setInputCloud(pModelDescriptors);
9

10 for (size_t i = 0; i < pSceneDescriptors->size(); ++i) {
11 std::vector<int> neighborsInd(1);
12 std::vector<float> neighborsSqrDists(1);
13

14 int neighborsFound = kdtree.nearestKSearch(
15 pSceneDescriptors->at(i), 1, neighborsInd, neighborsSqrDists);
16

17 if (neighborsFound == 1 && neighborsSqrDists[0] < pThreshold)
18 {
19 pcl::Correspondence correspondence(neighborsInd[0],
20 static_cast<int>(i), neighborsSqrDists[0]);
21 pCorrespondences->push_back(correspondence);
22 }
23 }
24 }

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 71

3.2.5 Correspondence Grouping

Once the matching phase has finished, we have a list of correspondences be-
tween keypoints in the current scene and the ones detected in the models of
the database. Only with those plain correspondences we are not yet able to
determine if an object is present in the scene or not. In order to determine
that a certain object is present in the scene we need at least three correspon-
dences between a model’s keypoints and the scene ones in order to retrieve
the hypothesis, i.e., 6 Degree-of-Freedom (DoF) pose of the model in the scene.
However, finding a correspondence or even three does not necessarily mean
that the object is present in the scene. For example, we can have two keypoints
k1m and k2m which are quite close in a certain model, then we find two de-
scriptors d1s and d2s which are extremely far away in the scene but are similar
to the ones extracted from the model d1m and d2m so that two correspondences
are established d1s − d1m and d2s − d2m. Since we are only taking rigid trans-
formations into account, it is impossible for both correspondences to belong to
the same instance.

In order to deal with this situation, the correspondence grouping step is in-
troduced in the pipeline. On a high level, this process groups correspondences
that are geometrically consistent, for a given model, into clusters and discards
the ones which are not consistent. The criteria for determining that consistency
varies depending on the method but they are usually based on allowing rigid
transformations (rotations and translations) to a certain extent.

Figure 3.12: Example of correspondence grouping. The yellow object is the
model and the red ones are the transformed hypotheses. As we can see, two
clusters of correspondences are grouped based on their geometric consistency.

72 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

The most popular and simple method for performing correspondence group-
ing is the so called Geometric Consistency Grouping (GCG) implemented in PCL
and based on the proposal presented by Chen and Bhanu [72]. It is a geometric
consistency clustering algorithm which enforces simple geometric constraints
between pairs of correspondences. The algorithm just iterates over all corre-
spondences not yet grouped, adding them to the current cluster if they are
consistent or creating a new one for them if not. Listing 3.18 shows the use of
the GCG algorithm with PCL.

Listing 3.18: Correspondence grouping using GCG with PCL.

1 void cluster_correspondences_gcg (
2 const pcl::PointCloud<TPoint>::ConstPtr & pModel,
3 const pcl::PointCloud<TPoint>::ConstPtr & pModelKeypoints,
4 const pcl::PointCloud<TPoint>::ConstPtr & pScene,
5 const pcl::PointCloud<TPoint>::ConstPtr & pSceneKeypoints,
6 const pcl::CorrespondencesPtr & pModelSceneCorrespondences,
7 const float & pClusterSize,
8 const float & pClusterThreshold,
9 std::vector<Eigen::Matrix4f, Eigen::aligned_allocator

10 <Eigen::Matrix4f>> & pRotoTranslations,
11 std::vector<pcl::Correspondences> & pClusteredCorrespondences)
12 {
13 pcl::GeometricConsistencyGrouping<pcl::PointXYZ, pcl::PointXYZ> gcg;
14

15 pcl::PointCloud<pcl::PointXYZ>::Ptr modelKeypoints(
16 new pcl::PointCloud<pcl::PointXYZ>);
17

18 pcl::copyPointCloud(*pModelKeypoints, *modelKeypoints);
19

20 pcl::PointCloud<pcl::PointXYZ>::Ptr sceneKeypoints(
21 new pcl::PointCloud<pcl::PointXYZ>);
22

23 pcl::copyPointCloud(*pSceneKeypoints, *sceneKeypoints);
24

25 gcg.setGCSize(pClusterSize);
26 gcg.setGCThreshold(pClusterThreshold);
27 gcg.setInputCloud(modelKeypoints);
28 gcg.setSceneCloud(sceneKeypoints);
29 gcg.setModelSceneCorrespondences(pModelSceneCorrespondences);
30 gcg.recognize(pRotoTranslations, pClusteredCorrespondences);
31 }

A set of parameters can be customized to alter the end result of the algo-
rithm. For example, a minimum number of correspondences per cluster might
be enforced using a cluster threshold. In addition, the resolution of the consen-
sus set used to cluster correspondences can be modified to make the algorithm
more or less sensitive to geometric consistency constraints. Figure 3.12 shows
an example of correspondence grouping using GCG with a minimum of three
correspondences per cluster and a cluster set resolution of 8 times the model
cloud resolution.

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 73

3.2.6 Pose Estimation and Alignment

After clustering the correspondences, we need to estimate the pose of the model
in the scene for each detected instance. Some correspondence grouping meth-
ods as the aforementioned GCG provide the transformation for each corre-
spondence cluster (rotation and translation) so that this step is unnecessary. In
our case, we use the rototranslations generated by the correspondence group-
ing stage to transform the corresponding model to an estimated pose in the
scene which will hopefully perform a coarse alignment with model instance
in the scene. This 6DoF estimated pose is usually refined using the Iterative
Closest Point (ICP) algorithm [73] [74].

Figure 3.13: Cloud alignment refinement with ICP algorithm. The original
point cloud in gray and the ICP aligned cloud in red. Initial positions (top
left), four ICP iterations after (top right), eight ICP iterations after (bottom
left) and twelve iterations after (bottom right). (Figure reproduced from Point-
clouds.org).

The ICP is a widely used algorithm for fine geometric alignment of 3D point
clouds when a coarse initial estimation of the pose is known. The algorithm

74 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

starts with two clouds and an initial guess of their relative rigid transformation
which is iteratively refined by repeatedly generating pairs of corresponding
points using a closeness criteria and minimizing a distance error metric. Many
variants of the algorithm have been proposed whose goal is to increase the
efficiency or precision of the method, the seminal work of Rusinkiewicz and
Levoy [75] surveys and carries out a detailed comparison of the most relevant
ones. The Point Cloud Library provides various implementations, we will use
the basic one as shown in Listing 3.19.

Listing 3.19: Cloud alignment using ICP with PCL.

1 void PointCloudOperations::register_cloud (
2 const pcl::PointCloud<TPoint>::ConstPtr & pModel,
3 const pcl::PointCloud<TPoint>::ConstPtr & pScene,
4 const int & pMaxIterations,
5 const float & pMaxCorrespondenceDistance,
6 pcl::PointCloud<TPoint>::Ptr & pDstCloud)
7 {
8 pcl::IterativeClosestPoint<TPoint, TPoint> icp;
9 icp.setMaximumIterations(pMaxIterations);

10 icp.setMaxCorrespondenceDistance(pMaxCorrespondenceDistance);
11 icp.setInputCloud(pModel);
12 icp.setInputTarget(pScene);
13 icp.align(*pDstCloud);
14 }

The ICP takes as input two point clouds and the initial estimation of the
transformation with a certain stop criteria (error threshold or maximum num-
ber of iterations) and it outputs the refined transformation and even the trans-
formed cloud. The main steps of the algorithm are:

1. Establish correspondences between points using the nearest neighbor cri-
teria.

2. Estimate the transformation by minimizing a mean square error cost func-
tion.

3. Apply and accumulate the transformation to align the second cloud.

4. Iterate again to refine if stop criteria is not met.

If the correspondence grouping algorithm does not provide the full pose, it
is possible to compute it manually using methods like RANdom Sample Consen-
sus to obtain the rigid transformation which best aligns the model to the scene
instance using the previously clustered correspondences.

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 75

3.2.7 Hypothesis Verification

In the end, the local recognition pipeline has generated a set of object or model
hypotheses H = {h1, h2, ..., hn} where a certain hypothesis h is composed by
a model M and the rigid transformation (R, t) applied to align that instance
in the scene hi = {Mi, Ri, ti}. However, a difficult problem arises: several
hypotheses are false positives and they have to be discarded without compro-
mising the recall of the system. This is the goal of the hypothesis verification
stage.

Figure 3.14: Recognition hypotheses verified with Global Hypothesis Verifi-
cation; rejected false positive hypotheses in dark red, accepted true positive
hypothesis in bright red. Green lines represent model-scene correspondences.

Typical hypothesis verification methods enforce certain geometric cues in
a sequential manner, i.e., one hypothesis at a time. Aldoma et al. [23] pro-
posed a method for simultaneous geometric verification of all object hypothe-
ses. The Global Hypothesis Verification (GHV) algorithm considers two possi-
ble states xi = {0, 1} of a single hypothesis hi since it can be inactive or ac-
tive. Given a set of hypotheses H = {h1, h2, ..., hn} a possible solution vec-
tor is defined as X = {x1, x2, ..., xn}. A global cost function ζ is defined as
ζ(X) : Bn → R, X = {x1, ..., xn}, xi ∈ B = {0, 1}. This function estimates how
good the current solution X is by considering the whole set of hypotheses as a
global scene model instead of considering each model hypothesis separately.

The cost function integrates four geometrical cues as shown on Equation
3.7: Ωx is the number of scene inliers, Λx represents the number of points ex-
plained by multiple hypotheses, γx is the clutter for hi and |φhi

| is the number

76 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

of outliers for hi.

ζ(X) = ∑
p∈S

(Λx(p) + γx(p)−Ωx(p)) + λ
n

∑
i=1
|φhi
|xi (3.7)

This optimization problem is typically solved using Simulated Annealing or
other metaheuristics. The target is to maximize the number of explained scene
points and minimize the number of model outliers, multiple explained scene
points and unexplained scene points close to active hypotheses.

The Point Cloud Library contains an implementation of the Global Hy-
potheses Verification method. Listing 3.20 shows the integration of the GHV
method in our pipeline using PCL. This method takes a scene cloud and a set
of model hypotheses as inputs, as well as some extra parameters for tuning
the algorithm. The output consists of a boolean vector which represents the
optimal solution X which minimizes the aforementioned cost function. This
vector can be seen as a mask which activates (true) or deactivates (false) each
model hypothesis.

Listing 3.20: Implementation of GHV with PCL.

1 void verify_hypotheses (
2 const pcl::PointCloud<TPoint>::Ptr & pScene,
3 std::vector<pcl::PointCloud<TPoint>::ConstPtr> & pModels,
4 const float & pInlierThreshold,
5 const float & pOcclusionThreshold,
6 const float & pRadiusClutter,
7 const float & pRegularizer,
8 const float & pClutterRegularizer,
9 const bool & pDetectClutter,

10 const float & pRadiusNormals,
11 std::vector<bool> & pHypothesesMask)
12 {
13 pcl::GlobalHypothesesVerification<TPoint, TPoint> ghv;
14 ghv.setSceneCloud(pScene);
15 ghv.addModels(pModels, true);
16 ghv.setInlierThreshold(pInlierThreshold);
17 ghv.setOcclusionThreshold(pOcclusionThreshold);
18 ghv.setRegularizer(pRegularizer);
19 ghv.setRadiusClutter(pRadiusClutter);
20 ghv.setClutterRegularizer(pClutterRegularizer);
21 ghv.setDetectClutter(pDetectClutter);
22 ghv.setRadiusNormals(pRadiusNormals);
23

24 ghv.verify();
25 ghv.getMask(pHypothesesMask);
26 }

3.2. 3D OBJECT RECOGNITION PIPELINE ON CPU 77

Figure 3.15: Global Hypotheses Verification example with multiple accepted
hypotheses of different object models present in the scene.

3.2.8 Offline training

When a scene point cloud is provided to the system, it has to go through the
whole pipeline since it is new information which is not previously available.
However, the 3D models which will be recognized are available prior to the
recognition process. In this regard, it is not needed to recompute model infor-
mation each time a new scene has to be processed.

Instead of computing model information for each scene, we will generate
all of it offline and then load it once when the system is started. This stage is
commonly referred as offline training.

For each model we want to recognize, we computed resolution, estimated
normals, detected keypoints, and extracted descriptors. The normal estimation
method, keypoint detector and descriptor extractor are the same ones that will
be used later to process scene point clouds. The reason for using the same
methods is obvious: ensure representation consistency.

The precomputed information is stored in a set of configuration files with
proper file formats to optimize its loading process when the system starts
(XML files for parameter configuration and PCD ones for point cloud infor-
mation like keypoints, normals and descriptors).

78 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

3.3 Descriptors and pipeline performance study

In order to validate the CPU implementation and assess the performance and
precision of the available feature descriptors, we carried out a set of experi-
ments which consisted of recognizing a particular object in a series of hetero-
geneous test scenes. The main goal of the experimentation was to find out the
best descriptor for our purpose in terms of efficiency and precision.

In addition, the main goal of this project is to implement and deploy a real
time object recognition system. In this sense, the experimentation allowed us to
determine the computational cost of the different phases of the system. Taking
it into account, we will focus on parallelizing and accelerating those stages
with higher cost by developing an optimized CPU implementation and a GPU
one.

In this section we will describe the experimentation carried out, from the
model reconstruction and scene capturing to the methodology and results.

3.3.1 Model reconstruction

For this first round of experiments, we tested our system with two different
objects which appeared in all the test scenes. The first step of this experimen-
tation consisted of reconstructing full 3D models from the real-life objects (see
Appendix A). For this purpose, we used a rotating platform to capture 64 par-
tial views of the objects from a determined angle (approximately 45◦ respect to
the platform plane) and position (roughly a distance of 90 cm from the camera
sensor and the center of the platform). Figure 3.16 shows some of the RGB
images captured from those points of view. For these initial tests we used the
Primesense Carmine sensor.

Given the 64 partial views, we developed a reconstruction application to
merge and align all generated point clouds with color information. This ap-
plication used the known angular step information (64 views imply a step of
5.625 ◦ between each view) to roughly align each view to the previous one. The
ICP algorithm is also used to refine that approximate transformation. Figure
3.17 shows the fully reconstructed 3D model. In addition, statistical outlier re-
moval and euclidean cluster extraction operations were performed to segment
the object and reduce noise levels.

3.3. DESCRIPTORS AND PIPELINE PERFORMANCE STUDY 79

Figure 3.16: Tasmanian object captured from different points of view using a
rotating platform and the Primesense Carmine sensor. 64 partial views were
captured in total, with an angular step of 5.625 degrees. View 0 (top left), view
43 (top right), view 23 (bottom left) and view 63 (bottom right).

Figure 3.17: Reconstructed tasmanian model point cloud (left) and Colacao
model point cloud (right). 64 partial views of the objects were used to fully
reconstruct them. Normals estimated using Meshlab normal estimation fea-
ture.

80 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

3.3.2 Evaluation scenes

A total of nine test scenes were captured using the same Primesense Carmine
which was used to capture the partial views of the object. The purpose of
these scenes is to generate a heterogeneous set of possible scenarios with vary-
ing number of objects, poses, clutter and occlusions. Figure 3.18 shows all
the scenes. First, three scenes with three objects, including the reconstructed
ones, were captured at different distances. Then, two captures were taken by
grouping those objects to produce clutter and occlusions and even turning the
model backwards. Three more captures were taken replicating this procedure,
this time with five different objects. A last capture was taken with nine objects
at intermediate distance with occlusions.

Figure 3.18: Heterogeneous test scenes captured with Primesense Carmine
acquistion device. First row: Scene01, Scene 02 and Scene03. Second row:
Scene04, Scene05 and Scene06. Third row: Scene07, Scene08 and Scene09.

3.3. DESCRIPTORS AND PIPELINE PERFORMANCE STUDY 81

3.3.3 Performance study methodology

We have tested seven feature descriptors which are implemented by the Point
Cloud Library: Rotational Projection Statistics (ROPS), Unique Shape Context
(USC), Fast Point Feature Histograms (FPFH), Unique Signatures of Histograms
(SHOT), 3D Shape Context (3DSC), and Color-SHOT (CSHOT).

Each descriptor has been used for recognizing the reconstructed models
in the test scenes. For that, they have been integrated in our pipeline while
the rest of it remained the same for all the descriptors. We used Uniform Sam-
pling to extract keypoints, Geometric Consistency Grouping for correspondence
grouping and Global Hypothesis Verification for rejecting false matches. Pose re-
finement with Iterative Closest Point was disabled in order to assess the quality
of the pose estimation using only the established correspondences which de-
pend on the quality of the descriptor.

A confusion matrix or contingency table was created for each descriptor,
representing the four possible outcomes of the predictions or hypotheses pro-
duced by the system: if the hypothesis properly identifies the object in the
scene, then it is called a true positive(TP); however, if the hypothesis does not
correspond to the proper object in the scene then it is said to be a false positive
(FP). A true negative (TN) occurs when no hypothesis is produced for objects
in the scene which do not correspond to the model and a false negative (FN) is
when the model is present in the scene but no hypothesis recognizes it. The
contingency table helps us to derive several evaluation metrics to place each
descriptor in a Receiver Operating Characteristic (ROC) space.

Figure 3.19: Validation scene (left) and recognition results with SHOT (right)
one true positive (the recognized tasmanian model) and eight true negatives.

82 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

Figure 3.20: Validation scene (left) and recognition results with SHOT (right)
one true positive (the recognized tasmanian model), one false positive (the
wrongly recognized tasmanian in the milk) and seven true negatives.

Figure 3.21: Validation scene (left) and recognition results with CSHOT (right)
one false negative (the unrecognized tasmanian model) and four true nega-
tives.

A ROC space is defined by two metrics: sensitivity (y-axis) and 1-specificity
(x-axis). The sensitivity is represented by the true positive rate (TPR) and the
false positive rate (FPR) is equal to (1-specificity). Each instance of a confusion
matrix represents a point in the ROC space which depicts relative trade-offs
between false positives (costs) and true positives (benefits) of a prediction sys-
tem. We also computed the F1 score for each descriptor. The accuracy of a
system (ACC) can be biased by a lack of equilibrium between positive and
negative instances. The F1 scores applies a harmonic mean of precision and
recall for a better measurement of a test’s accuracy.

A default set of parameters was fixed throughout the entire experimen-
tation in order not to bias the results. However, variations were allowed in
the matching threshold since distances between descriptors are not consistent
across different types, i.e., SHOT distances are normalized while FPFH ones
are not. Some specific tuning was performed as well in the hypothesis verifi-
cation threshold.

3.3. DESCRIPTORS AND PIPELINE PERFORMANCE STUDY 83

3.3.4 Results

The results of the experimentation will be presented from two points of view:
precision or accuracy, and efficiency. Section 3.3.4.1 is devoted to the former
and Section 3.3.4.2 to the latter one.

3.3.4.1 Precision

Table 3.1 shows the results obtained by the different descriptors during the
experimentation in terms of true/false positives/negatives rates and the sub-
sequent ROC metrics. Figure 3.22 shows those results placed in a ROC space.

Table 3.1: Accumulated experimentation rates (TP, FP, TN and FN) through-
out all scenes for the selected descriptors including ROC space metrics and F1
score.

Rates ROC Metrics
Descriptor TP FP TN FN TPR FPR ACC F1 SCORE
CSHOT 14 0 60 4 0.780 0.000 0.950 0.875
SHOT 14 2 58 4 0.780 0.030 0.920 0.824
ROPS 14 2 58 4 0.780 0.030 0.920 0.824
3DSC 10 3 57 8 0.560 0.050 0.860 0.645
USC 10 3 57 8 0.560 0.050 0.860 0.645
FPFH 7 7 53 11 0.390 0.120 0.770 0.438

Figure 3.22: Descriptor metrics in the ROC space. Top left represents the per-
fect classifier with full sensitivity (all true positives) and specificity (no false
positives).

84 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

3.3.4.2 Efficiency

Another important aspect of this experimentation is the execution time needed
by each descriptor to extract descriptors in the whole scene. Table 3.2 shows
the execution times for each scene and the mean for all of them. Figure 3.23
represents this data for a clearer visualization.

Table 3.2: Experimentation results (descriptor extraction times for a whole
scene cloud) for the selected descriptors and each validation scene.

Descriptor extraction times (s) for the scenes
Desc. 1 2 3 4 5 6 7 8 9 Mean (s)
SHOT 0.612 1.093 1.340 1.141 1.174 1.161 1.663 1.377 1.883 1.271
CSHOT 0.715 1.310 1.579 1.325 1.318 1.262 1.945 1.649 2.227 1.481
FPFH 2.424 4.929 8.196 6.879 7.009 4.365 8.736 6.574 8.398 6.390
3DSC 3.075 5.823 8.318 7.033 7.035 5.481 9.624 7.456 9.941 7.087
USC 3.392 6.275 8.865 7.505 7.585 5.945 10.406 8.117 10.776 7.652
ROPS 4.230 7.369 8.565 7.387 7.408 7.140 10.622 9.259 12.198 8.242

Figure 3.23: Extraction times for each descriptor and test scene.

We also computed the execution times for each phase of the pipeline us-
ing the SHOT descriptor for reference. Table 3.3 shows those execution times
taking into account the normal estimation, OMPS, OCCS, DS (downsampling
with uniform sampling), SHOT, matching (CORR), GCG and GHV. Figure 3.24

3.3. DESCRIPTORS AND PIPELINE PERFORMANCE STUDY 85

shows the mean runtime distribution of the pipeline executed for all scenes
using SHOT with a single model.

Table 3.3: Experimentation results (execution times for the different pipeline’s
phases) for the SHOT descriptor and each test scene recognizing a single
model.

Execution times (s) for the different scenes
Phase 1 2 3 4 5 6 7 8 9 Mean (s)
NE (I) 0.968 0.928 0.940 0.932 0.929 0.932 0.939 0.987 0.976 0.948
OMPS 0.162 0.158 0.163 0.172 0.165 0.159 0.167 0.168 0.165 0.164
OCCS 0.084 0.075 0.069 0.075 0.067 0.066 0.071 0.068 0.072 0.072
NE (II) 0.059 0.099 0.119 0.102 0.099 0.092 0.139 0.125 0.165 0.111
DS 0.005 0.009 0.011 0.009 0.010 0.009 0.013 0.012 0.016 0.010
SHOT 0.615 1.092 1.336 1.141 1.160 1.020 1.638 1.379 1.847 1.248
CORR 10.584 15.184 13.166 11.654 12.092 14.859 17.303 17.443 24.593 15.209
GCG 2.088 2.279 2.408 2.316 2.342 2.287 2.578 2.453 2.642 2.377
GHV 1.119 1.311 1.663 1.251 1.242 1.057 2.060 2.732 2.163 1.622
All 15.684 21.135 19.875 17.652 18.106 20.481 24.908 25.367 32.639 21.761

Figure 3.24: Mean execution times percentages for each phase using SHOT.

3.3.5 Discussion

Once the results have been shown off, we will analyze them from two points
of view: accuracy (see Table 3.1) and efficiency (see Table 3.2).

On the one hand, CSHOT is the most accurate descriptor producing no

86 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

false positives at all. SHOT and ROPS offer a similar TPR but their specificity
falls below CSHOT’s one. 3DSC and USC are quite similar but, together with
FPFH, they are far behind CSHOT and even SHOT/ROPS in terms of accuracy.

On the other hand, SHOT is the fastest descriptor. It achieved the best
descriptor extraction execution times consistently throughout all the scenes.
CSHOT shows slightly worse execution times, this is normal considering the
additional amount of information that it encodes. ROPS is the slowest descrip-
tor on average although 3DSC/USC are sometimes slower. FPFH is slightly
faster than 3DSC/USC/ROPS. This difference is significant in scenes with high
point count, i.e., scenes with a large number of objects. However, it is approxi-
mately six times slower than CSHOT on average.

Taking all of this into account, it is obvious that SHOT/CSHOT are the
best descriptors for our purposes. Further experimentation will be required to
choose one of them. CSHOT is more accurate but SHOT is faster so we will
have to choose one according to the limits of the real-time implementation.

We will also analyze the efficiency of the pipeline (see Table 3.3) in order to
determine the phases with higher computational cost so that they become pos-
sible targets for parallelization or rethinking to decrease their execution time.

The phase with the highest execution time is the matching one. This stage
takes approximately a 70% of the total execution time. The main reason for
this inefficiency is the use of non-optimized data structures for high dimen-
sional data such as certain feature descriptors. In this sense, increasing the
efficiency of this phase will dramatically reduce the pipeline’s latency. Other
phases which might as well be parallelized or redesigned due to their high
execution times are Geometric Consistency Grouping (10% of the pipeline’s
execution time), Global Hypothesis Verification (7%) and the descriptor ex-
traction (6%) stages.

3.4 Jetson TK1 sequential experimentation

In the previous section we have shown the execution times of our object recog-
nition system running on a desktop personal computer with a high-end proces-
sor. In this section we are going to run the same experiments on the Jetson TK1
to determine the performance of our system in that platform and also compare
it with the PC. We expect a performance loss due to the worse specifications of
the Jetson TK1.

3.4. JETSON TK1 SEQUENTIAL EXPERIMENTATION 87

3.4.1 Results

Table 3.4 shows the experimentation results (execution times for the different
pipeline’s phases) using the SHOT descriptor for each test scene recognizing a
single model.

Table 3.4: SHOT-based pipeline execution times on Jetson TK1.

Execution times (s) for the different scenes
Phase 1 2 3 4 5 6 7 8 9 Mean (s)
NE (I) 2.030 2.090 2.070 2.200 2.170 2.200 2.020 2.200 2.180 2.129
OMPS 0.220 0.230 0.220 0.259 0.241 0.220 0.230 0.230 0.230 0.231
OCCS 0.190 0.190 0.180 0.210 0.160 0.190 0.170 0.180 0.200 0.186
NE (II) 0.130 0.240 0.300 0.240 0.260 0.230 0.320 0.260 0.430 0.268
DS 0.013 0.021 0.025 0.020 0.020 0.020 0.040 0.020 0.040 0.024
SHOT 0.930 1.730 2.110 1.800 1.860 1.660 2.600 2.030 3.090 1.979
CORR 10.280 14.480 12.760 11.250 11.620 14.300 16.350 15.730 23.390 14.462
GCG 4.960 5.440 5.830 5.400 5.440 5.360 5.890 5.570 6.150 5.560
GHV 2.070 2.860 2.800 2.370 1.880 2.180 4.580 2.840 3.760 2.816
All 20.823 27.281 26.295 23.749 23.651 26.360 32.200 29.060 39.470 27.654

3.4.2 Discussion

As we can observe, the execution times are increased in comparison with the
ones shown in Table 3.3 as expected. Comparing the mean execution times for
all phases on all scenes, 27.654 seconds on Jetson TK1 and 21.761 seconds on
the desktop CPU, an approximate speedup of 1.27x is achieved using the latter
one.

Figure 3.25: Mean execution times for all phases, Intel i5 vs Jetson TK1. Notice
that the y-axis scale is logarithmic.

88 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

Figure 3.25 shows a graphical representation of the execution times of the
desktop CPU versus the Jetson TK1 for each phase, taking into account the
data shown in Tables 3.3 and 3.4. It is important to notice that the matching
phase is faster on the Jetson TK1. This is due to floating point rounding issues
which cause more aggressive segmentation and downsampling phases which
in turn suppose less points to extract descriptors so less matchings have to be
performed. However, this fact does not have a significant impact on the time
distribution of the different phases as shown in Figure 3.26 in comparison with
the Figure 3.24.

Figure 3.26: Phase time distribution using SHOT on Jetson TK1.

3.5 CPU optimizations

Before getting right into the GPU implementation, we decided to optimize the
CPU one to get all the possible performance from the sequential implemen-
tation. These enhancements range from algorithmic improvements and archi-
tectural optimizations to efficient data structures and ad-hoc tricks for our ap-
plication. In this section we will explain each optimization one by one and
we will also carry out a brief set of experiments to determine the performance
gain.

3.5. CPU OPTIMIZATIONS 89

3.5.1 High-dimensionality optimized k-d tree

The current CPU implementation makes use of a typical k-d tree data structure
to perform nearest neighbor searches during the matching phase. As we stated
in Section 3.3, most of the time of the pipeline is spent finding correspondences.
However, we expected k-d trees to be extremely efficient. The problem lies on
the dimensionality of the descriptors. Common k-d tree implementations are
optimized for low-dimensional queries like 3D points, but we are matching
high-dimensional descriptors; for instance, SHOT has 352 dimensions. In this
sense, simple k-d trees perform poorly when dealing with high-dimensional
data [76, 77, 78].

In order to increase the efficiency of the matching process, we will make
use of a special implementation of a k-d tree which is optimized for high-
dimensional data: the KDTreeIndexParams from FLANN (Fast Approximate Near-
est Neighbor Search) library [79]. This implementation was proposed by Silpa-
Anan et al. in [80]. It is based on generating a set of multiple randomized trees
which are later used to search in parallel. This approach has become one of the
most effective methods for matching high-dimensional data.

Listing 3.21 shows the optimized version of the original matching phase
using the aforementioned k-d tree. As we can observe, additional FLANN
types are needed to convert data from PCL descriptors to FLANN matrices
which can be used by FLANN indexes. A brief comparison between the non-
optimized version and the optimized one was performed using the Jetson TK1.
The results of that experimentation are shown in Table 3.5.

Listing 3.21: High-dimensionality optimized correspondence search.

1 int numInput = pModelDescriptors->points.size();
2 int inputsize = TDescriptor::descriptorSize();
3

4 flann::Matrix<float> data(
5 new float[numInput * inputsize], numInput, inputsize);
6

7 for (size_t i = 0; i < data.rows; ++i)
8 for (size_t j = 0; j < data.cols; ++j)
9 data[i][j] = pModelDescriptors->at(i).descriptor[j];

10

11 flann::Index<flann::L2<float>> index(data,
12 flann::KDTreeIndexParams(4));
13 index.buildIndex();
14

15 double distance = 0.0; int neighbors = 0; int kValue = 1;
16

17 for (size_t i = 0; i < pSceneDescriptors->size(); ++i)
18 {
19

20 flann::Matrix<float> p = flann::Matrix<float>(

90 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

21 new float[inputsize], 1, inputsize);
22

23 memcpy(
24 &p.ptr()[0],
25 &pSceneDescriptors->at(i).descriptor[0],
26 p.cols * p.rows * sizeof(float));
27

28 flann::Matrix<int> indices;
29 flann::Matrix<float> distances;
30

31 indices = flann::Matrix<int>(new int[kValue], 1, kValue);
32 distances = flann::Matrix<float>(new float[kValue], 1, kValue);
33

34 int neighborsFound = index.knnSearch(p, indices, distances,
35 kValue, flann::SearchParams(512));
36

37 if (neighborsFound == 1 && distances[0][0] < pThreshold)
38 {
39 pcl::Correspondence correspondence(indices[0][0],
40 static_cast<int>(i), distances[0][0]);
41 pCorrespondences->push_back(correspondence);
42 }
43 }

As we can observe in Table 3.5, a mean speedup of 3.982x is achieved by
this optimized k-d tree implementation when using the SHOT descriptor.

Table 3.5: Execution times for the matching phase using the non-optimized
and the high-dimension optimized k-d tree on Jetson TK1. Speedup is also
shown.

Execution times (s) for the different scenes
k-d tree 1 2 3 4 5 6 7 8 9 Mean (s)
Original 10.280 14.480 12.760 11.250 11.620 14.300 16.350 15.730 23.390 14.462
Optimized 2.580 3.620 3.190 2.860 2.960 3.590 4.140 3.950 5.730 3.624
Speedup 3.984 4.000 4.000 3.934 3.926 3.983 3.949 3.982 4.082 3.982

3.5.2 Multi-core acceleration

Various phases of the pipeline can benefit from a multi-core implementation
since most of their operations are suitable for concurrent execution on multi-
threaded processors. In order to make our implementation executable on multi-
core processors we will resort to OpenMP. Firstly, we optimized the previously
modified matching phase by parallelizing the neighbor search loop as shown
in Listing 3.22. It is important to remark that a critical section is needed to up-
date the correspondence’s vector and avoid race conditions due to reallocation
operations like push_back.

3.5. CPU OPTIMIZATIONS 91

Listing 3.22: Multi-core optimized correspondence search with four threads.

1 int numInput = pModelDescriptors->points.size();
2 int inputsize = TDescriptor::descriptorSize();
3

4 double distance = 0.0; int neighbors = 0; int kValue = 1;
5 flann::Matrix<float> data(
6 new float[numInput * inputsize], numInput, inputsize);
7

8 for (size_t i = 0; i < data.rows; ++i)
9 for (size_t j = 0; j < data.cols; ++j)

10 data[i][j] = pModelDescriptors->at(i).descriptor[j];
11

12 flann::Index<flann::L2<float>> index(data, flann::KDTreeIndexParams(4));
13 index.buildIndex();
14

15 #pragma omp parallel for firstprivate(index) num_threads(4)
16 for (size_t i = 0; i < pSceneDescriptors->size(); ++i)
17 {
18 flann::Matrix<float> p = flann::Matrix<float>(
19 new float[inputsize], 1, inputsize);
20 memcpy(
21 &p.ptr()[0],
22 &pSceneDescriptors->at(i).descriptor[0],
23 p.cols * p.rows * sizeof(float));
24

25 flann::Matrix<int> indices;
26 flann::Matrix<float> distances;
27

28 indices = flann::Matrix<int>(new int[kValue], 1, kValue);
29 distances = flann::Matrix<float>(new float[kValue], 1, kValue);
30

31 int neighborsFound = index.knnSearch(p, indices, distances,
32 kValue, flann::SearchParams(512));
33

34 #pragma omp critical
35 {
36 if (neighborsFound == 1 && distances[0][0] < pThreshold)
37 {
38 pcl::Correspondence correspondence(indices[0][0],
39 static_cast<int>(i), distances[0][0]);
40 pCorrespondences->push_back(correspondence);
41 }
42 }
43 }

We have carried out another brief experimentation to confirm the perfor-
mance gain by using this optimized implementation. Table 3.6 shows the re-
sults of that experimentation. As we can observe, a mean speedup of 2.577x is
achieved.

Table 3.6: Execution times and speedup for the matching phase using the high-
dimension optimized k-d tree and its OpenMP optimized version on Jetson
TK1.

Execution times (s) for the different scenes
Matching 1 2 3 4 5 6 7 8 9 Mean (s)
Original 2.580 3.620 3.190 2.860 2.960 3.590 4.140 3.950 5.730 3.624
Optimized 1.040 1.400 1.256 1.138 1.167 1.389 1.569 1.507 2.128 1.399
Speedup 2.481 2.586 2.540 2.513 2.536 2.585 2.639 2.621 2.693 2.577

92 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

In addition to the multi-core optimization of the matching phase, we have
also modified the descriptor extraction stage to make use of a PCL multi-core
optimized SHOT implementation named SHOTEstimationOMP as shown in
Listing 3.23.

Listing 3.23: Multi-core optimized SHOT with OpenMP.

1 void compute_shot_descriptors (
2 const pcl::PointCloud<TPoint>::ConstPtr & pSrcCloud,
3 const pcl::PointCloud<TNormal>::ConstPtr & pNormals,
4 const pcl::PointCloud<TPoint>::ConstPtr & pKeypoints,
5 const pcl::search::KdTree<TPoint>::ConstPtr & pKdTree,
6 const float & pSearchRadius,
7 pcl::PointCloud<pcl::SHOT352>::Ptr & pDstCloud) {
8 pcl::SHOTEstimationOMP<TPoint, TNormal, pcl::SHOT352> shot;
9 shot.setSearchMethod(pKdTree);

10 shot.setInputCloud(pKeypoints);
11 shot.setInputNormals(pNormals);
12 shot.setRadiusSearch(pSearchRadius);
13 shot.setSearchSurface(pSrcCloud);
14 shot.compute(*pDstCloud);
15 }

The results of the experimentation carried out to verify the performance
improvement of this optimization are shown in Table 3.7. By using this multi-
core implementation, a mean speedup of 2.724x is obtained.

Table 3.7: Execution times and speedup for the descriptor extraction phase
using the original SHOT and its OpenMP optimized version on Jetson TK1.

Execution times (s) for the different scenes
SHOT 1 2 3 4 5 6 7 8 9 Mean (s)
Original 0.930 1.730 2.110 1.800 1.860 1.660 2.600 2.030 3.090 1.979
Optimized 0.393 0.602 0.800 0.660 0.679 0.568 0.983 0.747 1.069 0.722
Speedup 2.366 2.874 2.638 2.727 2.739 2.923 2.645 2.718 2.891 2.724

3.5.3 Organized normal estimation

The currently used normal estimation method has to perform a lot of neighbor
search operations in order to build the covariance matrix of a certain neigh-
borhood as we previously mentioned in Section 3.2.1. Although this process is
highly optimized by using a k-d tree, those search operations still have a con-
siderable associated cost. An alternative is the Integral Image Normal Estimation
method. This approach needs a structured point cloud to exploit its matrix
configuration so that no costly neighbor search operations are required. In our
case, normals are estimated using raw point clouds which are organized so we

3.5. CPU OPTIMIZATIONS 93

can apply this method. Listing 3.24 shows the implementation of this stage
using PCL. Parameters must be tuned for each particular application.

Listing 3.24: Integral Image Normal Estimation with PCL.

1 void compute_normals_structured (
2 const pcl::PointCloud<TPoint>::ConstPtr & pCloud,
3 pcl::PointCloud<TNormal>::Ptr & pNormals)
4 {
5 pcl::IntegralImageNormalEstimation<TPoint, TNormal> ne;
6 ne.setNormalEstimationMethod (ne.COVARIANCE_MATRIX);
7 ne.setMaxDepthChangeFactor(0.02f);
8 ne.setNormalSmoothingSize(10.0f);
9 ne.setInputCloud(pCloud);

10 ne.compute(*pNormals);
11 }

In order to validate our improvement expectations, a similar experimen-
tation to the previous ones was carried out by measuring the execution times
of the normal estimation phase throughout the different test scenes using the
non-optimized and the optimized implementations. Table 3.8 shows the re-
sults of this comparison. A mean speedup of 12.293x is proved.

Table 3.8: Execution times and speedup for the normal estimation (I) phase
using the original method and its organized optimized version on Jetson TK1.

Execution times (s) for the different scenes
Normal est. 1 2 3 4 5 6 7 8 9 Mean (s)
Original 2.030 2.090 2.070 2.200 2.170 2.200 2.020 2.200 2.180 2.129
Optimized 0.172 0.179 0.171 0.171 0.171 0.170 0.171 0.178 0.176 0.173
Speedup 11.802 11.676 12.105 12.865 12.690 12.941 11.813 12.360 12.386 12.293

3.5.4 Bounding box clipping

In the end, our application will be integrated on a robotic platform which is
also able to recognize gestures and other human-computer interaction meth-
ods. One of the possible approaches consists of allowing the user to point the
index finger at some part of the scene. By recognizing the direction of the
pointing finger and the arm and projecting that vector onto the point cloud
captured by the robot we will be able to segment a part of the scene using a
bounding box. Listing 3.25 shows the implementation of that bounding box
filter.

94 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

Listing 3.25: Bounding box filter implemented with PCL.

1 void bounding_box (const pcl::PointCloud<TPoint>::ConstPtr & pSrcCloud,
2 const float & pLimitMinX, const float & pLimitMaxX,
3 const float & pLimitMinY, const float & pLimitMaxY,
4 const float & pLimitMinZ, const float & pLimitMaxZ,
5 pcl::PointCloud<TPoint>::Ptr & pDstCloud) {
6 pcl::PointCloud<TPoint>::Ptr filtered_cloud_z(
7 new pcl::PointCloud<TPoint>());
8 pcl::PointCloud<TPoint>::Ptr filtered_cloud_x(
9 new pcl::PointCloud<TPoint>());

10 pcl::PassThrough<TPoint> pass;
11 pass.setInputCloud(pSrcCloud);
12 pass.setKeepOrganized(true);
13 pass.setFilterFieldName("z");
14 pass.setFilterLimits(pLimitMinZ, pLimitMaxZ);
15 pass.filter(*filtered_cloud_z);
16 pass.setInputCloud(filtered_cloud_z);
17 pass.setFilterFieldName("x");
18 pass.setFilterLimits(pLimitMinX, pLimitMaxX);
19 pass.filter(*filtered_cloud_x);
20 pass.setInputCloud(filtered_cloud_x);
21 pass.setFilterFieldName("y");
22 pass.setFilterLimits(pLimitMinY, pLimitMaxY);
23 pass.filter(*pDstCloud);
24 }

We have repeated the Jetson TK1 experimentation (see Section 3.4) by run-
ning the whole pipeline with all the aforementioned optimizations and using
a bounding box of 40x40x40cm. The results are shown in Table 3.9. As we can
observe, a mean speedup of 3.574x is achieved.

Table 3.9: Execution times and speedup for the whole pipeline using the orig-
inal one and the fully optimized version on Jetson TK1.

Execution times (s) for the different scenes
Pipeline 1 2 3 4 5 6 7 8 9 Mean (s)
Original 20.823 27.281 26.295 23.749 23.651 26.360 32.200 29.060 39.470 27.654
Optimized 6.448 8.508 6.721 7.113 7.451 8.509 7.067 8.041 9.784 7.738
Speedup 3.229 3.207 3.912 3.339 3.174 3.098 4.556 3.614 4.034 3.574

3.6 GPU optimizations

By using certain CPU execution optimization techniques and redesigning some
of the phases of the pipeline to use more efficient data structures or algorithms
we achieved an approximate speedup of 3.5x cutting down the runtime of the
whole pipeline from ∼ 28 seconds to ∼ 7.

However, we can still reduce the overall runtime of the pipeline by exploit-
ing the implicit parallelism of some of its stages. The obvious targets are the
bilateral filter, normal estimation and the cloud resolution computation. All

3.6. GPU OPTIMIZATIONS 95

of these phases perform per-pixel or per-point operations in a completely in-
dependent manner. This means that those stages are perfectly suited to be
deployed into a GPU to take advantage of its SIMT model (Single Instruction
Multiple Threads). By doing this, we can process multiple pixels or points in
parallel thus reducing the runtime.

The main goal of this implementation is achieving an efficient system which
offers enough interactivity with the user. In this regard, we need to intro-
duce some way to capture scenes in real-time to feed the system with them
to achieve the aforementioned interactivity.

Up until now, we have been using scene clouds which were captured and
generated offline. Now, we need a way of getting sensor’s depth and RGB
streams online to create a point cloud that will be eventually processed by our
system. In order to do that, we have used the OpenNI 2 grabber interface
provided by the Point Cloud Library to obtain depth and RGB maps in real-time
as shown in Listing 3.26. Needless to say, the point cloud creation process is
also a good candidate for parallelization.

Listing 3.26: OpenNI 2 grabber for getting depth and RGB images.

1 void Grabber::run ()
2 {
3 pcl::Grabber* interface = new pcl::io::OpenNI2Grabber();
4 boost::function<void (const boost::shared_ptr<pcl::io::Image> &,
5 const boost::shared_ptr<pcl::io::DepthImage> &, float constant)> f =
6 boost::bind(&Grabber::images_cb_, this, _1, _2, _3);
7 interface->registerCallback (f);
8 interface->start ();
9 while(1){}

10 interface->stop ();
11 }

3.6.1 Cloud projection

The grabber interface provides a RGB map with color information Mc and a
disparity map Md. In order to generate a point cloud, the depth and color
information has to be projected in a three-dimensional space in which both
maps are aligned thus producing the point cloud which represents the scene
as shown in Figure 3.27.

By using the mathematical model discussed in Section 2.2, we can use the
depth z of each point of the map to project it in a 3D space:

96 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

px = z · (x− xc) · 1/ fx

py = z · (y− yc) · 1/ fy

pz = z (3.8)

where p ∈ R3, x and y are the row and the column of the projected pixel,
xc and yc are the distances (in pixels) to the map center and fx and fy are the
focal distances of the sensor.

As we can see, this projection is performed independently for each pixel
of the map so it is perfectly suited for a parallel implementation. The pseudo-
code of the cloud projection kernel is shown in Algorithm 1.

input : A depth map Md of size 640× 480
output: Projected point cloud Pxyz into 3D space

1 __global__ void gpuPointCloudProjectionKernel(Md, Pxyz);
2 {
3 //This kernel is executed creating one thread for each pixel in parallel;
4 int u = threadIdx.x + blockIdx.x * blockDim.x;
5 int v = threadIdx.y + blockIdx.y * blockDim.y;
6 float z = Md [v][u] / 1000.f; //Depth is stored in millimetres

7 float px = z * (u - cx) * fx_inv;
8 float py = z * (v - cy) * fy_inv;
9 float pz = z;

10 Pxyz[v][u].x = px;
11 Pxyz[v][u].y = py;
12 Pxyz[v][u].z = pz;
13 }

Algorithm 1: Pseudo-code of the GPU-based point cloud projection algo-
rithm.

By executing this kernel with as many threads as pixels in the depth map
with a proper block/grid distribution, each thread will process one pixel. It
will retrieve its corresponding disparity value from the disparity map, per-
form the projection and store that 3D point in its corresponding position in the
organized point cloud.

3.6. GPU OPTIMIZATIONS 97

Figure 3.27: Depth, RGB map and point cloud (Figure reproduced from [17]).

3.6.2 Normal estimation

Once the organized point cloud has been projected, we can perform the normal
estimation process previously described in Section 3.2.1.2. By taking a closer
look to that formulation, it is obvious that the normal at each point can be
computed independently thus making the normal estimation process ideal for
a parallel implementation. Algorithm 2 shows the pseudo-code of a CUDA
kernel for organized normal estimation using PCA.

input : A projected point cloud d_Pxyz

output: Point cloud of normals d_Nxyz

1 __global__ void gpuNormalEstimationKernel(Pxyz, k);
2 {
3 //This kernel is executed creating one thread for each point in parallel;
4 int u = threadIdx.x + blockIdx.x * blockDim.x;
5 int v = threadIdx.y + blockIdx.y * blockDim.y;

6 //Compute Covariance matrix centered at point p using k neighbours;
7 d_Nxyz[u][v] = compCovarianceMat(u,v,k,N);
8 d_Nxyz[u][v] = checkOrientation();
9 }

Algorithm 2: Pseudo-code of the GPU-based normal estimation algorithm

3.6.3 Bilateral filter

Another example of computation that is fitted for being offloaded to the GPU
is the bilateral filter. Its principles were described in Section 3.2.1.1. In this
filter, the intensity value at each pixel in an image is replaced by a weighted
average of intensity values from nearby pixels. Since each pixel is computed
independently, the bilateral filter is suitable for a GPU implementation.

98 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

The kernel shown in Listing 3.27 takes the depth map as input and each
thread computes the new intensity for a single pixel whose value is later stored
in an output depth map at its corresponding position.

Listing 3.27: Bilateral filter CUDA kernel.

1 __global__ void
2 bilateralKernel (const PtrStepSz<ushort> src, PtrStep<ushort> dst,
3 float sigma_space2_inv_half, float sigma_color2_inv_half)
4 {
5 int x = threadIdx.x + blockIdx.x * blockDim.x;
6 int y = threadIdx.y + blockIdx.y * blockDim.y;
7

8 if (x >= src.cols || y >= src.rows)
9 return;

10

11 const int R = 6;
12 const int D = R * 2 + 1;
13 int value = src.ptr (y)[x];
14

15 int tx = min (x - D / 2 + D, src.cols - 1);
16 int ty = min (y - D / 2 + D, src.rows - 1);
17

18 float sum1 = 0;
19 float sum2 = 0;
20

21 for (int cy = max (y - D / 2, 0); cy < ty; ++cy)
22 {
23 for (int cx = max (x - D / 2, 0); cx < tx; ++cx)
24 {
25 int tmp = src.ptr (cy)[cx];
26

27 float space2 = (x - cx) * (x - cx) + (y - cy) * (y - cy);
28 float color2 = (value - tmp) * (value - tmp);
29

30 float weight = __expf (-(space2 * sigma_space2_inv_half + color2 *
31 sigma_color2_inv_half));
32

33 sum1 += tmp * weight;
34 sum2 += weight;
35 }
36 }
37

38 int res = __float2int_rn (sum1 / sum2);
39 dst.ptr (y)[x] = max (0, min (res, numeric_limits<short>::max ()));
40 }

3.6.4 Cloud resolution

The last stage that will be optimized by resorting to a parallel implementation
on the GPU is the cloud resolution computation. As we previously stated in
Section 3.2.1.4, the cloud resolution is defined as the average distance between
each cloud point and its nearest neighbor. This is again perfectly suited for
a parallel implementation since we can process each point independently to
compute its distance to the nearest neighbor and then calculate the average in
a sequential manner.

3.6. GPU OPTIMIZATIONS 99

The CUDA kernel shown in Listing 3.28 takes as input an organized cloud
and its size and each thread processes a single point by computing the distance
to the nearest neighbor and storing it in a linear array at its corresponding
position. After the kernel has finished its execution, the CPU takes that linear
array of distances and computes the average which is the cloud resolution.

Listing 3.28: Cloud resolution CUDA kernel.

1 __global__ void
2 computeCloudResolutionKernel (int rows, int cols,
3 const PtrStep<float> vmap, float *nearest_neighbor)
4 {
5 int u = threadIdx.x + blockIdx.x * blockDim.x;
6 int v = threadIdx.y + blockIdx.y * blockDim.y;
7

8 if (u >= cols || v >= rows) return;
9

10 int global_index = (v*cols+u);
11 float v_i_x = vmap.ptr (v)[u];
12 float v_i_y = vmap.ptr (v + rows)[u];
13 float v_i_z = vmap.ptr (v + 2*rows)[u];
14 float3 centroid = make_float3(v_i_x, v_i_y, v_i_z);
15 int ty = min (v - ky / 2 + ky, rows - 1);
16 int tx = min (u - kx / 2 + kx, cols - 1);
17

18 float min_distance=numeric_limits<float>::max();
19 for (int cy = max (v - ky / 2, 0); cy < ty; cy += STEP) {
20 for (int cx = max (u - kx / 2, 0); cx < tx; cx += STEP) {
21 float v_x = vmap.ptr (cy)[cx];
22 if (!isnan (v_x) && cy != v && cx != u)
23 {
24 float v_y = vmap.ptr (cy + rows)[cx];
25 float v_z = vmap.ptr (cy + 2 * rows)[cx];
26 float3 v = make_float3(v_x,v_y,v_z) - centroid;
27 float aux = norm(v);
28 if(aux < min_distance)
29 min_distance = aux;
30 }
31 }
32 }
33 nearest_neighbor[global_index]=min_distance;
34 }

3.6.5 Results

Once all the optimizations have been implemented, we tested the interactive
system to measure the performance gain of the GPU accelerated stages. For
this experimentation, we ran the online system and captured a scene with the
OpenNI2 grabber. That scene was later processed by the GPU parallelized
pipeline. We carried out a brief study by running the pipeline with different
block configurations for the kernels in order to empirically determine the one
which offers the best results. The runtimes are shown in Table 3.10.

100 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

Some configurations could not be tested due to the hardware limitations of
the Jetson TK1 GPU. The specifications establish that a block can be composed
by 1024 threads at most. In addition, a multiprocessor can execute a maximum
of 2048 threads. Another important limitation is the amount of blocks that can
be executed by a multiprocessor at a time which, 8 for this generation of CUDA
devices [81].

We have tested configurations ranging from (8, 8) (64 threads/block) to
(64, 64) blocks (4096 threads/block). Taking into account the aforementioned
limitations, the following configurations couldn’t be executed: (32, 64), (64, 32)
and (64, 64).

Table 3.10: Execution times for the GPU accelerated stages with different block
configurations varying x and y dimensions.

Runtime (s)
Conf. Cloud proj. Normal est. Bilateral filt. Cloud res. Total

8x8 0.0013 0.0118 0.0226 0.0164 0.0521
8x16 0.0009 0.0112 0.0217 0.0152 0.0491
8x32 0.0010 0.0115 0.0217 0.0153 0.0495
8x64 0.0009 0.0121 0.0218 0.0147 0.0494
16x8 0.0009 0.0078 0.0175 0.0115 0.0378

16x16 0.0009 0.0080 0.0183 0.0113 0.0385
16x32 0.0009 0.0080 0.0183 0.0100 0.0372
16x64 0.0010 0.0103 0.0179 0.0140 0.0432
32x8 0.0009 0.0066 0.0176 0.0102 0.0353

32x16 0.0009 0.0076 0.0175 0.0112 0.0373
32x32 0.0010 0.0084 0.0168 0.0124 0.0387
32x64 N/A N/A N/A N/A N/A
64x8 0.0009 0.0078 0.0173 0.0119 0.0379

64x16 0.0009 0.0088 0.0169 0.0116 0.0383
64x32 N/A N/A N/A N/A N/A
64x64 N/A N/A N/A N/A N/A

As we can observe, the 32x8 configuration is the one which offers the best
performance. The explanation is simple: each block consists of 256 threads and
the Jetson TK1 has a maximum of 8 blocks and 2048 threads executing at the
same time on a multiprocessor; with 256 threads per block, 8 blocks fit perfectly
to both limits. In addition, 32x8 is better than other similar sizes (8x32, 16x16)
due to memory access coalescence [82].

In Table 3.11 we can see the different steps that have been accelerated using
the GPU and their different runtimes and the speedups. The acceleration is rel-
ative to the optimized CPU implementations of the different phases. The cloud

3.6. GPU OPTIMIZATIONS 101

projection implementation on the CPU was extracted from the PCL OpenNI
wrapper [83]. The rest of the phases are the organized normal estimation (see
Section 3.5.3), bilateral filter (see Section 3.2.1.1) and the resolution computa-
tion (see Section 3.2.1.4).

Table 3.11: Runtime comparison between GPU accelerated stages and CPU
ones.

Cloud proj. Normal est. Bilateral filt. Cloud res. Total
CPU 0.0345 0.3496 0.1357 0.5830 1.1027
GPU 0.0009 0.0066 0.0176 0.0102 0.0353

Speedup 37.86 53.00 7.71 57.32 31.27

The previous runtimes do not include the time needed for data transfer op-
erations. The reason for that is the CUDA zero-copy feature which can be used
by the Tegra K1 device [84]. The Jetson TK1 has 2 GiB of RAM memory which
is shared by the CPU and the GPU. This is why it can save memory trans-
fers, that will be mandatory on discrete GPUs, using zero-copy access. Since
we were using the PCL DeviceArray2D wrapper, we could not take advantage
from the zero-copy access but a future work for this thesis could consist of
including the feature in that wrapper.

It is proven that all stages are significantly accelerated, achieving a mean
x30 speedup with peaks of x50 in some phases. The results confirm that GPUs
are ideally suited for our application. One critical aspect of designing paral-
lel algorithms is identifying the units of work and determining how they will
interact via communication and synchronization. A second critical aspect is
analyzing the data access patterns and ensuring data locality to the processing
units. It is also necessary to consider the program execution pipeline in order
to avoid unnecessary data transfers. These critical aspects have been satisfied
by our GPU implementations.

102 CHAPTER 3. A 3D OBJECT RECOGNITION PIPELINE

Chapter 4

Conclusions

This chapter discusses the main conclusions extracted from the work
presented in this document. The chapter is divided into three different sec-
tions: Section 4.1 presents and discusses the final conclusions of the work
presented in this Bachelor’s Thesis. Section 4.2 enumerates the most rel-
evant highlights of this work. Finally, Section 4.3 presents future works:
open problems and research topics that remain for future research.

4.1 Conclusions

In this work, we have implemented a pipeline for interactive 3D object recog-
nition using the Point Cloud Library. The developed system is able to recognize
multiple models in cluttered and occluded scenes by leveraging to local fea-
ture descriptors. The experiments that were carried out proved the accuracy
of the proposal.

Once the basic implementation was finished, we deployed the system in
a mobile GPU computing platform, namely NVIDIA’s Jetson TK1, and tested
its performance against the same pipeline running on a significantly better
desktop computer. Through a extensive experimentation we quantified the
performance loss and proved that the desktop computer presented an approx-
imate speedup of 1.3 with respect to the Jetson TK1. At this point, the whole
pipeline took an average runtime of 30 seconds to recognize a single object so
the pipeline had to be optimized in order to achieve an interactive system for
a mobile robotic platform.

103

104 CHAPTER 4. CONCLUSIONS

In this regard, the initial CPU implementation was optimized at differ-
ent levels either by reducing the computational complexity of certain phases
or by applying common acceleration techniques and even some ad hoc sim-
plifications which are acceptable inside the scope of our proposal. For in-
stance, we used a special k-d tree optimized for high dimensional data to re-
duce the neighbor search complexity during the feature matching phase. We
also changed the typical normal estimation approach to take advantage of the
organization of the point cloud by using integral images; this optimization
had a significant impact on the computational cost of the normal estimation
phase. What’s more, we resorted to OpenMP to accelerate various stages of
the pipeline on multi-core processors. Given the context of this project, we
also reduced the execution time of the whole pipeline by clipping the input
clouds and keeping a reduced region of interest which can be determined by
taking advantage of the gesture recognition and human-computer interaction
capabilities of the robotic platform in which this system is intended to be inte-
grated.

In addition, we took advantage of the GPU computing power of the Jet-
son TK1 and offloaded some of the massively parallel phases on the GPU. We
developed CUDA implementations for creating the scene point cloud, com-
puting the cloud resolution, estimating the normals and applying a bilateral
filter. Those stages showed exceptional performance on the GPU, bringing us
closer to an interactive system.

We also created a 3D object dataset for testing the system. It is composed
of 30 fully reconstructed object models and a set of validation scenes in which
the real-life objects appear with different poses, occlusion and lighting condi-
tions. A simple 3D object reconstruction tool was developed to generate fully
registered point clouds and meshes of those objects using a certain number of
partial views.

From a personal point of view, I feel this project has allowed me to show
off the knowledge acquired during the last four years and I am proud of the
end result. The project was ambitious and the topic was nearly a complete
unknown for me so it has been a real challenge to learn the rudiments and
start moving on the right track. This implied a lot of trial and error with a lot
of negative results mainly due to the novelty of the proposal. However, far
from discouraging, this project motivated me to keep pushing forward, mostly
thanks to my colleagues and advisors.

4.2. HIGHLIGHTS 105

4.2 Highlights

The highlights of this work are the following:

• A 3D object recognition pipeline implemented with the Point Cloud Li-
brary. It is based on local feature descriptors and provides several capa-
bilities.

– Extensive experimentation with multiple descriptors.

– Multiple models can be recognized.

– Recognition can be performed under significant levels of occlusion.

– Hypotheses are verified to reject false positives.

– Full pose estimation is provided and optionally refined with ICP.

• A set of optimizations were included to make the system able to perform
online object recognition.

– High-dimensionality optimized k-d tree for descriptor matching.

– Integral images based normal estimation for organized clouds.

– Multi-threaded matching and descriptor extraction with OpenMP.

– Bounding-box clipping based on HCI information.

• The system was deployed on the new Jetson TK1 GPU computing plat-
form and some phases were accelerated using parallel CUDA implemen-
tations.

– Parallel cloud creation through depth projection.

– Parallel normal estimation for organized clouds.

– Parallel bilateral filtering.

– Parallel cloud resolution computation.

• A 3D object reconstruction tool implemented with the Point Cloud Library
for creating models from a set of partial views of objects placed on a
turntable.

• A multi-sensor 3D object dataset consisting of a set of reconstructed 3D
models and a handful of validation scenes for the recognition system.

106 CHAPTER 4. CONCLUSIONS

In addition, all the tools and applications which were developed during
this project will be available as open-source software under the MIT license on
GitHub 1. Furthermore, this document and its LATEXsource will be also released
under the Creative Commons Atribution-NonCommercial-ShareAlike 4.0 Interna-
tional License.

4.3 Future work

Due to the time constraints of this project, a lot of possible improvements and
ideas were left out for future work. Here we summarize them to conclude this
thesis.

This work was mainly focused on local feature descriptors and so was the
experimentation to determine the one which best suited our application. How-
ever, keypoint detectors are as important as feature descriptors to obtain good
results in terms of performance and efficiency. In this sense, this work can be
extended by implementing more keypoint detectors together with an extensive
experimentation to determine the best combination of detector and descriptor.

Furthermore, some already existing descriptors were left out due to the
absence of a PCL implementation. For instance, Mian’s Tensor and TriSI can
be implemented to extend the experimentation and even send a pull request to
the Point Cloud Library public code repository as a contribution.

In addition, only a few phases were accelerated using CUDA and the power
of GPU computing to take advantage of redesigned parallel implementations.
Some of the slower phases were not optimized. As a future work, a paral-
lelization study can be conducted over the correspondence grouping and hy-
potheses verification stages to rethink them and create a GPU accelerated im-
plementation. The descriptor extraction and matching phases are also good
candidates for parallelization.

Also related with the GPU implementation, it was programmed using a
generic CUDA approach with no special optimizations for the target platform
other than setting an appropriate size for the grid and the blocks and compiling
for the specific architecture. In this regard, the system’s performance can be
enhanced by using specific CUDA features for the Jetson TK1 architecture, i.e.,
zero-copy.

1https://github.com/Blitzman

https://github.com/Blitzman

Appendix A

3D Object Reconstruction

In this appendix we present a pipeline for 3D object reconstruction us-
ing the Point Cloud Library. This pipeline may be used for reconstructing
objects from partial views taken using a turntable so that we know the ap-
proximate transformations between views. Taking that set of partial views
with their corresponding coarse transformations, a reconstructed mesh is
generated together with a fully registered point cloud.

A.1 Introduction

In 3D computer vision, the problem of object reconstruction consists of gener-
ating three-dimensional models from different views of the same object. The
goal is to generate a digital 3D model which accurately represents the real ob-
ject.

This problem was usually tackled with 2D computer vision techniques us-
ing intensity images. However, state-of-the-art methods based on this ap-
proach present many problems which limit the quality of the reconstructed
models. With the advent of low-cost 3D sensors like Microsoft Kinect, a whole
new range of possibilities were unlocked so that a significant progress has been
made in the field of object reconstruction. The use of 3D data with depth in-
formation for this purpose presents a lot of advantages with respect to only
using 2D color images: additional geometry data, no surface ambiguities and
invariance to illumination since most methods only make use of geometric in-
formation.

107

108 APPENDIX A. 3D OBJECT RECONSTRUCTION

The reconstruction problem can be divided into two parts: data acquisition
and surface registration and reconstruction. On the one hand, sensors must be
handled to obtain the partial views of the objects. On the other hand, the ac-
quired clouds must be registered to compute a mesh reconstruction. This pro-
cess implies a lot of secondary operations that have to deal with point clouds.

In this work we will present a typical 3D object reconstruction pipeline for
generating 3D meshes from a set of partial views. These views have been taken
using a turntable to change the point of view with respect to the object. We will
use OpenNI [85] together with the Point Cloud Library [49] to generate a set of
point clouds for each partial view. The Point Cloud Library provides efficient
ways for dealing with point clouds and implements a lot of useful operations
for 3D processing.

The appendix is structured as follows. Section A.2 explains the acquisition
problem and the approach taken to obtain point clouds using OpenNI/PCL.
Section A.3 describes the reconstruction process using PCL. In the end, we will
draw some conclusions about this problem and future improvements.

A.2 Acquisition

In order to capture the partial views of the object that we will be reconstructing,
we have used the Point Cloud Library [23] together with OpenNI [48] and its
grabber interface. Using this approach, a callback is registered for that interface
so each time it captures a frame, a PCL point cloud with color information
(XYZRGB) is generated and passed to the callback. This process is shown on
Figure A.1.

Using this grabber, we will capture a total of 64 views for each object. The
process or algorithm for capturing those views is the following one: 1) grab
a point cloud using the aforementioned interface, 2) make a step with the
turntable (a rotation of 5.265 ◦ is performed to capture the 64 different and
equally spaced points of view) and 3) wait for the turntable to stabilize. The
interface for communicating with the turntable and operating it is beyond the
scope of this work, in that sense, we omitted the code in Listing A.1.

A.3. RECONSTRUCTION 109

Listing A.1: Grabbing point clouds with PCL and OpenNI.

1 class OpenNIGrabber
2 {
3 public:
4

5 void run ()
6 {
7 pcl::Grabber* interface = new pcl::OpenNIGrabber();
8

9 boost::function<void
10 (const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr&)>
11 f = boost::bind (&SimpleOpenNIProcessor::cloud_cb_, this, _1);
12

13 boost::signals2::connection c = interface->registerCallback (f);
14

15 interface->start ();
16

17 //Turntable code and periodic captures...
18

19 interface->stop ();
20 }
21

22 private:
23

24 // [...]
25

26 void cloud_cb_ (const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr &c)
27 {
28 // Save point cloud in PCD format
29 pcl::io::savePCDFile("scan_" + cloudNumber + ".pcd", c, false);
30 }
31

32 };

Figure A.1 shows an example of point cloud of a partial view captured
using the OpenNI grabber and later exported to PCD format for easier visu-
alization with CloudCompare or Meshlab. Figures A.2 and A.3 show some of
the RGB images and depth maps captured for different partial views.

A.3 Reconstruction

Once the full set of partial views has been acquired we end up with 64 point
clouds (XYZRGB) stored in PCD format. The next stage is the actual recon-
struction pipeline in which all those clouds are read and merged to generate
the final reconstruction.

The outline of the reconstruction process is shown in Algorithm 3 where r
is the registered point cloud, C is the set of partial views, c0 is the first partial
view, T is the approximate transformation between c0 and the current view
ci, origin is the turntable center (constant across all views) and 5.625 is the
turntable step rotation.

110 APPENDIX A. 3D OBJECT RECONSTRUCTION

Figure A.1: Point cloud (XYZRGB) of a partial view of an object on the
turntable captured using the aforementioned grabber with a PrimeSense
Carmine device..

Figure A.2: RGB images of partial views (0, 16, 32 and 48).

As we can observe, the main process consists of the following steps: 1) pre-
process the partial view to segment the object, simplify the cloud, remove out-

A.3. RECONSTRUCTION 111

Figure A.3: Depth maps of partial views (0, 16, 32 and 48).

input : A set of 64 partial views C = {c0, c1, ..., cn}
output: A reconstructed mesh m

1 reconstructObject(C, m)
2 r = c0;
3 forall ci ∈ C do;
4 ci = preprocess(ci);
5 T.rotation = i · 5.625;
6 T.translation = (origin.x, origin.y, origin.z);
7 ci = transform(ci, T);
8 r = register(ci, r);
9 end

10 r = removeNoise(r);
11 r = downsample(r);
12 m = reconstructMesh(r);

Algorithm 3: General reconstruction process.

112 APPENDIX A. 3D OBJECT RECONSTRUCTION

liers and noise and even smooth it, 2) apply the approximate transformation to
the cloud using the known turntable displacement, 3) after that coarse align-
ment, apply a fine registration algorithm to refine the transformation. Once
all clouds have been aligned, optionally downsample the registered cloud to
simplify it and reduce the computational cost of the following phases, also
optionally remove outliers and noise. Finally, apply the mesh reconstruction
method to generate the model.

In this Section we will describe the aforementioned phases of the object re-
construction process. Subsection A.3.1 describes the preprocessing steps, Sub-
section A.3.2 explains the transformation and registration operations and fi-
nally A.3.3 covers the mesh reconstruction method.

A.3.1 Preprocessing

The main goal of the preprocessing phase is segmenting out the object and
reduce the noise levels of the cloud to be registered.

In order to segment the object, a combination of filters is applied: bounding
box filtering [86], plane segmentation filtering [87] and chroma key filtering.

To remove or reduce the noise levels of the cloud, another combination of
filters is applied: statistical outlier removal (SOR) [88], radial outlier removal
(ROR) [89], and euclidean cluster extraction (ECE) [90]. If the clouds are too
dense, they are usually downsampled applying a Voxel Grid (VG) [91] filter.

First, we perform a basic segmentation using a bounding box filter by ap-
plying three different PassThrough filters for each dimension. Since we know
that the objects will be placed in the center of the turntable we can approxi-
mately segment it out by defining a cube as a bounding box for that object.
Listing A.2 shows the implementation of this bounding box filtering using the
available Point Cloud Library PassThrough filters.

Listing A.2: Bounding box filtering using PassThrough.

1 pcl::PassThrough<pcl::PointXYZRGB> pass;
2

3 // passthrough depth (Z)
4 pass.setInputCloud(cloud);
5 pass.setKeepOrganized(true);
6 pass.setFilterFieldName("z");
7 pass.setFilterLimits(z_limit_min, z_limit_max);
8 pass.filter(*filtered_cloud_z);
9

10 // passthrough X
11 pass.setInputCloud(filtered_cloud_z);
12 pass.setFilterFieldName("x");

A.3. RECONSTRUCTION 113

13 pass.setFilterLimits(x_limit_min, x_limit_max);
14 pass.filter(*filtered_cloud_x);
15

16 // passthrough Y
17 pass.setInputCloud(filtered_cloud_x);
18 pass.setFilterFieldName("y");
19 pass.setFilterLimits(y_limit_min, y_limit_max);
20 pass.filter(*filtered_cloud_y);

We also perform a plane segmentation operation to filter out all those points
which can be fitted to a plane within a predefined distance. This step is nor-
mally optional because its aim is to remove the plane of the turntable which
remains on the cloud after the bounding box filtering. Usually, it is easier
and more accurate to perform a background subtraction operation or even a
chroma key one, providing that the color of the object is not similar to the
turntable’s one. In this sense, we only apply plane segmentation for objects
whose color could be filtered by chrome keying. Listing A.3 shows the imple-
mentation of a plane segmentation filter.

Listing A.3: Plane model segmentation

1 // Object for storing the plane model coefficients
2 pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
3 pcl::SACSegmentation<pcl::PointXYZRGB> segmentation;
4 segmentation.setInputCloud(filtered_cloud_y);
5 segmentation.setModelType(pcl::SACMODEL_PLANE);
6 segmentation.setMethodType(pcl::SAC_RANSAC);
7 segmentation.setDistanceThreshold(0.009);
8 segmentation.setMaxIterations(100);
9 pcl::PointIndices::Ptr inliers(new pcl::PointIndices);

10 segmentation.segment(*inliers, *coefficients);
11

12 // Extract the planar inliers from the input cloud
13 pcl::ExtractIndices<pcl::PointXYZRGB> extract;
14 extract.setInputCloud(filtered_cloud_y);
15 extract.setIndices(inliers);
16 extract.setNegative(true);
17 extract.setKeepOrganized(true);
18 extract.filter(*aux);
19 filtered_cloud_y = aux;

For those cases in which we can apply a simple chroma key filtering we use
the code shown in Listing A.4.

Listing A.4: Chroma key filtering

1 const float bad_point = std::numeric_limits<float>::quiet_NaN();
2 pcl::PointXYZRGB pbad_point;
3 pbad_point.x = pbad_point.y = pbad_point.z = pbad_point.r =
4 pbad_point.g = pbad_point.b = pbad_point.a = bad_point;
5

6 for (size_t i = 0;i != filtered_cloud_y->size();i++)
7 {
8 // Do not consider NaN points

114 APPENDIX A. 3D OBJECT RECONSTRUCTION

9 if (pcl::isFinite(filtered_cloud_y->points[i]))
10 {
11 // Do not consider bad points
12 if (filtered_cloud_y->points[i].y = 0.0f &&
13 filtered_cloud_y->points[i].z == 0.0f &&
14 filtered_cloud_y->points[i].x == 0) {
15 filtered_cloud_y->points[i] = pbad_point;
16 }
17 else {
18 uint8_t r = filtered_cloud_y->points[i].r;
19 uint8_t g = filtered_cloud_y->points[i].g;
20 uint8_t b = filtered_cloud_y->points[i].b;
21 // Determine the least intense channel
22 uint8_t min = (r < g) ? r : g;
23 min = (min < b) ? min : b;
24 // Determine the most intense channel
25 uint8_t max = (r > g) ? r : g;
26 max = (max > b) ? max : b;
27 // Check chroma key conditions
28 bool key = b != min &&
29 (b == max || max - b < maximumCutoff) &&
30 (max - min) > differenceThreshold;
31 // Segment out the point
32 if (key) {
33 filtered_cloud_y->points[i] = pbad_point;
34 }
35 }
36 }
37 }

This method removes the points in which blue is not the less important
channel and one of the following conditions is satisfied: either blue turns out
to be the most intense channel, or either the difference between the blue chan-
nel intensity and the most intense channel falls below a predefined threshold
(maximum cutoff). For removing that point, it is also necessary that the inten-
sity difference between the most and the least intense channels exceeds a pre-
defined threshold (difference threshold). Using both parameters (maximum
cutoff and difference threshold) we can control the segmentation process to
make it more or less sensitive to certain shades of blue thus achieving a seg-
mentation as perfect as possible.

Figure A.4 shows a point cloud of a partial view before and after the previ-
ously defined preprocessing steps.

Once the object has been segmented out of the partial view we applied
some noise removal filters. It is important to remark that depending on the
camera, the point clouds will have higher or lower noise levels. The clouds
shown in Figure A.4 were captured using a PrimeSense Carmine device and
noise is barely present. However, Figure A.8 shows a segmented point cloud
captured using a Kinect 2.0 device with high levels of noise (notice the trails in
the borders of the object).

For those cases in which noise is a problem, we first applied a Radius Outlier

A.3. RECONSTRUCTION 115

Figure A.4: Original point cloud of a partial view (top), segmented point cloud
after preprocessing (bottom).

Removal filter as shown in Listing A.5.

Listing A.5: Radius Outlier Removal filtering.

1 pcl::RadiusOutlierRemoval<pcl::PointXYZRGB> ror;
2 ror.setInputCloud(pSrcCloud);
3 ror.setRadiusSearch(pRadius);
4 ror.setMinNeighborsInRadius(pNeighbors);
5 ror.filter(*pDstCloud);

This filter removes all points in the input cloud which do not have at least

116 APPENDIX A. 3D OBJECT RECONSTRUCTION

a predefined number of neighbors within a certain radius. Figure A.5 helps to
visualize what this filter does. The parameter configuration depends on the
situation and nature of the noise so it is important to tune it properly in order
to remove the noise while preserving valuable information.

Figure A.5: RadiusOutlierRemoval filter. Using a radius d and only one neigh-
bor the yellow point will be filtered, with two neighbors required per neigh-
borhood both yellow and green points will be removed. (Figure reproduced
from [89]).

Sometimes, ROR filtering is not enough or it is not able to properly remove
the noise. In those cases, it is better to follow a statistical approach, namely
Statistical Outlier Removal (SOR) filter.

Listing A.6 shows the integration of the SOR filter into our pipeline using
the methods provided by the PCL.

Listing A.6: Statistical Outlier Removal filtering.

1 pcl::StatisticalOutlierRemoval<pcl::PointXYZRGB>sor;
2

3 sor.setInputCloud(pSrcCloud);
4 sor.setMeanK(pMeanK);
5 sor.setStddevMulThresh(pStdDev);
6

7 sor.filter(*pDstCloud);

This filter assumes that outliers can be removed by performing a statistical
analysis on each point’s neighborhood to discard those which do not meet a
certain criteria. The SOR filter is based on the computation of the point to
neighbors distance distribution in the input cloud. In this sense, the mean
distance from each point to all its neighbors is computed. The filter assumes
that the distance distribution is Gaussian with a predefined mean and standard
deviation. Following this principle, those points whose mean distances are
outside the interval defined by that deviation and mean are removed from the
cloud. Figure A.6 helps to visualize this process.

A.3. RECONSTRUCTION 117

Figure A.6: Effects of the statistical outlier removal filter, original cloud (left)
and filtered one (right). The plot shows the mean k-nearest neighbor distances
in a point neighborhood before and after applying SOR filter (Figure repro-
duced from [88]).

Once these filters are applied, it is possible that some point clusters are
generated if the cloud has dense outlier regions separated by sparse zones and
we apply an aggressive filtering (see Figure A.8).

For those cases, it is important to remove those outlier clusters. In order to
do that, we can assume that those cluster will be small and the big ones will
contain the object itself. In that sense, we can apply a Euclidean Cluster Extrac-
tion (ECE) operation and keep the k biggest clusters. It is important to remark
that there is a tradeoff between removing small clusters that may belong to the
object and removing those that are noise. Listing A.7 shows the integration of
that filter into our pipeline using PCL.

Listing A.7: Euclidean Cluster Extraction filter

1 pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree(
2 new pcl::search::KdTree<pcl::PointXYZRGB>);
3 tree->setInputCloud(pSrcCloud);
4

5 std::vector<pcl::PointIndices> clusterIndices;
6 pcl::EuclideanClusterExtraction<pcl::PointXYZRGB> ec;
7 ec.setClusterTolerance(pClusterTolerance);
8 ec.setMinClusterSize(pMinClusterSize);
9 ec.setMaxClusterSize(pMaxClusterSize);

10 ec.setSearchMethod(tree);
11 ec.setInputCloud(pSrcCloud);
12 ec.extract(clusterIndices);
13

14 pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudCluster(
15 new pcl::PointCloud<pcl::PointXYZRGB>);
16

17 for (int i = 0; i < pClusters && !clusterIndices.empty(); ++i)
18 {
19 int largestCluster = std::numeric_limits<int>::min();
20 std::vector<pcl::PointIndices>::const_iterator largestClusterIt =

118 APPENDIX A. 3D OBJECT RECONSTRUCTION

21 clusterIndices.begin();
22 int counter = 0;
23 for (auto it = clusterIndices.begin(); it != clusterIndices.end(); ++it)
24 {
25 if (it->indices.size() > largestCluster)
26 {
27 largestCluster = counter;
28 largestClusterIt = it;
29 }
30 counter++;
31 }
32

33 for (auto pit = clusterIndices[largestCluster].indices.begin();
34 pit != clusterIndices[largestCluster].indices.end(); pit++)
35 cloudCluster->points.push_back(pSrcCloud->points[*pit]);
36

37 cloudCluster->width = cloudCluster->points.size();
38 cloudCluster->height = 1;
39 cloudCluster->is_dense = true;
40

41 clusterIndices.erase(largestClusterIt);
42 }
43

44 pDstCloud->clear();
45 for (auto cit = cloudCluster->begin(); cit != cloudCluster->end(); ++cit)
46 pDstCloud->push_back(*cit);
47

48 pDstCloud->width = pDstCloud->points.size();
49 pDstCloud->height = 1;
50 pDstCloud->is_dense = true;

This method works like a flood fill algorithm. It chooses a point and initial-
izes a new cluster. Then it checks the distance from that point to its neighbors
and adds them to the cluster if the distance falls below a predefined threshold.
Next, the added neighbors are checked against their corresponding ones until
no more points can be added to that cluster. When this happens, a point which
is not in a cluster is selected and the process starts again until all points are part
of a cluster. Once the clusters are established, the k biggest ones are preserved.
Figure A.7 shows a set of clusters extracted from a point cloud using ECE.

After removing the noise, we might consider simplifying the point cloud to
reduce the computational cost of the following phases. This point cloud dec-
imation is often performed by using the Voxel Grid filter. This algorithm cre-
ates a 3D voxel grid over the input cloud data and approximates all the points
which are present in the same voxel with their centroid. Listing A.8 shows the
integration of the voxel grid filter, the size of the voxels is determined by the
leaf size.

Listing A.8: Voxel Grid filtering.

1 pcl::VoxelGrid<pcl::PointXYZRGB> vg;
2 vg.setInputCloud(pSrcCloud);
3 vg.setLeafSize(pLeafSize, pLeafSize, pLeafSize);
4 vg.filter(*pDstCloud);

A.3. RECONSTRUCTION 119

Figure A.7: Euclidean clusters extracted from a point cloud (Figure reproduced
from Pointclouds.org).

Figure A.8: Partial view with noise (top left), SOR/ROR filtered (top right),
euclidean clusters detected (bottom left), keeping the biggest cluster (bottom
right).

120 APPENDIX A. 3D OBJECT RECONSTRUCTION

A.3.2 Transformation and registration

After all the preprocessing steps, the partial view is ready to be aligned with
the model being built. In order to do that, first we will have to provide a
coarse alignment which consists of rotating the partial view the same degrees
the turntable has rotated from the starting position to capture that view.

To properly perform this rotation we need to translate all views to place the
segmented object centered at a common origin. This is achieved by moving the
origin of each view (the sensor) to the center of the turntable. For this purpose,
we placed a marker of the actual center on the turntable and captured an empty
view. Then we manually picked the marker point in the cloud and extracted
its coordinates, as shown in Figure A.9.

That point is used to translate all partial views and modify their origin us-
ing the transformation shown in Listing A.9.

Figure A.9: Turntable center picked from an empty view.

Listing A.9: Transformation to translate a point cloud.

1 Eigen::Affine3f transform = Eigen::Affine3f::Identity();
2 transform.translation() << pTranslation[0], pTranslation[1], pTranslation[2];
3 pcl::transformPointCloud(*pSrcCloud, *pDstCloud, transform);

After that, we need an axis to rotate the view. If we use no custom axis, the
object will not rotate around itself since the sensor’s Z-axis is not parallel to the
turntable plane normal. In this sense, we will obtain the normal of the plane of
the turntable to rotate the view around it. In order to do that, we fitted a plane
model to a section of the turntable and extracted its normal vector (see Figure
A.10).

A.3. RECONSTRUCTION 121

Figure A.10: Turntable section plane fitting.

That axis is used to rotate the current view using the transformation shown
in Listing A.10. This works as some sort of odometry (taking into account the
movement of the turntable, i.e., the first view will not be rotated, the second
view will be rotated 5.625 ◦, the third one 11.25 ◦ and so on) to provide a coarse
alignment.

Listing A.10: Transformation to rotate a point cloud.

1 float theta = pcl::deg2rad(pAngle);
2 Eigen::Affine3f transform = Eigen::Affine3f::Identity();
3 transform.translation() << 0.0, 0.0, 0.0;
4 transform.rotate(Eigen::AngleAxisf(theta, pAxis));
5 pcl::transformPointCloud(*pSrcCloud, *pDstCloud, transform);

Once the coarse transformation is applied, we refine it using the popular
Iterative Closest Point algorithm [73] [74]. The ICP is a widely used algorithm
for fine geometric alignment of 3D point clouds when a coarse initial estima-
tion of the pose is known. The algorithm starts with two point clouds and an
initial guess of their relative rigid transformation which is iteratively refined
by repeatedly generating pairs of corresponding points using a closeness cri-
teria and minimizing a distance error metric. Many variants of the algorithm
have been proposed whose goal is to increase the efficiency or precision of the
method, the seminal work of Rusinkiewicz and Levoy [75] surveys and carries
out a detailed comparison of the most relevant ones. We used a basic brute-
force implementation [92] shown in Listing A.11. Its results can be seen in
Figure A.11.

122 APPENDIX A. 3D OBJECT RECONSTRUCTION

Listing A.11: ICP alignment with PCL.

1 pcl::IterativeClosestPoint<pcl::PointXYZRGB, pcl::PointXYZRGB> icp;
2 icp.setInputSource(pSrcCloud);
3 icp.setInputTarget(pTgtCloud);
4 icp.setMaximumIterations(pMaxIterations);
5 icp.setTransformationEpsilon(pEpsilon);
6 icp.align(*pDstCloud);

Figure A.11: Fully registered point clouds of an object.

A.3.3 Mesh reconstruction

The last phase of the reconstruction process is the actual mesh generation using
the previously registered point cloud. There are many approaches to generate
a triangular mesh from a dense point cloud. Two of the most popular ones are
the Greedy Projection Triangulation (GPT)[93] [94] and the Poisson Mesh Recon-
struction (PMR) [95] [96]. In our case, we have chosen the latter one because of
its built-in smoothing component.

Listing A.12 shows the code needed to perform a Poisson Mesh Reconstruc-
tion, including extra required steps, given the previously registered point cloud.

Listing A.12: Poisson Mesh Reconstruction with PCL.

1 pcl::MovingLeastSquares<pcl::PointXYZRGB, pcl::PointXYZRGB> mls;
2 mls.setInputCloud(pSrcCloud);
3 mls.setSearchRadius(pMlsSearchRadius);
4 mls.setPolynomialFit(pMlsPolynomialFit);
5 mls.setPolynomialOrder(pMlsPolynomialOrder);
6 mls.setUpsamplingMethod(

A.3. RECONSTRUCTION 123

7 pcl::MovingLeastSquares<pcl::PointXYZRGB,
8 pcl::PointXYZRGB>::SAMPLE_LOCAL_PLANE);
9 mls.setUpsamplingRadius(pMlsUpsamplingRadius);

10 mls.setUpsamplingStepSize(pMlsUpsamplingStepSize);
11

12 pcl::PointCloud<pcl::PointXYZRGB>::Ptr smoothedCloud(
13 new pcl::PointCloud<pcl::PointXYZRGB>());
14

15 mls.process(*smoothedCloud);
16

17 pcl::NormalEstimation<pcl::PointXYZRGB, pcl::Normal> ne;
18

19 pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree(
20 new pcl::search::KdTree<pcl::PointXYZRGB>());
21

22 ne.setSearchMethod(tree);
23 ne.setInputCloud(smoothedCloud);
24 ne.setRadiusSearch(pNeRadiusSearch);
25

26 Eigen::Vector4f centroid;
27

28 pcl::compute3DCentroid(*smoothedCloud, centroid);
29 ne.setViewPoint(centroid[0], centroid[1], centroid[2]);
30

31 pcl::PointCloud<pcl::Normal>::Ptr cloudNormals(
32 new pcl::PointCloud<pcl::Normal>());
33 ne.compute(*cloudNormals);
34

35 for (auto cit = cloudNormals->begin(); cit != cloudNormals->end(); ++cit)
36 {
37 (*cit).normal_x *= -1;
38

39 (*cit).normal_y *= -1;
40

41 (*cit).normal_z *= -1;
42 }
43

44 pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr cloudSmoothedNormals(
45 new pcl::PointCloud<pcl::PointXYZRGBNormal>());
46

47 pcl::concatenateFields<pcl::PointXYZRGB, pcl::Normal,
48 pcl::PointXYZRGBNormal>(
49 *smoothedCloud, *cloudNormals, *cloudSmoothedNormals);
50

51 pcl::Poisson<pcl::PointXYZRGBNormal> poisson;
52

53 poisson.setDepth(pPoissonDepth);
54

55 poisson.setInputCloud(cloudSmoothedNormals);
56

57 poisson.reconstruct(pDstMesh);

As we can observe, first we apply a Moving Least Squares [97] surface re-
construction method to smooth and upsample the point cloud. This resam-
pling serves a double purpose: it removes noisy points and it also fills sparse
regions of the point cloud thus smoothing it. This algorithm attempts to recre-
ate the missing parts of the surface using analytical functions and polynomial
fitting. It also helps correcting the known double-wall (multiple surfaces) arti-
facts which are usually a product from registering multiple scans.

Before starting the PMR process, we need to compute the normals for each
point of the cloud. This step is not trivial since we are dealing with a com-

124 APPENDIX A. 3D OBJECT RECONSTRUCTION

plete point cloud with no point of view in particular so we do not know where
to orient the normals. A common approach is to compute the centroid of the
cloud, estimate the normals for each point using the centroid as the viewpoint
and reorient all of them to make sure they point outwards the object by negat-
ing their components. The most popular estimation method approximates the
normal to a point on the surface by estimating the normal of the tangent plane
to the surface which is also estimated by fitting a plane to the neighborhood of
the point whose normal is being estimated using least squares fitting. The esti-
mation of this normal is reduced to a Principal Component Analysis (PCA) of
the covariance matrix created using the neighbors of the point whose normal
is being estimated.

In the end, we provide the PMR method with the reconstructed point cloud
together with the normal information by concatenating both point clouds into
a single one (XYZRGBNormal). The Poisson Mesh Reconstruction algorithm
works by expressing the surface reconstruction problem as the solution to a
Poisson equation [98]. It uses an implicit solution to approximate the surface
and then extracts the isosurface using a variation of the Marching Cubes [99]
algorithm. An octree structure is applied to approximate the surface so various
levels of detail can be obtained by changing the depth of the octree.

Figure A.12 shows two meshes reconstructed using the previously defined
Poisson Mesh Reconstruction method with different depths for the octree. Both
meshes were reconstructed using the point clouds shown in Figure A.11. As
we can observe, this method is quite sensitive to noise so finding the right LOD
is critical to avoid bad surface reconstructions due to excessive detail. It is
important to remark that the clouds shown in Figure A.11 were not simplified
using a voxel grid filter.

A.4 Conclusions

In this appendix, we have presented a full pipeline for reconstructing object
meshes from a set of partial views taken using a turntable. An acquisition sys-
tem has been implemented using PCL/OpenNI and a typical reconstruction
process has also been developed with the Point Cloud Library. In the end, a 3D
mesh in PLY format is generated as a model representing the real-life object.

As we have seen, the system works remarkably well thanks to knowing
the turntable displacement and the effectiveness of noise reduction techniques.
However, it still has a few weaknesses or possible improvements.

A.4. CONCLUSIONS 125

Figure A.12: Reconstructed meshes with PMR and depth values for the Pois-
son algorithm of 5 (left) and 7 (right).

First, the system relies on the turntable as a controlled environment with a
fixed camera; in this sense, it is possible that some parts of an object can’t be
captured. One possible improvement consists of allowing the camera to freely
move around the object and estimate the transformation between two poses
using a typical descriptor matching pipeline. The estimated camera transfor-
mation is provided for a coarse alignment instead of the turntable rotation.
This would allow the system to capture more details of the objects and increase
the quality of the reconstruction.

We have seen that noise has a critical impact on the reconstruction so re-
ducing it is a fundamental step of the pipeline. We have applied numerous
techniques but there are many left to test. For instance, we could integrate a
bilateral filter.

In order to estimate the normals of a fully registered point cloud we used
a simple trick which consisted of flipping the normals outwards the centroid
of the object. This trick is not assured to work on all objects and geometries.
One possible upgrade is including some consistency propagation technique for
normal orientations [100].

It is important to remark that the final generated mesh lacks color informa-
tion. In this sense, a great upgrade could be including some kind of mapping
and interpolation techniques to color the mesh using the point cloud data.

At last, if the main concern for the application is the efficiency of the system,
most of the aforementioned steps are inherently parallel and perfectly suited
for multi-core or SIMT (CUDA/OpenCL/C++AMP) implementations which
can greatly reduce the execution time of the system and even achieve a real-
time pipeline.

126 APPENDIX A. 3D OBJECT RECONSTRUCTION

Bibliography

[1] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 27, no. 10, pp.
1615–1630, Oct 2005.

[2] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3d object recognition in clut-
tered scenes with local surface features: A survey,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 36, no. 11, pp. 2270–2287, Nov 2014.

[3] Z. Zhang, “Microsoft kinect sensor and its effect,” MultiMedia, IEEE, vol. 19, no. 2,
pp. 4–10, Feb 2012.

[4] NVIDIA. (2014) Technical Brief NVIDIA Jetson TK1 Development Kit Bringing
GPU-accelerated computing to Embedded Systems. http://developer.download.

nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf.

[5] J. Ponce, S. Lazebnik, F. Rothganger, and C. Schmid, “Toward true 3d object
recognition,” in Reconnaissance de Formes et Intelligence Artificielle, 2004.

[6] R. J. Campbell and P. J. Flynn, “A survey of free-form object representation and
recognition techniques,” Computer Vision and Image Understanding, vol. 81, no. 2,
pp. 166–210, 2001.

[7] A. Andreopoulos and J. K. Tsotsos, “50 years of object recognition: Directions
forward,” Computer Vision and Image Understanding, vol. 117, no. 8, pp. 827–891,
2013.

[8] U. Castellani, M. Cristani, S. Fantoni, and V. Murino, “Sparse points matching
by combining 3d mesh saliency with statistical descriptors,” in Computer Graphics
Forum, vol. 27, no. 2. Wiley Online Library, 2008, pp. 643–652.

[9] D. G. Lowe, “Object recognition from local scale-invariant features,” in Computer
vision, 1999. The proceedings of the seventh IEEE international conference on, vol. 2.
Ieee, 1999, pp. 1150–1157.

[10] G. Foresti, “Object recognition and tracking for remote video surveillance,” Cir-
cuits and Systems for Video Technology, IEEE Transactions on, vol. 9, no. 7, pp. 1045–
1062, Oct 1999.

127

http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf

128 BIBLIOGRAPHY

[11] J. Wu and Z. Xiao, “Video surveillance object recognition based on shape and
color features,” in Image and Signal Processing (CISP), 2010 3rd International
Congress on, vol. 1, Oct 2010, pp. 451–454.

[12] J. Stuckler and S. Behnke, “Integrating indoor mobility, object manipulation, and
intuitive interaction for domestic service tasks,” in Humanoid Robots, 2009. Hu-
manoids 2009. 9th IEEE-RAS International Conference on, Dec 2009, pp. 506–513.

[13] Y. Lei, M. Bennamoun, M. Hayat, and Y. Guo, “An efficient 3d face recognition
approach using local geometrical signatures,” Pattern Recognition, vol. 47, no. 2,
pp. 509 – 524, 2014. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0031320313003166

[14] F. Sukno, J. Waddington, and P. Whelan, “Comparing 3d descriptors for local
search of craniofacial landmarks,” in Advances in Visual Computing, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012, vol. 7432, pp.
92–103. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-33191-6_10

[15] A. Mian, M. Bennamoun, and R. Owens, “Three-dimensional model-based object
recognition and segmentation in cluttered scenes,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 28, no. 10, pp. 1584–1601, Oct 2006.

[16] A. S. Mian, M. Bennamoun, and R. A. Owens, “A novel representation and fea-
ture matching algorithm for automatic pairwise registration of range images,”
International Journal of Computer Vision, vol. 66, no. 1, pp. 19–40, 2006.

[17] S. Orts-Escolano, V. Morell, J. Garcia-Rodriguez, M. Cazorla, and R. Fisher,
“Real-time 3d semi-local surface patch extraction using gpgpu,” Journal
of Real-Time Image Processing, pp. 1–20, 2013. [Online]. Available: http:
//dx.doi.org/10.1007/s11554-013-0385-7

[18] Y. Hirano, C. Garcia, R. Sukthankar, and A. Hoogs, “Industry and object
recognition: Applications, applied research and challenges,” in Toward Category-
Level Object Recognition, ser. Lecture Notes in Computer Science, J. Ponce,
M. Hebert, C. Schmid, and A. Zisserman, Eds. Springer Berlin Heidelberg, 2006,
vol. 4170, pp. 49–64. [Online]. Available: http://dx.doi.org/10.1007/11957959_3

[19] P. J. Besl and R. C. Jain, “Three-dimensional object recognition,” ACM Computing
Surveys (CSUR), vol. 17, no. 1, pp. 75–145, 1985.

[20] J. Brady, N. Nandhakumar, and J. Aggarwal, “Recent progress in the recognition
of objects from range data,” in Pattern Recognition, 1988., 9th International Confer-
ence on, Nov 1988, pp. 85–92.

[21] F. Arman and J. Aggarwal, “Model-based object recognition in dense-range im-
ages—a review,” ACM Computing Surveys (CSUR), vol. 25, no. 1, pp. 5–43, 1993.

[22] G. Mamic and M. Bennamoun, “Representation and recognition of 3d free-form
objects,” Digital Signal Processing, vol. 12, no. 1, pp. 47–76, 2002.

http://www.sciencedirect.com/science/article/pii/S0031320313003166
http://www.sciencedirect.com/science/article/pii/S0031320313003166
http://dx.doi.org/10.1007/978-3-642-33191-6_10
http://dx.doi.org/10.1007/s11554-013-0385-7
http://dx.doi.org/10.1007/s11554-013-0385-7
http://dx.doi.org/10.1007/11957959_3

BIBLIOGRAPHY 129

[23] A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Potthast, B. Zeisl,
R. Rusu, S. Gedikli, and M. Vincze, “Tutorial: Point cloud library: Three-
dimensional object recognition and 6 dof pose estimation,” Robotics Automation
Magazine, IEEE, vol. 19, no. 3, pp. 80–91, Sept 2012.

[24] S. Orts Escolano, “A three-dimensional representation method for noisy point
clouds based on growing self-organizing maps accelerated on gpus,” 2014.

[25] A. Mian, M. Bennamoun, and R. Owens, “On the repeatability and quality
of keypoints for local feature-based 3d object retrieval from cluttered scenes,”
International Journal of Computer Vision, vol. 89, no. 2-3, pp. 348–361, 2010.
[Online]. Available: http://dx.doi.org/10.1007/s11263-009-0296-z

[26] F. Tombari, S. Salti, and L. Di Stefano, “Performance evaluation of 3d keypoint
detectors,” International Journal of Computer Vision, vol. 102, no. 1-3, pp. 198–220,
2013.

[27] A. Bronstein, M. Bronstein, and M. Ovsjanikov, “3d features, surface descriptors,
and object descriptors,” 2010.

[28] F. Tombari. (2014) Keypoints and features. http://www.pointclouds.org/assets/

uploads/cglibs13_features.pdf.

[29] A. Petrelli and L. Di Stefano, “On the repeatability of the local reference frame
for partial shape matching,” in Computer Vision (ICCV), 2011 IEEE International
Conference on, Nov 2011, pp. 2244–2251.

[30] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of histograms
for local surface description,” in Proceedings of the 11th European Conference
on Computer Vision Conference on Computer Vision: Part III, ser. ECCV’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 356–369. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1927006.1927035

[31] M. Levoy, J. Gerth, B. Curless, and K. Pull, “The stanford 3d scanning repository,”
URL http://www-graphics. stanford. edu/data/3dscanrep, 2005.

[32] A. Johnson, “Spin-images: A representation for 3-d surface matching,” Ph.D. dis-
sertation, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, August
1997.

[33] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Close-range scene segmen-
tation and reconstruction of 3d point cloud maps for mobile manipulation in do-
mestic environments,” in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on. IEEE, 2009, pp. 1–6.

[34] R. Rusu, N. Blodow, Z. Marton, and M. Beetz, “Aligning point cloud views using
persistent feature histograms,” in Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, Sept 2008, pp. 3384–3391.

http://dx.doi.org/10.1007/s11263-009-0296-z
http://www.pointclouds.org/assets/uploads/cglibs13_features.pdf
http://www.pointclouds.org/assets/uploads/cglibs13_features.pdf
http://dl.acm.org/citation.cfm?id=1927006.1927035

130 BIBLIOGRAPHY

[35] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik, “Recognizing objects
in range data using regional point descriptors,” in Computer Vision - ECCV
2004, ser. Lecture Notes in Computer Science, T. Pajdla and J. Matas, Eds.
Springer Berlin Heidelberg, 2004, vol. 3023, pp. 224–237. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24672-5_18

[36] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition us-
ing shape contexts,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 24, no. 4, pp. 509–522, Apr 2002.

[37] F. Tombari, S. Salti, and L. Di Stefano, “Unique shape context for 3d data
description,” in Proceedings of the ACM Workshop on 3D Object Retrieval, ser.
3DOR ’10. New York, NY, USA: ACM, 2010, pp. 57–62. [Online]. Available:
http://doi.acm.org/10.1145/1877808.1877821

[38] Y. Guo, F. Sohel, M. Bennamoun, M. Lu, and J. Wan, “Rotational projection statis-
tics for 3d local surface description and object recognition,” International journal
of computer vision, vol. 105, no. 1, pp. 63–86, 2013.

[39] Y. Guo, F. Sohel, M. Bennamoun, J. Wan, and M. Lu, “A novel local surface feature
for 3d object recognition under clutter and occlusion,” Information Sciences, vol.
293, pp. 196–213, 2015.

[40] M. Quigley, S. Batra, S. Gould, E. Klingbeil, Q. V. Le, A. Wellman, and A. Y. Ng,
“High-accuracy 3d sensing for mobile manipulation: Improving object detection
and door opening.” in ICRA, 2009, pp. 2816–2822.

[41] M. Cazorla, D. Viejo, and C. Pomares, “Study of the sr 4000 camera,” in XI Work-
shop de Agentes Físicos, Valencia, 2010.

[42] M. Imaging. (2010) Sr4000 data sheet. http://downloads.mesa-imaging.ch/dlm.php?

fname=pdf/SR4000_Data_Sheet.pdf.

[43] J. Garcia and Z. Zalevsky, “Range mapping using speckle decorrelation,” Oct. 7
2008, uS Patent 7,433,024.

[44] A. Shpunt, G. Medioni, D. Cohen, E. Sali, and R. Deitch, “Depth mapping based
on pattern matching and stereoscopic information,” Jul. 28 2010, uS Patent App.
12/844,864.

[45] Y. Arieli, B. Freedman, M. Machline, and A. Shpunt, “Depth mapping using pro-
jected patterns,” Apr. 3 2012, uS Patent 8,150,142.

[46] I. Bramão, A. Reis, K. M. Petersson, and L. Faísca, “The role of color
information on object recognition: A review and meta-analysis,” Acta
Psychologica, vol. 138, no. 1, pp. 244 – 253, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0001691811001338

http://dx.doi.org/10.1007/978-3-540-24672-5_18
http://doi.acm.org/10.1145/1877808.1877821
http://downloads.mesa-imaging.ch/dlm.php?fname=pdf/SR4000_Data_Sheet.pdf
http://downloads.mesa-imaging.ch/dlm.php?fname=pdf/SR4000_Data_Sheet.pdf
http://www.sciencedirect.com/science/article/pii/S0001691811001338

BIBLIOGRAPHY 131

[47] F. Tombari, S. Salti, and L. Di Stefano, “A combined texture-shape descriptor for
enhanced 3d feature matching,” in Image Processing (ICIP), 2011 18th IEEE Inter-
national Conference on, Sept 2011, pp. 809–812.

[48] Occipital. (2013) Openni programmer’s guide. http://com.occipital.openni.s3.

amazonaws.com/OpenNI_Programmers_Guide.pdf.

[49] R. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on, May 2011, pp. 1–4.

[50] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” Computational Science & Engineering, IEEE, vol. 5, no. 1,
pp. 46–55, 1998.

[51] C. Nvidia, “Compute unified device architecture programming guide,” 2007.

[52] NVIDIA. (2014) NVIDIA Jetson TK1 Documentation PM375 Module Spec-
ification. http://developer.download.nvidia.com/embedded/jetson/TK1/2014-03-

24/JetsonTK1_ModuleSpecification_PM375_V1.01.pdf.

[53] ——. (2014) NVIDIA Jetson TK1 Software Developer Kit Quick Start Guide.
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_TK1_QSG_

134sq_Jun14_rev7.pdf.

[54] ——. (2014) Tegra K1 Technical Reference Manual. https://developer.nvidia.com/

tegra-k1-technical-reference-manual.

[55] ——. (2012) NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110. http://www.nvidia.es/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf.

[56] ——. (2011) Variable SMP (4-PLUS-1) A Multi-Core CPU Architecture for
Low Power and High Performance. http://www.nvidia.com/content/PDF/tegra_

white_papers/Variable-SMP-A-Multi-Core-CPU-Architecture-for-Low-Power-and-

High-Performance.pdf.

[57] ——. (2011) The Benefits of Quad Core CPUs in Mobile Devices. http://www.

nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-0911a.pdf.

[58] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect depth data
for indoor mapping applications,” Sensors, vol. 12, no. 2, pp. 1437–1454, 2012.

[59] B. Freedman, A. Shpunt, M. Machline, and Y. Arieli, “Depth mapping using pro-
jected patterns,” Apr. 3 2012, uS Patent 8,150,142.

[60] D. L. Lau. (2013) The Science Behind Kinect. http://lau.engineering.uky.edu/2013/

11/27/the-science-behind-kinect/.

[61] T. Butkiewicz, “Low-cost coastal mapping using kinect v2 time-of-flight cam-
eras,” in Oceans - St. John’s, 2014, Sept 2014, pp. 1–9.

http://com.occipital.openni.s3.amazonaws.com/OpenNI_Programmers_Guide.pdf
http://com.occipital.openni.s3.amazonaws.com/OpenNI_Programmers_Guide.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/2014-03-24/JetsonTK1_ModuleSpecification_PM375_V1.01.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/2014-03-24/JetsonTK1_ModuleSpecification_PM375_V1.01.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_TK1_QSG_134sq_Jun14_rev7.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_TK1_QSG_134sq_Jun14_rev7.pdf
https://developer.nvidia.com/tegra-k1-technical-reference-manual
https://developer.nvidia.com/tegra-k1-technical-reference-manual
http://www.nvidia.es/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.es/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-Core-CPU-Architecture-for-Low-Power-and-High-Performance.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-Core-CPU-Architecture-for-Low-Power-and-High-Performance.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-Core-CPU-Architecture-for-Low-Power-and-High-Performance.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-0911a.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-0911a.pdf
http://lau.engineering.uky.edu/2013/11/27/the-science-behind-kinect/
http://lau.engineering.uky.edu/2013/11/27/the-science-behind-kinect/

132 BIBLIOGRAPHY

[62] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in
Computer Vision, 1998. Sixth International Conference on. IEEE, 1998, pp. 839–846.

[63] A. J. Trevor, S. Gedikli, R. B. Rusu, and H. I. Christensen, “Efficient organized
point cloud segmentation with connected components,” Semantic Perception Map-
ping and Exploration (SPME), 2013.

[64] R. Szeliski, Computer vision: algorithms and applications. Springer Science & Busi-
ness Media, 2010.

[65] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmen-
tation,” International Journal of Computer Vision, vol. 59, no. 2, pp. 167–181, 2004.

[66] J. L. Bentley, “Multidimensional binary search trees used for associative search-
ing,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[67] Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3d object recogni-
tion,” in Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on, Sept 2009, pp. 689–696.

[68] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-
tional journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[69] A. Flint, A. R. Dick, and A. Van Den Hengel, “Thrift: Local 3d structure recogni-
tion.” in DICTA, vol. 7, 2007, pp. 182–188.

[70] Z. C. Marton, R. B. Rusu, and M. Beetz, “On Fast Surface Reconstruction Methods
for Large and Noisy Datasets,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), May 12-17 2009.

[71] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high dimen-
sional data,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 36,
2014.

[72] H. Chen and B. Bhanu, “3d free-form object recognition in range images using
local surface patches,” in Pattern Recognition, 2004. ICPR 2004. Proceedings of the
17th International Conference on, vol. 3, Aug 2004, pp. 136–139 Vol.3.

[73] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Robotics-DL
tentative. International Society for Optics and Photonics, 1992, pp. 586–606.

[74] Y. Chen and G. Medioni, “Object modeling by registration of multiple range im-
ages,” in Robotics and Automation, 1991. Proceedings., 1991 IEEE International Con-
ference on. IEEE, 1991, pp. 2724–2729.

[75] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,” in 3-D
Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on.
IEEE, 2001, pp. 145–152.

[76] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive hash-
ing scheme based on p-stable distributions,” in Proceedings of the twentieth annual
symposium on Computational geometry. ACM, 2004, pp. 253–262.

BIBLIOGRAPHY 133

[77] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces,” in VLDB,
vol. 98, 1998, pp. 194–205.

[78] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high dimensions via
hashing,” in VLDB, vol. 99, 1999, pp. 518–529.

[79] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high dimen-
sional data,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 36,
2014.

[80] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image descriptor
matching,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on. IEEE, 2008, pp. 1–8.

[81] N. Wilt, The cuda handbook: A comprehensive guide to gpu programming. Pearson
Education, 2013.

[82] D. B. Kirk and W. H. Wen-mei, Programming massively parallel processors: a hands-
on approach. Newnes, 2012.

[83] PCL. (2013) The openni grabber framework in pcl. http://pointclouds.org/

documentation/tutorials/openni_grabber.php.

[84] NVIDIA. (2009) Advanced cuda webinar: Memory optimizations.
http://on-demand.gputechconf.com/gtc-express/2011/presentations/NVIDIA_GPU_

Computing_Webinars_CUDA_Memory_Optimization.pdf.

[85] O. Consortium, “Openni, the standard framework for 3d sensing.”

[86] PCL. (2013) Filtering a pointcloud using a passthrough filter. http://pointclouds.

org/documentation/tutorials/passthrough.php.

[87] ——. (2013) Plane model segmentation. http://pointclouds.org/documentation/

tutorials/planar_segmentation.php.

[88] ——. (2013) Removing outliers using a statisticaloutlierremoval filter. http://

pointclouds.org/documentation/tutorials/statistical_outlier.php.

[89] ——. (2013) Removing outliers using a conditional or radiusoutlier removal. http:

//pointclouds.org/documentation/tutorials/remove_outliers.php.

[90] ——. (2013) Euclidean cluster extraction. http://www.pointclouds.org/

documentation/tutorials/cluster_extraction.php.

[91] ——. (2013) Downsampling a pointcloud using a voxelgrid filter. http://

pointclouds.org/documentation/tutorials/voxel_grid.php.

[92] ——. (2013) How to use iterative closest point. http://pointclouds.org/

documentation/tutorials/iterative_closest_point.php.

http://pointclouds.org/documentation/tutorials/openni_grabber.php
http://pointclouds.org/documentation/tutorials/openni_grabber.php
http://on-demand.gputechconf.com/gtc-express/2011/presentations/NVIDIA_GPU_Computing_Webinars_CUDA_Memory_Optimization.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/NVIDIA_GPU_Computing_Webinars_CUDA_Memory_Optimization.pdf
http://pointclouds.org/documentation/tutorials/passthrough.php
http://pointclouds.org/documentation/tutorials/passthrough.php
http://pointclouds.org/documentation/tutorials/planar_segmentation.php
http://pointclouds.org/documentation/tutorials/planar_segmentation.php
http://pointclouds.org/documentation/tutorials/statistical_outlier.php
http://pointclouds.org/documentation/tutorials/statistical_outlier.php
http://pointclouds.org/documentation/tutorials/remove_outliers.php
http://pointclouds.org/documentation/tutorials/remove_outliers.php
http://www.pointclouds.org/documentation/tutorials/cluster_extraction.php
http://www.pointclouds.org/documentation/tutorials/cluster_extraction.php
http://pointclouds.org/documentation/tutorials/voxel_grid.php
http://pointclouds.org/documentation/tutorials/voxel_grid.php
http://pointclouds.org/documentation/tutorials/iterative_closest_point.php
http://pointclouds.org/documentation/tutorials/iterative_closest_point.php

134 BIBLIOGRAPHY

[93] Z. C. Marton, R. B. Rusu, and M. Beetz, “On Fast Surface Reconstruction Methods
for Large and Noisy Datasets,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), Kobe, Japan, May 12-17 2009.

[94] PCL. (2011) Fast triangulation of unordered point clouds. http://pointclouds.org/

documentation/tutorials/greedy_projection.php.

[95] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in Pro-
ceedings of the fourth Eurographics symposium on Geometry processing, vol. 7, 2006.

[96] V. Rabaud. (2011) Surface reconstruction. http://www.pointclouds.org/assets/files/

presentations/ICCV2011-surface.pdf.

[97] PCL. (2011) Smoothing and normal estimation based on polynomial reconstruc-
tion. http://pointclouds.org/documentation/tutorials/resampling.php.

[98] J. H. P. Ono, A. C. Sementille, M. A. C. Caldeira, and J. F. Marar, “Poisson surface
reconstruction with local mesh simplification.”

[99] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface
construction algorithm,” in ACM siggraph computer graphics, vol. 21, no. 4. ACM,
1987, pp. 163–169.

[100] S. König, S. Gumhold, and T. Dresden, “Consistent propagation of normal orien-
tations in point clouds,” 2009.

http://pointclouds.org/documentation/tutorials/greedy_projection.php
http://pointclouds.org/documentation/tutorials/greedy_projection.php
http://www.pointclouds.org/assets/files/presentations/ICCV2011-surface.pdf
http://www.pointclouds.org/assets/files/presentations/ICCV2011-surface.pdf
http://pointclouds.org/documentation/tutorials/resampling.php

	Introduction
	Outline
	Motivation
	Related works
	3D object recognition pipeline
	Keypoint detection
	Local surface feature description
	Surface matching

	3D local feature descriptors
	Spin Images (SI)
	Fast Point Feature Histogram (FPFH)
	3D Shape Context (3DSC)
	Unique Shape Context (USC)
	3D Tensor (Tensor)
	Signature of Histograms of Orientations (SHOT)
	Rotational Projection Statistics (RoPS)
	Tri-Spin-Image (TriSI)

	Real-time object recognition with low-cost sensors
	Fusion of photometric and geometric information

	Proposal
	Goals
	Structure

	Methodology
	Introduction
	Technologies
	Software
	OpenNI
	Point Cloud Library
	OpenMP
	NVIDIA CUDA

	Hardware
	Jetson TK1
	Depth sensors

	Experimentation
	Measuring performance
	Test systems

	A 3D object recognition pipeline
	Introduction
	3D object recognition pipeline on CPU
	Preprocessing
	Bilateral filtering
	Normal estimation
	Plane segmentation
	Resolution computation
	k-d tree generation

	Keypoint Detection
	Uniform Sampling
	Intrinsic Shape Signatures
	Scale Invariant Feature Transform

	Descriptor Extraction
	FPFH
	SI
	3DSC
	USC
	SHOT
	CSHOT
	RoPS

	Feature Matching
	Correspondence Grouping
	Pose Estimation and Alignment
	Hypothesis Verification
	Offline training

	Descriptors and pipeline performance study
	Model reconstruction
	Evaluation scenes
	Performance study methodology
	Results
	Precision
	Efficiency

	Discussion

	Jetson TK1 sequential experimentation
	Results
	Discussion

	CPU optimizations
	High-dimensionality optimized k-d tree
	Multi-core acceleration
	Organized normal estimation
	Bounding box clipping

	GPU optimizations
	Cloud projection
	Normal estimation
	Bilateral filter
	Cloud resolution
	Results

	Conclusions
	Conclusions
	Highlights
	Future work

	Appendix 3D Object Reconstruction
	Introduction
	Acquisition
	Reconstruction
	Preprocessing
	Transformation and registration
	Mesh reconstruction

	Conclusions

	Bibliography

