1	Effects of seasonal closures in a multi-specific fishery
2	
3	Mohamed Samy-Kamal ^a *, Aitor Forcada ^{ab} and Jose Luis Sánchez Lizaso ^{ac} .
4	
5	^a * Corresponding Author: Tel: +34 965 903 400 Ext. 2916; E-mail: mohamedsamy@ua.es
6	^b E-mail: <u>forcada@ua.es</u>
7	^c E-mail: <u>jl.sanchez@ua.es</u>
8	
9	^a Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, PO Box 99, Edificio
10	Ciencias V, Campus de San Vicente del Raspeig, E-03080 Alicante, Spain.
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

- 27 Abstract
- 28

29 In input-controlled multi-specific fisheries, seasonal closure has little biological rationale as a 30 management measure, because it is difficult to adjust such closure for many target species and, in most 31 cases, they are adopted for economic purposes. We aimed to determine effects of closure in biologic and 32 economic terms, using 10-year landing data from two representative trawling ports of the Western 33 Mediterranean: Dénia and La Vila Joiosa. Analysis of Variance (ANOVA) was used to detect significant differences, before and after the closure, in standardized catch per unit effort (CPUE) at different seasons 34 35 and sale prices at home/closed and neighbour/open ports. ANOVAs showed significantly higher CPUE 36 after the closure for total landings and *Mullus* spp. of the Red mullet métier, *M. merluccius* CPUE (in two 37 years) and the total landings of the Norway lobster métier. On the contrary, significant lower values were 38 observed after the closure for total CPUE (in early summer) and A. antennatus of Red shrimp métier. 39 Similar CPUE was observed at all levels when the closure took place in late summer. In economic terms, 40 market prices of target species have decreased or shown no changes after the closure at home/closed and 41 neighbouring/open ports. The only exception was the significant increase of the price for A. antennatus in 42 Dénia during the closure in La Vila Joiosa. Depending on its timing, the closure would highlight some 43 positive biological effects on some target species. However, closure leads to an unavoidable reduction in 44 most of target species prices. An alternative management measure that is based on effort reduction in 45 input-controlled multi-specific fisheries could ban one day per week when market prices of target species 46 are lower.

47

48 Key words: Catch per unit effort (CPUE), Effort reduction, Evaluation of closures, Ex-vessel price,
49 fisheries management, management measures, and trawl fishery.

- 50
- 51
- 52

53 1 Introduction

54

A large number of fish stocks are overexploited in Mediterranean multi-specific fisheries, and reductions 55 56 of fishing mortality on these stocks are often recommended (FAO, 2011). Fishing mortality is normally reduced through effort reductions, which can mainly be done by decreasing the number of vessels or the 57 58 fishing days. The adoption of closed fishing seasons is one of the simplest measures used in the 59 management of fisheries. Closure means a complete cessation of fishing activity for a certain period, which results in a reduction of annual effort (Lleonart and Franquesa, 1999). This management strategy is 60 mainly based on effort control which reduces fishing intensity and protects target stock from mortality at 61 62 a specific stage of the life history, i.e. when a species aggregates in an area or in a specific season to spawn (Horwood et al., 1998; Dinmore et al., 2003). This approach also can help reproductive success 63 64 and support recruitment (Arendse et al., 2007). However, it is well-known that in multi-species fisheries, 65 such as the Mediterranean Sea, there are many target species with different recruitment and reproduction periods. Consequently, a particular period may help the recruitment or the reproduction of certain species 66 67 and not others (Lleonart and Franquesa 1999). Therefore, in Mediterranean multi-specific fisheries, the 68 adoption of closure, in some cases, is based on economic purposes in agreement with fishermen (Lleonart 69 and Franquesa, 1999).

70

71 From an economic perspective, a temporary/seasonal closure may have short-term benefits to fishermen: 72 (i) the reduction of operating costs; (ii) financial compensation arising from the recovery of stocks where 73 fishing has ceased; and (iii) compensation subsidies (if the administration funds the closure) (Lleonart and Franquesa, 1999). However, ceasing the fleet for long periods (e.g. monthly closure) results in serious 74 75 logistical and economic problems, namely: (i) fishermen unemployment during the closure period; (ii) 76 "border effect" the result of imbalances between the fleet activity belonging to adjacent ports without 77 closure (Lleonart and Franquesa, 1999); (iii) the market for some luxury species becoming devoid of highly appreciated local products (Guillen and Maynou, 2014); (iv) imbalances in market price due to the 78

irregular supply of fish to the market (Guerra-Sierra and Sánchez-Lizaso, 1998); and (v) rise in
administration cost in the form of state subsidies.

81

82 Closure in Mediterranean multi-specific fisheries have a little biological rationale because it is very 83 difficult to adjust the closure to reproductive periods of many target species (Table 1) (Lleonart and Franquesa, 1999); also it generates some logistic problems (Guerra-Sierra and Sánchez-Lizaso, 1998; 84 85 Lleonart and Franquesa, 1999; Guillen and Maynou, 2014). The closures are not intended to protect 86 spawning stock at a vulnerable point in their life cycle, thereby enhancing the probability of sustaining recruitment; rather, they are adapted generally for economic purposes and reducing effort intensity. 87 88 Closures can be justified in multi-specific fisheries if it results in substantial biological or economic 89 benefits, other than effort reduction. These benefits can be seen by increases in landings (e.g. in kg or in 90 first sale price) that compensate some of the previously mentioned problems. Otherwise, effort reduction 91 can be achieved by adopting other less-problematic management measures rather than closure, i.e. 92 reduction of fishing days or hours.

93

94 Temporary/seasonal closures are widely studied in many fisheries throughout the world (e.g. Ye et al., 95 1998; Pipitone et al., 2000; Arendse et al., 2007; Shih et al., 2009). For instance, in the Gulf of 96 Castellammare (NW Sicily, Mediterranean Sea), Pipitone et al. (2000) addressed that temporary closure 97 based on year-round trawling bans, may prove useful especially for multispecies and multigear artisanal 98 fisheries. Studies in the Western Mediterranean are limited to ecological effect on epibenthic communities (Demestre et al., 2008) and on catch composition in the Catalan Sea (Sánchez et al., 2007). In the 99 100 Adriatic and the Catalan Seas, Demestre et al. (2008) reported a decrease of epibenthic faunal abundance 101 with the resumption of fishing activity after the closure at both fishing grounds. Further in both Seas, the 102 species composition of both the retained and discarded fractions was analysed by Sánchez et al. (2007), 103 where in both fishing grounds the retained fraction was slightly higher in the high fishing intensity periods than in the low intensity ones. Thereby the effectiveness of specific temporary/seasonal closures 104

105 as the most applied management measure for multi-specific fisheries should be rigorously evaluated in 106 both biological and economic terms using long-term landings data. In addition, there are many target 107 species with different recruitment and reproduction periods; thus the timing of the closure should be taken 108 into account as suitable timing may or may not benefit particular species.

109

The aim of this work was to determine the effect of seasonal closure in biological (total landings and landings of target species) and economic (ex-vessel prices "first sale price" of target species) terms, in a commercial Spanish trawling fishery. The data were derived from two representative fishing ports (Dénia and La Vila Joiosa) in the Western Mediterranean.

114

115 2 Material and Methods

116

```
117 2.1. Study area
```

118

119 This study was conducted in two ports, Dénia and La Vila Joiosa, located in the Southwestern 120 Mediterranean Sea off the coast of Spain (Fig. 1). Along the gulf of Alicante, there are 12 fishing ports 121 that have traditionally been important fishing activity locations. According to the number of trawlers, 122 these two ports represent about 41% of the total trawlers operating on the Alicante coast (BOE, 2013). 123 They can be considered quite representative of this area, given the similarity of the characteristics of the 124 trawlers, and also have features similar to those operating in other areas of the Western Mediterranean (Samy-Kamal et al., 2014). The Mediterranean trawl fishery in Spain is an input-controlled fishery, where 125 126 effort is controlled by limiting the time at sea: fishing is permitted for 12 hours/day from Monday to 127 Friday, stopping the fishing activity completely on weekends (Maynou et al., 2006). The fishing activity 128 is ceased normally for one month per year as seasonal closures, alternating the North ports (e.g. Dénia) 129 with the south ports (e.g. La Vila Joiosa) to avoid the closure of the whole gulf at once (Table 2). The species Mullus spp. (Linnaeus, 1758), Merluccius merluccius (Linnaeus, 1758), Nephrops norvegicus 130

(Linnaeus, 1758) and *Aristeus antennatus* (Risso, 1816) are the most targeted by fishermen and accounted
for almost 60% of the total income and 24% of the total weight in the fishery (Samy-Kamal *et al.*, 2014;
2015a). In regards to stocks, in general, the Mediterranean and Black Sea had 33% of assessed stocks
fully exploited, while the great bulk (50%) overexploited (FAO, 2011). Almost all demersal fish and
crustaceans stocks assessed were classified as overexploited including the four target species studied
herein (FAO, 2011).

137

138 **2.2. Data collection**

139

Two different data sets were used, one for each port. Data records of daily auctions were obtained from 140 the fishing guild of each port for 10 years (2002 to 2011). For each fishing day, data on species landing 141 142 weight (kg) and its first sale value (€) were available by vessel. Sale value (revenue) is the result of 143 quantity landed (kg) and ex-vessel fish price (price obtained by fishers per kg of landed fish). The sale value (€) of each target species was divided by its landings (kg) to calculate the first sale price per kg (ex-144 vessel fish price). Vessels with sporadic landings events (less than 3 years, and less than 3 months/year) 145 146 within the ports were excluded from the analysis, considering only those vessels registered in the studied 147 ports (home port) to avoid possible biases in the data. Most of the included vessels have had activity 148 throughout the considered period. The total number of collected samples (vessel/day) was 102187 fishing 149 days. Technical characteristics of vessels within the analysis were obtained from the Census of Fleet Operations of the General Secretariat of Maritime Fisheries of Spain (BOE, 2013). Over the 10 years 150 studied, a total of 93 different fishing vessels were listed in the official fleet register of Dénia and La Vila 151 Joiosa (34 and 59 vessels respectively). The bulk of the fleet is composed of vessels up to 23-25 m length, 152 153 40-80 GT, 40-60 GRT and 200-400 registered HP (Samy-Kamal et al., 2014).

154

155 2.3. Data standardization

157 For multi-specific fisheries, a preliminary analysis of the fishing tactics in the fishery is essential to clearly 158 determine the real effort directed at the species under study (Maynou et al., 2003). Four principal métiers, 159 Red mullet, European hake, Norway lobster and Red shrimp, were identified based on catch profiles and 160 the main target species, using the multivariate analysis: cluster, nMDS and SIMPER (Samy-Kamal et al., 161 2014; 2015). Catch rates were standardized to separate that large percentage of the variability of data not directly attributable to variations in abundance. To standardize the catch per unit effort (CPUE), 162 163 generalized linear models (GLM) were used (Maynou et al., 2003; Maunder and Punt, 2004; Murawski et al., 2005). A minimum threshold of effort by vessel of 100 fishing days per year was considered; also, a 164 selection of vessels operating in the fishery for more than 4 years was carried out with the intention of 165 166 standardizing CPUE data from vessels that would be representative of the fishery. Once the selection of representative vessels was undertaken, a data matrix by métier was constructed with the variables 167 168 required for analysis. The initial set of explanatory variables considered was: temporal variables (Year 169 and *Month*) to capture temporal variations; technical variables (vessel's total length "TL" and gross tonnage "GT") to capture differences between vessel characteristics; and the "individual Vessel" was also 170 171 used as an alternative in case if technical factors were not significant. Regarding the "individual Vessel" 172 factor in the analysis of Mediterranean fisheries CPUE, various authors have used vessel factor, grouped 173 into categories according to their technical characteristics (Goñi et al., 1999), while others have used the "individual Vessel" factor (Maynou et al., 2003; Sbrana et al., 2003). In the Mediterranean small and 174 175 medium-scale fisheries, the experience and skills of the fishermen determine and influence the result of fishing operations. This fact justifies that it is more appropriate to include the factor "individual Vessel" in 176 the models separately, rather than grouped into categories (Maunder and Punt, 2004). The "individual 177 Vessel" factor includes other factors that are not directly related to the technical characteristics of the 178 179 vessels, but that may influence catch rates (Maynou et al., 2003). The initial model applied contains all 180 factors, considering Year, Month and Vessel as factor, while TL and GT as variables: CPUE ~ Year + 181 Month + TL + GT + Vessel

The GLM was conducted on the total CPUE (kg \cdot vessel⁻¹ \cdot day⁻¹) as well as the CPUE of each target 183 species (Mullus spp., M. merluccius, N. norvegicus and A. antennatus) in their respective métier. When 184 185 the data was asymmetric, log transformation was made to correct the extreme data and the constant K was 186 added to the catch rate to account for zero observation, where: K is 10% of the mean CPUE. For each 187 case, i.e. total CPUE and by each target species, the best model were fitted with a stepwise selection procedure by exact Akaike Information Criterion (AIC; Akaike, 1974), and factors that were not 188 significant were eliminated from the model. The AIC determines between adding or excluding each 189 variable, creating a balance between the variability explained by each factor and the degrees of freedom 190 introduced in the model (Akaike, 1974). After the models were fitted, the significance of each factor was 191 analysed using F-values. Finally, we derived calibration coefficients by back-transforming the parameter 192 estimates (Quinn and Deriso, 1999) and transformed CPUE data by dividing the raw CPUE by the 193 194 appropriate coefficient.

195

196 2.4. Analysis of Variance

197

198 To analyse the biological and economic effect of closure at the home/closed port, data of five years, 199 where the closure occurred in early and late summer, were selected for the analysis (Table 2), in which 200 two weeks before and two weeks after the closure were used. For the economic effect at the 201 neighbour/open port, two weeks before, two weeks during and two weeks after the closure data were compared. Analysis of Variance (ANOVA) was used to test for significant differences in total 202 standardized CPUE (kg · vessel⁻¹ · day⁻¹) and standardized CPUE of target species by métier (biological 203 effect), and first sale price of target species (euro \cdot kg⁻¹) at home and neighbour/open port (economic 204 205 effect) (Underwood, 1997). The experimental design for the biological analysis consisted of three factors: 206 Closure (fixed); Season (fixed and orthogonal); and Year (random and orthogonal). The same 207 experimental design was used for the economic analysis, replacing the factor Season by the factor Port. An even numbers of samples were randomly selected to maintain balanced data within each level of the 208

209 factors considered in the experimental design. However, métiers are known to exhibit seasonality, in 210 many occasions "disappearing" in some years (during the studied two weeks before and after the closure). 211 Therefore, levels number of factor *Year* and minimum samples used to balance the model varied (Table 212 3). The temporal factor Year was considered as orthogonal to separate the inter-annual variations from the effect of the closure. Factor Season was used to separate the effect of season from closure, while factor 213 214 Port accounted for the relation between both ports and first sale price of target species. When the 215 ANOVA F-test was significant, post hoc analyses were conducted using Student-Newman-Keuls (SNK) multiple comparisons (Underwood, 1981). Before ANOVA analysis, Cochran's test was used to test for 216 homogeneity of variance (Cochran, 1951). When significant heterogeneity was found, the data were 217 transformed by $\sqrt{(x + 1)}$ or $\ln(x + 1)$. When transformations did not remove heterogeneity, analyses were 218 219 performed on the untransformed data, with the F-test α -value set at 0.01 (Table 5 and 6), since ANOVA is 220 more restricted to departures from this assumption, especially when the design is balanced and contains a 221 large number of samples/treatments (Underwood, 1997). All analysis (ANOVA and GLM) were conducted by R statistical computing software (R Development Core Team, 2010) and the R's package 222 223 GAD (Sandrini-Neto and Camargo, 2011). 224

225 **3 Results**

226

227 3.1. Data standardization

228

The GLMs were able to separate the percentage of data variability that do not account for abundance. The variability explained by the model were between 27.51% and 55.20% for total CPUE and target species CPUE of Red mullet, European hake and Norway lobster métiers (Table 4). The factor *Vessel* contributed to separate the highest percentage of deviance in CPUE in most cases (e.g. 38.30% for *M. merluccius* CPUE). In addition, factors *Month* and *Year* also were highly significant in most cases (e.g. 15% for Norway lobster CPUE), which clearly captured the temporal variability in the catchability of the target species. In contrast, the explained variance in Red shrimp métier was about 23 to 33% (Table 4). This suggests that factors other than the used variables cause most of the variability within the CPUE data. In this métier, technical factors as well as *Vessel* account for the most (i.e. 31% for the total CPUE) of the explained variability. The models within the last 5 AIC values of the best model, in each case, are reported in Appendix 1. Also the resulting coeffecients used for standardization are reported in Appendix 2 and 3.

241

242 **3.2. Biological effect**

243

In general, trends in CPUEs were higher after the closure, except for the Red shrimp métier. For total landings and *Mullus* spp. of Red mullet métier, significant higher CPUEs were observed after the closure in both seasons, early and late summer (Fig. 2a and 2b) (Table 5).

247

Slightly increasing trends of CPUEs were observed after the closure in total landings and *M. merluccius* of European hake métier, in both seasons (Fig. 2c and 2d). For total landings, significant inter-annual variations were detected, while no effects were observed for the closure (Table 6). *M. merluccius* CPUE showed significant two-way interactions between *Closure* and *Year*, as well as between *Season* and *Year* (Table 6). In SNK comparisons, significant higher CPUE after the closure were detected in 2006 and 2007.

254

For Norway lobster métier, clear increasing trends were observed after the closure at both total and target species levels (Fig. 2e and 2f), but this difference was only significant for total landings (Table 6).

257

On the contrary, decreasing trends of CPUEs in Red shrimp métier were observed after the closure mainly in early summer (Fig. 2g and 2h). At species level, *A. antennatus* CPUEs significantly decreased after the closure in both seasons (Table 6). For the total landings the two-way interaction between *Closure* and Season was significant (Table 6). In SNK comparisons, significant lower CPUEs were obtained after the
 closure in early summer, while CPUEs in late summer were similar before and after the closure.

263

264 **3.3. Economic effect**

265

266 For the first sale price of *Mullus* spp. at the home/closed port, a slight decrease was observed in Dénia in 267 contrast to a slight increase in La Vila Joiosa (Fig. 3a). In ANOVAs, the two-way interaction of Closure 268 and Port was significant (Table 5). In SNK comparisons, price decreased significantly after the closure in 269 Dénia, while no differences were detected in La Vila Joiosa. At neighbour/open port, a mild decreasing 270 trend was observed by the closure at both ports (Fig. 3b). In ANOVAs, the three-way interaction was significant (Table 5), where the price in La Vila Joiosa was significantly higher before the closure (in 271 272 Dénia) than during and after the closure in the 3 years studied (Fig. 3b). In Dénia, the same differences 273 were detected but only in 2010.

274

For *M. merluccius*, home/closed port prices showed a small reduction after the closure in Dénia and similar prices in La Vila Joiosa (Fig. 3c). ANOVAs indicated that the interaction between *Closure* and *Year* was significant (Table 6), showing higher price before, as opposed to after, the closure only in 2006. Inter-annual variation was detected as the interaction between *Port* and *Year* was also significant. At neighbour/open port, slight increase of prices was observed in Dénia during the closure in La Vila Joiosa and vice versa (Fig. 3d), although ANOVA did not show any significant differences (Table 6).

281

For *N. norvegicus*, at home/closed port, similar mean prices were observed in Dénia before and after the closure, in contrast to a slight decrease in La Vila Joiosa (Fig. 3e). In ANOVAs, the three-way interaction was significant (Table 6). Mean prices were significantly higher in Dénia before the closure only in 2007 and 2010, while in La Vila Joiosa, such differences were not significant (Fig. 3e). At neighbour/open port, higher mean price in Dénia was observed during the closure in La Vila Joiosa (Fig. 3f). The opposite was evident in La Vila Joiosa, as prices decreased during the closure in Dénia. No effect was detected inANOVA for closure or port, while inter-annual significant differences were present (Table 6).

289

290 Finally for A. antennatus, at home/closed port, a clear price reduction was observed in Dénia after the 291 closure, while a small increase was observed in La Vila Joiosa (Fig. 3g). In ANOVAs, there were 292 significant two-way interactions between *Closure* and *Year*, as well as between *Closure* and *Port* (Table 293 6). Three years showed significant lower mean price after the closure. Price also decreased after the 294 closure in Dénia, while no significant differences were detected in La Vila Joiosa (Fig. 3g). At neighbour/open port, a clear higher mean price in Dénia was observed during the closure in La Vila 295 296 Joiosa (Fig. 3h), while a small decreasing trend was detected in La Vila Joiosa. The three-way interaction was significant (Table 6). Higher mean price in Dénia was observed during, after and before the closure 297 298 in La Vila Joiosa, in all years (Fig. 3h). However, prices in La Vila Joiosa did not show any effect by the 299 closure in Dénia.

300

301 4 Discussion

302

303 The resumption of fishing activity, in both study ports, did not always result in higher CPUE after the 304 closure. Generally, increasing trends were observed in Red mullet, European hake and Norway lobster 305 métiers at both total and target species CPUEs. However, the statistical analysis revealed significant differences only for total landings and Mullus spp. CPUE of Red mullet métier, M. merluccius CPUE (in 306 two years) and the total landings of Norway lobster métier. On the contrary, Red shrimp métier showed a 307 negative effect of significantly lower CPUE at both total landings (in early summer) and A. antennatus 308 309 CPUE. In economic terms, market prices of the main target species have decreased or shown no changes 310 after the closure at home/closed and neighbour/open ports. The only exception was the increased A. 311 antennatus price in Dénia during the closure in La Vila Joiosa.

313 Standardized catch rates assumes that the total length, gross tonnage and individual vessel were able to 314 separate a large percentage of the variability of the data is not directly attributable to variations in 315 abundance. While the year, month and vessel mainly explained the total variance percentages ranging 316 between 23% (in the case of Red shrimp metier) and 55% (in European hake metier). Nevertheless, these 317 percentages are very high despite considering daily CPUE data instead of monthly average. The percentages obtained by the models reflect the suitability of the selected factors. One way to decrease the 318 319 variability of the data, and therefore increase the variability explained by the model, is to aggregate the 320 data on a temporary basis; for example, monthly (Goñi et al., 1999; Maynou et al., 2003). For our case of 321 study, such aggregation was not useful because we wanted to see differences in CPUE to the lower time 322 scale, so we decided to keep the analysis on daily basis. More research is needed on individual species, 323 fishing technology, and the environment to determine what factors are most influential in determining 324 CPUE. Mahévas et al. (2011) observed that the importance of the skipper/crew experience effect is 325 weaker than the technical effect of the vessel and its gear. Also reported that, other information (e.g. 326 length of headline, weight of otter boards, or type of groundrope) should be taken into account to improve 327 the modelled relationships between CPUE and the variables that measure relative fishing power (Mahévas 328 et al., 2011). Other factors such as the swept area, doors open, travelled distance, gear depth may greatly 329 influence catch rates. However, we did not have these data, so it could not be included.

330

331 Fishing closures during spawning season can most likely reduce fishing mortality if the spawning stock is more aggregated during the spawning season than at any other time of the year; however, in a multi-332 specific fishery, this not the case of all target species. The spawning seasons of the four main target 333 species are summarized in Table 1. Adjusting the closure to benefit all target species in multi-specific 334 335 fisheries is difficult. Changes were observed in the CPUE of three main target species, as Mullus spp. and 336 M. merluccius increased after the closure, while A. antennatus decreased. A rise in total landings of Red 337 mullet and Norway lobster métiers has been also observed. The European hake *M. merluccius* represents a spawning period extending almost throughout the year that is interpreted as an adaptive strategy to 338

maximize the survival of early life cycle stages (Martin et al., 1999; Domínguez-Petit, 2008). This large-339 scale spawning period has favoured the observed benefits. The reproduction of Red mullet Mullus spp. 340 341 (both Mullus barbatus and Mullus surmuletus) in the western Mediterranean occurs mainly between 342 spring and summer, almost exclusively from May to July (Relini et al., 1999; Voliani, 1999; Sieli et al., 343 2011) which also has favoured the observed increase. In contrast, the spawning period of A. antennatus 344 occurs between the months of May to October, but is more intense in July and August (Demestre, 1995; 345 García Rodríguez and Esteban, 1999). Although the spawning period concurs with the closure in early 346 summer, decreased catches have been observed.

347

Moreover, a short closure period (one month) cannot substantially raise biomass due to an increase of the 348 349 abundance of individuals; while it could be solely due to the increase of fish weight. An explanation of 350 the increased CPUE after one month of closure is linked to rapid-growing species, observed in Mullus 351 spp., M. merluccius (Piñeiro and Sainza, 2003) and total landings of Norway lobster métier, where species such as Micromesistius poutassou and Phycis blennoides are abundant (Samy-Kamal et al., 2014). But 352 353 these closures are too short to affect benthic communities, where these processes, recruitment and growth 354 take place much more slowly (Demestre et al., 2008). From another perspective, Bas (2006) argued that 355 the effect of closure, reflected in an increase of catches following resumption of the activity, is more 356 likely due to species' behavior. The absence of fishing activity changes the species' behavior to move 357 around freely, thus occupying more places, having previously been accustomed to escaping into marginal 358 places during the fishing activity (Bas, 2006). After reopening the fishery, it is likely these species are more susceptible to being caught. This is more evident in limited fisheries, such as continental-shelf 359 360 métiers, especially for fishes (e.g. Mullus spp. and M. merluccius) as they are more mobile than benthic communities which could be another explanation of the results obtained here. Similar changes in fish 361 362 behaviour after closure have been reported elsewhere (Jupiter et al., 2012; Januchowski-Hartley et al., 363 2014). For instance, Jupiter et al. (2012) observed that the main observed impact of the closure was the 364 decline of large-bodied species. This has reflected in differences in community composition as well as the

prevalence of small herbivores species, as a consequence of a decline in territorial aggression from the removal of large species (Jupiter *et al.*, 2012). Also they suggested that the substantial benefits to fisheries from closures, when occurred, can be removed in a very short time period through focused fishing efforts. Similarly, in the Gulf of Alicante, Samy-Kamal et al. (2014) have observed peaks in the fishing effort intensity in both August and October are mainly associated with the reopening of the fishery after the temporal closure.

372 In the short term, a closure may also involve losses, such as those derived from a reduction in sales or loss of markets (Lleonart and Franquesa, 1999). Prices are a function of supply and demand, and are 373 374 influenced by fish size, species, consumer preferences, fish quality and the catch quantity-demand 375 function (McClanahan, 2010). Prices of most target species decreased by the closure, which may be 376 related to loss of market due to shortage in the supply after a month of closure. The economic effect of 377 closure at the neighbour/open port was not so evident, except for the increase of A. antennatus price in 378 Dénia during the closure in La Vila Joiosa. This is explained as closure might produce more demand on 379 the market at Dénia where A. antennatus is the main target species.

380

381 According to the results obtained here, the closure has one apparent benefit, which is the overall reduction 382 of fishing effort for that specified period. The seasonal closure reduces the fishing effort (fishing pressure) 383 about 8.33% (one month per year) of the annual effort, which is the only apparent benefit. Despite this, 384 choosing the suitable timing to schedule closure during the spawning season of the main target species is difficult; it would bring up some biological positive effects on some target species (e.g. Mullus spp. and 385 *M. merluccius*). Notwithstanding, these increases in catches after the closure are so far to compensate the 386 387 lost catches by stopping the activity for a whole month. In addition, closures more likely lead to 388 unavoidable reduction in market prices of many target species. An effective management measure should 389 be easily applied, as in the case of seasonal closure, and be able to ensure enough net contribution to the income of fishers. At the same time, an economically consistent closure should be applied without 390

³⁷¹

391 subsidies and be accepted by the fishing community; otherwise, it will convert into a structural 392 compensation and will lose its economic sense (Lleonart and Franquesa, 1999). Despite these reductions 393 in prices, the wide acceptance of seasonal closure as a management measure by the fishing community is 394 mainly because it is subsidized by the administration. An alternative management measure, based on 395 effort reduction in input-controlled Western Mediterranean multi-specific fisheries, could target a day per week (other than weekend) when market prices of target species are lower (Guillen and Maynou, 2014; 396 397 Samy-Kamal et al., 2015b). This would result in the double annual amount of effort reduction, as well 398 minimize the short-term negative economic effect of seasonal closure on market prices and therefore on fishers' income. Also, it is more acceptable by the fishing community to stop fishing for one day than a 399 400 whole month, and can be easily applied without additional costs of subsidies.

401

402 5 Acknowledgements

403

The authors acknowledge the cooperation of the staff at La Vila Joiosa and Dénia fishermen's guilds for their important role in collecting the data. M. Samy-Kamal was supported by a grant of the Spanish Agency for International Development Cooperation (AECID). We acknowledge Julie Smith and Kelly Bucas for language revisions. We also extend our thanks to Dr. Jesus Jurado-Molina for his help on the R script. We are also grateful to the two reviewers and the editor whose comments greatly improved the manuscript. We thank the FAO for species drawings for figures 2 and 3.

410

411 6 References

412

Akaike, H. 1974. A new look at the statistical model identification. EEE Transactions on Automatic
Control 19: 716–723.

416	Arendse, C. J., Govender, A., and Branch, G. M. 2007. Are closed fishing seasons an effective means of
417	increasing reproductive output? A per-recruit simulation using the limpet Cymbula granatina as a case
418	history. Fisheries research, 85(1): 93–100.
419	

- 420 Bas, C. 2006. The Mediterranean Sea: living resources and exploitation. CIHEAM-IAMZ.
- 421

BOE. 2013. Boletin Oficial del Estado. Ministerio de Agricultura, Alimentación y Medio Ambiente.
Resolución de 27 de marzo de 2013, de la Secretaría General de Pesca, por la que publican los censos
actualizados de las modalidades de arrastre de fondo, artes menores, cerco y palangre de fondo del
caladero Mediterráneo.BOE nº 88, Sec. III. Pág. 27442.

- 426
- 427 Cochran, W.G. 1951. Testing a linear relation among variances. Biometrics 7:17–32
- 428
- 429 Demestre, M. 1995. Aristeus antennatus (Decapoda: Dendrobranchiata). Marine Ecology Progress Series,
 430 127: 57–64.
- 431
- Demestre, M., de Juan, S., Sartor, P., and Ligas, A. 2008. Seasonal closures as a measure of trawling
 effort control in two Mediterranean trawling grounds: effects on epibenthic communities. Marine
 pollution bulletin, 56(10): 1765–1773.
- 435
- Dinmore, T. A., Duplisea, D. E., Rackham, B. D., Maxwell, D. L., and Jennings, S. 2003. Impact of a
 large-scale area closure on patterns of fishing disturbance and the consequences for benthic communities.

ICES Journal of Marine Science: Journal du Conseil, 60(2): 371-380.

439

440	Domínguez-Petit, R., Korta, M., Saborido-Rey, F., Murua, H., Sainza, M., and Piñeiro, C. 2008. Changes
441	in size at maturity of European hake Atlantic populations in relation with stock structure and
442	environmental regimes. Journal of Marine Systems, 71(3): 260–278.

FAO. 2011. Review of the state of world marine fishery resources. FAO Fisheries and Aquaculture
Technical Paper No. 569. Rome, FAO. 2011. 334 pp.

446

García Rodríguez, M., and Esteban, A. 1999. On the biology and fishery of Aristeus antennatus (Risso,
1816), (Decapoda, Dendrobranchiata) in the Ibiza channel (Balearic Islands, Spain). Scientia Marina,
63(1): 27–37.

450

Goñi, R., Alvarez, F., and Adlerstein, S. 1999. Application of generalized linear modeling to catch rate
analysis of Western Mediterranean fisheries: the Castellón trawl fleet as a case study. Fisheries Research,
42(3): 291–302.

454

Guerra-Sierra, A., and Sánchez-Lizaso, J. L. 1998. Fundamentos de Explotacion de Recursos Vivos
Marinos. Ed. Acribia, Zaragoza, Spain. 249 pp.

457

- Guillen, J., and Maynou, F. 2014. Importance of temporal and spatial factors in the ex-vessel price
 formation for red shrimp and management implications. Marine Policy, 47: 66–70.
- 460
- 461 Horwood, J. W., Nichols, J. H., and Milligan, S. 1998. Evaluation of closed areas for fish stock
 462 conservation. Journal of Applied Ecology, 35(6): 893–903.

464	Januchowski-Hartley, F. A., Cinner, J. E., and Graham, N. A. 2014. Fishery benefits from behavioural
465	modification of fishes in periodically harvested fisheries closures. Aquatic Conservation: Marine and
466	Freshwater Ecosystems, 24(6): 777–790.

Jupiter, S. D., Weeks, R., Jenkins, A. P., Egli, D. P., and Cakacaka, A. 2012. Effects of a single intensive
harvest event on fish populations inside a customary marine closure. Coral Reefs, 31(2): 321–334.

470

471 Lleonart, J., and Franquesa, R. 1999. La veda como medida de gestión. 4ª Reunión del Foro Científico
472 sobre la pesca española en el Mediterráneo Málaga, junio, 1999.

473

474 Mahévas, S., Vermard, Y., Hutton, T., Iriondo, A., Jadaud, A., Maravelias, C.D., Punzón, A., Sacchi, J.,

Tidd, A., Tsitsika, E., Marchal, P., Goascoz, N., Mortreux, S., Roos, D. 2011. An investigation of human
vs. technology-induced variation in catchability for a selection of European fishing fleets. ICES J. Mar.
Sci. 68, 2252–2263.

478

Martin, P., Sartor, P., and García-Rodríguez, M. 1999. Exploitation patterns of the European hake
Merluccius merluccius, red mullet Mullus barbatus and striped red mullet Mullus surmuletus in the
western Mediterranean. Journal of Applied Ichthyology, 15(1): 24–28.

482

Maynou, F., Sardà, F., Tudela, S., and Demestre, M. 2006. Management strategies for red shrimp
(Aristeus antennatus) fisheries in the Catalan Sea (NW Mediterranean) based on bioeconomic simulation
analysis. Aquatic Living Resources, 19(2): 161–172.

486

487 McClanahan, T. R. 2010. Effects of fisheries closures and gear restrictions on fishing income in a Kenyan
488 coral reef. Conservation Biology, 24(6): 1519–1528.

- Massutí, E., and Reñones, O. 2005. Demersal resource assemblages in the trawl fishing grounds off the
 Balearic Islands (western Mediterranean). Scientia Marina, 69(1): 167–181.
- 492
- 493 Maunder, M.N., Punt, A.E., 2004. Standardizing catch and effort data: a review of recent approaches.
 494 Fisheries Research, 70: 141–159.
- 495
- Maynou, F., Demestre, M., and Sanchez, P. 2003. Analysis of catch per unit effort by multivariate
 analysis and generalised linear models for deep-water crustacean fisheries off Barcelona (NW
 Mediterranean). Fisheries Research, 65: 257–269.
- 499
- 500 Murawski, S.A., Wigley, S.E., Fogarty, M.J., Rago, P.J., and Mountain, D.G. 2005. Effort distribution
- and catch patterns adjacent to temperate MPAs. ICES Journal of Marine Science, 62: 1150–1167.
- 502
- Piñeiro, C., and Sainza, M. 2003. Age estimation, growth and maturity of the European hake (Merluccius
 merluccius (Linnaeus, 1758)) from Iberian Atlantic waters. ICES Journal of Marine Science: Journal du
 Conseil, 60(5): 1086–1102.
- 506
- Pipitone, C., Badalamenti, F., D'Anna, G., and Patti, B. 2000. Fish biomass increase after a four-year
 trawl ban in the Gulf of Castellammare (NW Sicily, Mediterranean Sea). Fisheries Research, 48: 23–30.
- Quinn II, T.J., Deriso, R.B., 1999. Quantitative Fish Dynamics. Biological Resource Management Series.
 Oxford University Press, New York. 542 pp.
- 512
- R Development Core Team., 2010: R: A language and environment for statistical computing. R
 Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL <u>http://www.R-</u>
 project.org/.

517	Relini, G., J. Bertrand, A. and Zamboni. 1999. Synthesis of the knowledge on Bottom Fishery Resources
518	in Central Mediterranean (Italy and Corsica). Biologia Marina Mediterranea, 6(Supl. 1): 1-868.
519	
520	Samy-Kamal, M., Forcada, A., and Sánchez-Lizaso, J.L. 2014. Trawling fishery of the western
521	Mediterranean Sea: Métiers identification, effort characteristics, landings and income profiles. Ocean &
522	Coastal Management, 102: 269–284.
523	
524	Samy-Kamal, M., Forcada, A., and Sánchez-Lizaso, J.L. 2015a. Short-term effect of selectivity change in
525	a trawling fishery in the Western Mediterranean. Journal of Applied Ichthyology, 31: 265–275.
526	
527	Samy-Kamal, M., Forcada, A., and Sánchez-Lizaso, J.L. 2015b. Daily variation of fishing effort and ex-
528	vessel prices in a western Mediterranean multi-species fishery: implications for sustainable management.
529	accepted. Marine policy.
530	
531	Sánchez, P., Sartor, P., Recasens, L., Ligas, A., Martin, J., De Ranieri, S., and Demestre, M. 2007. Trawl
532	catch composition during different fishing intensity periods in two Mediterranean demersal fishing
533	grounds. Scientia Marina, 71(4): 765–773.
534	
535	Sandrini-Neto, L., and Camargo, M.G. 2011. GAD: an R package for ANOVA designs from general
536	principles. Available on CRAN.
537	
538	Sardà, F. 1991. Reproduction and Moult Synchronism in Nephrops norvegicus (L.)(Decapoda,
539	Nephropidae) in the Western Mediterranean: Is Spawning Annual or Biennial? Crustaceana, 186–199.
540	

541	Sbrana, M., Sartor, P., and Belcari, P. 2003. Analysis of the factors affecting crustacean trawl fishery
542	catch rates in the northern Tyrrhenian Sea (western Mediterranean). Fisheries research, 65(1): 271–284.
543	

Shih, N. T., Cai, Y. H., and Ni, I. H. 2009. A concept to protect fisheries recruits by seasonal closure
during spawning periods for commercial fishes off Taiwan and the East China Sea. Journal of Applied
Ichthyology, 25(6): 676–685.

Sieli, G., Badalucco, C., Di Stefano, G., Rizzo, P., D'Anna, G., and Fiorentino, F. 2011. Biology of red
mullet, Mullus barbatus (L. 1758), in the Gulf of Castellammare (NW Sicily, Mediterranean Sea) subject
to a trawling ban. Journal of Applied Ichthyology, 27(5): 1218–1225.

Underwood, A.J. 1981. Techniques of analysis of variance in experimental marine biology and ecology.
Oceanography and Marine Biology: An Annual Review, 19: 513–605.

555 Underwood, A.J. 1997. Experiments in ecology: their logical design and interpretation using analysis of
556 variance. Cambridge University Press, Cambridge.

Ye, Y. 1998. Assessing effects of closed seasons in tropical and subtropical penaeid shrimp fisheries
using a length-based yield-per-recruit model. ICES Journal of Marine Science: Journal du Conseil, 55(6):
1112–1124.

567 <u>7 Tables</u>

- 569 Table 1. Spawning (gray cells) periods of the main target species: Mullus spp. Merluccius merluccius,
- *Nephrops norvegicus* and *Aristeus antennatus* by month.

Target species	January	February	March	April	May	June	July	August	Septembe	October	November	December	Reference
Mullus spp.													(Relini et al., 1999; Voliani, 1999; Sieli et
													al., 2011)
Merluccius													(Martin et al., 1999; Domínguez-Petit,
merluccius													2008)
Nephrops													(Sarda, 1991)
norvegicus													
Aristeus										F			(Demestre, 1995; García-Rodríguez and
antennatus													Esteban, 1999)

574 Table 2: Temporal/seasonal closures of trawling fisheries in Dénia and La Vila Joiosa ports during the

studied 10 years (2002-2011). Shaded years were used in the analysis of variance (ANOVA).

2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
June	June	Sep.	June	Sep.	Sep.		June	Sep.	15 th Jan. to 15 th Feb + Oct.
May	May	June	May	June	June	June	Jan.	June	Sep.
	June	June June	June June Sep.	June June Sep. June	June June Sep. June Sep.	June June Sep. June Sep. Sep.	June June Sep. June Sep. Sep. 15 th Sep. to 15 th Oct.	June June Sep. June Sep. Sep. 15 th Sep. to 15 th June Oct.	June June Sep. June Sep. Sep. 15 th Sep. to 15 th June Sep. Oct.

Т	he analysis	Le	vels per factor		Number of Sam	ples
	Métier	Closure	Season or Port	Year	Random samples per level	Total samples
	Red mullet	2	2	_	9	36
it gi	European hake	2	2	3	24	288
tiologi effect	Norway lobster	2	2	3	3	36
Biologic effect	Red shrimp	2	2	5	29	580
ల	Red mullet	2	2	_	10	40
Ħ Ħ	European hake	2	2	3	24	288
conom effect	Norway lobster	2	2	4	3	48
Economic effect	Red shrimp	2	2	5	29	580
-	Red mullet	3	2	3	4	72
Border effect	European hake	3	2	2	25	300
eff.	Norway lobster	3	2	2	3	36
m ·	Red shrimp	3	2	5	38	1140

578 Table 3: Number of samples and levels per factor used in analysis of variance (ANOVA). Dash (-)

579 indicates that the factor was not used in the analysis, because of the lack of data to balance the model.

580

581

Table 4: Analysis of deviance table for generalized linear models (GLMs) fitted to total CPUE and target species CPUE for the four métiers (from 2002 to 2011) in Dénia and La Vila Joiosa. Df.: degrees of freedom; Res. Df.: residual of degree of freedom; Resid. Dev.: residual deviance; Dev. ex (%): deviance explained; F: F value. Factors are arranged according to the percentage of explained deviance.

Métier	Model	Df.	Deviance	Res. Df.	Resid. Dev	Dev. ex (%)	F
	Total CPUE					27.51%	
	NULL			15422	3868.448		
	Vessel	61	599.9565	15339	2804.116	15.51%	53.80108***
	Month	11	162.6728	15402	3551.041	4.21%	80.89528***
nia	Year	9	154.7339	15413	3713.714	4.00%	94.04682***
Déi	TL	1	132.1933	15401	3418.848	3.42%	723.1202***
et]	GT	1	14.77506	15400	3404.073	0.38%	80.82214***
Red mullet Dénia	Mullus spp. CP	UE				30.99%	
E	NULL			15422	14912.12		
Ked	Month	11	2104.157	15402	12270.94	14.11%	285.1197***
H	Vessel	61	1263.461	15339	10290.94	8.47%	30.87265***
	Year	9	537.0255	15413	14375.1	3.60%	88.93942***
	GT	1	437.5996	15400	11554.4	2.93%	652.2571***
	TL	1	278.9381	15401	11992	1.87%	415.7668***
	Total CPUE					34.63%	
	NULL			42528	9099.015		
	Vessel	75	1188.273	42431	5948.143	13.06%	113.0204***
e	Year	9	1038.993	42519	8060.022	11.42%	823.5158***
Jak	TL	1	755.4386	42507	7168.982	8.30%	5388.911***
l u	Month	11	135.6011	42508	7924.42	1.49%	87.93717***
Dea	GT	1	32.56546	42506	7136.416	0.36%	232.3052***
European hake	M. merluccius					55.20%	
Eu	NULL	0101		42528	30597.13	0012070	
	Vessel	75	11718.92	42431	13707.77	38.30%	483.6629***
	TL	1	3104.386	42507	25690.29	10.15%	9609.309***
	Year	9	987.8003	42519	29609.33	3.23%	339.7372***
	Month	11	814.6563	42508	28794.67	2.66%	229.2441***
	GT	1	263.5967	42506	25426.69	0.86%	815.9365***
	Total CPUE					45.10%	
	NULL			5151	4481.877		
ы	Vessel	56	1190.241	5075	2460.75	26.56%	43.83444***
oste	Year	9	701.9692	5142	3779.908	15.66%	160.8585***
lot	Month	11	128.9173	5131	3650.991	2.88%	24.17058***
Norway lobster	N. norvegicus (31.35%	
LW	NULL	NA	NA	5151	4027.901	0110070	
Ŝ	Vessel	56	716.9815	5074	2765.098	17.80%	23.49416***
	Year	9	262.459	5142	3765.442	6.52%	53.51295***
	Month	11	208.4196	5131	3557.023	5.17%	34.76848***
	TL	1	74.94319	5130	3482.079	1.86%	137.522***
	Total CPUE					33.70%	
	NULL			26798	14815.38		
	Vessel	56	3021.415	26720	9822.623	20.39%	146.768***
d	TL	1	1241.442	26777	13327.09	8.38%	3377.034***
	GT	1	483.0545	26776	12844.04	3.26%	1314.029***
hr	Year	9	162.7068	26789	14652.68	1.10%	49.17816***
Red shrimp	Month	11	84.14181	26778	14568.53	0.57%	20.8079***
Re	A. antennatus C					23.07%	
	NULL			26798	13600.61		
	Vessel	56	1770.153	26721	10462.11	13.02%	80.73395***
	GT	1	741.8277	26777	12232.27	5.45%	1894.682***
	Year	9	383.5055	26789	13217.1	2.82%	108.8335***
	Month	11	243.0086	26778	12974.09	1.79%	56.42379***
		11	213.0000	20110	12/17.0/	1.19/0	20.12017

Table 5. Results of analysis of variance (ANOVA) with 2 factors (C: closure; S: season) for biologic effect (the total CPUE of Red mullet métier and *Mullus* spp. CPUE). With 2 factors (C: closure; P: port) for economic effect (price at home/closed port) and with 3 factors (C: closure; P: port; Yr: year) for price at neighbour/open port. Df: degrees of freedom; MS: mean square; F: F value. Levels of significance were p < 0.05, **p < 0.01 and ***p < 0.001. Dash (–) indicates that there is no transformation. (a) indicates that there is no homogeneity of variance, the levels of significance being *p < 0.01; **p < 0.001.

					Red mulle	t métier									
		Tota	l landings				Mu	llus spp.							
Economic effect Biologic effect	Sources of variation	Df	MS		F	Df	MS		F						
effec	С	1	42364	89	8.122056**	1	3.993067	4.	.791531*	Residua					
ogic	S	1	278654	4.2	0.534227	1	0.043237	, c	0.051883	Residua					
Biol	C×S	1	27248	5.2	0.522399	1	0.625955	с С	0.751122	Residua					
	Residual	32	521603	3.1		32	0.833359)							
	Transform.		-			Ln(x + 1))								
	Mullus spp. price														
		Home/c	losed port			Neighbou	ur/open p	ort							
	Sources of variation	es of variation Df		F	F versus	Sources of variatio	n Df	MS	F	F versu					
	С	1	3.10	1.19	Residual	С	2	67.67	11.67	C×Yr					
sct	Р	1	192.93	74.40**	Residual	Р	1	45.00	3.12	P×Yr					
c effe	С×Р	1	59.56	22.97**	Residual	Yr	2	58.86	12.98**	Residua					
omi	Residual	36	2.59			C×P	2	48.06	2.84	C×P×Y					
Econ	Transform.		-a			C×Yr	4	5.80	1.28	Residua					
						P×Yr	2	14.44	3.18	Residua					
						C×P×Yr	4	16.91	3.73*	Residua					
						Residual	54	4.53							
						Transform.			-a						

594

Table 6. Analysis of variance (ANOVA) results with 3 factors (C: closure; S: season; Yr: year) for biologic effect (total CPUE by métier and target species CPUE), and with 3 factors (C: closure; P: port; Yr: year) for economic effect (the first sale price at home/closed and neighbour/open ports) of the target species *Merluccius merluccius*, *Nephrops norvegicus* and *Aristeus antennatus*. Df: degrees of freedom; MS: mean square; F: F value. Levels of significance were *p <0.05, **p <0.01 and ***p <0.001. Dash (-) indicates that there is no transformation. (a) indicates that there is no homogeneity of variance, the levels of significance being *p <0.01; **p <0.001.

603

Source	es of			European ha	ake mét	ier				Norway lob	ster m	étier			Red shrimp métier						
variat	tion		Total landi	ngs	1	Merluccius m	erluccius		Total lan	dings	1	Nephrops nor	rvegicus		Total la	ndings		Aristeus anter	inatus		
		Df	MS	F	Df	MS	F	Df	MS	F	Df	MS	F	Df	MS	F	Df	MS	F		
С		1	327799512.4	4.925897	1	50.08891	0.751939	1	92.68107	20.35351*	1	58.1988	4.856206	1	13715694	4.852378	1	657.3687	28.24121*	C×Yr	
s		1	659835431.1	5.369455	1	37.84119	0.341613	1	66.03758	4.353176	1	46.17448	6.303008	1	14269001	4.643219	1	3006.823	3.209321	S×Yr	
Yr		2	760896305.1	17.91913**	2	35.06301	3.524418	2	52.91542	2.726493	2	21.64308	2.114817	4	2084831	2.126182	4	532.1095	5.057912**	Resid	
C×S		1	15482530.58	0.360144	1	4.785256	0.24667	1	0.194997	0.073356	1	39.74125	6.18646	1	14708996	48.42887*	1	717.1961	2.13177	C×S×	
C×Yr		2	66546154.89	1.567164	2	66.61301	6.695721*	2	4.553567	0.234625	2	11.98442	1.171037	4	2826592	2.882655	4	23.27693	0.221256	Resid	
S×Yr		2	122886843.9	2.89399	2	110.772	11.13444**	2	15.16998	0.78164	2	7.325785	0.715827	4	3073084	3.134036	4	936.9032	8.905637**	Residu	
C×S×Yr	r	2	42989851.74	1.012413	2	19.39944	1.949968	2	2.658219	0.136966	2	6.423908	0.627702	4	303723.7	0.309748	4	336.4322	3.197922	Resid	
Residua	ıl	276	42462781.24		276	9.948594		24	19.40787		24	10.23402		560	980551.5		560	105.2034			
Transfo	orm.		-	a			-a		√(x	(+1)			-			-a			-a		
Source	es of		1	Merluccius mer	luccius	price			Nephrops norvegicus price							Aristeus antennatus price					
variat	tion	Home/closed port Neighbour/open port							Home/closed port Neighbour/open port						Home/closed port			Neighbour/op	_		
		Df	MS	F	Df	MS	F	Df	MS	F	Df	MS	F	Df	MS	F	Df	MS	F		
С		1	96.45	3.20	2	84.87	89.51	1	4.82	0.01	2	4.05	0.04	1	6335.52	4.67	2	7326.20	8.48	C×	
Р		1	6.22	0.22	1	213.03	41.42	1	103.02	1.79	1	831.44	9.52	1	69405.43	34.59*	1	107541.92	21.71*	P×	
Yr		2	89.51	23.54**	1	207.34	30.15	3	824.02	14.55***	1	1539.35	15.77***	4	982.10	5.13**	4	2796.53	10.15**	Resi	
C×P		1	41.42	16.00	2	10.03	27.79	1	48.87	0.16	2	53.64	0.17	1	15113.25	23.56*	2	11666.11	10.66*	C×P	
C×Yr		2	30.15	7.93**	2	19.72	89.51	3	349.46	6.17**	2	92.19	0.94	4	1356.09	7.08**	8	863.44	3.13*	Resi	
P×Yr		2	27.79	7.31**	1	313.37	41.42	3	57.56	1.02	1	87.32	0.89	4	2006.75	10.48**	4	4952.58	17.98**	Resi	
C×P×Yı	r	2	2.59	0.68	2	19.78	30.15	3	306.03	5.40**	2	308.15	3.16	4	641.51	3.35	8	1094.36	3.97**	Res	
Residua	ıl	276	3.80		288	4.83	27.79	32	56.64		24	97.63		560	191.47		1110	275.45			
	rm.		-	a			-a			_			_			-a			-a		

<u>8 Figure legends</u>

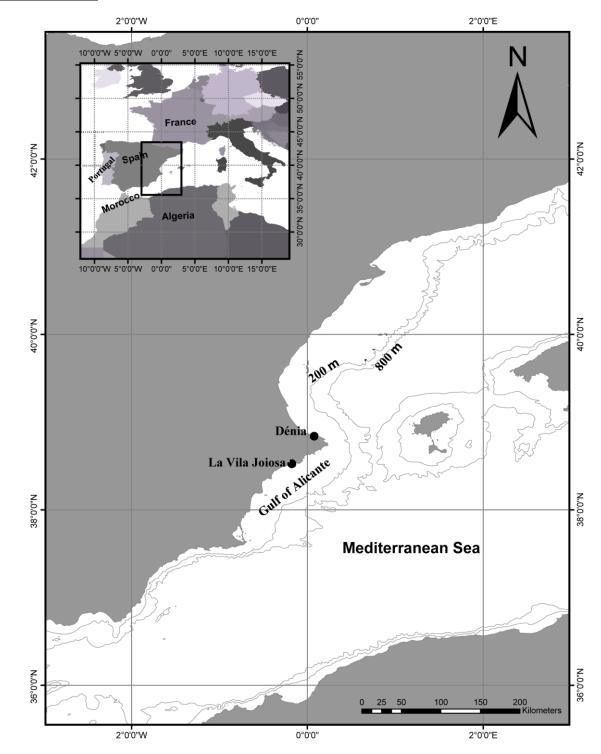
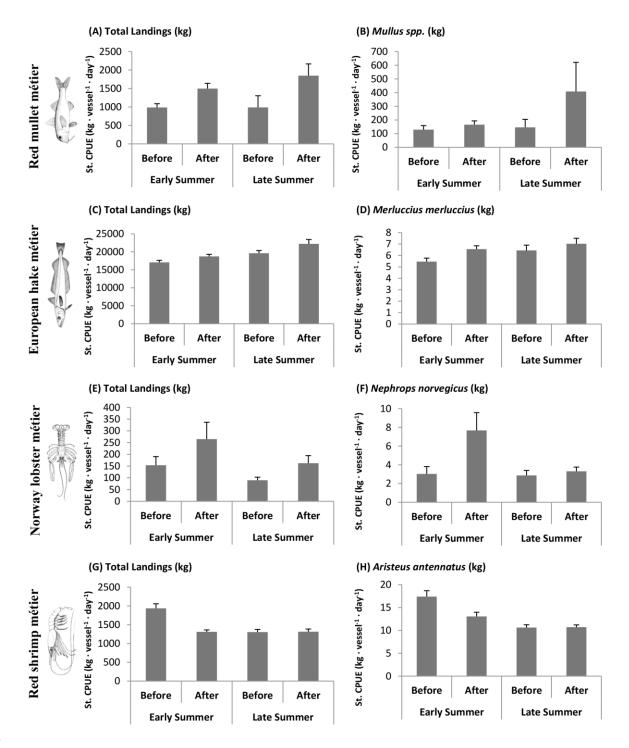



Figure 1: Map of the study area (SW Mediterranean) showing the location of the two trawling ports LaVila Joiosa and Dénia (Spain).

612

Figure 2: Mean CPUE (kg · vessel ⁻¹· day⁻¹) and standard error of the total landings (left) of the four
métiers: (a) Red mullet, (c) European hake, (e) Norway lobster), and (g) Red shrimp, and target species
(right): (b) *Mullus* spp., (d) *Merluccius merluccius*, (f) *Nephrops norvegicus* and (h) *Aristeus antennatus*,
during two seasons before and after the closure.

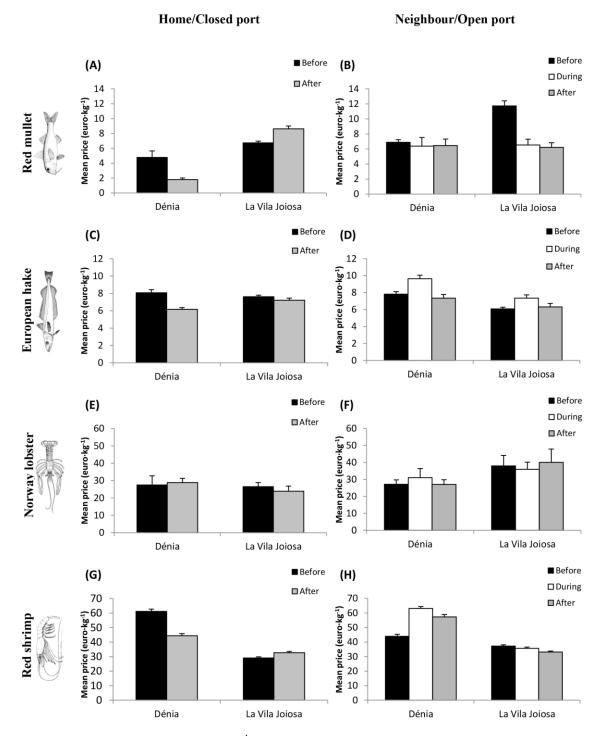


Figure 3: Mean first sale price (euro \cdot kg⁻¹) and standard error of the main target species: (a,b) *Mullus* spp., (c,d) *Merluccius merluccius*, (e,f) *Nephrops norvegicus* and (g,h) *Aristeus antennatus* of the four métiers: Red mullet, European hake, Norway lobster, and Red shrimp in the two ports before and after the closure (left) and their mean prices at neighbour/open port before, during and after the closure (right).

623 <u>9 Appendixes</u>

625	Appendix 1: Model selection procedure for the total CPUE and target species CPUE by métier shows the
626	last 5 values based on AIC: Akaike Information Criterion.

Métier		Model	AIC					
		Initial model : Year + Month + TL + GT + Vessel	17646					
	E	Year + Month + TL + Vessel	17648					
	Ъ	Year + Month + GT + Vessel						
	al (Year + TL + GT + Vessel	17649 18328					
et	Total CPUE	Year + Month + TL + GT	20514					
Red mullet		Final model: Year + Month + TL + GT + Vessel	17646					
l n		Initial model : Year + Month + TL + GT + Vessel	37698					
Rec	p.	Year + Month + GT + Vessel	37699					
	<u>Mullus spp.</u> <u>CPUE</u>	Year + Month + TL + Vessel	37713					
	<u>illus s</u> CPUE	Year + Month + TL + GT	39363					
	Mu	Year + TL + GT + Vessel	39391					
	-	Final model: Year + Month + TL + GT + Vessel	37698					
		Initial model : Year + Month + TL + GT + Vessel	37231					
	Œ	Year + Month + TL + Vessel	37249					
	GPI	Year + Month + GT + Vessel	37365					
še	al (Year + TL + GT + Vessel	37864					
hal	Total CPUE	Year + Month + TL + GT	44827					
a l		Final model: Year + Month + TL + GT + Vessel	37231					
European hake	7.0	Initial model : Year + Month + TL + GT + Vessel	72738					
lr0	zius	Year + Month + TL + Vessel	72743					
B	<u>M. merluccius</u> <u>CPUE</u>	Year + Month + GT + Vessel	72748					
	CP	Year + TL + GT + Vessel	75111					
	<i>1. n</i>	Year + Month + TL + GT	98864					
	V	Final model: Year + Month + TL + GT + Vessel	72738					
		Initial model : Year + Month + TL + GT + Vessel	10972					
	0E	Year + Month + GT + Vessel	10970					
	C	Year + Month + TL + Vessel	10971					
ter	Total CPUE	Year + Vessel	11309					
bst		Year + Month	12890					
Norway lobster		Final model: Year + Month + Vessel	10970					
vav	8	Initial model : Year + Month + TL + GT + Vessel	11573					
0LV	icu	Year + Month + GT + Vessel	11579					
Ž	<u>torvegi</u> CPUE	Year + Month + Vessel	11578					
	CP	Year + TL + Vessel	11914					
	<u>N. norvegicus</u> <u>CPUE</u>	Year + Month + TL	12648					
		Final model: Year + Month + TL + Vessel	11573					
	E)	Initial model : Year + Month + TL + GT + Vessel	49315					
	Cotal CPUE	Year + Month + GT + Vessel	49328					
	C	Year + Month + TL + Vessel	49348					
പ	tal	Year + TL + GT + Vessel	49625					
imp	T_0	Year + Month + TL + GT	56390					
<u>Red shri</u>		Final model: Year + Month + TL + GT + Vessel	49315					
d s	S	Initial model : Year + Month + TL + GT + Vessel	51003					
Re	<u>A. antennatus</u> <u>CPUE</u>	Year + Month + TL + GT	55007					
-	untenna CPUE	Year + Month + Vessel	51014					
	CP	Year + GT + Vessel	51705					
	A. (Year + Month + GT	55080					
		Final model: Year + Month + GT + Vessel	51003					

629 Appendix 2: Estimates and standard error from a generalized linear model fitted to total CPUE of Red

630 mullet, European hake, Norway lobster and Red shrimp métiers of the Dénia and La Vila Joiosa fleet

- 631 from 2002 to 2011, incorporating the main effects of year, month, individual vessel (V), total length (TL),
- and gross tonnage (GT). Estimates express the difference between each level of the factors and the first
- 633 level.

	Red n	nullet		Europe	an hake		Norway	lobster	Red shrimp		
	Estimate	St. Error		Estimate	St. Error		Estimate	St. Error		Estimate	St. Error
January-2002-V1*	7.07186	0.597771	January-2002-V1*	9.656441	0.435352	January-2002-V1*	4.583586	0.080132	January-2002-V1*	7.073531	0.395798
2003	0.11041	0.019005	2003	-0.10942	0.007868	2003	-0.1361	0.044144	2003	-0.18371	0.017303
2004	0.188618	0.017919	2004	0.004487	0.008064	2004	-0.30599	0.054124	2004	-0.12458	0.017152
2005	0.165329	0.018309	2005	0.047184	0.007911	2005	0.002079	0.046501	2005	-0.218	0.017578
2006	0.22317	0.017956	2006	0.258221	0.008148	2006	-0.09267	0.050718	2006	-0.11897	0.017294
2007	0.184024	0.017525	2007	0.243681	0.008434	2007	0.328391	0.060507	2007	-0.03435	0.017792
2008	0.110805	0.017831	2008	0.031407	0.008594	2008	0.572799	0.048904	2008	-0.13975	0.018235
2009 2010	0.103101 0.022416	0.0185 0.019279	2009 2010	0.184607 0.136223	0.00881 0.008519	2009 2010	0.234122 0.281723	0.052624 0.05344	2009 2010	-0.16039 -0.14668	0.017928 0.018287
2010	0.022410	0.019279	2010	0.130223	0.008319	2010	0.281723	0.05344	2010	-0.14668	0.018287
February	-0.08205	0.020278	February	-0.09036	0.009123	February	0.113957	0.034207	February	-0.03558	0.019372
March	-0.06781	0.020278	March	-0.08448	0.008124	March	0.084945	0.053479	March	0.021608	0.017793
April	0.037185	0.016849	April	-0.05975	0.00869	April	0.254477	0.04654	April	-0.05787	0.017893
May	-0.0829	0.017445	May	-0.06218	0.009141	Мау	0.1708	0.046284	May	0.055368	0.018204
June	-0.0611	0.020834	June	0.014633	0.010209	June	0.349405	0.049657	June	0.034456	0.021124
July	0.021947	0.018546	July	0.006692	0.008838	July	0.327895	0.044193	July	0.099216	0.018895
August	0.032735	0.017907	August	-0.00352	0.008079	August	0.027462	0.044215	August	0.035249	0.017518
September	0.131632	0.019016	September	0.042824	0.008593	September	-0.04956	0.055186	September	0.054111	0.019004
October	0.237714	0.015883	October	0.05409	0.009302	October	-0.04608	0.056719	October	-0.06315	0.01814
November	0.152178	0.015527	November	0.022037	0.009021	November	-0.24841	0.051445	November	-0.12019	0.017893
December	0.055481	0.016306	December	-0.00184	0.008779	December	-0.30529	0.050957	December	-0.12059	0.018102
TL	-0.04911	0.021058	TL	-0.16576	0.014223	V2	-0.72323	0.115607	TL	-0.05197	0.013348
GT	-0.01083	0.005465	GT	-0.00766	0.001697	V3	0.479193	0.407798	GT	-0.0202	0.003404
V2	-1.57139	0.23523	V2	-1.96404	0.155031	V4	0.804949	0.080595	V2	-1.54997	0.149858
V3	-0.2918	0.12924	V3	-0.37175	0.054455	V5	-0.05182	0.092091	V3	0.043625	0.354714
V4	0.518885	0.166694	V4	0.530009	0.034652	V6	0.086776	0.099816	V4	0.86607	0.059888
V5	-0.07767	0.116677	V5	-0.10206	0.042458	V7	0.28841	0.078119	V5	0.440276	0.608196
V6	-0.87758	0.190455	V6	-1.06699	0.116481	V8	-0.30065	0.091154	V6	-1.95054	0.213197
V7	-0.38938	0.148548	V7	0.547366	0.066859	V9	-0.04491	0.086092	V7	0.761746	0.109067
V8	-1.13945	0.273733	V8	-0.48568	0.038752	V10	0.25803	0.09587	V8	0.004159	0.046264
V9	-0.21623	0.194094	V9	-0.61766	0.075482	V11	-0.79281	0.157082	V9	-0.27647	0.070419
V10	-0.22052	0.192962	V10	-1.77034	0.16529	V12	0.482046	0.118198	V10	-0.95527	0.189903
V11	-0.53138	0.184921	V11	-0.81107	0.114278	V13	0.13246	0.102262	V11	1.256998	0.160018
V12	-0.45926	0.198441	V12	-0.68281	0.056551	V14	0.733662	0.082465	V12	-1.04204	0.103741
V13	-1.09132	0.215168	V13	-1.18217	0.121598	V15	-0.26919	0.084838	V13	2.112681	0.223202
V14	-0.72699	0.226572	V14	-1.27904	0.125781	V16	-0.26477	0.320924	V14	1.690243	0.121654
V15	-0.66681	0.230722	V15	-1.39181	0.143216	V17	0.852984	0.116207	V15	1.039277	0.115888
V16 V17	-1.33402 0.819366	0.26924 0.388719	V16 V17	-1.33913 0.483063	0.131732 0.109964	V18 V19	0.147011 0.902686	0.122959 0.09372	V16 V17	-0.987 1.488695	0.116383
V17 V18	0.251695	0.061339	V17 V18	-0.485065	0.109964 0.038473	V19 V20	0.707068	0.09372	V17 V18	0.851236	0.133392 0.134201
V18 V19	-1.09913	0.18277	V18 V19	-0.48721	0.038473	V20 V21	-0.48127	0.088207	V18 V19	1.514216	0.154201 0.161491
V19 V20	-0.48375	0.177021	V19 V20	0.985939	0.131471	V21 V22	-0.20726	0.127817	V19 V20	0.840393	0.052312
V20 V21	0.018231	0.101613	V20 V21	0.046496	0.022059	V22 V23	-0.3557	0.097417	V20 V21	-1.00018	0.085422
V21 V22	0.679287	0.250559	V21 V22	0.095082	0.062088	V23 V24	0.605877	0.087908	V21 V22	-0.06152	0.057306
V22 V23	-0.80884	0.251565	V22 V23	-1.63471	0.114901	V24 V25	-0.35975	0.497525	V22 V23	1.44478	0.611917
V24	-0.66952	0.183124	V24	-1.01445	0.113656	V26	0.171008	0.132799	V24	-0.63871	0.067384
V25	-0.27065	0.16956	V25	0.55535	0.090322	V27	0.948124	0.087982	V25	1.634847	0.178516
V26	-0.28325	0.153137	V26	-0.42827	0.042428	V28	0.318308	0.110422	V26	-1.05876	0.617841
V27	-0.28739	0.130495	V27	-0.09379	0.109409	V29	0.4662	0.087875	V27	0.372172	0.112329
V28	-0.38778	0.101666	V28	0.522516	0.086609	V30	-0.58218	0.193222	V28	1.643243	0.094761
V29	-0.50807	0.182614	V29	0.104598	0.065417	V31	0.091512	0.111168	V29	0.678454	0.086002
V30	0.388566	0.261588	V30	-1.87058	0.278836	V32	0.421484	0.293377	V30	0.157588	0.062676
V31	-0.04113	0.451055	V31	-0.93315	0.107094	V33	0.288668	0.11436	V31	0.164221	0.077028
V32	0.545119	0.136497	V32	-0.896	0.105722	V34	1.201244	0.086799	V32	1.256126	0.151485
V33	-0.17951	0.099361	V33	-0.54211	0.12665	V35	0.608679	0.148629	V33	0.005837	0.086438
V34	-0.20054	0.437297	V34	-0.43874	0.066759	V36	1.230548	0.082943	V34	1.178933	0.115601
V35	-0.2516	0.14805	V35	-0.35355	0.06445	V37	-0.06148	0.089036	V35	-0.13878	0.220789
V36	-0.09997	0.132498	V36	-0.89542	0.070359	V38	1.165579	0.410114	V36	1.77149	0.195481
V37	0.913105	0.250251	V37	0.650594	0.107705	V39	-0.31573	0.126535	V37	-0.85069	0.106028
V38	0.333546	0.150252	V38	-1.27258	0.128222	V40	-0.67725	0.318918	V38	-0.00864	0.43845
V39	0.307053	0.167149	V39	0.01609	0.039679	V41	0.930911	0.083781	V39	-0.29583	0.060816
V40	0.743139	0.360673	V40	0.311523	0.083646	V42	1.069781	0.084967	V40	-0.43337	0.076004
V41	-0.51584	0.16156	V41	0.620081	0.062955	V43	0.867595	0.100415	V41	0.726326	0.064763
V42	-0.27608	0.152334	V42	-0.39947	0.043626	V44	0.199618	0.084847	V42	1.125085	0.113342
V43	-1.10788	0.437453	V43	-0.43533	0.053201	V45	0.756225	0.076999	V43	1.310942	0.084165
V44	0.557192	0.139366	V44	-0.48607	0.103306	V46	0.792661	0.102558	V44	0.284848	0.054666
V45	0.763557	0.20421	V45	-0.41909	0.072557	V47	0.853505	0.107746	V45	1.201127	0.07482

V46	0.642105	0.172954	V46	0.945093	0.084183	V48	-0.84843	0.276182	V46	0.129186	0.133194
V47	-0.87218	0.268715	V47	-0.09271	0.033032	V49	-0.10503	0.109945	V47	1.827697	0.177322
V48	0.322836	0.116638	V48	0.511912	0.063145	V50	1.025268	0.089637	V48	-1.1529	0.165022
V49	-0.27462	0.152432	V49	0.374769	0.026801	V51	0.463401	0.08647	V49	-0.31327	0.078544
V50	-0.51516	0.168127	V50	1.312256	0.110126	V52	-0.3356	0.118343	V50	1.138536	0.061336
V51	-0.99492	0.196588	V51	-1.03398	0.100716	V53	0.20425	0.13186	V51	0.123192	0.041013
V52	-1.30585	0.315923	V52	-0.5112	0.082254	V54	-0.48609	0.173442	V52	-0.75423	0.059851
V53	-0.56049	0.264419	V53	-1.69549	0.135213	V55	0.147086	0.169926	V53	0.167799	0.040687
V54	-0.46262	0.152176	V54	-1.45223	0.375048	V56	0.643779	0.088854	V54	-0.77274	0.095025
V55	0.490569	0.137507	V55	0.514788	0.040571	V57	-0.36827	0.092285	V55	2.071713	0.086552
V56	-0.37812	0.431874	V56	0.688723	0.056675				V56	2.176502	0.237638
V57	-1.94661	0.308606	V57	0.771957	0.069469				V57	-0.25205	0.036005
V58	-1.02301	0.228507	V58	-1.59961	0.157384						
V59	0.278189	0.063655	V59	0.150669	0.027856						
V60	0.22543	0.118964	V60	0.165525	0.036936						
V61	-0.28146	0.1554	V61	-1.00704	0.091645						
V62	0.045715	0.126613	V62	0.750018	0.124638						
			V63	-1.39794	0.108433						
			V64	-1.72434	0.126711						
			V65	-2.20744	0.194583						
			V66	-1.48205	0.173938						
			V67	-0.75184	0.060701						
			V68	0.802976	0.040714						
			V69	0.098312	0.035173						
			V70	-1.80874	0.116122						
			V71	0.250967	0.084482						
			V72	0.258796	0.02098						
			V73	0.270801	0.020993						
			V74	0.786141	0.147262						
			V75	-0.40915	0.078858						
			V76	-0.28025	0.058564						
621											

Appendix 3: Estimates and standard error from a generalized linear model fitted to CPUE of target
species *Mullus* spp., *M. merluccius*, *N. norvegicus* and *A. antennatus* of the Dénia and La Vila Joiosa fleet
from 2002 to 2011, incorporating the main effects of year, month, individual vessel (V), total length (TL),
and gross tonnage (GT). Estimates express the difference between each level of the factors and the first

640 level.

	s spp.		M. merluccius N. norvegicus						A. antennatus			
	Estimate	St. Error		Estimate	St. Error		Estimate	St. Error		Estimate	St. Error	
January-2002-V1*	4.515099	1.145155	January-2002-V1*	1.834713	0.660896	January-2002-V1*	0.625674	0.883577	January-2002-V1*	2.297945	0.241546	
2003	-0.13074	0.036407	2003	-0.30887	0.011945	2003	-0.13843	0.047006	2003	-0.12936	0.017709	
2004	-0.27581	0.034327	2004	-0.24841	0.012242	2004	-0.45058	0.057454	2004	-0.101	0.017555	
2005	0.006344	0.035075	2005	-0.18408	0.01201	2005	-0.30832	0.049493	2005	-0.29461	0.018006	
2006	0.144605	0.034398	2006	-0.02204	0.01237	2006	-0.14682	0.053829	2006	-0.12942	0.017729	
2007	0.20252	0.033573	2007	-0.02368	0.012803	2007	0.111465	0.064328	2007	-0.21702	0.018244	
2008	0.009779	0.034159	2008	-0.23982	0.013047	2008	0.131691	0.052062	2008	-0.30223	0.018727	
2009	-0.0186	0.03544	2009	0.200179	0.013374	2009	-0.02823	0.055955	2009	-0.3481	0.018399	
2010	-0.16323	0.036932	2010	-0.10169	0.012932	2010	0.330465	0.05677	2010	-0.05952	0.018778	
2011	-0.03888	0.037698	2011	0.014736	0.013849	2011	0.165268	0.057595	2011	-0.02636	0.019907	
February	-0.29376	0.038847	February	-0.10937	0.012333	February	0.156413	0.048873	February	0.144047	0.019046	
March	0.024265	0.040661	March	-0.20013	0.012393	March	0.114625	0.056732	March	0.195499	0.018363	
April	0.286599	0.032278	April	-0.22438	0.013192	April	0.422227	0.049343	April	0.264682	0.018465	
May	0.100915	0.03342	May	-0.06233	0.013877	May	0.477009	0.049081	May	0.306592	0.018787	
June	-0.07007	0.039911	June	-0.01521	0.015498	June	0.69962	0.052658	June	0.121975	0.021792	
July	0.068638	0.035529	July	0.163511	0.013417	July	0.647806	0.046911	July	0.032719	0.0195	
August	-0.234	0.034304	August	0.199645	0.013417	August	0.282978	0.046886	August	-0.00048	0.0195	
September	0.137473	0.034304	September	0.153593	0.012204	September	0.282978	0.040880	September	0.138805	0.018079	
October	0.137473	0.030429	October	0.056566	0.013044	October	0.209951	0.060131	October	0.131308	0.019011	
November	0.60953	0.030428	November	-0.02053	0.014121	November	0.209931	0.054561	November	0.025485	0.01872	
December	0.253553	0.029740	December	-0.02033	0.013094	December	0.313200	0.054036	December	-0.00292	0.018464	
TL GT	0.06528	0.040341	TL CT	0.076831	0.021592	TL V2	0.098632	0.037709	GT V2	0.012624	0.003511	
	-0.04234	0.01047	GT V2	0.006937	0.002576		0.3378 -0.63894	0.315463	V2	0.011267	0.110252	
V2 V2	-1.34254	0.450632	V2	-0.40668	0.235348	V3		0.442882	V3	-0.56313	0.364222	
V3	-0.69709	0.247586	V3	0.685464	0.082667	V4	0.410432	0.085442	V4	0.243027	0.061773	
V4	0.988761	0.319338	V4	0.252051	0.052605	V5	0.411429	0.205556	V5	-1.81836	0.626918	
V5	-0.9095	0.223519	V5	0.648178	0.064455	V6	-0.08022	0.1095	V6	-1.47724	0.208991	
V6	-1.32622	0.364856	V6	-0.46449	0.176827	V7	0.443722	0.103737	V7	-0.09778	0.111635	
V7	-1.21496	0.284575	V7	-0.02604	0.101497	V8	-0.19837	0.09682	V8	-0.01898	0.042316	
V8	-1.39766	0.524392	V8	-0.33143	0.058828	V9	0.515025	0.267519	V9	0.456494	0.072669	
V9	-0.73455	0.371828	V9	0.309991	0.114587	V10	-0.36593	0.121257	V10	-1.64822	0.171892	
V10	-1.62913	0.369659	V10	0.295297	0.250922	V11	-0.64094	0.218027	V11	-0.29872	0.162402	
V11	-0.72953	0.354256	V11	0.5011	0.173482	V12	0.335415	0.141594	V12	0.237644	0.0929	
V12	-0.76899	0.380156	V12	-0.60199	0.085849	V13	-0.07212	0.108811	V13	-0.41868	0.228137	
V13	-1.11483	0.412199	V13	0.516281	0.184594	V14	0.400988	0.087926	V14	-1.56083	0.125523	
V14	-1.1238	0.434046	V14	0.241644	0.190945	V15	0.168529	0.226396	V15	-0.34088	0.119597	
V15	-0.97548	0.441996	V15	-0.20976	0.217412	V16	0.124958	0.390606	V16	0.242676	0.097382	
V16	-2.76035	0.515786	V16	0.176269	0.199979	V17	-0.15259	0.12951	V17	0.138682	0.136287	
V17	2.096412	0.744672	V17	-1.32703	0.166934	V18	-1.05623	0.149834	V18	-0.30069	0.134785	
V18	-0.6897	0.117508	V18	0.441562	0.058404	V19	0.514038	0.099959	V19	-0.46193	0.166653	
V19	-1.23826	0.350134	V19	-1.56549	0.25695	V20	0.12624	0.113752	V20	0.522748	0.047871	
V20	-0.83153	0.339122	V20	-0.00706	0.199583	V21	0.334641	0.221302	V21	0.189339	0.062403	
V21	0.0088	0.194661	V21	-0.80817	0.033488	V22	-0.30048	0.14902	V22	-0.10336	0.0536	
V22	0.953596	0.479998	V22	-0.58581	0.094255	V23	0.14239	0.159957	V23	-1.70032	0.630886	
V23	-1.7592	0.481926	V23	-0.92837	0.174428	V24	-0.06634	0.097428	V24	-0.2589	0.053187	
V24	-1.50679	0.350813	V24	-0.97115	0.172538	V25	-1.33347	0.586484	V25	-0.00401	0.183463	
V25	-0.42173	0.324829	V25	-0.33077	0.137116	V26	0.203269	0.157382	V26	-2.10677	0.630482	
V26	-1.01588	0.293365	V26	0.160502	0.064408	V27	0.778847	0.093397	V27	-0.40675	0.113958	
V27	-1.06238	0.249991	V27	-1.66893	0.166091	V28	-0.46396	0.133913	V28	0.606904	0.097782	
V28	-0.93751	0.194763	V28	-0.60676	0.131479	V29	0.33156	0.126101	V29	-0.00856	0.084614	
V29	-1.37123	0.349835	V29	-1.0938	0.099308	V30	-0.54293	0.206548	V30	0.25744	0.056472	
V30	0.732282	0.501126	V30	-2.42825	0.423294	V30 V31	0.471101	0.155244	V30 V31	-0.28124	0.078526	
V30 V31	-1.36178	0.86409	V30 V31	0.806884	0.162576	V31 V32	-0.70412	0.319988	V31 V32	-1.87865	0.151545	
V31 V32	-0.25415	0.261489	V31 V32	0.083246	0.160493	V32 V33	-0.06217	0.147741	V32 V33	-0.34891	0.08415	
V32 V33	-0.23413	0.201489	V 32 V 33	-1.94454	0.100493	V 35 V 34	0.765027	0.09251	V 33 V 34	0.096324	0.08413	
v 35 V34	-2.62725	0.190340	V35 V34	0.376265	0.192203	V 34 V 35	-0.55772	0.09231	V 34 V 35	-0.27237	0.227855	
		0.837733			0.101343							
V35	-0.39935		V35	-0.84198		V36	0.549602	0.094978	V36	-0.65221	0.200732	
V36	-1.00901	0.253828	V36	-0.87644	0.10681	V37	0.432185	0.190888	V37	0.367404	0.090272	
V37	0.883375	0.479408	V37	-1.08662	0.163505	V38	-1.30583	0.451428	V38	-1.48019	0.45012	
V38	-0.4438	0.287838	V38	-0.96987	0.194651	V39	-0.36338	0.16132	V39	0.374934	0.053216	
V39 V40	-0.10611 1.974262	0.32021 0.690944	V39 V40	-0.10118	0.060236	V40	-0.42712 0.173879	0.338995	V40	0.016997 0.243784	0.078006 0.066676	
				-0.36105	0.12698	V41	0.1/2070	0.089092	V41			

							0.040.00			0.00110	
V41	-1.26363	0.309503	V41	-0.52115	0.09557	V42	0.04269	0.090539	V42	-0.23448	0.116968
V42	-0.90458	0.291828	V42	0.351783	0.066227	V43	0.361887	0.124511	V43	0.484915	0.08274
V43	-2.7202	0.838032	V43	0.067142	0.080763	V44	-0.06015	0.090269	V44	-0.21198	0.056369
V44	0.81884	0.266984	V44	-1.19288	0.156826	V45	0.506124	0.082124	V45	-0.23052	0.077212
V45	1.283742	0.391207	V45	-0.79459	0.110147	V46	1.364734	0.243078	V46	-0.40477	0.111945
V46	1.150448	0.33133	V46	0.408219	0.127796	V47	-0.6741	0.131163	V47	0.298384	0.180544
V47	-1.52084	0.514779	V47	0.385046	0.050145	V48	-0.14342	0.336233	V48	-0.54432	0.157807
V48	0.191889	0.223444	V48	-0.42987	0.095859	V49	-0.6581	0.116565	V49	0.375693	0.081053
V49	0.313734	0.292015	V49	0.510747	0.040686	V50	0.589116	0.115741	V50	0.17624	0.057958
V50	-0.07072	0.322083	V50	-0.15359	0.167179	V51	0.156958	0.091861	V51	0.26064	0.042262
V51	-1.32612	0.376605	V51	-0.74128	0.152895	V52	-0.04862	0.154847	V52	0.022633	0.051913
V52	-1.55954	0.605217	V52	0.722786	0.124867	V53	-0.08196	0.14251	V53	0.243894	0.040478
V53	-0.58731	0.50655	V53	-0.87398	0.205263	V54	0.358909	0.300416	V54	-0.08103	0.047011
V54	-1.52738	0.291525	V54	-2.80394	0.569351	V55	-1.39273	0.180166	V55	-1.68363	0.089302
V55	0.500171	0.263424	V55	-0.62457	0.061589	V56	0.463065	0.115124	V56	-0.22361	0.243097
V56	-0.84514	0.827344	V56	-0.28573	0.086037	V57	-0.17141	0.100042	V57	-0.12671	0.036937
V57	-1.53567	0.5912	V57	-0.03266	0.105458						
V58	-1.502	0.437754	V58	0.28164	0.238921						
V59	-0.61745	0.121944	V59	-0.02293	0.042288						
V60	-0.86962	0.2279	V60	-0.34729	0.056072						
V61	-1.13361	0.297701	V61	0.499199	0.139124						
V62	-0.66242	0.242553	V62	-0.61919	0.189209						
			V63	0.398914	0.16461						
			V64	-0.98317	0.192357						
			V65	0.025723	0.295391						
			V66	0.243105	0.264051						
			V67	-0.82149	0.092149						
			V68	0.492983	0.061807						
			V69	-0.65974	0.053395						
			V70	-0.82806	0.176281						
			V71	-0.66735	0.12825						
			V72	-0.87664	0.031849						
			V73	0.475948	0.031869						
			V74	-1.02825	0.223554						
			V75	-1.00291	0.119712						
			V76	0.579746	0.088904						
C 4 1											