
1

Uncertainty-wise Test Case Generation and Minimization for Cyber-
Physical Systems

Man Zhang1, Shaukat Ali2, Tao Yue2,3
1Kristiania University College, Oslo, Norway
2Simula Research Laboratory, Oslo, Norway

3Nanjing University of Aeronautics and Astronautics
man.zhang@kristiania.no, {shaukat, tao}@simula.no

Abstract
Cyber-Physical Systems (CPSs) typically operate in highly indeterminate environmental conditions, which require the
development of testing methods that must explicitly consider uncertainty in test design, test generation, and test
optimization. Towards this direction, we propose a set of uncertainty-wise test case generation and test case minimization
strategies that rely on test ready models explicitly specifying subjective uncertainty. We propose two test case generation
strategies and four test case minimization strategies based on the Uncertainty Theory and multi-objective search. These
strategies include a novel methodology for designing and introducing indeterminacy sources in the environment during
test execution and a novel set of uncertainty-wise test verdicts. We performed an extensive empirical study to select the
best algorithm out of eight commonly used multi-objective search algorithms, for each of the four minimization strategies,
with five use cases of two industrial CPS case studies. The minimized set of test cases obtained with the best algorithm for
each minimization strategy were executed on the two real CPSs. The results showed that our best test strategy managed to
observe 51% more uncertainties due to unknown indeterminate behaviors of the physical environments of the CPSs as
compared to the other test strategies. Also, the same test strategy managed to observe 118% more unknown uncertainties
as compared to the unique number of known uncertainties.

Keywords

Uncertainty, Cyber-Physical System, Test Case Generation and Minimization, Multi-Objective Search.

1 Introduction
Cyber-Physical Systems (CPSs) are destined to face uncertainty in their operation due to close interactions with
their physical environment [1]. Thus, classical testing methods (e.g., regression testing [2], conformance testing
[3, 4]) must be adapted to consider uncertainty explicitly. There exist a few methods in the literature that explicitly
take uncertainty into account such as considering uncertainty in test data generation [5] and testing distributed
real-time systems in the presence of time uncertainty [6]. However, it lacks a systematic approach for considering
the uncertainty aspect throughout test design, test generation, and test execution.

There is potentially the vast number of scenarios and environmental conditions in which a CPS can be tested.
Uncertainty exponentially increases the number of such scenarios given that uncertain situations in the
environment can happen in parallel to the CPS behavior. Even assuming, only known uncertainties, it is
impossible to write tests for all the scenarios and uncertainties manually. Thus, there is a need for a solution to
specify such scenarios and uncertainties at a higher level of abstraction, while leaving the low-level coding tasks
to the software tools. Thus, the first scientific challenge is how to systematically and automatically generate cost-
effective tests explicitly considering uncertainties. In addition, to test whether a CPS is capable of handling
uncertainties properly, it is prerequisite to enable the occurrence of uncertainties during testing. However, the
occurrence of uncertainty is uncertain by nature. This poses the second challenge: how to manipulate (e.g.,
increase the chance of) the occurrence of uncertainties during testing. It is also common that uncertainties of
CPSs and sources of these uncertainties (e.g., unpredictable operation environment) are not fully known, i.e.,
unknown uncertainty. So, discovering unknowns (i.e., making unknowns known) as much as possible before CPSs’
deployments via testing is therefore important. Hence the third scientific challenge is how to identify unknown
uncertainties and these sources via testing.

To address these challenges, we proposed an uncertainty-wise testing framework, named as UncerTest, by
considering the uncertainty aspect in test generation, test execution environment, and test verdicts. The key
contributions of UncerTest are summarized in Table 1, along with its objectives and corresponding challenges. In
principle, UncerTest is a model-based testing (MBT) framework, as its test ready models require explicitly
specifying subjective uncertainties, which are defined as “lack of knowledge” [7, 8] about the expected behavior
of a CPS in the presence of uncertainty in its operating environment. Such models need to be developed with our
previous work: Uncertainty Modeling Framework (UncerTum) [9, 10], and are specifically named as Belief Test
Ready Models (BMs)1 in the rest of the paper.

We propose two test generation strategies in UncerTest: 1) the All Simple Belief Paths coverage (ASiBP): a set

1 BMs have two types of UML diagrams: 1) Belief Class Diagrams (BCDs) capturing testing interfaces (e.g., observable states and operations)
and 2) Belief State Machines (BSMs) modeling the expected behavior of a CPS with subjective uncertainty captured.

2

of all simple paths (no loops) in a Belief State Machine, each of which contains unique states and transitions; and
2) the All Specified Length Belief Paths coverage (ASlBP): a set of all paths in a Belief State Machine, the
maximum length of each of which can be set to any positive number. Each path is an abstract test case. For each
abstract test case, UncerTest automatically calculates uncertainty related properties, e.g., uncertainty
measurements using an applicable mathematical model (uncertainty measurement calculation).

Followed by the test generation, the Uncertainty-wise Test Minimization approach of UncerTest should be
applied if the number of automatically generated abstract test cases is large, which is often true for any non-trivial
CPS, and it is practically impossible to execute all of them. The test case minimization strategies of UncerTest
are formulated as multi-objective search problems with the aim of balancing cost, effectiveness, and uncertainty
related objectives. Therefore, we opted for applying multi-objective search algorithms (e.g., NSGA-II) for
achieving the minimization goal. More specifically, we proposed four multi-objective search problems, which
aim to minimize the number of test cases (to reduce the execution cost) and maximize the transition coverage (to
maintain the effectiveness of coverage of a test ready model). However, each problem attempts to achieve four
different uncertainty related objectives: 1) maximizing the average number of uncertainties covered by the
selected test cases, which aims to test more defined uncertainties; 2) maximizing the average percentage of
uncertainty space covered by the selected test cases, which aims to test more uncertainties from the different
uncertainty space; 3) maximizing the average uncertainty measurement of the selected test cases, which aims to
test paths with high confidence; and 4) maximizing the average percentage of unique uncertainties covered by
selected test cases, which aims to test more different uncertainties.

A minimized set of abstract test cases is then converted into executable test cases. To raise the chance of
uncertainty occurrences, the invocation of source(s) of the uncertainty (i.e., indeterminacy sources) are encoded
in the executable test cases, which varies for the four test case minimization strategies. To enable the observation
of uncertainty occurrences, an uncertainty occurrence evaluation is employed in the executable test cases, which
is an implementation of our newly proposed uncertainty-wise test verdicts.

We evaluated UncerTest with two industrial case studies: GeoSports (GS) [11] (with one use case) and
Automotive Warehouse (AW) [12] (with four use cases). Results showed that UncerTest managed to generate test
cases, minimize test cases, enable sources of uncertainty in the test execution environment, and perform assertions
and generate uncertainty-wise test verdicts. To assess the cost-effectiveness of the test cases obtained by different
strategies (combining generation and minimization) of UncerTest, we performed an empirical evaluation using
the two case studies. Regarding the comparison across the test strategies to discover uncertainties in the behaviors
of CPSs, our best strategy managed to discover 51% more uncertainties as compared to the rest of the test
strategies due to unknown indeterminacy sources in the physical environments of the two industrial case studies.
Also, the same test strategy observed 118% more unknown uncertainties due to unknown indeterminate behaviors
of the physical environments as compared to the already known uncertainties.

Table 1. Challenges, Objectives, and Contributions
 Scientific Challenge Objective Contribution

C1 How to systematically
and automatically
generate cost-effective
tests by explicitly
considering
uncertainties?

Develop automated
uncertainty-wise test case
generation with MBT, and
cost-effective test
minimization with search

Test generation: Two automated test generation
strategies to generate test cases with uncertainties and
calculate uncertainty measurements.
Test minimization: Four strategies to obtain a cost-
effective set of test cases from the generated ones by
considering four different dimensions of uncertainty.

T
oo

l S
up

po
rt

C2 How to manipulate
the occurrence of
uncertainties during
testing?

With MBT, allow
specification of known
possible sources of
uncertainties in the
models, and introduce the
sources during test
execution.

Introduction of sources of uncertainties: Extended
UncerTum for modeling sources of uncertainty (i.e.,
indeterminacy sources) with recommendations; defining
strategies to introduce the sources of uncertainty
regarding which sources to introduce, where and how to
introduce them; and enabling the introduction of the
sources according to the specified strategies by
executable test case generation

C3 How to identify
unknown
uncertainties and
their sources?

Devise uncertainty-wise
test verdicts to discover
unknowns by checking
occurrences of known
uncertainties.

Test verdict: Defining test verdicts by evaluating an
occurrence of a specified behavior of a CPS together with
the occurrence of uncertainties and their sources. Such
test results can be used to identify unknown uncertainties
and examine relationships between uncertainties and
their sources.

A list of abbreviations in the paper is shown in Appendix A along with descriptions. The rest of the paper is
organized as follows. In Section 2, we briefly summarize UncerTum [10] and the Uncertainty Theory. In Section
3, we present a running example to illustrate the proposed approach throughout the paper. The overview of the
proposed approach is presented Section 4, followed by abstract test case generation (Section 5), uncertainty-wise
test minimization (Section 6), executable test case generation (Section 7) and uncertainty-wise test verdict
(Section 8). The evaluation is discussed in Section 9, and the tool implementation is described in Section 10. We

3

introduced related work in Section 11 and concluded the paper in Section 12.

2 Background
Section 2.1 presents our previous work Uncertainty Modeling Framework (UncerTum) used for developing belief
test ready models. Section 2.2 introduces two mathematical models for computing uncertainty measurements.

2.1 Uncertainty Modeling Framework (UncerTum)

UncerTum [9, 10] was proposed to develop test ready models for enabling MBT of CPSs in the presence of
environmental uncertainty. UncerTum is equipped with specialized modeling notations (named as the UML
Uncertainty Profile (UUP)) for specifying uncertainties. UUP is the core of UncerTum and UUP implements a
conceptual model, named as U-Model [13]. U-Model was developed to understand uncertainties in CPSs by
defining, characterizing and classifying uncertainties and associated concepts (e.g., Belief, BeliefStatement,
IndeterminacySource, Measure, and Measurement), and their relationships at a conceptual level.

UncerTum additionally defines four sets of UML model libraries: Pattern, Time, Measure, and Risk libraries,
by extending the existing UML profile: Modeling and Analysis of Real-Time and Embedded Systems (MARTE)
[14]. The purpose of defining these libraries is to ease the development of test ready models with uncertainty.

In summary, key notations used in UncerTum are standard UML state machines and class diagrams with UUP
stereotypes and the model libraries applied. Such diagrams are referred as BMs1. More details about UncerTum
can be found in our previous work: [9, 10].

2.2 Mathematical model for uncertainty measurements

In UncerTest, how to compute uncertainty measurements depends on which mathematical tool is applied.
Regarding obtaining uncertainty measurements, Probability Theory is commonly [15] used for measuring
uncertainty as frequencies based on samples from long-run experiments [15, 16], e.g., random experiments with
repeated trials. However, an estimated value can be regarded as close enough to the long-run frequency only if
the sample size is large enough. This is a fundamental prerequisite of applying Probability Theory. However, at
the initial stage of testing (e.g., test design for enabling MBT), such large samples are often unavailable [16].
Therefore, we selected Uncertainty Theory (i.e., “a branch of axiomatic mathematics for modeling belief degrees”)
to handle the situation of not having sufficient samples and therefore measuring the belief degree of an uncertainty
subjectively by domain experts [16, 17], instead of using frequency based on repeated experiments. We would
also like to acknowledge that Uncertainty Theory and Probability Theory together form complementary
mathematical systems, defining two different mathematical models to deal with uncertainty [16].

When collaborating with our industrial partners, frequencies of uncertainties are unavailable, but our industrial
partners can provide subjective measurements of uncertainty (i.e., belief degree). This is the main reason why we
employed Uncertainty Theory, instead of Probability Theory, to obtain uncertainty measurements. In addition,
the way of handling uncertainty in Uncertainty Theory well fits our definition of uncertainty inherited from U-
Model [13], by considering uncertainty from a human subjective perspective. In the literature, Uncertainty Theory
has been applied to solve various problems, including optimal control [18], optimal scheduling (the train timetable
problem [19]), reliability analysis [17], risk assessment [20], and the maximum flow problem of the network [21].

3 Running Example
To illustrate UncerTest, we present a running example about a simplified security system of the SafeHome system
described in [22]. In general, the security system controls and configures alarms and some related sensors for
implementing the various security and safety features, e.g., intrusion detection. Note that all text with underline
can be referred to the running example (Fig. 1 -- Fig. 5).

Example 1. Belief Model. A key input of UncerTest are BM1 specified by UncerTum (as discussed in Section
2.1), an example of which is shown in Fig. 1 (state machine) and Fig. 2 (class diagram). The class diagram
represents the structure of the security system. For example, the security system is composed of an alarm, a set of
sensors and a set of buttons. The state machine depicts a behavior of the security system, i.e., enabling the
monitoring function for activating intrusion detections. Each state in the state machine requires an explicit state
invariant, an example shown in the fragment (A) of Fig. 1, which can be used to derive a test oracle in the context
of MBT. UncerTum distinguishes itself from other UML-based modeling solutions because it allows the
construction of uncertainty. For instance, as shown in Fig. 1, uncertainty u(S1, T2, S2) represents that state S2:
Monitoring might be reached from S1: Idle when a user presses a button, which triggers the occurrence of
transition T2: EnableMonitoring. Corresponding to a situation that S2: Monitoring might not be reached, an
uncertainty u(S1, T2, S3) is constructed in the model. In addition, an uncertainty measurement allows being
specified in the model for representing how likely the uncertainty occurs, e.g., the measurement of u(S1, T2, S2)}
being 0.98 as shown in the fragment (B) of Fig. 1.

4

Fig. 1. An example of Belief State Machine

Fig. 2. An example of Belief Class Diagram

Example 2. Enabling IndeterminacySource. Regarding uncertainty u(S1, T2, S2), one possible source (i.e.,
IndeterminacySource) of its occurrence may relate to the physical button. For instance, the status of the button is
indeterminate (isBrokenDown in Fig. 2), either broken-down or normal. First, (C) of Fig. 2 explicitly presents an
occurrence of the possible indeterminacy source using a constraint with OCL, i.e., The button is normal. In
addition, (D) of Fig. 3 represents that an operation disableBrokenDown() (e.g., test API) can be used to ensure
that the button is in the normal status. Moreover, (E) of Fig. 3 specifies a causal relationship between uncertainty
and an indeterminacy source, i.e., u(S1, T2, S2) may occur when the button is normal. Last, (F) of Fig. 3 configures
a strategy to enable related indeterminacy sources of uncertainty during test execution, i.e., Always enable the
Specified related indeterminacy source (i.e., normal) on Just Previous of the uncertainty (i.e., u(S1, T1, S2)).

Fig. 3. An example of a configuration for enabling indeterminacy sources

Example 3. Abstract/Executable test case. With the models shown in Fig. 1, Fig. 2 and Fig. 3, an abstract test
case can be derived (as shown in the left side of Fig. 4) from initial state IS1 to final state FS1 with two
uncertainties: u(S1, T2, S2) and u(S2, T3, S4). The corresponding executable code regarding the fragment S1, T2
and S2 is shown in the right side of Fig. 4. For instance, state S1 is converted into lines 1-3 (in Fig. 4), which
evaluate the state invariant of S1, followed by an operation (disableBrokenDown) to enable specified
indeterminacy source (lines 4-6 in Fig. 4). The operation is inserted before an invocation of T2, which corresponds
to configuration Just Previous. Also, the occurrence of the uncertainty and its alternative uncertainty together with
its related indeterminacy source are also evaluated (lines 10-23 in Fig. 4).

5

- Note that entry1 (in the diagram) is an entry point of composite state S4. To flatten the composite state, entry1 is used to represent S4.

Fig. 4. An example representing the logic of an abstract and an executable test cases (partial) generated by UncerTest

Example 4. An assigned uncertainty verdict. An assigned uncertainty verdict of u(S1, T2, S2) is shown in Fig.
5. As seen from the results, the specified u(S1, T2, S2) occurred with its related indeterminacy source (normal
button). In addition, none of its alternatives occurred. Thus, we identified that a known uncertainty occurred with
its indeterminacy source, which is referred as KnOccurred-With-IndS. Note that an unknown uncertainty can be
identified when none of the specified uncertainty and its alternatives occurred.

Fig. 5. An example of the occurrence result of the uncertainty, u(S1, T2, S2)

4 Overview of UncerTest
Fig. 6 shows an overview of UncerTest that mainly consists of four components: uncertainty-wise test generation,

6

uncertainty-wise test minimization, indeterminacy source test modeling, and uncertainty-wise test verdicts.

Note that C1, C2 and C3 are the scientific challenges in Table 1.
-Ind.S.: IndeterminacySource, BCDs: Belief Class Diagrams, BSMs: Belief State Machines, and ODs: Object Diagrams.

Fig. 6: Overview of UncerTest

To address the scientific challenge of C1(Table 1), we employ models that capture expected behaviors and
known uncertainties of a CPS under test as a reference to generate test cases systematically and automatically
(i.e., uncertainty-wise test generation). As shown in Fig. 6, BMs1 are such models developed using UncerTum
(Section 2.1) for enabling uncertainty test modeling. UncerTest has two test case generation strategies
corresponding to two coverage criteria: ASiBP and ASlBP. These two strategies are inspired from [23], are
designed particularly for belief state machines, and considered the uncertainty aspects such as the number of
uncertainties in a test path and overall uncertainty measurement of a test path. Moreover, UncerTest considers
advanced features of UML state machines such as composite states, submachine states, and orthogonal regions.
To cost-effectively minimize test cases for execution, UncerTest relies on multi-objective search to minimize
generated test cases (i.e., uncertainty-wise test minimization). First, we apply two typical cost-effective
objectives: PerTMin (percentage-of-test-case-minimization) to reduce the number of test cases, and PerTransition
(percentage-of-transition-coverage) to maintain coverage of BMs. Additionally, we newly define four uncertainty
related objectives: AvgNU (average-normalized-number-of-uncertainties-covered) about the quantity of
uncertainties (to maximize the number of uncertainties), PerUSpace (percentage-of-uncertainty-space-covered)
regarding the uncertainty space (to maximize uncertainties that are from different uncertainty spaces), AvgUM
(average-overall-uncertainty-measurement) regarding uncertainty measurement (to maximize uncertainties that
highly occur), and PerUniqueU (percentage-of-unique-uncertainties-covered) regarding diversity (to maximize
uncertainties that are different). Based on these six objectives, we formulated four multi-objective search problems
(Prob.1 – Prob. 4 in Fig. 6), each of which was defined with PerTMin, PerTransition and one of the four
uncertainty-related objectives.

To increase chances of occurrences of (known or unknown) uncertainties (to address the scientific challenge
of C2 in Table 1), one viable way is to enable occurrences of uncertainty sources (i.e., IndeterminacySources). In
UncerTest, such sources are captured in BMs with the indeterminacy source test modeling methodology (Fig.
6), an extension of UncerTum. This extension enables a detailed construction of an indeterminacy source
including specifying constraints to evaluate its occurrences and a property referring a test API to enable its
occurrence. Since one uncertainty might have multiple sources, we need a strategy to decide which indeterminacy
source to introduce. Besides, an indeterminacy source may lead to more than one uncertainty, thus, we also need
to decide where to introduce the indeterminacy source such that the occurrence of the concerned uncertainty (not
the others sharing the same indeterminacy source) can be enabled. To achieve these objectives, we propose a set
of strategies to enable the decision making of which sources to introduce, where to introduce them and how to
introduce them during test generation. Subsequently, these sources are carried as parts of executable test cases.
Based on different configurations of the strategies of introducing indeterminacy sources , a CPS can therefore be
tested under different combinations of them. For instance, Fig. 4 shows an executable test case generated with
indeterminacy sources according to the configuration shown in Fig. 3.

To address the scientific challenge of C3 (Table 1), we are concerned with discovering unknown occurrences
of uncertainties (i.e., uncertainties previously unknown or known uncertainty occurred with unknown sources)
during testing. Thus, a test result of a test case should explicitly present occurrences of uncertainties and their
sources covered by the test case. To make such occurrences observable, we propose uncertainty-wise test
verdicts (Fig. 6), which includes an integrated evaluation of 1) the occurrence of a specified uncertainty covered
in the test case, 2) the occurrence of related sources, and 3) the occurrence of alternatives of the uncertainty. With

7

such verdicts, an unknown uncertainty can be identified, i.e, when none of the specified (known) uncertainties and
their alternatives occurred during test execution; and, an unknown indeterminacy source can also be identified,
i.e., when none of the indeterminacy sources occurs, but the uncertainty occurs. Moreover, based on test results
with the verdicts, further analyses can also be supported. For instance, a causal relationship between uncertainty
and its indeterminacy sources can further be quantified as, e.g., one source leads to the occurrence of an
uncertainty with the 80% probability. Information like this may help to provide additional guidance on how to
operate the system by for example reducing a chance of occurrences of an indeterminacy source.

5 Abstract Test Case Generation
UncerTest automatically generates abstract test cases from belief models with the test case generation strategies.
In Section 5.1, we provide definitions of key concepts. A comprehensive list of definitions of concepts is however
provided in Appendix A for reference. In Section 5.2, we discuss the uncertainty measurement calculation,
followed by the generation strategies (Section 5.3).

5.1 Definitions

In a Belief State Machine, uncertainty is a situation whereby the belief agent does not have full confidence that a
state sx transits to another state sy through a transition tz, represented as u(sx, tz, sy). In addition, an uncertainty
space is a set of uncertainties that originate from the same state sx with the same transition tz , represented as
usp(sx, tz). As shown in Fig. 7, u(S1, T2, S2) is an uncertainty, and u(S1, T2, S2) and u(S1, T2, S3) belong to the
same uncertainty space: usp(S1, T2).

Fig. 7: Illustrating uncertainties and uncertainty spaces from the Belief State Machine shown Fig. 1

An abstract test case based on a state machine can be represented as a path of traversing the state machine
from an initial state to a final state. In UncerTest, such an abstract test case is derived from a belief state machine,
and the corresponding path is called a belief path, as it contains uncertainty information. As a belief state machine
is essentially a UML state machine, a composite state may exist in a belief path; therefore, it is needed to further
flatten such a composite state. Subsequently, in UncerTest, we propose deep belief paths, i.e., belief paths that do
not have any composite or submachine state, and each deep belief path is an abstract test case. For example, Fig.
8 (a) is a belief path but not deep, and Fig. 8 (b) demonstrates a deep belief path derived from the belief state
machine in Fig. 7. Furthermore, we define simple deep paths as belief paths that only contain unique states and
transitions, e.g., the deep belief path shown in Fig. 8 (b) is also simple. Conversely, a path shown in Fig. 8 (c) is
therefore not a simple deep path as fragment S2® T3® entry1 appear in the path twice.

IS: Initial State, S: State, FS: Final State, and T: Transition, black filled circle: State stereotyped with «BeliefElement»

Fig. 8: Illustrating belief paths
Since an abstract test case (i.e., a deep belief path) is derived from a belief state machine, we further extract a

set of its properties: 1) a multi-set of uncertainties covered, 2) a set of unique uncertainties covered, 3) a set of
unique uncertainty space covered, 4) a set of unique transitions covered, and 5) an uncertainty measurement of
abstract test case.

5.2 Uncertainty Measurement Calculation

To calculate the uncertainty measurement of an abstract test case, we required that each uncertainty in a Belief
State Machine should be specified with uncertainty measurement, represented as um. In this section, we discuss
basic concepts of probability theory and uncertainty theory. In addition, an example to demonstrate how to apply
these theories in UncerTest are presented in Table 2 and Fig. 9.

(1) Probability theory

8

To apply Probability theory, measurements of uncertainties (i.e., frequency) should follow three axioms and
product probability theorem of probability theory:

Axiom 1. (Normality) 𝑃𝑟(Ω) = 1, (Ω is the universal set).
Axiom 2. (Nonnegativity Axiom)	Pr	(𝐴) ≥ 0, where A is any event in Ω.
Axiom 3. (Additivity Axiom) 𝑃𝑟{⋃ A12

134 } = ∑ 𝑃𝑟{A1}2
134 (every countable sequence of mutually disjoint

events A4, A8, …).
Theorem (Product Probability): Let (Ω:, 𝐴:, 𝑃𝑟:) be probability spaces for k = 1, 2, …. The product probability

is a probability measure satisfying Pr{⋂ 𝐴:2
4 } = ∏ 𝑃𝑟	{𝐴:}2

4 , where Ak is arbitrarily chosen events from Ak for
k = 1, 2, … respectively.

(2) Uncertainty theory
Uncertainty Theory defines a term called Uncertainty Measure (represented as the ℳ symbol), which captures

a specific uncertainty value (a number) related to an event. This number assigns the belief degree [13] of a belief
agent [13] to the event, to indicate her/his confidence about the occurrence of the event [17]. As Liu suggested in
[17], ℳ respects the following four axioms:

Axiom 1. (Normality) ℳ(Γ) = 1, (Γ is the universal set).
Axiom 2. (Duality)	ℳ{Λ} +ℳ{ΛA} = 1, where Λ shows a particular event, whereas ΛA shows all the elements

in the universal set excluding Λ.
Axiom 3. (Subadditivity) ℳ{⋃ Λ12

134 } ≤ ∑ ℳ{Λ1}2
134 (every countable sequence of events Λ4, Λ8, …).

Uncertainty Space: A triplet (Γ, ℒ,ℳ), where Γ is the universal set, ℒ	 is a 𝜎-algebra [24] over Γ, and ℳ is
Uncertainty Measure.

Theorem: Let (Γ:, ℒ:,ℳ:) be uncertainty spaces and Λ: ∈ ℒ: , for 𝑘 = 1, 2,… 	𝑛. Then Λ4 ,	Λ8 ,… ΛI are
always independent of each other if they are from different uncertainty spaces.

Axiom 4. (Product Axiom) Let (Γ:, ℒ:,ℳ:) be uncertainty spaces for 𝑘 = 1, 2,…. The product uncertainty
measure is an uncertainty measure ℳ satisfying ℳ{∏ Λ12

134 } = 	⋀ ℳ{Λ:}2
:34 , where Λ:	is arbitrarily chosen

events from ℒ: for k = 1, 2, … respectively.
Table 2. An example to calculate uncertainty measurement using probability theory and uncertainty theory

Concepts Probability Theory Uncertainty Theory
usp(S, T) Universal set, W

Example. W = {u(S1, T2, S2), u(S1, T2, S3)}
Universal set, G
Example. G = {u (S1, T2, S2), u(S1, T2, S3)}

um of an
uncertainty

um(u) = ProbabilityMeasure(u) = Pr(u) =
frequency = times to occur / times to sample
Example. Pr{u(S1, T2, S2)}=0.98, Pr{u(S1, T2,
S3)}= 0.02

um(u) = UncertaintyMeasure(u) = ℳ {u}= belief
degree of U specified by domain experts
Example. 𝓛 = {∅,	{u (S1, T2, S2)} {u(S1, T2, S3)},
G}, ℳ {∅} = 0, ℳ {u(S1, T2, S2)} =0.98, ℳ{u(S1,
T2, S3)} = 0.02 and ℳ{G}=1

um of a test
case

𝑃𝑟{⋂ 𝐴12
4 } = ∏ 𝑃𝑟	{𝐴1}2

4 		
Example. Pr(t) = Pr{u(S1, T2, S2)}´ Pr{u(S2, T3,
S4)}´ Pr{u(S2, T3, S4)} = 0.98´ 0.9´0.9= 0.048	

ℳ{∏ Λ1
2
134 } = 	⋀ ℳ{Λ:}2

:34
Example. ℳ(t) = ℳ {u(S1, T2, S2)}Ù	ℳ {u(S2, T3,
S4)} Ù ℳ {u(S2, T3, S4)} = 0.98Ù 0.9Ù0.9= 0.9

Note that entry 1 is the entry point of composite state S4, and entry 1 represents S4 in a flatten path, i.e., deep belief path

Fig. 9: Illustrating abstract test cases with uncertainties and their UMs

5.3 Test Case Generation Strategies

In the literature, some test case generation strategies based on state machines have been proposed including All
Transitions, All States, and All Predicates [25-28]. For UncerTest, we propose two test case generation strategies,
inspired by Prime Path Coverage and Specified Path Coverage, both presented in [23].

All Simple Belief Path Coverage (ASiBP): Test set T satisfies ASiBP on a belief state machine if and only if
any belief simple deep path from the initial state to one of the final states in the belief state machine is in T. As
said in [23], "One useful aspect of the simple path is that any path can be created by composing simple paths".

9

We propose ASiBP to cover all minimal paths, based on which any path-based coverage criterion can be defined
by extending a path generated with ASiBP (i.e., side trips and detours [23]). The test set generated using this
strategy is the cross product of all the possible simple deep belief paths across all the regions.

All Specified Length Belief Path Coverage (ASlBP): Test set T satisfies ASlBP on a belief state machine if and
only if the length of any belief simple deep path less than the specified length from the initial state to one of the
final states in the belief state machine is in T. We propose ASlBP because it can be configured 1) for specific
needs (e.g., saving cost by generating less numbers of test cases), 2) to subsume All Transitions, All States, and
All Predicates when needed, 3) to generate a larger size of test set from a belief model (which are more diverse
in terms of attached uncertainty information) to form a better pool for test minimization, and 4) to subsume the
All Uncertainty coverage, which we define as covering all states and transitions with uncertainty. The test set
generated with this strategy consists of all possible deep belief paths with loops allowed, and all the lengths of
these paths should not be longer than the maximum allowed length, which is configurable (as discussed above)
and should be pre-defined before applying the strategy. For example, one way of defining the maximum allowed
length for generating paths for a region is to calculate the total number of states and transitions contained in it.

6 Uncertainty-Wise Test Case Minimization

6.1 Problem Representation

Depending on which test case generation strategy to apply, how it is configured (for ASlBP) and how complex a
CPS under test is, the number of generated abstract test cases can potentially be very large and it would be
practically impossible to execute executable test cases generated from all of the abstract test cases within a limited
time budget. It is, therefore, important to minimize the number of abstract test cases based on various attributes
associated with each test case.

Let T ={ti | 0 < i < nt} be a test set derived from a belief state machine with one of the UncerTest test generation
strategies. Each test case t has four attributes related uncertainty (Section 5.1). S = {s1, …, sms} presents a set of
potential solutions, i.e., a subset of T, where ms is the total number of potential solutions and is calculated as 2nt-
1 except that the solution selects none of the test cases. As the number of generated test cases increases, the search
space will increase exponentially. For any test case minimization problem, solution s contains a set of selected
test cases, formalized as Tsub ={t'j | 0 < j < mt, t'j Î T} Í T, where mt is the number of selected test cases. Each
solution s is characterized by a set of values of cost and effectiveness measures. In UncerTest, we defined six
objectives and four uncertainty-wise multi-objective minimization problems with consideration of three aspects:
cost, effectiveness, and uncertainty. Each of these four problems is composed of three of the six objectives.

6.2 Definitions of the Minimization Objectives

We define six minimization objectives: cost measure O1, four uncertainty related measures (O2-O4), and
effectiveness measure O6.

O1. Percentage of Test Case Minimization (PerTMin): PerTMin is the percentage of selected test cases in
solution 𝑇NOP:𝑃𝑒𝑟𝑇𝑀𝑖𝑛 = 	TU

IU
	× 100%,	where 𝑛𝑡 and 𝑚𝑡 are the numbers of test cases in T and 𝑇NOP.

O2. Average Normalized Number of Uncertainties Covered (AvgNU): AvgNU measures the average
normalized number of uncertainties covered by the selected test cases of a solution. For each test case 𝑡1Z, the
number of uncertainties covered is	𝑛𝑢(𝑡1Z), which can be normalized [1] as: 𝑛𝑜𝑟(𝑛𝑢(𝑡1Z)) =

IO(U]^)
IO(U]^)	_4	

. AvgNU

for the selected test cases is ∑ I`a(bc(U]^))
de
]fg

TU
, where mt is the number of test cases in 𝑇NOP.

O3. Percentage of Uncertainty Space Covered (PerUSpace): PerUSpace measures the percentage of the total
set of uncertainty spaces of a Belief State Machine covered by the selected test cases of a solution. Suppose, the
set of uncertainty spaces of the state machine is 𝑈𝑆𝑃jk = {𝑢𝑠𝑝1|	0 < 𝑖 ≤ 𝑛𝑢𝑠𝑝} and the set of uncertainty spaces
of the selected test cases is the intersection of the uncertainty spaces across each test case 𝑡1Z , 	𝑈𝑆𝑃NOP =
⋂ 𝑈𝑆𝑃U]^ =
TU
1 {𝑢𝑠𝑝1Z|	0 < 𝑖 ≤ 𝑚𝑢𝑠𝑝} 	⊆ 𝑈𝑆𝑃jk. PerUSpace is then defined as: TONq

IONq
× 100%.

O4. Average Overall Uncertainty Measurement (AvgUM): AvgUM is the overall uncertainty measurement of
the selected test cases of a solution. Note that for test case 𝑡1Z, um(𝑡1Z) is an uncertainty measurement calculated

based on any of the two applicable mathematical theories (Section 5.2). Thus, AvgUM = ∑ OT(U]Z)
de
]fg

TU
× 100%.

O5. Percentage of Unique Uncertainties Covered (PerUniqueU): PerUniqueU measures the percentage of the
total number of unique uncertainties covered by the selected test cases of a solution. Suppose that the set of unique
uncertainties in a Belief State Machine is 𝑈𝑈jk = {𝑢1|	0 < 𝑖 ≤ 𝑛𝑢𝑢} and the set of unique uncertainties of the
selected test cases is the interaction of the unique uncertainties across each test case 𝑡1Z , 𝑈𝑈NOP =
⋂ 𝑈𝑈U]^ =
TU
1 {𝑢sZ|	0 < 𝑖 ≤ 𝑚𝑢𝑢} 	⊆ 𝑈𝑈jk, then PerUniqueU is calculated as:		IOO

IOO
× 100%.

O6. Percentage of Transition Coverage (PerTransition): PerTransition measures the percentage of the total

10

number of transitions in a Belief State Machine covered by the selected test cases of a solution. Suppose that ntr
is the total number of transitions in a Belief State Machine, and mtr is the number of transitions in the selected
test cases (the size of the interactions among the transition sets of each selected test case 𝑡1Z , Transitionsub
⋂ 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛U]^ =
TU
1 {𝑡𝑟1Z|	0 < 𝑖 ≤ 𝑚𝑡𝑟}). PerTransition is calculated as: TUa

IUa
× 100%.

6.3 Uncertainty-wise Test Case Minimization Problems

To reduce the number of test cases to execute and maximize the coverage of transitions in test ready models,
PerTMin and PerTransition are two necessary objectives. Further, we define the following four test case
minimization problems that minimize PerTMin, maximize PerTransition, and at the same time achieve four
distinct uncertainty-related objectives.

Problem 1. Search for a solution 𝑇NOP to achieve: 1) low PerTMin ; 2) high AvgNU; and 3) high PerTransition.
We define Problem 1 to select the minimum number of test cases to cover the maximum number of known
uncertainties possible, aiming to observe the reaction of the CPS in the presence of a maximum number of
uncertainties with the minimum possible test cases.

Problem 2. Search for a solution 𝑇NOP to achieve: 1) low PerTMin; 2) high PerUSpace; and 3) high
PerTransition. We define Problem 2 to select the minimum number of test cases to cover at least one uncertainty
from each uncertainty spaces. We aim to observe the reaction of the CPS in the presence of uncertainties from all
known uncertainty spaces with the minimum possible test cases.

Problem 3. Search for a solution 𝑇NOP to achieve: 1) low PerTMin; 2) high AvgUM; and 3) high PerTransition.
We define Problem 3 to select the minimum number of test cases to maximize the coverage of the parts of the
system with a high degree of confidence.

Objective AvgUM prefers higher values because: 1) an occurrence of uncertainty is prerequisite to test CPSs
with uncertainty. If an uncertainty measurement is quite low, there is a higher chance of testing CPSs without
uncertainties; and 2) a higher value normally reflects an expected system behavior. For example, an expected
behavior of the running example (Fig. 1) is successfully enabling monitoring (i.e., u(S1, T2, S2)), and its
measurement is 98%.

Problem 4. Search for a solution 𝑇NOP to achieve: 1) low PerTMin; 2) high PerUniqueU; and 3) high
PerTransition. We define Problem 4 to select the minimum number of test cases and to maximize the coverage
of different uncertainties. We aim to test the behavior of a CPS under diverse uncertainties with the minimum
number of test cases.

7 Executable Test Case Generation
In UncerTest, generating executable test cases from abstract test cases (Section 5) is mainly about how to generate
test data and introduce indeterminacy sources (i.e., sources of uncertainties), specified in test ready models.

7.1 Enabling Indeterminacy

Since we focus on testing a CPS in the presence of environmental uncertainties, we need to introduce uncertainties
in the physical environment, which may lead to uncertain behaviors of the CPS. To achieve this, we need to model
such environmental uncertainties (named as “Indeterminacy Sources” for being more precise).

Fig. 10 shows part of the UUP profile (Section 2.1) for modeling indeterminacy sources. We provide a set of
options to model indeterminacy sources, e.g., as a UML Operation and a constraint specified in Object Constraint
Language (OCL) [29]. An indeterminacy source always has 1..* indeterminacy specifications, i.e.,
«IndeterminacySpecification» (conditions) that must be true for an indeterminacy source to occur.
«IndeterminacySourceInput» specifies the action that triggers the occurrence of «IndeterminacySource».

Fig. 10: UML Profile Diagram of IndeterminacySource (Partial)

It is possible to model these indeterminacy-related concepts in different ways. Therefore, to ease the modeling
process, we summarize our recommendations for applying this part of the profile in Fig. 10, based on our

11

experience. For example, in the first situation (as described as Case1 in Table 3), we recommend modeling an
indeterminacy source as a UML Property, when states of a CPS or its environment can be directly accessed and
are indeterminate.

Note that for the first and third situations (Case1 and Case3 in Table 3), we recommend specifying an
indeterminacy source input either as an Operation without parameters (Option1) or as an Operation with
parameter(s) constrained with an OCL constraint (Option2). Also, for Case1 and Case3, an indeterminacy source
can be specified as a property (Rule1.1 and Rule3.1) or constraint (Rule1.2 and Rule 3.2). If it is Rule1.2 or
Rule3.2, its corresponding indeterminacy specification(s) can then be simply specified as FALSE by default and
must be switched to TRUE to enable the related indeterminacy source.

Table 3: Recommendations for applying an indeterminacy source
Stereotype Applied Base Element

Case1: States of the environment of the CPS are indeterminate (e.g., the status of the button).
 Rule1.1 «IndeterminacySource» Property
 «IndeterminacySpecification» Constraint
 Option1 «IndeterminacySourceInput» Operation
 Option2 «IndeterminacySourceInput» Operation, Constraint
 Rule1.2 «IndeterminacySource» Constraint
 «IndeterminacySpecification» FALSE (default)
 Option1 «IndeterminacySourceInput» Operation
 Option2 «IndeterminacySourceInput» Operation, Constraint
Case2: Input data is indeterminate.
 Rule2.1 «IndeterminacySource» Operation
 «IndeterminacySpecification» Constraint
 «IndeterminacySourceInput» Constraint
Case3: Occurrences of an event from the environment (e.g., “pressing the button”) are indeterminate.
 R3.1 «IndeterminacySource» Property
 «IndeterminacySpecification» Constraint
 Option1 «IndeterminacySourceInput» Operation
 Option2 «IndeterminacySourceInput» Operation, Constraint
 R3.2 «IndeterminacySource» Constraint
 «IndeterminacySpecification» FALSE (default)
 Option1 «IndeterminacySourceInput» Operation
 Option2 «IndeterminacySourceInput» Operation, Constraint

SelectSpecification and FindPosition (Fig. 10) enable an indeterminacy source associated with a specific
uncertainty, their corresponding indeterminacy specifications, and inputs during test execution. EnablePattern
(Fig. 10) provides four ways of enabling an indeterminacy source: 1) Random – the indeterminacy source is
introduced randomly (from the uniform random distribution) during execution; 2) Always - the indeterminacy
source is always enabled during execution; 3) Measured - the indeterminacy source is enabled during execution
by a specified measurement, e.g., with a normal distribution; and 4) Never - the indeterminacy source is never
enabled during the execution. Choosing which option depends on how much knowledge and information (e.g.,
experience, historical data) one has about the system.

SelectSpecification provides three ways of selecting which indeterminacy specification(s) of an indeterminacy
source to be enabled during test execution: 1) All – all associated indeterminacy specifications are enabled; 2)
Random – enable a random number of randomly selected specification(s) from all the specifications associated
with the indeterminacy source during test execution; and 3) Specified – the indeterminacy specification(s)
specified with the “enabled” attribute is enabled during the test execution. Similarly, which option to take is highly
dependent on users’ experience, knowledge and available historical data.

FindPosition is about finding a position of a path generated by UncerTest, in which an indeterminacy source
should be enabled. We define four options for FindPosition: 1) Random - the position is generated randomly; 2)
Any_Previous – the position can be any previous position before the occurrence of the associated uncertainty; 3)
Just_Previous – the position is exactly the position right before the occurrence of the associated uncertainty; and
4) Specified – the exact position is modeled in the test ready model. Random is recommended when we have no
particular preferences or guidance. Any_Previous is recommended when one wants to test, if possible, whether
the uncertainty is actually due to the indeterminacy source enabled. Just_Previous should be used when one wants
to know whether the occurrence of the uncertainty is due to its previous step. Specified should be used when one
has a specific position in mind, based on for example previous experience or historical data.

Note that the three mechanisms can be configured by users to form a concrete strategy (as part of an overall
test strategy) for enabling an indeterminacy source associated with an uncertainty and all or part of its associated
indeterminacy specifications, at a particular position of a path, which is eventually transformed into executable
test cases and executed. Example 2 (Fig. 3) represents a configuration of enabling indeterminacy sources, and
Example 3 (Fig. 4) is a partial executable test case according to the configuration (Fig. 3).

7.2 Test Setup and Test Data Generation

When generating executable test cases, test configuration and concrete test data are needed. When applying

12

UncerTum, test configuration is recommended to be specified as a UML object diagram organized in a package.
All the objects and their relationships in this test configuration package will be instantiated before execution.

First, test data generation is needed for triggering call events on transitions. In this case, a guard condition (an
OCL constraint) on a transition specifies the valid set of values, with which the call event can be invoked. We
used an existing test data generation tool called EsOCL [30], which takes an OCL constraint as an input and
generates a set of values that satisfy the constraint. These values are then used as test data in executable test cases.
Second, test data might be needed to trigger occurrences of indeterminacy sources. For any indeterminacy source
input that is specified as a stereotyped Constraint or as a stereotyped Operation with its parameters constrained
with a constraint, we rely on the EsOCL tool [30] to solve the constraint to generate test data. For any
indeterminacy source input specified as an operation with no any parameter, no data needs to be generated to
trigger the operation and hence the indeterminacy input.

8 Uncertainty-wise Test Verdicts
In state-based testing, a test result is typical determined by evaluating whether a specified state invariant is
satisfied (i.e., fail or pass) with actual data specifying the state of a CPS. In the context of uncertainty-wise testing,
a test result requires to carry additional information related to uncertainty such as an occurrence of uncertainty
and an occurrence of introduced indeterminacy sources. In UncerTest, an uncertainty (sx, tz, sy) is counted as
occurred during testing, if and only if a state of the CPS under test changes from sx to sy by sending a stimulus
according to transition tz, in the sequence of checking that state invariant of sx is satisfied, transition tz is executed,
and state invariant of sy is satisfied. Regarding an occurrence of an indeterminacy source, it can similarly be
determined by evaluating if its specification (i.e., an OCL constraint) is satisfied with run-time data from the CPS
under test or test infrastructure. Example 3 in Fig. 4 illustrates such evaluations.

Identifying unknowns is concerned with capturing an unknown occurrence of an uncertainty (i.e., the
uncertainty is previously unknown, or the known uncertainty occurred with previously unknown sources) during
testing. To identify such unknown occurrences, we design uncertainty-wise test verdict, with a comprehensive
evaluation of occurrences of uncertainties and their sources, as shown in Fig. 11 (the conceptual model) and Table
4 (definitions). There are two types of uncertainty-wise test verdicts. The first type, i.e., UncerVerdict, defines
verdicts for a set of possible evaluations of the occurrence of an uncertainty (i.e., test oracle). An UncerVerdict is
determined by the result of an evaluation of an occurrence of an uncertainty, related sources of the uncertainty,
and the alternatives of the uncertainty. The seven kinds of UncerVerdict are listed as the seven literals of
enumeration UncerVerdictKind (definitions in Table 4), which correspond to an identification of unknown
indeterminacy sources and uncertainties. An example (Example 4) of a result (i.e., KnOccurred-With-InS) of an
uncertainty is shown in Fig. 5, and KnOccurred-With-InS is assigned to the uncertainty because the occurrence of
the uncertainty is evaluated as TRUE, the occurrence of the related source is evaluated as TRUE, and meanwhile
the occurrences of all the alternatives of the uncertainty are FALSE. The pseudocode to determine the verdict of
an uncertainty with UncerVerdict is provided in Fig 12.

The second type of uncertainty-wise test verdict, i.e., UncerTestCaseVerdict, is defined in terms of a test case
that contains uncertainties, by extending classical test case verdicts (e.g., pass). As shown in Fig. 11, an
UncerTestCaseVerdict is specified as a sequence of UncerVerdicts specifying a set of possible evaluations of a
test case, including the uncertainty aspect (e.g., known uncertainty occurred (i.e., KnOccurred)) and classical test
case verdicts (e.g., Pass). The uncertainty related verdicts of a test case can be derived based on the verdicts of
uncertainties in the test case. For instance, a test case is evaluated to be KnOccurred when at least one known
uncertainty (with any of the three KnOccurred-* types of UncerVerdictKind) occurred, and none of the verdicts
of the uncertainties is UkOccurred. Definitions of UncerVerdictKind are shown in Table 4.

Fig. 11: Uncertainty-wise Test Verdicts – Conceptual Model

13

Table 4: Uncertainty-wise Test Verdicts – Definitions of the Literals of the Enumerations (Fig. 11).

Literal Definition Unknown detection
UncerVerdictKind: Kinds of verdicts for an uncertainty

KnOccurred-With-InS Known uncertainty occurred under the occurrence of a specified indeterminacy source -
KnOccurred-Without-

InS
Known uncertainty occurred under the non-occurrence of any specified indeterminacy
source Unknown

indeterminacy source KnNotOccurred-With-
InS

Known uncertainty did not occur under the occurrence of any specified indeterminacy
source. Meanwhile, at least one of alternatives of the uncertainty occurred.

KnNotOccurred-
Without-InS

Known uncertainty did not occur under the non-occurrence of any specified
indeterminacy source. Meanwhile, at least one of alternatives of the uncertainty
occurred.

-

KnOccurred-UkInS Known uncertainty occurred, but its related indeterminacy source is unknown. Unknown
indeterminacy source KnNotOccurred-UkInS Known uncertainty did not occur, and its related indeterminacy source is unknown.

UkOccurred Known uncertainty did not occur, and none of its alternatives occurred. Unknown uncertainty
UncerTestCaseVerdictKind: Kinds of the verdicts for a test case

KnOccurred At least one known uncertainty (with any of the three KnOccurred-* types of UncerVerdictKind) occurred but
no UkOccurred.

UkOccurred At least one UkOccurred.
NotOccurred All uncertainties are evaluated to be any of the three KnNotOccurred-* kinds of UncerVerdictKind.

Pass The test case execution result, for which no uncertainty is specified, adheres to the expectations [31].
Fail The test case execution result, for which no uncertainty is specified, differs from the expectations [31].

Error An error is detected.

Inconclusive The test case execution result cannot be classified as Pass, Fail, Error, KnOccurred, UkOccurred or
NotOccurred.

None A test case has not yet been executed.

Fig 12. Pseudocode to assign UncerVerdictKind for an uncertainty

9 Evaluation
Section 9.1 introduces case studies. Section 9.2 presents research questions. Section 9.3 presents the design of our
evaluation. Results are presented in Section 9.4, the overall discussion is presented in Section 9.5, and threats to
validity are presented in Section 9.6.

9.1 Case Study

To assess the cost-effectiveness of UncerTest, we selected two industrial CPS case studies. The first is GeoSports,
and the system monitors the performance (e.g., speed and position) and health conditions of players both
individually and as a team during a game with the ultimate objective of improving their performance. The
GeoSports application that we tested is deployed for Bandy (a type of ice hockey commonly played in northern
Europe) and uses the Quuppa system [32]. The testing infrastructure for Bandy is shown in Fig. 13. Instead of
using real players to execute test cases, our industrial partner, Nordic Med Test [33] has deployed a set of test rigs
for replacing players. Each test rig has one Quuppa device attached to it. The device communicates its position
with one or more locators (antennas) via Bluetooth connections and the locators receive those positions and send
them to the Quuppa Server (QPE). The access to the devices, locators, and the QPE server are available as REST
APIs. Also, a set of test APIs was implemented by the partner as REST APIs for controlling the test rigs. Notice
that we only tested the positioning system in this paper, i.e., collecting the positions from Quuppa tags and
transmitting them to the QPE server via locators.

The second case study is Automated Warehouse (AW) provided by ULMA Handling Systems [12], Spain.

To Assign UncerVerdict for an uncertainty (agUV)
Input U = (sts, tr, stt)

1 if eva(stt)
2 if len(getrelatedIndSp(U)) = 0
3 return KnOccurred-UkInS
4 else
5 for Indp: getrelatedIndSp
6 if eva(Indp)
7 return KnOccurred-With-UkInS
8 return KnOccurred-Wihtout-UkInS
9 else
10 for altU: getAltUs(U)
11 if eva(altU.stt)
12 if len(getrelatedIndSp(U)) = 0
13 return KnNotOccurred-UkInS
14 else
15 for aIndp: getrelatedIndSp(altU)
16 if eva(aIndp)
17 return KnNotOccurred-With-InS
18 return KnNotOccurred-Without-InS
19 return UkOccurred

	

14

ULMA develops automated handling systems for worldwide warehouses of different natures such as Food and
Beverages, Industrial, Textile, and Storage. Each handling facility (e.g., cranes, conveyors, sorting systems,
picking systems, rolling tables, lifts, and intermediate storage) forms a physical unit, and together they are
deployed to one handling system application (e.g., Storage). A handling system cloud supervision system (HSCS)
interacts with diverse types of physical units, network equipment, and cloud services. Application-specific
processes in HSCS are executed spanning clouds and CPS requiring different configurations. This case study
implements several key industrial scenarios, i.e., introducing a large number of pallets to the warehouse,
transferring the items by Stacker Crane. Instead of using real devices to test these scenarios, ULMA [12] and IK4-
Ikerlan [34] developed and provided relevant simulators and emulators (Fig. 13). For example, two handling
systems are deployed at two different sites (Site 1 and Site 2). For each site, the local superior monitors software
and all types of devices and services and upload the data to the cloud superior through the network. Each physical
device is developed as a simulator where the software, i.e., WMS and MFC, are deployed on. Also, a set of
emulators are developed for manipulating the real physical environment, e.g., putting a pallet on the conveyor. To
access the devices, software, and environment, the test APIs were implemented by the partner for controlling the
physical device, sending requests to the software, and manipulating the physical environment. Further details on
the case studies can be consulted in [35].

The descriptive statistics of the test ready models of GS and AW are given in Table 5. We selected one use
case for GS and four use cases for AW. For each use case, we selected the number of elements stereotyped as
«BeliefElement» (#Belief), uncertainties (#Uncertainty), known indeterminacy sources (#IndS), known
indeterminacy source specifications (#IndSpec), states (#State), and transitions (#Transition). For AW, the
percentage of uncertainties specified in the test ready model is more than 50%, which reflects that more than 50%
behavior specified in the test ready model is uncertain. This value is higher than the one for GS since the behavior
and environment of AW is relatively complex, e.g., a large number of devices.

Fig. 13: The Test Execution Solution of the Case Studies

Table 5: Descriptive Statistics of the Case Studies
UC #Belief #Uncertainty #IndS #IndSp #State #Transition #Uncertainty/#Stat

e
#Uncertainty/#Tra
nsition

AW AW1 7 11 2 4 12 15 91.7% 73.3%
AW2 5 9 2 4 12 18 75.0% 50.0%
AW3 6 10 - - 10 14 100.0% 71.4%
AW4 7 8 1 2 16 16 50.0% 50.0%

GS GS1 6 6 1 2 17 21 35.3% 28.6%

"-" means unknown indeterminacy source

15

9.2 Research Questions

We aim to assess which combination of the two test case generation strategies and the four test case minimization
strategies is cost-effective. In total, we have five combined test strategies. The results for the two test case
generation strategies are reported in Table 6. First, test cases are generated from a Belief State Machine using
ASiBP. With this strategy, the numbers of generated test cases for the two case studies are small, which thus
doesn’t require test case minimization. The rest of the four strategies are based on test cases generated from a
Belief State Machine using ASlBP, followed by test case minimization based on the uncertainty related strategies
(Section 5.2): average normalized number of uncertainties covered (Problem 1), percentage of uncertainty space
covered (Problem 2), average overall uncertainty measure (Problem 3), and percentage of unique uncertainties
covered (Problem 4). For simplicity, we refer to these strategies as Str1 (ASiBP), Str2 (ASlBP +Problem 1), Str3
(ASlBP + Problem 2), Str4 (ASlBP + Problem 3) and Str5 (ASlBP + Problem 4) in the rest of the paper. We
selected eight commonly used multi-objective search algorithms from the Evolutionary Algorithm, Hybrid
Algorithm, and Swarm Algorithm classifications of algorithms. Moreover, we used random search (RS) for the
sanity check to determine if complex multi-objective search algorithms are needed, or simply RS suffices.

Table 6: Results of the Test Case Generation Strategies
Case Use Case Strategy #Test Case (nt) %Transition %Unique Uncertainty

AW

AW1
ASiBP 20 91.3% 100%
ASlBP 420 100% 100%

AW2
ASiBP 8 88.8% 100%
ASlBP 776 100% 100%

AW3
ASiBP 5 85.7% 80%
ASlBP 857 100% 100%

AW4
ASiBP 5 93.7% 100%
ASlBP 296 100% 100%

GS GS1
ASiBP 5 71.4% 83.3%
ASlBP 1799 100% 100%

Based on our overall objective, we would like to answer three research questions. RQ1: How does the selected
multi-objective search algorithms compare to RS regarding solving uncertainty-wise minimization problems
(Str2—Str5)? RQ2: Which algorithm is the best among selected ones to solve uncertainty-wise minimization
problems (Str2—Str5) respectively? RQ3: Which uncertainty-wise strategy (Str1-Str5) is effective to discover
uncertainties in the real CPS?

9.3 Design of the Evaluation

The design of the evaluation is given in Table 7. The table presents, for each research question, which task we
perform, which strategies are compared, which metrics (Metrics column) are used, which statistical methods
(Comparison Method column) are applied, which algorithms are applied, and which case studies are used.

Table 7: Design of the Evaluation
RQ Experiment Task Strategy Metric Comparison Method Algorithm

Case
Study

1
Compare each

algorithm with RS

Str2-Str5

HV (All),
PerTMin (All),
AvgNU (Str2),

PerUSpace (Str3),
AvgUM (Str4),

PerUniqueU (Str5),
PerTransition (All)

Vargha and Delaney
statistics (𝐴48u),

Kruskal–Wallis Test,
Mann-Whitney U Test

(p-value)

Evolutionary
Algorithm

NSGA-II [36]

AW, GS

NSGA-III [37]
MOCell [38, 39]

2

Compare each pair
of the multi-

objective
algorithms

SPEA2 [40]

Hybrid
Algorithm

CellDE [41]
AbYSS [41]
GDE3 [42]

Swarm
Algorithm

SMPSO [43]

Random Search (only for RQ1)

3
Compare each pair

of the strategies Str1-Str5
NumUO, Uk,

UkDP,Error, ExeTime,
NumTC, EffOT

Simple Comparison The best algorithm

In addition, we provided experiment settings of each strategy regarding test generation and minimization in

Table 8. Notice that, to decrease the possibility of obtaining results by chance we ran all the algorithms 100 times
for each case study and each strategy [44]. We used the implementation of the eight selected multi-objective
search algorithms provided by jMetal [45] with the same number of fitness function evaluations (i.e., 25000) [46]
and the following default parameter settings: the Population Size of 100, the binary tournament for selecting
parents, and the simulated binary criterion for recombination. A crossover rate of 90% was used, and mutation
rate was polynomial with the rate of 1.0/n, where n is the number of the bit representation of a solution.

16

Table 8: Experiment Settings for Each Strategy
Strategy Generation Enabling Ind. Source Minimization with Search

Str1 ASiBP FindPosition:
Just_Previous

SelectSpecification:

Specified

EnablePattern:
Always

-

Str2
ASlBP

(max length
is a number
of states and
transitions in
a Belief State

Machine)

Problem.1
PerTMin, AvgNU, PerTransition

NSGA-II
Population

size: 100
Max

Generation:
25000

Times of Run:
100

NSGA-III

Str3
Problem.2

PerTMin, PerUSpace, PerTransition
SPEA2
MOCell

Str4
Problem.3

PerTMin, AvgUM, PerTransition
CellDE
AbYSS

Str5
Problem.4

PerTMin, PerUniqueU, PerTransition

GDE3
SMPSO

RS

To answer RQ1 and RQ2, we compared each pair of the algorithms using HyperVolume (HV) [47] and the
individual objectives that are relevant for each strategy. For example, O2 is only valid for Str2. HV was selected
based on the guidelines for choosing a quality indicator for search-based software engineering problems that
require multi-objective optimization [48]. Based on the guidelines for reporting results for search-based software
engineering problems [49], we chose Vargha and Delaney statistics (𝐴48u) and the Mann Whitney U Test (p-value)
to compare the eight selected multi-objective search algorithms with RS for Str2—Str5.

* Function better(algo1, algo2) compares algo1 with algo2, which returns the best algorithm based on these two conditions: 1) for HV, p-value<0.05

and 𝐴48u >0.5; 2) p-value<0.05 and 𝐴48u <0.5

Table 9: Definitions of Metrics for Each Research Question
RQ Metric Definitions
RQ1
RQ2

𝐴	 = {𝑁𝑆𝐴𝐺 − 𝐼𝐼, 𝑁𝑆𝐺𝐴 − 𝐼𝐼𝐼,𝑀𝑂𝐶𝑒𝑙𝑙, 𝑆𝑃𝐸𝐴2, 𝐶𝑒𝑙𝑙𝐷𝐸, 𝐴𝑏𝑌𝑆𝑆, 𝐺𝐷𝐸3, 𝑆𝑀𝑃𝑆𝑂, 𝑅𝑆},
𝑆𝑡𝑟 = {𝑆𝑡𝑟2, 𝑆𝑡𝑟3, 𝑆𝑡𝑟4, 𝑆𝑡𝑟5} , Str2={PerTMin, AvgNU, PerTransition, HV}, Str3={PerTMin, PerUSpace, PerTransition, HV},
Str4={PerTMin, AvgUM, PerTransition, HV}, Str5={PerTMin, PerUniqueU, PerTransition, HV}. Note that 1) 𝐴: represents the kth
Algorithm, e.g. 𝐴4 = NSGA-II; 2) 𝑆𝑡𝑟1,� represents the jth objective of the ith strategy, e.g., 𝑆𝑡𝑟4 = Str2, 𝑆𝑡𝑟4,4 = PerTMin.
Rank of Algorithm for the
objectives of the strategies

𝑅𝑎𝑛𝑘��
jUa],� is the rank value of the 𝐴: algorithm, for the jth 	objective of 𝑆𝑡𝑟1 strategy, which is

calculated as rank[k] in Algorithm 1.
Confidence of Algorithm
for the objectives of the

strategies

Confidence of each objective of each strategy is to calculate the percentage of being better than the

other algorithms, which is calculated as 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒��
jUa]� 		= (𝑅𝑎𝑛𝑘��

jUa]�	 ∑ 𝑅𝑎𝑛𝑘��
jUa]�	�

I34�) × 100%.

Confidence of Algorithm
for the strategies

Confidence of each strategy is to calculate the average confidence of each objective, which is
calculated as 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒��

j] 	= (∑ 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒��
jUa]��

I34 4⁄) × 100%.
RQ3 Effectivenes

s
NumUO

(NumUOInd
NumUOukind)

Number of uncertainties occurred during the test set execution, including the occurrence of the
uncertainties with the occurrence of their specified indeterminacy sources (NumUOInd, i.e., number of
KnOccurred-With-InS of uncertainties), or unknown indeterminacy sources (NumUOukInd, i.e., number
of KnOccurred-Without-InS and number of KnOccurred-UkInS of uncertainties)

UOindP Percentage of times that the introduced indeterminacy sources led to observing corresponding
uncertainties during test execution: UOindP = NumUOInd/ NumUO

Error Number of errors found during a test execution
Uk Number of unknown uncertainties occurred during a test set execution (i.e., number UkOccrred of

uncertainties)
UkDP Unknown uncertainty detection percentage: UkDP = Uk/a number of unique uncertainties.

Cost ExeTime Execution time of the test set
NumTC Number of executed test cases

Efficiency EffoT
(EffoTNUO
EffoTUk)

EffoT represents efficiency in terms of time: 1) EffoTNUO is the efficiency of uncertainty detection
calculated as NumUO/ExeTime; 2) EffoTUk is the efficiency of unknown uncertainty detection
calculated as Uk/ExeTime.

Results of test case generation for each case study with each test strategy are represented in Table 6. For S1,
the numbers of test cases generated with ASiBP for all the case studies were small and didn’t require minimization.
For Str2 – Str5, we ran each problem 100 times, and thus we combined all the solutions from all the runs for
comparison to answer RQ1 and RQ2. To compare the performance of the algorithms, we designed a mechanism
to rank all the algorithms based on the 𝐴48u values and p-values for each metric as shown in the rank algorithm

Algorithm 1: Rank Algorithm
input: algos[], len(algos)>=2
Output: algos[], rank[]//rank[i] is the rank value of algos[i]
1 n len(algos)
2 for i 1 to n
3 for j i+1 to n //sort algos[]
4 if better*(algos[i], algos[j])
5 switch(algos,i,j)
6 rank[1]=1;
7 for i 2 to n //set rank values for algos[]
8 if better1(algos[i-1], algos[i])
9 rank[i]=rank[i-1]+1;
10 else
11 rank[i]=rank[i-1];

17

(Algorithm 1). Furthermore, we calculate the confidence for nine algorithms as shown in Table 10.
For RQ3, we picked the best algorithms for Str2—Str5 based on the results of RQ1 and RQ2, which were used

to minimize test cases. The generated test cases for S1 and minimized test cases for Str2 – Str5 were executed on
the current deployments of the GS and AW case studies as shown in Fig. 13. The execution results for Str1 – Str5
were evaluated based on various cost, effectiveness, and efficiency measures as shown in Table 9.

9.4 Results and Analyses

9.4.1 Results For RQ1
Recall that RQ1 focuses on comparing the eight selected multi-objective search algorithms with RS based on the
individual objectives, HV for (Str2—Str5) minimization problems. Due to a large number of comparisons, the
detailed results in terms of rank values, p-values and 𝐴48u values are provided in submitted supplementary
material. The summarized results in terms of confidence and risk (based on the rank of each algorithm) are
presented in Table 10 for each case study. For Str2—Str5, for each use case, we can see that RS has the lowest
confidence to be the best algorithm. These results suggest that our problems couldn’t have been solved effectively
with RS and thus the use of complex multi-objective search algorithms is justified.
9.4.2 Results For RQ2
For RQ2, the detailed results of the comparison of each pair of algorithms (𝐶8�, i.e., 36 pair-wise comparisons) for
each case study for Str2—Str5, in terms of rank values, p-values and 𝐴48u values are provided in submitted
supplementary material. The summarized results in terms of confidence of each algorithm, for each use case is
presented in Table 10. As shown in Table 10, in terms of confidence for Str2—Str5, SPEA2 is consistently the
best, or the second best (only for two instances of twenty). Based on the results, we recommend using SPEA2
with Str2—Str5 to find the most optimal minimized test cases.
9.4.3 Results For RQ3
To answer RQ3, we chose SPEA2 to minimize test cases for Str2 – Str5 for the two case studies and executed the
minimized test cases. The test execution results (together with the execution results for Str1) are provided in Table
11. We compare Str1 – Str5 based on the cost, effectiveness, and efficiency measures (Table 9). In terms of
execution time (i.e., a cost measure, presented in column ExeTime (s), Table 11), we can observe that Str2 took
the highest time to execute for all the use cases except for AW1, where Str4 took the highest time to execute test
cases.

In Table 11, the nt column shows the number of test cases for each test strategy (Str1 – Str5). Recall from
Table 9 that the UOIndP column shows the percentage of times that the introduced indeterminacy sources led to
observing corresponding uncertainties during test execution, whereas the NumUO column represents the number
of uncertainties that were observed as the result of test execution. As shown in Table 11, consistently for all the
five use cases, test cases generated and minimized with Str2 always led to observe more uncertainties when
comparing with the others (the NumUO column). The NumUOInd (Table 9) column shows the number of
uncertainties out of NumUO that occurred because of known indeterminacy sources, whereas the NumUOukInd
column (definition in Table 9) shows the number of uncertainties observed due to unknown indeterminacy
sources. Once again Str2 is the best across the case studies in terms of NumUOInd. In terms of NumUOukInd (except
for AW1 where Str4 is the best), Str2 is the best across the case studies. Even for AW1, Str4 observed only one
more uncertainty than Str2.

Table 10: Confidence for Each Algorithm for Each Strategy and Each Case Study

Str. AW1 AW2 AW3 AW4 GS1 Algorithm AW1 AW2 AW3 AW4 GS1 Str.
Str2 13% 12% 13% 9% 12% NSGA-II 13% 15% 14% 11% 14% Str4

14% 14% 12% 12% 15% NSGA-III 13% 13% 13% 13% 13%
8% 8% 8% 9% 9% MoCell 9% 7% 7% 8% 8%
15% 17% 16% 15% 15% SPEA2 16% 17% 17% 16% 16%
9% 13% 12% 10% 14% AbYSS 10% 10% 12% 10% 13%
8% 5% 7% 8% 7% CellDE 6% 5% 5% 7% 5%
14% 10% 10% 15% 10% GDE3 13% 10% 10% 15% 10%
14% 15% 17% 14% 12% SMPSO 15% 16% 18% 14% 15%
5% 5% 5% 7% 6% RS 6% 5% 5% 7% 5%

Str3 13% 13% 13% 12% 11% NSGA-II 13% 13% 13% 11% 12% Str5
13% 13% 13% 12% 13% NSGA-III 13% 13% 13% 11% 12%
8% 9% 9% 9% 9% MoCell 8% 9% 9% 9% 9%
14% 15% 15% 13% 15% SPEA2 13% 15% 15% 13% 15%
10% 12% 12% 11% 14% AbYSS 10% 12% 12% 12% 13%
8% 7% 7% 10% 7% CellDE 8% 7% 7% 10% 7%
12% 10% 10% 13% 10% GDE3 12% 10% 10% 13% 10%
14% 13% 13% 12% 14% SMPSO 13% 13% 13% 12% 14%
8% 7% 7% 9% 7% RS 8% 7% 7% 9% 7%

18

Table 11: Results for RQ3
UC Str. NumTC Per

Transition
ExeTime

(s)
UOIndP Num

UO
Num
UOind

Num
UOukind

Uk Err. UkDP 𝑬𝒇𝒇𝒐𝑻𝑵𝑼𝑶
/min

𝑬𝒇𝒇𝒐𝑻𝒖𝒌
/min

AW1 Str1 20 91.3% 216 64 % 25 16 9 10 0 91% 0.116 2.78
Str2 22 100% 291 64 % 36 23 13 13 1 118% 0.124 2.68
Str3 17 100% 244 60 % 30 18 12 11 0 100% 0.123 2.70
Str4 20 96% 519 52 % 29 15 14 16 1 145% 0.056 1.85
Str5 14 100% 170 59 % 22 13 9 11 0 100% 0.130 3.88

AW2 Str1 8 88.8% 387 73 % 11 8 3 0 0 0% 0.028 0
Str2 106 100% 2134 65 % 314 205 109 0 4 0% 0.147 0
Str3 20 100% 866 67 % 52 35 17 0 2 0% 0.060 0
Str4 54 100% 1114 66 % 148 97 51 0 3 0% 0.133 0
Str5 30 100% 501 64 % 91 58 33 0 2 0% 0.182 0

AW3 Str1 5 85.7% 3156 - 8 - - 0 0 0% 0.003 0
Str2 138 100% 99414 - 955 - - 0 1 0% 0.010 0
Str3 45 100% 29147 - 271 - - 0 0 0% 0.009 0
Str4 92 100% 54990 - 568 - - 0 1 0% 0.010 0
Str5 47 100% 30663 - 305 - - 0 0 0% 0.010 0

AW4 Str1 4 93.7% 8 56 % 9 5 4 0 0 0% 1.089 0
Str2 24 100% 155 55 % 296 163 133 0 0 0% 1.909 0
Str3 2 81% 11 48 % 23 11 12 0 0 0% 2.116 0
Str4 7 94% 38 48 % 79 38 41 0 0 0% 2.105 0
Str5 4 94% 20 53 % 38 20 18 0 0 0% 1.913 0

GS1 Str1 5 71.4% 88 50 % 2 1 1 0 0 0% 0.023 0
Str2 393 95% 29300 32 % 1767 569 1198 0 0 0% 0.060 0
Str3 177 100% 12107 29 % 717 211 506 0 0 0% 0.059 0
Str4 203 100% 12717 31 % 835 259 576 0 0 0% 0.066 0
Str5 174 100% 11428 34 % 715 243 472 0 0 0% 0.063 0

The Uk (defined in Table 9) column represents the number of unknown uncertainties observed due to unknown

indeterminacy sources. For AW1, with Str4, 16 uncertainties in this category were observed, whereas the second
highest was 13 with Str2. The Error column represents the number of errors detected with each test strategy. For
AW1 and AW2, both Str2 and Str4 observed one error each, whereas, for AW3, Str2 observed four errors, i.e.,
higher than the other strategies.

Therefore, we recommend Str2 as it performed better than the others in terms of the studied effectiveness
measures except for Uk and NumUOukInd for AW1, where Str4 was the second best.

We also compare the strategies based on the efficiency measures. The results are given in the last two columns
of Table 11. Note that the efficiency measures tell how many uncertainties (measured with Uk and NumUO) were
observed per minute. For AW1, AW2, and AW3, for the EffoTNUO/min measure, Str5 is the best. For AW4, Str3
is the best with an efficiency value of 2.116 for EffoTNUO/min, whereas, for GS, Str4 is the best with an efficiency
value of 0.066 for EffoTNUO/min. However, the differences between these two with the efficiency values of Str5
are not much. For example, for GS, Str5 has an efficiency value of 0.063, i.e., the difference of 0.003 with Str4.
This means that Str5 is likely to observe 0.003 fewer uncertainties than Str4 per minutes. Such difference is
negligible in practice. In terms of EffoTUk/min for AW1, once again Str5 is the best strategy. Based on the above
results, we suggest using Str2 when the test execution time is not a concern; otherwise, we recommend using Str5
since it is highly likely to be efficient.

9.5 Discussion

In the practice of our two industrial partners, their industrial CPSs were tested with manual test cases. Also, the
concept of uncertainty was not at all introduced during the test case development and execution phases of the two
industrial partners. In the context of the U-Test project, the two industrial partners provided industrial use cases
and implemented the test execution infrastructures (e.g., simulator) for testing their CPSs with UncerTest. We,
therefore, tested their CPSs with the test cases generated with UncerTest.

Based on the results and analysis of RQ1, we can conclude that our uncertainty-wise test minimization
approaches are complex and thus RS was not sufficient to solve our problems. RS has the lowest confidence to
be the best algorithm (i.e., 5.28% on average) as compared to the other algorithms when studying the results of
all the use cases together. When comparing the selected multi-objective search algorithms for the four uncertainty-
wise test minimization problems (RQ2), we found that SPEA2 has the highest confidence to be the best algorithm
(i.e., 12.12% on average) as compared to the other search algorithms and RS.

When comparing the five test strategies, we observed that Str2 (i.e., ASlBP with minimization focusing on
covering the number of uncertainties) with SPEA2 turned out to be the best. Str2 with SPEA2 observed on average

19

51%2 more occurrences of known uncertainties than the other strategies due to unknown indeterminacy sources
when combining the results from all the use cases. But Str2 also selects more test cases than the other strategies.
In practice, executing more test cases typically requires more resources and therefore increases the time cost. In
our context of collaborating with industry, our industrial partners were satisfied with the size of the reduced test
set, and therefore they put their focus more on effectiveness than efficiency. Thus, we recommend Str2 based on
this preference of our industrial partners. We also observed that, in one of the five use cases (AW1), in terms of
observing unknown uncertainties due to unknown indeterminacy sources, Str4 with SPEA2 performed slightly
better than Str2 with SPEA2; Str4 observed 16 unknown uncertainties, but Str2 observed 13. However, more
investigation is required to draw any solid conclusion about the performance of Str4 and Str2, which requires
conducting more case studies and experiments, which is one of our future plans.

In terms of practical implications, we have four key findings. First, the results of observed known uncertainties
due to known indeterminacy sources (the NumUOInd column) confirm our belief about known uncertainties of the
three use cases (AW1, AW2, and AW4) of the AW case study. If the belief is not confirmed (i.e., GS1), it means
that the belief of the test modeler about indeterminacy sources is not complete or correct. Then we recommend
the test modeler to update her/his belief on indeterminacy sources based on the results of test execution. Second,
the results of observed known uncertainties due to unknown indeterminacy sources (the NumUOukInd column) tell
us that the known uncertainties can occur due to the indeterminacy sources that we were not aware of. As a result,
such unknown indeterminacy sources need to be investigated and discovered with the help of domain experts in
the industry. Once discovered, the test ready models must be updated to reflect these indeterminacy sources. Third,
the discovery of unknown uncertainties due to unknown indeterminacy sources (the Uk column) need to be
investigated once again together with domain experts and reflected in the test ready models as known uncertainties
due to known indeterminacy sources (if investigated and found) for future testing. Fourth, the Error column tells
the errors found during the test execution and must be fixed in the implementation of the CPSs. Note that we
observed 15 occurrences of errors for the AW case study. Due to confidentiality issues, further details on the
errors and uncertainties cannot be provided. Nonetheless, the results tell us that our proposed test strategies can
help us confirming our belief about known uncertainties, discovering unknown uncertainties and unknown
indeterminacy sources, and find errors.

9.6 Threats to Validity

External validity. A typical external validity threat with any empirical study is related to the generalization of
results. Our experiment results were obtained from conducting two industrial case studies (five use cases) from
two CPS domains (Automation, Healthcare) and thus additional experiments with different case studies are
required to further generalize the results. We would like to point it out that, regarding testing industrial CPSs, it
is very expensive as it requires developing test infrastructures. In the context of our project, we luckily had access
to the two industrial case studies and the test infrastructures. In the future, we will conduct more industrial case
studies to further generalize the results if such opportunities are available.

Internal validity. There are four main internal validity threats in our experiment. First, in terms of test case
generation with ASlBP, we used the same criteria to generate test cases for all the use cases. This includes
generating test cases that must achieve the 100% transition coverage and 100% unique uncertainty coverage.
Second, as suggested in [49], all the SBSE problems face the common internal validity threat, i.e., parameter
settings for the search algorithms. We used the default parameter settings for all the algorithms based on the
existing guidelines [49, 50]. Third, we used the same criteria to introduce indeterminacy sources during the test
execution for each use case. This means that we used the same values for EnablePattern, FindPosition, and
SelectSpecification (Table 8) when executing test cases generated from each test strategy across the use cases.
Fourth, the fact that executing each test case more than once can lead to different execution results. Therefore, we
executed a test case exactly once if it was included in the test case sets generated by multiple test strategies.

Conclusion validity. There are two main conclusion validity threats in our experiment. First, as discussed in
[51], due to randomness in search algorithms, results may have been produced by chance. We handled this threat
as suggested in [51], that is to repeat the experiments 100 times. Based on the standard guidelines [49] to report
search-based software engineering experiments, we chose the Kruskal–Wallis test to calculate 𝑝 -value for
multiple comparisons with 5% significance level, the Mann-Whitney U test to calculate 𝑝 -value for pair
comparison with 5% significance level, to determine practical and statistical significances of results. Second, our
experiment results are based on one-time test execution due to limited resources available to execute test cases on
the physical test infrastructures. Additional experiments are required in the future to execute test cases more than
once to study whether executing one test case multiple times lead to observing different uncertainties.

Construct validity. As suggested in [44, 52], the same stopping criterion must be used for all the evaluated

2 The value is calculated as
∑ ∑ (bOTc���]��

��]�e ¡¢bOTc���]��
��]�e �) (bOTc���]��

��]�e ¡_bOTc)��]��
��]�e �)��fg,£,¤,¥

¤
]fg

�×�
, where UC={AW1, AW2, AW4, GS1}, Str =

{Str1, Str2, Str3, Str4, Str5}. 𝑁𝑂𝑈O:1I¦
c§gjUag is the number of uncertainties observed with Str1 for the AW1 use case.

20

algorithms to avoid any potential bias in results. Following the guidelines, we used the same number of fitness
evaluations (25000) and thus dealt with this type of validity threat.

10 Automation
The (open source) tool support3 for UncerTest is shown in Fig. 14, a user creates a BMs1 (including Belief Class
Diagrams and Belief State Machines) in the IBM Rational Software Architect (RSA) using UncerTum
implemented in IBM RSA [9]. In addition to the Belief Class Diagrams and Belief State Machines, the BM also
includes object diagrams (of the Belief Class Diagrams), representing test configurations of the CPS being tested.

The first toolset of UncerTest is referred to as Abstract Test Case Generator. AG1 takes Belief State Machines
as input and convert them into graphs (SMGraph) in JGraph [53] based on a test case generation strategy (Section
5.3), which can be selected by a tester. AG2 takes the graph representation of the Belief State Machines as input
and converts them into deep paths using the JGrapht tool [53]. Note that multiple regions are not handled by
JGrapht, and thus we extended it for this purpose. AG3 takes the generated deep paths as input and calculates um
for each path using the Uncertainty Measurement Calculator and produces abstract test cases and associated um
with each test case.

The second toolset is Uncertainty-Wise Test Case Minimization. Its Solution Solver uses jMetal’s
implementation of the search algorithms and RS to minimize the number of abstract test cases based on the four
test case minimization strategies (Section 6). A tester can select any algorithm and any of the four strategies for
test case minimization. The output is a minimized set of test cases and values for the relevant objectives (Section
6). Solution Processor converts the output to an EMF model [54], the key input for the third toolset.

Fig. 14: Automation of UncerTest

The third toolset is Executable Test Case Generator. EG1 takes BCDs as input and converts them to Java
Entities, which are further extended by a tester as Entities Adapter to provide actual implementation of operations,
e.g., how to invoke REST APIs in GS. For each case study, a user has to manually implement Entities Adapters
to bridge the gap between model elements and implementation of Test API. EG2 takes the object diagram as input
and outputs Test Setup, which is required for the execution of test cases. Finally, EG3 takes the EMF model file
as the input and invokes EsOCL [30] to obtain concrete test data. EsOCL is a search-based OCL solver that takes
input an OCL constraint and provides a set of data that satisfies the constraint. Using the output from EsOCL,
EG3 produces executable test cases, where each executable test case imports Eclipse OCL [54] to check OCL
constraints (state invariants) at runtime, which serve as test oracles.

11 Related Work
Walkinshaw and Fraser [5] proposed a black-box testing framework to select test cases for execution to decrease
uncertainty about the correctness of a software system. The framework relies on Genetic Programming (GP) [55]
to infer models of a system under test. It generates random inputs and assesses them on the inferred models to
select ones that create most uncertainty, and eventually only execute the selected ones on the real system under
test. Uncertainty was measured as the level of confidence in the corresponding output of input (i.e., test data).
UncerTest shares a similar objective, that is, selecting test cases for execution by taking into account uncertainty.
Differences between the two approaches can be summarized from the three aspects: 1) UncerTest focuses on

3 The tool for UncerTest is open source, which is available at https://bitbucket.org/ManZH/uncertest-v1.

21

testing CPS under uncertainty, but their proposed framework is for software; 2) UncerTest requires initial BMs
with subjective uncertainty specified as the input, whereas in their approach models are inferred by GP, which
requires the execution of the software under test; and 3) UncerTest elaborates uncertainty from the aspects of
number of uncertainties, number of unique uncertainties, uncertainty space, and uncertainty measure from the
Uncertainty Theory, whereas their approach is based on an existing uncertainty sampling technique.

 Iqbal et al. [56] proposed an environment modeling approach that handles uncertainty to support automated
testing. The modeling of the following uncertain situations is supported: 1) Uncertainty on a value: Instead of
specifying an exact value, the modeling approach supports specifying a range of possible values, i.e., upper and
lower bounds; 2) Uncertainty on transitions: This allows attaching probability to a transition indicating the
probability with which a state can be reached from another one with/without specific events. In addition, a time
uncertainty can be further attached to a transition with a specific probability, indicating the probability of timeout
of the transition; 3) Uncertainty on scenarios: The approach also provides a solution to model a situation in a
UML state machine, where an event may lead to uncertain outcomes, by specifying a choice node that can reach
multiple target states without any guards. Based on such models, the approach enables to generate corresponding
environment simulators with configurations, interacting with a system under test. Also, Iqbal et al. [56] designed
search heuristics for seeking optimal simulation configurations that can lead the environment into error states. By
comparing with UncerTest, uncertainties in their approaches are considered in environmental context, and
UncerTum [9, 10] (UncerTest’s associated modeling solution) supports to model uncertainty regarding a system
and its environment. In other words, their approach focuses on modeling possible environment situations that the
system may face during operation, and our approach focuses on modeling possible uncertain behaviors of the
system with the linked known indeterminate environment. Our modeling support, i.e., UncerTum [9, 10] provides
a comprehensive capability of modeling uncertainty. We can cover all situations that they modeled by applying
the UML Uncertainty Profile (UUP) [9, 10]. Also, we explicitly handle types of uncertainties, e.g., uncertainty on
a value can be considered as a content uncertainty and uncertainty modeled in state machines (i.e., uncertainty in
scenarios described above) can be considered as occurrence uncertainty together with time uncertainty.
Furthermore, we provided advance modeling features for uncertainty measurement (e.g., fuzzy set [57], belief
interval [58]), which is not limited to simple ranges or probabilities as in their approach. In addition, our approach
with search aims at identifying specified uncertainties and discovering unknown uncertainties by considering
different perspectives of uncertainties (e.g., measurement, number of uncertainties covered by test cases). In their
approach, the search is used for obtaining environment simulation configurations that can lead the environment
into known errors with test data generated with the EsOCL OCL solver [59].

Another related work [6] focuses exclusively on time-related uncertainty. It relies on UML sequence diagrams
together with the UML Profile for Schedulability, Performance, and Time (SPT) [60]. This work, however, only
supports modeling uncertainty in time on messages of sequence diagrams. As discussed in Section 2.1, UncerTest
is built on UncerTum [9], which is a comprehensive modeling framework for specifying various types of
uncertainty (e.g., time, content and environment). The work presented in [6] focuses on stress testing of systems
in the existence of time-related uncertainty on messages, which may complement the UncerTest framework,
which can be investigated in the future.

David et al. [61] presented some test generation principles and algorithms (e.g., the online testing tool
UPPAAL-TRON [62]) and discussed the feasibility of applying them for testing timed systems under uncertainty,
at a high level of abstraction. In their context, uncertainty is caused by the inherent concurrent and indeterminate
nature of timed systems. UncerTest, however, addresses uncertainty with a much broader scope and has an end-
to-end MBT solution.

To model uncertainty (inherent in real-world applications) with UML class diagrams, an extension was
proposed in [63-65], which is referred to as fuzzy UML data modeling. The extension relies on two theories: fuzzy
set and possibility distribution, and was later on further extended in [66] to transform fuzzy UML data models
into representations in the fuzzy description logic (FDLR) to check the correctness of fuzzy properties.
Furthermore, another automated transformation was proposed in [67] to transform fuzzy UML data models into
web ontologies to support automated reasoning on fuzzy properties in the context of web services. These works
focus on the analyses at the design time, whereas our work focuses on testing. Regarding modeling, our UncerTum
focuses on uncertainty in a comprehensive and precise manner by considering various types of measures such as
probability, vagueness, and fuzziness. The methodologies proposed in [63-65] for specifying fuzzy UML data can
easily integrate with our model libraries when needed and potentially used to support MBT of CPSs under
uncertainty. However, this requires further investigation.

There exist several works [68-71] that use usage models with associated probability information for statistical
testing. Usage models represent excepted behaviors based on the actual use of the software. For instance, Prowell
[68] proposed a tool, named as JUMBL, which uses Markov chains as usage models for supporting test case
generation and system reliability analysis. The probability information can be obtained by relying on, e.g., usage
profiles of software or domain expertise. First, these works consider the subjective perspective due to the
application of usage models based on domain expertise, which is the same with UncerTest. However, these works

22

are based on the probability theory (frequency), whereas UncerTest is based on the uncertainty theory (belief
degree) [17]. Second, these works intend testing a system by detecting defects that lead to system failures with
higher frequencies. However, the Str4 (ASlBP + AUM) of UncerTest tests a CPS by identifying uncertainties of
higher belief degrees. In addition, UncerTest provided other four strategies, which support broader applications,
e.g., when measurements are not accessible.

In [72], a language-independent solution was proposed consisting of partiality, Abs partiality, Var partiality,
and OW partiality, to denote the degree of incompleteness specified by model designers. The work also provides
a solution for merging and reasoning possible partial models with tool support [72, 73]. The approach was
demonstrated in UML class and sequence diagrams [72]. This work is related to our work regarding expressing
the uncertainty of modelers. However, in the context of their work, the focus is on uncertainty in partial models
for supporting model refinement and evolution. In contrast, we focus on modeling uncertainty (lack of confidence)
in test ready models that are used for test case generation and minimization relying on the uncertainty theory.

12 Conclusion and Future work
Nowadays, Cyber-Physical Systems (CPSs) are everywhere in our daily life. It is forecasted that applications of
CPSs will span over many different domains shortly, including autonomous vehicles, robotics, healthcare,
industrial automation, among others. One critical dimension of the complexity of developing and testing such
systems is due to the inherent uncertainty of their operational environment and uncertain behaviors of themselves.
To tackle this challenge, in this paper, we proposed a model-based and search-based test case generation and
minimization framework (named as UncerTest) for testing CPSs under uncertainty. UncerTest takes advantages
of the uncertainty theory and search-based optimization techniques, based on which, it also proposes an innovative
set of uncertainty-related test case minimization strategies. We evaluated UncerTest with two industrial CPSs
case studies and eight commonly used multi-objective search algorithms. The best test strategy managed to
discover on average 51% more uncertainties due to unknown indeterminacy sources as compared to the rest of
the test strategies across the case studies. The same test strategy managed to discover 118% more unknown
uncertainties as compared to the already known ones.

In the future, we plan to conduct additional experiments (e.g., executing test cases multiple times) with more
case studies, and further study correlations between the uncertainty-related objectives (e.g., um) and the
identification of unknown uncertainties. Moreover, we only applied one strategy to introduce indeterminacy
sources, and there is a need to develop different strategies and evaluate their performance. We also plan to consider
specifications of the introducing indeterminacy source (e.g., measurement of indeterminacy source and a position
to be introduced) as factors to guide how to generate executable test case using multi-objective search algorithms.

Acknowledgment
This research was initially supported by the EU Horizon 2020 funded project U-Test (Testing Cyber-Physical
Systems under Uncertainty, Project Number: 645463). The research, however, was finalized after the project with
the support from RCN funded MBT4CPS project, who funded Man Zhang. Tao Yue and Shaukat Ali are also
supported by the Research Council of Norway funded Zen-Configurator project. Tao Yue is also supported by the
National Nature Science Foundation of China 61872182. Man Zhang is also funded by the Research Council of
Norway funded EET project (Evolutionary Enterprise Testing). The corresponding author of the paper is Tao Yue.
We sincerely thank our industrial partners (ULMA Handling Systems and Nordic Medtest), especially Oscar
Okariz and Malin Hedman, for their support on providing the case studies.

23

References
[1] D. B. Rawat, J. J. Rodrigues, and I. Stojmenovic, Cyber-physical systems: from theory to practice: CRC

Press, 2015.
[2] P. Derler, E. A. Lee, and A. S. Vincentelli, “Modeling Cyber-Physical Systems,” Proceedings of the IEEE,

vol. 100, no. 1, pp. 13-28, 2012.
[3] M. Woehrle, K. Lampka, and L. Thiele, “Conformance testing for cyber-physical systems,” ACM

Transactions on Embedded Computing Systems (TECS) vol. 11, no. 4, pp. 1-23, 2013.
[4] H. Abbas, B. Hoxha, G. Fainekos, J. V. Deshmukh, J. Kapinski, and K. Ueda, “Conformance testing as

falsification for cyber-physical systems,” arXiv preprint arXiv:1401.5200, 2014.
[5] N. Walkinshaw, and G. Fraser, "Uncertainty-Driven Black-Box Test Data Generation." pp. 253-263.
[6] V. Garousi, "Traffic-aware stress testing of distributed real-time systems based on UML models in the

presence of time uncertainty." pp. 92-101.
[7] G. Bammer, and M. Smithson, Uncertainty and risk: multidisciplinary perspectives: Routledge, 2012.
[8] D. V. Lindley, Understanding uncertainty (revised edition): John Wiley & Sons, 2014.
[9] M. Zhang, S. Ali, T. Yue, and R. Norgre, An Integrated Modeling Framework to Facilitate Model-Based

Testing of Cyber-Physical Systems under Uncertainty, Technical report 2016-02, Simula Research
Laboratory, 2016.

[10] M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, “Uncertainty-Wise Cyber-Physical System test
modeling,” Software & Systems Modeling, 2017/07/25, 2017.

[11] F. P. X. "Future Position X," 2017; http://www.fpx.se/.
[12] ULMA. "ULMA Handling System," 2017; http://www.ulmahandling.com/en/.
[13] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, "Understanding Uncertainty in Cyber-Physical

Systems: A Conceptual Model." pp. 247-264.
[14] OMG, "UML Profile For MARTE: Modeling And Analysis Of Real-Time Embeded Systems™," 2011.
[15] Y. Li, J. Chen, and L. Feng, “Dealing with uncertainty: a survey of theories and practices,” Knowledge and

Data Engineering, IEEE Transactions on, vol. 25, no. 11, pp. 2463-2482, 2013.
[16] B. Liu, “Why is there a need for uncertainty theory,” Journal of Uncertain Systems, vol. 6, no. 1, pp. 3-10,

2012.
[17] B. Liu, Uncertainty theory: Springer, 2015.
[18] Y. Zhu, “UNCERTAIN OPTIMAL CONTROL WITH APPLICATION TO A PORTFOLIO SELECTION

MODEL,” Cybernetics and Systems, vol. 41, no. 7, pp. 535-547, 2010/09/24, 2010.
[19] L. Yang, K. Li, and Z. Gao, “Train Timetable Problem on a Single-Line Railway With Fuzzy Passenger

Demand,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 3, pp. 617-629, 2009.
[20] J. Peng, “Risk metrics of loss function for uncertain system,” Fuzzy Optimization and Decision Making, vol.

12, no. 1, pp. 53-64, 2013//, 2013.
[21] S. Han, Z. Peng, and S. Wang, “The maximum flow problem of uncertain network,” Information Sciences,

vol. 265, pp. 167-175, 5/1/, 2014.
[22] R. S. Pressman, Software engineering: a practitioner's approach 7th edition: Palgrave Macmillan, 2010.
[23] P. Ammann, and J. Offutt, Introduction to software testing: Cambridge University Press, 2016.
[24] W. Rudin, Real and complex analysis: Tata McGraw-Hill Education, 1987.
[25] J. Offutt, and A. Abdurazik, "Generating tests from UML specifications." pp. 416-429.
[26] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating test data from state‐based specifications,”

Software testing, verification and reliability, vol. 13, no. 1, pp. 25-53, 2003.
[27] P. Samuel, R. Mall, and A. K. Bothra, “Automatic test case generation using unified modeling language

(UML) state diagrams,” IET software, vol. 2, no. 2, pp. 79-93, 2008.
[28] L. C. Briand, Y. Labiche, and Y. Wang, "Using simulation to empirically investigate test coverage criteria

based on statechart." pp. 86-95.
[29] OMG, "Object Constraint Language™ (OCL™)," 2014.
[30] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, “Generating test data from OCL constraints with search

techniques,” IEEE Transactions on Software Engineering, vol. 39, no. 10, pp. 1376-1402, 2013.
[31] OMG, "UML Testing Profile (UTP™) 1.2," 2013.
[32] Quuppa. "Quuppa - Do more with Location," 2017; http://quuppa.com/.
[33] N. M. Test. "Nordic Med Test," 2017; http://www.nordicmedtest.se/.
[34] IK4-IKERLAN. "IK4-IKERLAN," 2017; http://www.ikerlan.es/eu/.
[35] U-Test. "Use Cases - Industrial Case Studies," 2017; http://www.u-test.eu/use-cases/.
[36] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-

II,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182-197, 2002.
[37] K. Deb, and H. Jain, “An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-

Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints,” IEEE Transactions
on Evolutionary Computation, vol. 18, no. 4, pp. 577-601, 2014.

24

[38] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “Mocell: A cellular genetic algorithm for
multiobjective optimization,” International Journal of Intelligent Systems, vol. 24, no. 7, pp. 726-746, 2009.

[39] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, "Design issues in a multiobjective cellular
genetic algorithm." pp. 126-140.

[40] E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2: Improving the strength Pareto evolutionary algorithm,"
International Center for Numerical Methods in Engineering.

[41] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and A. Beham, “AbYSS: Adapting scatter search
to multiobjective optimization,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 4, pp. 439-
457, 2008.

[42] S. Kukkonen, and J. Lampinen, "GDE3: The third evolution step of generalized differential evolution." pp.
443-450.

[43] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. C. Coello, F. Luna, and E. Alba, "SMPSO: A new pso-based
metaheuristic for multi-objective optimization." pp. 66-73.

[44] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A systematic review of the application and
empirical investigation of search-based test case generation,” IEEE Transactions on Software Engineering,
vol. 36, no. 6, pp. 742-762, 2010.

[45] A. J. Nebro, and J. J. Durillo. "jMetal," 2016; http://jmetal.sourceforge.net/.
[46] M. Črepinšek, S.-H. Liu, and M. Mernik, “Replication and comparison of computational experiments in

applied evolutionary computing: Common pitfalls and guidelines to avoid them,” Applied Soft Computing,
vol. 19, pp. 161-170, 2014/06/01/, 2014.

[47] E. Zitzler, and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case study and the strength
Pareto approach,” IEEE transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257-271, 1999.

[48] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen, "A practical guide to select quality indicators for assessing
pareto-based search algorithms in search-based software engineering." pp. 631-642.

[49] A. Arcuri, and L. Briand, "A practical guide for using statistical tests to assess randomized algorithms in
software engineering." pp. 1-10.

[50] D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures: CRC Press, 2003.
[51] S. Wang, S. Ali, and A. Gotlieb, "Minimizing test suites in software product lines using weight-based genetic

algorithms." pp. 1493-1500.
[52] M. de Oliveira Barros, and A. C. Dias-Neto, Threats to Validity in Search-based Software Engineering

Empirical Studies, Technical Report 0006/2011, Universidade Federal Do Estado Do Rio de Janeiro, 2011.
[53] B. Naveh. "JGrapht," 2016; http://jgrapht.org/.
[54] E. MDT. "Eclipse OCL," 2016; http://www.eclipse.org/modeling/mdt/?project=ocl#ocl.
[55] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to genetic programming: Lulu. com,

2008.
[56] M. Z. Iqbal, A. Arcuri, and L. Briand, “Environment modeling and simulation for automated testing of soft

real-time embedded software,” Software & Systems Modeling, vol. 14, no. 1, pp. 483-524, 2015/02/01, 2015.
[57] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338-353, 1965.
[58] A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping,” The annals of

mathematical statistics, pp. 325-339, 1967.
[59] S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand, "A Search-Based OCL Constraint Solver for Model-Based Test

Data Generation." pp. 41-50.
[60] OMG, "UML Profile For Schedulability, Performance, and Time™," 2005.
[61] A. David, K. G. Larsen, S. Li, M. Mikucionis, and B. Nielsen, "Testing real-time systems under uncertainty."

pp. 352-371.
[62] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A. Skou, "Testing real-time systems

using UPPAAL," Formal methods and testing, pp. 77-117: Springer, 2008.
[63] Z. Ma, “Fuzzy information modeling with the UML,” Idea, 2005.
[64] Z. M. Ma, F. Zhang, and L. Yan, “Fuzzy information modeling in UML class diagram and relational database

models,” Applied Soft Computing, vol. 11, no. 6, pp. 4236-4245, 2011.
[65] L. Yan, and Z. M. Ma, "Extending nested relational model for fuzzy information modeling." pp. 587-590.
[66] Z. M. Ma, F. Zhang, L. Yan, and J. Cheng, “Representing and reasoning on fuzzy UML models: A description

logic approach,” Expert Systems with Applications, vol. 38, no. 3, pp. 2536-2549, 2011.
[67] F. Zhang, and Z. M. Ma, “Construction of fuzzy ontologies from fuzzy UML models,” International Journal

of Computational Intelligence Systems, vol. 6, no. 3, pp. 442-472, 2013.
[68] S. J. Prowell, "JUMBL: a tool for model-based statistical testing." p. 9 pp.
[69] M. Riebisch, I. Philippow, and M. Götze, "UML-based statistical test case generation," Objects, Components,

Architectures, Services, and Applications for a Networked World, pp. 394-411: Springer, 2002.
[70] G. H. Walton, J. H. Poore, and C. J. Trammell, “Statistical testing of software based on a usage model,”

Software: Practice and Experience, vol. 25, no. 1, pp. 97-108, 1995.

25

[71] D. P. Kelly, and R. S. Oshana, “Improving software quality using statistical testing techniques,” Information
and Software Technology, vol. 42, no. 12, pp. 801-807, 2000.

[72] M. Famelis, R. Salay, and M. Chechik, "Partial models: Towards modeling and reasoning with uncertainty."
pp. 573-583.

[73] M. Famelis, and S. Santosa, "MAV-Vis: a notation for model uncertainty." pp. 7-12.

Appendix A. List of Abbreviations
Abbreviations Description
u(sx, tz, sy) An uncertainty in a Belief State Machine is denoted as u(sx, tz, sy), sx is a source state, sy is a possible

target state transited by a transition tz from sx.
usp(sx, tz) An Uncertainty Space in a Belief State Machine is denoted as usp(sx, tz), which represents a set of

uncertainties that originate from same source state sx by same transition tz. usp(sx, tz) = {ui| i = 1…n}.
um(x) um(x) denotes an uncertainty measurement of e.g., an uncertainty, a test case. Theoretically, a

measurement of an usp is always 1 or Certain.
ASiBP All Simple Belief Path Coverage, i.e., a coverage criteria to generate test cases
ASlBP All Specified Length Belief Path Coverage, i.e., a coverage criteria to generate test cases
PerTMin Percentage of Test Case Minimization, i.e., one of test minimization objectives for reducing a number

of test cases
AvgNU Average Normalized Number of Uncertainties Covered, i.e., one of test minimization objectives for

searching an optimal set of test cases with more uncertainties
PerUSpace Percentage of Uncertainty Space Covered, i.e., one of test minimization objectives for searching an

optimal set of test cases with more uncertainty spaces.
AvgUM Average Overall Uncertainty Measure, i.e., one of test minimization objectives for searching an optimal

set of test cases with higher uncertainty measurement
PerUniqueU Percentage of Unique Uncertainties Covered, i.e., one of test minimization objectives for searching an

optimal set of test cases with more unique uncertainties
PerTransition Percentage of Transition Coverage, i.e., one of test minimization objectives for searching an optimal

set of test cases with a higher coverage of a test ready models

