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1. INTRODUCTION
Recently, the applications of nonlinear optics in communica-
tions, optical computing, and photonic crystal structures
have been extensively investigated in the literature [1–7].
Nonlinear-optical materials reach different phenomena such
as all-optical control of electromagnetic waves or all-optical
signal processing [8,9]. While these effects are usually weak
and high amplitudes of the electromagnetic field are often re-
quired, nonlinear effects may sometimes be observed with
lower input intensities due to field confinement in optical
nanostructures [1,4]. For example, second-harmonic genera-
tion (SHG) in periodic nanostructures has attracted much in-
terest due to its applications such as the determination of
surface magnetic and electric properties [10,11], rough
surface studies [12], and apertureless scanning near-field
microscopy [13].

The classical finite-difference time-domain (FDTD)
method, introduced by Yee in 1966 [14], has been successfully
applied to nonlinear media [15–21]. However, it encounters
difficulties in analyzing periodic media under oblique inci-
dence. This issue is addressed by the split-field FDTD
(SF-FDTD) method [22], which has lately been extended, for
example, to one-dimensionally (1D) periodic structures made
of anisotropic media [23,24] and to two-dimensionally (2D)
periodic components made of dispersive [25,26] or aniso-
tropic [27] materials. Recently, SF-FDTD has also been ex-
tended to nonlinear media in two dimensions [28,29]. In
particular, the study of Francés et al. [29] showed the exten-
sion of the SF-FDTD for the specific case of SHG in a 1D crys-
tal material with cubic symmetry. Such symmetry may be used
to simplify the full second-order susceptibility tensor to only

three coefficients. This setup provides a decoupling of the
pump and second-harmonic fields in terms of polarization,
thus simplifying the numerical implementation.

In this paper, we introduce the SF-FDTD approach for an-
alyzing SHG in 2D periodic structures with no restrictions to
the material symmetries. We first formulate the nonlinear
system of equations to be solved by means of a fixed-point
procedure adapted from [28,29]. We then validate the method
by analyzing SHG under quasi-phase matching (QPM) in
homogenous media as well as L-shaped nanostructures
(cf. [30]).

2. EXTENDED SF-FDTD FOR TWO-
DIMENSIONALLY MODULATED
NONLINEAR MEDIA
Let us consider the geometry illustrated in Fig. 1. We assume a
micro- or nanostructured region between homogeneous semi-
infinite linear, isotropic, and nonmagnetic media. The modu-
lated region is 2D periodic with periods Λ1 and Λ2, and has a
thickness h.

The incident pump field is a linearly polarized plane wave
with a wavevector k0,

k0 � kxx̂� kyŷ� kzẑ

� ω

c
�sin θ sin ϕx̂� sin θ sin ϕŷ� cos θẑ�; (1)

where θ and ϕ are the polar and azimuthal angles, respec-
tively. Furthermore, kj , j � x; y; z denote the Cartesian com-
ponents of the wavevector, ω is the (angular) frequency, and c
is the speed of light.
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A. Fundamentals of the SF-FDTD Method
Figure 2(a) shows the problem space for a typical SF-FDTD
simulation of periodic media. The convention for the spatial
arrangement of the electric field E and the magnetic field H,
called the Yee cell, is shown in Fig. 2(b). Such an arrangement
simplifies the finite-difference form of the curl operator, and it
is one of the main characteristics of FDTD schemes. In this
work, we assume a structure that is periodic in the x and y
directions, and illuminate the computational grid from a plane
parallel to the xy plane for illuminating the grid. Both z boun-
daries are terminated with perfectly matched layers (PMLs)
that eliminate undesired reflections [23,27,31]. The xy boun-
daries are handled by the periodic boundary conditions
(PBCs). In order to accomplish this task successfully, the
split-field method uses a set of transformed fields that elimi-
nate the phase difference between the two adjacent sides of
the problem space.

In order to simplify the derivation of the new approach pre-
sented here, we briefly recall the fundamentals of the deriva-
tion of SF-FDTD from earlier studies. Assuming nonmagnetic
and nonconducting media, Maxwell’s curl equations take on
the forms

∇ × E � −jωμ0H; (2)

∇ ×H � jωϵ0ϵrE� jωFNL; (3)

where ϵ0 and μ0 are the vacuum permittivity and permeability,
respectively, ϵr denotes the relative linear permittivity, and
FNL is the nonlinear polarization.

The SF-FDTD considers a transformation of the electric
and magnetic fields taking into account that the new variables
implicitly contain the oblique field propagation, which leads to
new split-field variables

P � Eej�kxx�kyy�; (4)

Q � cμ0Hej�kxx�kyy�; (5)

where P and Q are the transformed vectors in the phasor
domain. Analogous transformation can also be applied to the
nonlinear polarization term [28] by introducing a new trans-
formed vector variable G,

GNL � μ0cFNLej�kxx�kyy�: (6)

Substituting the split-field components into Maxwell’s equa-
tions [27,28], the basis for the SF-FDTD with second-order
nonlinear polarization terms can be expressed as follows:

jω
c
P � κ∇ ×Q� jω

c
κqQ − jωGNL; (7)

jω
c
Q � −∇ × P −

jω
c
κqP; (8)

where κ � ϵ−1r and the matrix q is defined as

Fig. 1. Schematic illustration of a 2D periodic structure and the
incidence configuration.

Fig. 2. (a) General problem space for SF-FDTD simulations used in this paper. (b) Yee cell for a three-dimensional FDTD scheme.
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q � ω

c

2
64

0 0 −ky
0 0 kx
ky −kx 0

3
75: (9)

The presence of time-derivative terms on each side of
Eqs. (7) and (8) makes it difficult to redefine these expres-
sions into finite differences. In order to solve this issue a
new set of variables is defined on the right-hand side, separat-
ing both P and Q into two components:

P � Pa � κqQ − cGNL; (10)

Q � Qa − qP: (11)

The update-finite-difference expressions for the “a” fields
can easily be derived substituting Eqs. (10) and (11) into
Eqs. (7) and (8) and discretizing the equations with respect
to time, which yields

1
cΔt

�Pn�1
a − Pn

a � � κ∇ ×Qn�1∕2; (12)

1
cΔt

�Qn�1
a −Qn

a � � −∇ × Pn�1∕2; (13)

whereΔt is the time resolution,which is relatedwith the spatial
resolution by means of the Courant–Friederichs–Lewy condi-
tion [32]. The SF-FDTD algorithm is not an unconditionally sta-
ble method, and the stability is affected by many parameters
such as the CFL condition previously mentioned, additional
averaging, and larger angles of incidence. Using the lower
bound found by Roden et al. [22] is sufficient to ensure stability
in themost common scenarios. Therefore, the CFL condition is
chosen small enough in order to ensure stability and conver-
gence to proper solutions. This assumption also implies
smaller time and spatial resolutions and hence bigger grid sizes
and larger time simulations and computational resources. It is
worthwhile to note that finite-difference schemes have an ex-
ponentially growing cost in terms of grid size, so enlarging the
grid size has a dramatic impact on the time simulation costs.
More information regarding the stability, convergence, and
computational optimization can be found in [15,22–24,27].

The SF-FDTD leapfrog algorithm used for updating field
equations uses Eqs. (12) and (13) to update “a” fields from
the P and Q fields obtained previously. After that, the current
P field can be calculated by means of

P � Pa � κqQa − cGNL

I� κq2
; (14)

where I is the identity matrix. After P has been updated, the
components of Q are straightforwardly obtained from
Eq. (11). An interested reader can find more details about
the derivation of the equations in SF-FDTD in [23,25–27]. In
the following section, we discuss the implementation of the
polarization terms in Eq. (14) for the specific case of a tenso-
rial second-order nonlinear susceptibility.

B. Formulation of Second-Order Nonlinear Media
The polarization FNL that models the nonlinear effects in non-
centrosymmetric media relates the second-order nonlinear

susceptibility and the field components inside the structure.
The presence of a fundamental or pump field at frequency
ωf leads to an exchange of energy with the second-harmonic
field at the double frequency ωs � 2ωf . The nonlinear polari-
zation term is defined in terms of a third-rank tensor d that, in
the case of SHG, can be represented in contracted form as a
3 × 6 matrix dmξ [1,29,33],

d �

2
64
d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36

3
75; (15)

which is related to the second-order susceptibility tensor by

dmαβ �
1
2
χ�2�mαβ; (16)

and Table 1 that relates the indices of tensors dmαβ and dmξ.
Thus, suffix ξ takes on values 1…6 that are related to the
Cartesian axes by the rules given in the table [1,33]. Using this
contracted suffix notation, the polarization term related to the
SHG can be defined by [33–36]

F
NL;ωf
m � 2ϵ0

X
σ;β

dmξE
ωf
σ Eωs

β ; (17)

FNL;ωs
m � ϵ0

X
σ;β

dmξE
ωf
σ E

ωf

β ; (18)

where m � 1, 2, and 3 stand for x, y, and z, respectively.
Taking into account the transformation into the split-field

domain we find that

2
664
G

NL;ωf
x

G
NL;ωf
y

G
NL;ωf
z

3
775 � 2

c
d

2
66666664

P
ωf
x Eωs

x

P
ωf
y Eωs

y

P
ωf
z Eωs

z

P
ωf
z Eωs

y � P
ωf
y Eωs

z

P
ωf
z Eωs

x � P
ωf
x Eωs

z

P
ωf
x Eωs

y � P
ωf
y Eωs

x

3
77777775
; (19)

2
64
GNL;ωs

x

GNL;ωs
y

GNL;ωs
z

3
75 � 1

c
d

2
66666664

P
ωf
x P

ωf
x

P
ωf
y P

ωf
y

P
ωf
z P

ωf
z

2P
ωf
z P

ωf
y

2P
ωf
z P

ωf
x

2P
ωf
x P

ωf
y

3
77777775
: (20)

Once the “a” fields are known, we can calculate the total
fields. They are found to be expressed using only the “a” fields
and the inner electric field components by inserting Eqs. (19)
and (20) into Eq. (14), which reveals that

Table 1. Contracted Matrix Notation for dmξ
Indices

ξ 1 2 3 4 5 6

σβ xx yy zz zy zx xy
yz xz yx
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P
ωf
x � P

ωf
xa − κ�kyQωf

za − kxkyP
ωf
y − cG

NL;ωf
x �

1� κ�k2y � 2�d11Eωs
x � d15E

ωs
z � d16E

ωs
y �� ; (21)

P
ωf
y � P

ωf
ya � κ�kxQωf

za � kxkyP
ωf
x − cG

NL;ωf
y �

1� κ�k2x � 2�d22Eωs
y � d24E

ωs
z � d26E

ωs
x �� ; (22)

P
ωf
z � P

ωf
za � κ�kyQωf

xa − kxQ
ωf
ya − cG

NL;ωf
z �

1 − κ�k2x � k2y − 2�d33Eωs
z � d34E

ωs
y � d35E

ωs
x �� ; (23)

Pωs
x � Pωs

xa − κ�kyQωs
za − kxkyP

ωs
y − cGNL;ωs

x �
1� κk2y

; (24)

Pωs
y � Pωs

ya � κ�kxQωs
za � kxkyP

ωs
x − cGNL;ωs

y �
1� κk2x

; (25)

Pωs
z � Pωs

za � κ�kyQωs
xa − kxQ

ωs
ya − cGNL;ωs

z �
1 − κ�k2x � k2y�

; (26)

where GNL;ωf is defined as

G
NL;ωf
x � 2

c
�d12Pωf

y Eωs
y � d13P

ωf
z Eωs

z � d14�Pωf
z Eωs

y

� P
ωf
y Eωs

z � � d15P
ωf
z Eωs

x � d16P
ωf
y Eωs

x �; (27)

G
NL;ωf
y � 2

c
�d21Pωf

x Eωs
x � d23P

ωf
z Eωs

z � d24P
ωf
z Eωs

y

� d25�Pωf
z Eωs

x � P
ωf
x Eωs

z � � d26P
ωf
x Eωs

y �; (28)

G
NL;ωf
z � 2

c
�d31Pωf

x Eωs
x � d32P

ωf
y Eωs

y � d34P
ωf
y Eωs

z

� d35P
ωf
x Eωs

z � d36�Pωf
x Eωs

y � P
ωf
y Eωs

x ��: (29)

Due to the staggered spatial arrangement of the electromag-
netic field an averaging over the nearest nodes surrounding
each component field is required. For example, in Eq. (21),
the values of P

ωf
y , Eωs

z , and Eωs
y at the P

ωf
x position (i� 1∕2,

j, k) must be computed since they are defined in different spa-
tial positions inside the Yee cell [see Fig. 2(b)]. Assuming that
field components are simply the arithmetic average of the
stored values in the neighboring cells, the semi-implicit
approximation can be applied in order to address this issue
[23,29,37].

A nonlinear system of equations of the form P � U�P� is
made up by Eqs. (21)–(26). For solving this system of equa-
tions a fixed-point iterative process is considered. The basis
of this method is solving the following iterative process with
the form

P�p�1� � U�P�p��; p � 0; 1; 2;…; (30)

where p is for the iterations of the fixed-point procedure.
It is worth noting that the fixed-point process must be per-

formed at each time step of the FDTD simulation. The scheme
is based on considering an initial guess of P, which represents

those fields obtained from considering linear media, after
which subsequent iterations are carried out to improve the
accuracy of the results with every iteration. As mentioned
in [28], 30 steps have been chosen for the fixed-point iterative
process since it provided good results near the upper limit of
convergence of the method. The amplitude of the electric field
E has to be limited to an upper value that is related to the
amplitude of the second-order susceptibility to assure conver-
gence of the fixed-point iteration. The authors have concluded
experimentally that using Eq. (54) in [28] substituting the
third-order susceptibility contribution by means of the highest
second-order susceptibility an upper limit of the pump inci-
dent field is provided. More details regarding the convergence
condition for the fixed-point iterative process and FDTD can
be found in [28,38].

3. NUMERICAL EXAMPLES
In order to demonstrate the accuracy of the method presented
here, two numerical examples are given. First, a 1D periodic
GaAs-based homogeneous layer is considered. This example
has been simulated previously with the 2D SF-FDTD scheme
[29], and it is a well known SHG scenario, in which the phase
matching of the second-harmonic field can be easily analyzed.
Second, we show the analysis of a 2D L-shaped particle array
that has been investigated experimentally and numerically by
means of the Fourier modal method (FMM) [30,39–41] and the
boundary element method [42]. Here, however, we study di-
electric nanostructures only.

A. Quasi-Phase Matching in a Homogeneous Layer
The GaAs-based homogeneous layer is illuminated by means
of continuous-wave TM signal at 2.25 μm, intensity
120 μW∕m2, and angle of incidence 30°. The physical param-
eters of this material are fully defined in Section 3.B and [1].
Two different situations are considered to observe the SHG.
The first is a no-matching technique, and the variation of the
amplitude for the second-harmonic field can be easily identi-
fied due to the phase shift between the pump and the second-
harmonic field. The second considers the QPM technique
implemented by alternately inverting the orientation of the
crystal axes along the material. The optimum period for the
QPM structure is given by Δ � 2Lcoh, with Lcoh � 7.1 μm for
SHG of radiation at a wavelength of 1.25 μm at the oblique
angle of incidence in AsGa. If the period of the alteration
of the axis is close to twice the coherent buildup length of
the nonlinear interaction, the interchange between the funda-
mental field and the second-harmonic field tends to grow
along the nonlinear media. Without QPM there is a periodic
variation of the second-harmonic amplitude as a function of
the space. Both phenomena are represented in Fig. 3.

B. Second-Harmonic Generation by L-Shaped
Nanoparticles
Our next example deals with an array of L-shaped nanopar-
ticles made of GaAs (n0 � 3.47) [1]. Figures 1 and 4 show
the geometry considered in this case. Each L particle has
two arms of length l � 150 nm and width w � 80 nm and is
arranged with periods Λ1 � Λ2 � 400 nm. The substrate is
fused silica, and the modulated region has a thickness of
h � 20 nm.
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Gallium arsenide is classified as a crystal point group 43 m.
In this case, the only nonzero elements in the nonlinear-
optical coefficient tensor are d14 � d25 � d36 � 370 pm∕V [1].
The crystal axes are taken following the same strategy in [30];
thus the crystal axes match the A axes in Fig. 4. In order to fit
these parameters into the SF-FDTD equations a coordinate
transformation has to be made so as to get the values of
the susceptibility tensor in the Oxyz system.

The (0,0)th-order transmitted SHG intensity as a function of
the input pump intensity for both type-I and type-II samples is
calculated by means of the SF-FDTD method. Directions A, B,
and C are the polarization directions of normally incident
plane waves with wavelength 1060 nm. The SF-FDTD setup
considered is based on a grid of 40 × 40 × 300 cells with spatial
and time resolutions of 10 nm and 1.11 × 10−11 ns, respec-
tively. The number of time steps has been chosen in order to
ensure steady-state condition, thus being 7000 time steps.

Figure 5 shows the simulation results of the transmitted
SHG intensity of the L-shaped structures. Comparing it with
the results obtained by Bai and Turunen [30] with FMM,
we can see that although they are not perfectly coincident,
many characteristics are well reproduced if we take into ac-
count that we are not using metallic L-shaped nanostructures.
Nevertheless, the SHG output intensity has an expected quad-
ratic relation with the input intensity; the stronger output of
SHG for polarizations B and C for the type-I structure is also
corroborated. However, there are some differences between
the results obtained here and those derived from the FMM
and metallic nanoparticles. These differences would basically
be produced by the enhancement produced by metallic

nanostructures of the electromagnetic field. Even considering
the differences between the nonlinear behavior found in met-
allic nanoparticles and that found in AsGa-based nanoparti-
ces, the authors found that the results presented here are
consistent with those obtained in [30,39], since many charac-
teristics are common in both scenarios. The accurate analysis
of the metallic nanoparticles is beyond the scope of this paper
and will be addressed in the near future.

4. CONCLUSIONS
An extension of the SF-FDTD method for the analysis of SHG
in 2D periodic structures with nonlinear materials and an ar-
bitrary susceptibility tensor is defined. This method takes no
hypothesis, and SH and pump fields are solved by means of a
fixed-point iterative process. The reliability of the method is
demonstrated by means of the analysis of a SHG case based
on a 1D nonlinear material with and without QPM. Then it is
used to simulate the SH response of the L-shaped nanoparticle
arrays. The results obtained from this analysis are compared
with those of the previous analysis carried out with FMM,
showing a high degree of consistency. The authors are cur-
rently working on including some formalisms for accurately
simulating metal structures and also different strategies in
order to reduce the computational costs.
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