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Exploring the interfacial neutral pH region of Pt(111) electrodes. 
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ABSTRACT: The interfacial properties of Pt(111) single crystal electrodes have been 

investigated in the pH range 3<pH<5 in order to obtain information about the acidity of 

electrosorbed water. Proper experimental conditions are defined to avoid local pH changes 

while maintaining the absence of specifically adsorbed anions and preserving the cleanliness of 

the solution. For this purpose, buffer solutions resulting from mixtures of NaF and HClO4 are 

used. Total charge curves are obtained at different pHs from the integration of the 

voltammetric currents in combination with CO charge displacement experiments. Analysis of 

the composition of the interphase as a function of the pH provides information for the 

understanding of the notion of interfacial pH. 

KEYWORDS: Interfacial pH; double layer; single crystal electrode; Pt(111); potential of zero 

charge; neutral pH buffer.  
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Introduction 
Investigation of interfacial properties is a key issue in fundamental electrochemistry. Among 

the different properties that characterize the structure of the interphase, the potential of zero 

charge (pzc) is a parameter of paramount importance [1-5]. Regarding the interfacial charge, 

when adsorption processes participate in the formation of the interphase, distinction should 

be made between the concepts of total charge (including the charge involved in adsorption 

processes) and free charge (true electronic charge). Correspondingly, different values for the 

potential of zero total charge (pztc) and zero free charge (pzfc) should be defined [2, 6]. This is 

the situation for Pt and other electrocatalytic metals. In these cases, the usually available 

magnitude is the total charge, from which the free charge can be calculated by using some 

reasonable assumptions [7-10]. In general, the pztc and the pzfc of Pt(111) have been 

evaluated in acidic solution[8, 9].  

In the case of hydrogen and hydroxyl adsorbing metals, the study of the pH dependence of the 

total and free charge contains valuable information about the structure of the interface and 

the state of adsorbed hydrogen and OH species [6]. Recently, experiments have been carried 

out in a wide pH range, involving an acidic region pH<4 and an alkaline region pH>8  [7, 10]. 

Under these conditions, the pseudocapacitive processes remain in equilibrium, and it is 

reasonable to assume that local pH changes at the interface are negligible. Calculation of the 

potential of zero free charge (pzfc) involves the extrapolation of the free charge from the so-

called double layer region into the hydrogen or OH adsorption regions. The potential where 

the extrapolated charge is zero has been previously called potential of zero extrapolated 

charge (pzec) [10]. In acidic solutions, the pzec can be taken as a good approximation to the 

pzfc while more uncertainty exists in alkaline solutions. Still, when the extrapolation is 

performed with the data in alkaline solution, while the pztc values change with pH, the pzec 

remains constant [10]. 

One of the problems in the analysis of the charge/potential data is that there is a wide pH 

region in which clean interfaces cannot be maintained under thermodynamic equilibrium [11]. 

To avoid changes in the local pH at the interphase, the use of buffered solutions is required, 

but usual buffers normally introduce the specific adsorption of anions. In this paper, we show 

how the use of HClO4 / NaF mixtures allows the study of solutions with pH ranging between 3 

and 5 without the interference of anion adsorption. Previous studies with NaF/HF buffered 

solutions required the use of relatively high concentration of HF acid, hampering the 

achievement of the high degree of cleanliness required for interfacial studies [12, 13].  

Experimental 
Cell components and electrode pretreatments have been described elsewhere [14]. To avoid 

the use of hydrofluoric acid, which could carry impurities, the buffer solutions were prepared 

by adding perchloric acid (Merck, suprapur) to 0.1 M solution of sodium fluoride (Merck, 

suprapur) in appropriate amounts. In both chemicals, specific anion adsorption can be 

considered negligible. CO displacement experiments were run as described in previous studies 

[14-16]. Reported charge data correspond to average values of experiments repeated at least 

five times. Although potentials were measured against RHE, the potential of the RHE was 
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measured at the end of each experiment versus a Ag/AgCl/KCl (sat) reference electrode. From 

this measure the pH of the solution was calculated and all potential values converted to the 

SHE scale.  
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Figure 1: A) Cyclic voltammograms for Pt(111) in NaF + HClO4 mixtures of different pH: a) 3; b) 

4; c) 5. B) Charge curves obtained from the integration of the voltammograms of figure A using 

the charge displaced by CO at 0.1 V as integration constant. C) Enlargement of the double layer 

region. D) Charge curve for pH=4 showing the propagation of the uncertainty to the 

determination of the pztc and pzec. 

Results and discussion. 
Figure 1A shows voltammograms of a Pt(111) electrode in contact with buffered solutions of 

different pH values between 3 and 5. The voltammogram recorded at pH=3  is essentially 

identical to that reported for perchloric acid / perchlorate mixtures [8] of the same pH and 

shows the broad increase in current in the double layer region, around 0.35 V, which was 

attributed to solvent reorientation [17]. Unlike the results in unbuffered solutions [11], the 

voltammograms in figure 1A recorded for pH>3 show symmetric H and OH adsorption regions, 

demonstrating the absence of significant local pH changes. Both regions shift nearly 59 mV / 

pH unit, as expected. The charge under the hydrogen region remains essentially unaffected by 

the pH change, with a value around 150 µCcm-2 . This value is slightly lower than that reported 

for hydrogen adsorption at pH=1 (160 µCcm-2 ). On the other hand, the OH adsorption region 

shows a redistribution of charges, an increase in the broad feature (OHb), accompanied by a 

diminution of the sharp peak (OHs). The overall charge for OH adsorption slightly increases 

with the increase of pH, from 120 µCcm-2 (pH=3)  to 140 µCcm-2  (pH=5)  The broad peak in the 

double layer region (at 0.35 V), attributed to solvent reorientation, does not shift with the pH 

and therefore is progressively overlapped with the OHads region. While the onset of this 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

process is still visible in the double layer region at pH=4, it is almost absent in the 

voltammogram at pH=5.  

CO displacement experiments were performed at 0.1 V. From the integration of the 

voltammogram, total charge/potential curves are obtained, after correction to account for the 

remaining charge on the interphase after CO adsorption [18, 19]. The resulting 

charge/potential plots are given in figure 1B. In this figure, points correspond to experimental 

charge values and error bars represent experimental uncertainty between different charge 

displacement experiments. It can be seen that the pztc’s lie in the so-called double layer 

region, in which the contribution of pseudocapacitive processes is minimal. Thus, pztc and pzfc 

are nearly equal in all cases. It should be stressed that small uncertainties in the charge curve 

(1-2 µC cm-2) may shift the determination of the pztc by tenths of mV and for this reason a 

reasonable statistics has to be made. The inset of figure 1 shows how the uncertainty in the 

charge propagates to the determination of the pztc. To minimize the uncertainty, a minimum 

of 5 displacement experiments have been performed  for each pH value. The main source of 

uncertainty in the determination of charge comes from the CO displacement experiment. This 

uncertainty can be pH dependent.  

Close inspection of the double layer region (see enlargement in the inset of figure 1B) reveals 

that pztc and pzec are strictly identical only for pH=3. For pH=4 and 5, a short extrapolation 

need to be done from the inflection point such as the pztc and the pzec are not identical. 

Interestingly, the extrapolation has to be done to higher potentials, indicating that at the pztc 

negative free charge is compensated with positive charge due to OH adsorption.  

Measurements previously reported for pH<3 [7, 9] indicated that in acidic pHs at the pztc 

positive free charge compensates negative charge due to H adsorption.  

To improve the accuracy in the determination of the charges, it can be recalled that, in the 

presence of a strongly adsorbing anion, all the properties of the interphase can be considered 

pH independent in the high potential region. In this way, the relative position of the total 

charge/potential curves measured at different pH can be determined with high accuracy from 

their coincidence in the high potential region [8]. Also, at low enough potentials, the anion is 

completely desorbed and the interphase should become independent of the presence of the 

anion. In this way, the charge values can be also determined in the OH adsorption region, by 

comparing charge curves recorded with and without the anion. 
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Figure 2: A) Cyclic voltammograms for Pt(111) in NaF + HClO4 mixtures containing 1mM NaCl, 

of different pH: a) 3; b) 4; c) 5. B) Charge curves obtained from the integration of the 

voltammograms recorded in the absence (solid lines) and in the presence of chloride (dashed 

lines) (see text for details). C) Enlargement of the double layer region showing the 

determination of the pztc and pzec. D) Enlargement of the double layer region comparing the 

charge curve at pH=4 obtained with the CO displacement (solid line) and with the chloride 

involving methodology (dashed line)  

 

Figure 2 illustrates the procedure, when chloride adsorption is used to suppress OH 

adsorption. The coincidence of the voltammograms in the region between 0.2 and 0.5 V 

(Figure 2A) supports the idea that the charge is pH independent under these conditions. A new 

peak is observed at high potentials, presumably due to the replacement of chlorine by OH. A 

potential value of 0.3 V is selected for the determination of the integration constant. For this, 

the charge curves obtained in the presence of chloride are shifted vertically until they coincide 

at 0.3 V (dashed lines in figure 2B). Then, for each pH, curves with and without chloride are 

shifted until they coincide at the onset of hydrogen evolution. In this way, the relative position 

of the curves at the three studied pH values is determined with high accuracy. To know the 

absolute position (i.e., the integration constant) of the curves, the charge displaced at a single 

pH value can be used. The charge displaced at the most acidic solution, pH=3, was used to 

define the position of the curves in figure 2B. It is worth stressing that this methodology avoids 

the uncertainty associated with the variation of the remaining charge on the CO covered 

surface after the charge displacement experiment. Figure 2B shows the resulting charge curves 

with and without chloride. Figure 2D shows an enlargement of the double layer region, while 

Figure 2C compares the charges obtained for pH=4 in the region around the pztc. 
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Figure 3 summarizes the values for the pztc and pzec obtained at the three investigated 

solutions with the two methodologies. At pH  =3, pztc and pzec (pzfc) values coincide. 

Moreover, at pH=3 both methodologies provide same values for the two properties since 

curves at this pH share the same value of the integration constant. While a small difference is 

observed between both methodologies at pH=4, almost identical values are again obtained at 

pH=5, demonstrating the accuracy of both measurements.  
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Figure 3: Values of the pztc (on the left) and pzec (on the right) as a function of the pH, as 

determined from the charge curves using CO displacement (solid symbols) or chloride (open 

symbols). 

Conclusions 
Variation of the pztc and pzfc for Pt(111) within the pH region 3< pH < 5 has been carefully 

investigated using the methodology of CO charge displacement and an indirect method that 

involves specific adsorption of chloride. In this pH region, pztc and pzfc lie in the double layer 

region and therefore, very close to each other. Close inspection of the charge curves around 

the pztc reveals the following interesting observation. For pH<3, the pzfc<pztc, therefore, at 

the pzfc excess hydrogen is adsorbed on the surface. On the other hand, for pH>4 the 

pzfc>pztc and at the pzfc, excess OH is adsorbed on the surface. This is the same situation as in 

strong alkaline solutions. Comparing the composition of the interfase for different pH 

solutions, taking as reference the situation where the free charge is zero, i.e., the pzfc, we 

come to the conclusion that the pH that corresponds to equal amounts of H and OH is around 

pH=3.  At this pH, the Pt(111) surface is free of adsorbates and is in equilibrium with water.  
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Highlights 

The interfacial properties of Pt(111) are investigated in neutral pH solutions. 

New buffer solutions are selected to avoid specific anion adsorption. 

Potential of zero total charge are determined from charge displacement experiments. 

Potential of zero free charge are estimated from extrapolation of the charge curves. 


