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Abstract 

 

 In this paper regular and chaotic oscillations in a controlled electromechanical 

transducer are investigated. The nonlinear control laws are defined by an electric 

tension excitation and an external force applied to the mobile piece of the transducer. 

The paper shows that an Andronov-Poincaré-Hopf bifurcation appears as long as 

adequate parameters are chosen for the nonlinear control laws. The stability of the weak 

focuses associated to such bifurcation is examined according to the sign of the first 

Lyapunov value, showing that chaotic behavior can arise when the first Lyapunov value 

is varied harmonically. The appearance of a homoclinic orbit is investigated assuming 

an approximated model for the device. On the basis of the parametric equations of the 

homoclinic orbit and the presence of harmonic disturbances on the platform, it is 

demonstrated that chaotic oscillations can also appear, and they have been examined by 

means of the Melnikov theory. Chaotic behavior is corroborated by means of the 

sensitive dependence, Lyapunov exponents and power spectral density, and it is applied 

to drive the transducer mobile piece to a predefined set point assuming that noise due to 

the measurement process can appear in the control signals. The steady state error 

associated to such random noise is eliminated by adding a PI linear controller to the 

control force. Numerical simulations are used to corroborate the analytical results.   
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TABLE I. NOMENCLATURE 

 
Variable Description Value 

m Mobile mass (Kg) 0.2 

B Viscous damping (N/m/s) 0.02 

K Elastic constant of the spring (N/m) 10 

L1 First Lyapunov value < 0 ó > 0 

NLy Lyapunov exponent  

SP Power spectral density  

c Nonlinear coefficient of the spring (m
-2

) 10000 

b Length of the non-deformed spring (m) 0.05 

d Length of the brass component (m) 0.04 

N Number of turns 100000 

S Cross sectional area (m
2
) 4.10

-4 

Rg Generator resistance () 10 

Rs Solenoid resistance () 1200 

0 Vacuum permeability (H/m) 4·10
-7

 

am a = (0N
2
S)/2 ; am = a/m 12.5664 

α1 Control law parameter (A/m) 0 -10-20 

α11 Control law parameter (s
-1/2

) 1-5 

αz1 Control law parameter (A/m
2
/s

2
) 0-0.05 

αz2 Control parameter (A/m
3
/s

3
)

 
0-0.001 

α2 Control law parameter (A
-3/2

s
-2

) 10 

Ad Disturbance amplitude (rad) 0.05-0.5 

ωd Disturbance frequency (rad/s) 1-50 

Kp Proportional constant (N/m) 1 

Bf Viscous damping (Nm/s) 0.02 

δ δ = (B – Bf)/m 0 

Kc Kc = cK (m
-2

N/m) 10
5 

Cp Proportional constant of PI controller (s
-1

) 0.5-1 

τi Reset time of PI controller (s
-2

) 0.05-0.1 

β β = Kc/m (N/mkg) 5x10
5 

σ
2
 (K – Kp)/m  

rcx Capture zone parameter (m) ≤ 0.02  

rcy Capture zone parameter (m/s) ≤ 0.1 

fna Random noise amplitude 0.005-0.04 
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1. Introduction 

 

It is known that electromechanical devices are inherently nonlinear, which has 

allowed them being a rich source of new investigations in vibration systems [1]. These 

investigations have progressed due to the integrated formulation of mechanical, electric 

and magnetic circuits [2-7], as well as the combined use of chaos, bifurcation and 

control theory [8-13]. On the other hand, the appearance of micro electromechanical 

systems and the developing of new recording systems offer the possibility to examine 

new interesting dynamical behaviors [14-17]. 

 

In this paper we study a device formed by an iron mobile piece actuated by a 

magnetic field which is generated by an electric circuit, whose voltage is regarded as an 

external control signal. The other control signal is an external force applied to the 

mobile piece, which is constrained by a linear damper and a nonlinear spring [1-3]. The 

control force has a similar structure to a proportional plus derivative (PD) controller. 

The control voltage is chosen to obtain a proportional (P) controller and to add 

nonlinear terms that are independent of the system equilibrium points, which are used to 

stabilize the final position of the device.  

 

Once the control signals have been defined, the equilibrium points and their 

stability properties depending on the control signals will be analyzed. Such analysis will 

allow to demonstrate the appearance of a homoclinic orbit with three equilibrium points, 

being one of them a saddle whereas an Andronov-Poincaré-Hopf bifurcation can arise in 

the other two equilibrium points [18-20]. The analysis of the bifurcation stability will be 

carried by calculating the first Lyapunov value [21-24], which will allow to corroborate 

that a harmonic variation of one parameter involved in the control voltage law may give 

rise to chaotic dynamic [4-5], [14-15]. 

 

Once the bifurcation analysis has been carried out, the Melnikov theory will be 

applied to obtain sufficient conditions for chaotic behavior [18-19], [24-31]. It will be 

demonstrated that the chaotic oscillations can be used in connection with the control 

laws to drive the mobile piece to a predetermined set point with a very small control 

effort. Finally, we will consider the presence of random noise and the associated steady 

state error in the final position of the device, which will be removed by adding a linear 

term formed by a proportional plus integral (PI) controller [28], [32-35]. 



 4 

2 Mathematical model and equilibrium points 

 

In this section we are going to present the mathematical model of the device as 

well as the analysis of the equilibrium points and their stability properties. 

 

2.1 Mathematical model 

 

 The device shown in Fig 1 consists of an electromechanical device used as 

transducer, which is anchored to a platform that may vibrate harmonically. The 

transducer working can be described as follows. A voltage generator V(t) with internal 

resistance Rg is connected to a solenoid with resistance Rs and negligible inductance, 

giving rise to a current i(t). As a consequence, a magnetic induction field Be is generated 

in a brass piece and another magnetic induction field Beh appears in the air gap between 

the solenoid and a mobile piece of mass m, which is connected to the platform by means 

of a nonlinear spring with a (position-dependent) constant K(r) and a viscous damping 

coefficient B [5]. 

Figure 1 

  

It is assumed that the device is controlled by means of the excitation voltage V(t) 

and an external force F(t) applied to the mobile piece. The mathematical model of the 

transducer is obtained from the Lagrange equations of the system, taking the position 

r1(t) of the mobile piece and the electric charge q(t) (i(t) = dq(t)/dt) as generalized 

coordinates. The potential energy of the nonlinear spring is defined as: 

 

2 4

1 1

1
( - ) ( - )

2 4
s

c
V K r b r b

 
  

 
                                         (1) 

 

where K and c are constants, and b represents the spring length at which no force is 

exerted on the mobile mass. In particular, if c = 0 we would have a linear spring. 

 

Assuming that the platform of the device could be oscillating, the total kinetic 

energy T of the device is the sum of the kinetic energy of the mobile mass plus the 

magnetic energy given by: 
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 
 

2 2
2 2 2 0

1 1

1

1

2 2

SN q
T m r r

d r


  


                                       (2) 

 

where cosd dA t   is an external harmonic disturbance due to the platform vibration. 

The Lagrangian of the system can be written as follows: 

 

 
 

2 2
2 2 2 2 40

1 1 1 1

1

1 1
( ) ( )

2 2 2 4
s

SN q c
L T V m r r K r b r b

d r




 
           

            (3) 

 

It should be noted that the energy associated to the voltage in the solenoid has not been 

considered in Eq (3), which implies the assumption that the current i(t) is almost 

constant with respect to time. This issue depends on the choice for the control laws and 

it will be analyzed later. 

 

Assuming that the Rayleigh dissipation function is given by: 

 

       2 2

1

1 1

2 2
R g sF q Br t R R q t                                         (4) 

 

and introducing the nomenclature: Rgs = Rg + Rs, a = μ0 SN
2
/2 and Kc = cK, from the 

Lagrangian equations and Eqs (3-4) the system equations can be deduced as follows: 

 

           
 

 

 

 

   

 
 

2
32

1 1 1 1 1 2

1

1

2

1 1

( )

2 2
                               ( )

c

gs

aq t
mr t Br t mr t t K r t b K r t b F t

d r t

aq t aq t r t
R q t V t

d r t d r t




              
   


  
    

  (5) 

 

Eqs (5) constitute the mathematical model of the device with harmonic platform 

disturbances and control signals F(t) and V(t), which will be specified next. To simplify 

the mathematical treatment, it is convenient to introduce deviation variables defined as 

follows: 
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             

           

       

1 1 2 3

1 1 1 2 2 3 3 0

1 1 1 1 1 1 1 1 1 1

                ;    ;                 

               ;    ;  

( )

e e

e e e e e

z t r t r t b z t r t z t i t

z t z t z z t z t z t z t i

z r b z t z t r b z t r t b r b r t r

     


       


              

      (6) 

 

where z1e and i0e are the equilibrium position of the mobile mass and current 

equilibrium respectively, which can be obtained from equilibrium equations once the 

control signals F(t) and V(t) have been specified. Substituting Eqs (6) into Eqs (5), 

taking am = a/m and assuming that the harmonic disturbance is   cosd dt A t  , it is 

possible to deduce the mathematical model in terms of deviation variables as [5], [28]: 

 

   

       
 

 

 

 
   

 

 

1 2

3

3 3 0

2 1 1 2 1 1 2

1 1

2 2 2

1 1

2 3 0 1 1

3

1 1

1
                       sin ( )

2

m ec
e e

b e

e d d d

e b e

g

b e

z t z t

a z t iKK B
z t z t z z t z t z

m m m d z t z

z t z b A t F t
m

z t z t i d z t z
z t R

d z t z a

 

 

                  
   

     

           
   

 
 1 1

3 ( )
2

b e

s e

d z t z
z t i V t

a

  
      

 

(7) 

 

The control signals F(t) and V(t) are chosen as: 

 

      2 2 2

0 1 1 2 1 1( ) sinp e f d e d d dF t F K z t z B z t f m z t z b A t                        (8) 

 

 
   

   
 2 3 0

3 0 2 3

1 11 1

2 2
( ) ( ), ( )

e

gs e

b eb e

az t z t i a
V t R z t i f z t z t

d z z td z z t

                       
   (9) 

 

where the nonlinear function  2 3( ), ( )f z t z t   is defined by: 

 

  2 2 3 2 3

2 3 1 2 11 3 1 2 2 2 2 3( ), ( ) ( ) ( ) ( ) ( ) ( )z zf z t z t z t z t z t z t z t                           (10) 

The first three terms of the control force F(t) can be considered as a classic PD 

(proportional + derivative) control with a bias given by F0 whose effect will be 

analyzed later, and the other term could be considered as feedforward control where fd 
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is a disturbance factor that accounts for the harmonic base excitation of the system [4-

5]. It should be noticed that the disturbance is canceled by the control law when fd = 1. 

 

The control tension V(t) represents the voltage in the resistance Rgs = Rg + Rs, 

where Rs compensates the voltage originated by the magnetic-mechanical coupling (i.e. 

the voltage due to the mobile mass movement). The following terms can be identified 

in Eq (10): a derivative controller with constant α1, a proportional controller with 

constant 2

11 , a nonlinear frictional term formed by the constants –αz1 and –αz2 and a 

nonlinear term multiplied by 2

2  to stabilize the current z’3(t). The previous 

arrangement of Eq (10) can be justified as follows. Substituting Eqs (8), (9) and (10) 

into Eqs (7) and introduction the notation:  

 

2   ;    ;  
p fc

K K B BK

m m m
  

 
                                 (11) 

 

Eqs (7) can be rewritten as follows: 

 

   

       
 

 

  

 

1 2

2

3 3 02

2 1 1 2 1 1 2

1 1

2 2 20
1 1

2 2 3 2 3

3 1 2 11 3 1 2 2 2 2 3

                1 ( ) sin

( ) ( ) ( ) ( ) ( )

m e

e e

b e

d e d d d

z z

z t z t

a z t i
z t z t z z t z t z

d z t z

F
f z t z b A t

m

z t z t z t z t z t z t

  

 

    

 

                  
   

    

         

      (12)  

 

Assuming that α1 = 0, αz1 = 0 and αz2 = 0, a differential equation with  3z t  as 

unknown is obtained from the third equation of Eqs (12), and the solution for such 

differential equation is given by: 

 

 
 

 

2

11 1 11 30
3 1

2 2 22 2 2
11 2 302 1 11

exp
  ;  

1 exp 2

C t z
z t C

zC t

 

  

 
  

 
                    (13) 

 

where z’30 is an arbitrary initial condition. On the other hand, the mean value of z’3(t) 

can be calculated from Eq (13) as follows: 
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   
 

 

2

11 1 1130
3 3 2

2 2 2
11 11

2 1 110

exp1 1
d

1 exp 2

mt

m

m m m
m

C tz
z t z t t

t t t C t

 

   

      
   
 

              (14) 

 

It should be noticed that z’3(t) → 0 for t → ∞ when α11 > 1 and α2 >> 1. So according 

to Eqs (13) and (14), the current in the resistance Rgs can be regarded as approximately 

constant. This implies that the voltage in the inductor can be considered as negligible in 

accordance with the kinetic energy defined by Eq (2). 

 

2.2 Equilibrium points 

 

The equilibrium points are deduced from Eqs (12) in the absence of external 

harmonic disturbance. Since we are using deviation variables, in the equilibrium points 

we must have that 1 2 3 1 2 30 , 0 , 0 ; 0 , 0 , 0z z z z z z           , so from Eqs (6) and 

(12) we obtain the equilibrium condition given by: 

 

        2 32 2

1 1 1 1 0 0 0e e e e m ef r d r r b r b f a i         
 

                 (15) 

 

where f0 = F0/m and the equilibrium current is calculated from Eq (15) as i0e = V0/Rgs, 

being V0 a fixed value for the applied tension. Fig 2 shows the value of f(r1e), which has 

been plotted as a function of r1e taking F0 = 7.1343 N –this particular value has been 

chosen to obtain several equilibrium points- and V0 as a parameter.  

 

Figure 2 

 

The roots of Eq (15) are the crossing points of the horizontal line f(r1e) = 0 with 

the curves shown in Fig 2, but the equilibrium points r1e of Eqs (12) are only the 

positive roots of Eq (15) (see Fig 1). In particular, the roots of Eq (15) for V0 = [200, 

210, 220, 230, 240] are indicated in the rows of the following matrix M: 
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5.6858e-002+ 5.6858e-002-
1.1401e-001  -5.6216e-002 -8.8718e-003  

 1.6375e-002i  1.6375e-002i

5.6371e-002 + 5.6371e-002-
1.1303e-001 -5.6903e-002 -8.8718e-003 

1.0689e-002i  1.0689e-002i

1.1190e-001 -5.7581e-002

M 

6.3897e-002 4.7602e-002 -5.8186e-003

-5.8251e-002 1.1056e-001 7.1819e-002 3.7970e-002 -2.0947e-003

-5.8912e-002 1.0890e-001 7.7530e-002 2.9486e-002 2.9927e-003

 
 
 
 
 
 
 
 
 
 
 

 

(16) 

 

Depending on the values of V0, the following cases can appear: i) For V0 = 240 

V (last row of matrix M) there are five real roots being four of them positive and the 

other one negative (which cannot be an equilibrium point), so in this case we have four 

equilibrium points P1
’
, P2

’
, P3

’
 and P4’. ii) For V0 = 230 V and 220 V the system has 

only three equilibrium points, which in the case of V0 = 230 V are P1, P2 and P3. iii) The 

case of two equilibrium points may appear when the horizontal line f(r1e) = 0 is tangent 

to a curve giving two positive values for r1e and the rest of them being negative or 

conjugate complex. iv)  For V0 = 210 V and 200 V, the polynomial f(r1e) has three real 

roots and two conjugate complex ones. Since two of the real roots are negative, in this 

case we have only one equilibrium point. 

 

It should be noted that the case of four equilibrium points appears for high 

values of F0 and V0, the case of two equilibrium points is difficult to obtain in practice 

since small disturbances would destroy the tangency, and with only one equilibrium 

point the possible applications of the device are reduced. Consequently, in this paper, 

we will only consider values for F0 and V0 which give rise to three equilibrium points. 

 

Once the equilibrium points of Eqs (12) have been obtained from the roots of Eq 

(15), it should be remarked that the function  2 3( ), ( )f z t z t   is independent of the 

position r1e, since the deviation variables z’2(t) and z’3(t) are independent of r1e (see Eqs 

(6)). For example, equilibrium points P1, P2 and P3 of Fig 2 -each of them with different 

values of r1e- have been obtained for V0 = 230 V and F0 = 7.1343 N, and consequently 

all of them have the same equilibrium current i0e = V0/Rgs. 
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In view of Fig 2 it is deduced that one, two, three of four equilibrium point can 

appear depending on the voltage V0. The stability of the equilibrium points is obtained 

from the eigenvalues of the Jacobian matrix of the linearized system around the local 

coordinates of each equilibrium point. Since in Eq (12) we are using deviation variables, 

the equilibrium points are translated to the origin, i.e. in the equilibrium we have that 

1 2 30 , 0 , 0z z z      and thus the Jacobian matrix can be written as follows: 

 

   

2
2 2 0 0

1 3 2

1 1

1 11

0 1 0

2 2
3

0

m e m e
e

b e b e

a i a i
z

d z d z
  

 

 
 
 

     
 

 
  

J                       (17) 

 

where db = d + b and db + z1e = d + b + r1e – b = d + r1e. Introducing the notation: 

 

 
   

2
22 0 0

21 1 232 3

1 1

2 2
3   ;  m e m e

e

e e

a i a i
a r b a

d r d r
       

 
                  (18) 

  

and assuming that δ = 0 (i.e. B = Bf), the eigenvalues of the Jacobian matrix J can be 

obtained according to Eq (17) as: 

 

3 2 2 2 2

11 21 11 0b         λI - J                                     (19) 

where 

   
   

 
 

2
22 2 0 0

21 1 23 1 13 2

1 1

2
22 0

21 21 1 3

1

2 2
3

2
                3

m e m e
e

e e

m e
e

e

a i a i
a a r b

d r d r

a i
b a r b

d r

    

 

       
 

     


             (20) 

  

By applying the Routh-Hurwitz criterion to Eq (19) and taking into account Eqs 

(20), it is deduced that b21 = ω
2
 for α1 = 0, and assuming that 

 
32 2 2

1 0 13 2e m e b ez a i d z     the eigenvalues of the equilibrium point (which depend 

on r1e) will be 
2

1 11 2,3 ; j        and consequently an Andronov-Poincaré-Hopf 

bifurcation will appear [22-24]. This condition can only be fulfilled at the equilibrium 
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points where the derivative of f(r1e) is positive (points P1 and P3 of Fig 2), whereas at 

the equilibrium point P2 the derivative is negative and therefore 

 
32 2 2

1 0 13 2e m e b ez a i d z    , so it is an unstable saddle. 

 

3 Chaotic behaviors from the Andronov-Poincaré-Hopf bifurcation  

  

 It is well known that an Andronov-Poincaré-Hopf bifurcation is associated to the 

so called weak focus, whose stability depends on the sign of the first Lyapunov value. 

Nevertheless, when the stability type changes with the appearance or disappearance of 

small periodic orbits encircling the equilibrium point, a weak focus appears. In this 

case, it is not possible to know if the equilibrium point will be stable or unstable [18-

19], [21-24]. 

 

For second order systems it is well known that it is possible to find a polynomic 

change of state variables which removes the even terms in the Taylor series of the non-

linear terms. In this case, the system can be written in polar coordinates as [18-19], [21-

23], [30]: 

 

 

3 2 1 2 1

1

2 2 2

1

...

...

k k

k

k k

k

r L r L r r

r r r 

    

    
                                (21) 

 

Equation (21) is called normal form of the system, and the coefficients Lk are 

called Lyapunov values, whose calculation requires knowing the Taylor series 

expansion of the non-linear terms up to order (2k + 1). When the Lyapunov values up to 

order k-1 are null (i.e. 1 2 1.... 0kL L L    ), a new change of coordinates allows one to 

obtain the orbital normal form, from which it is possible to demonstrate that the (spiral-

like) trajectory converges to an stable equilibrium point as t   if Lk < 0. On the 

other hand, when Lk > 0 the equilibrium point is called unstable weak focus because 

trajectories starting close to equilibrium point spiral away as t  . If Lk = 0, the 

calculation of the Lk+1 value will be necessary in order to know the stability of the 

equilibrium point. To calculate Lk in a high dimensional case, a simplified system on the 

centre manifold must be calculated considering up to third order terms. 
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 From the previous discussion, the determination of the first Lyapunov value 

implies obtaining the Taylor series expansion and expansion of non-linear terms of 

Eqs (12) up to order three. For this purpose, it will be necessary to carry out a set of 

previous steps in order to rewrite equations (12) in an appropriate form to determine 

the first Lyapunov value. These steps are summarized as follows. 

 

Step 1. 

Taking δ = 0, α1 = 0 and assuming that Ad = 0, the Taylor series expands of the 

nonlinear terms in the second Eq (12) allow to rewrite the system equations as: 

 

   

     

   
 

 
 

 

1 2

32

2 1 1 1 1

2
0

3 0 12

0 1

2 2 3 2 3

3 11 3 1 2 2 2 2 3

1 !
1

( ) ( ) ( ) ( )

e e

n n

m e n

n b e

z z

z t z t

z t z t z z t z

n F
a z t i z t

md z

z t z t z t z t z t

 

   







 

             


      



        


                      (22) 

 

Taking into account the equilibrium condition given in Eq (15) and considering terms 

up to order 3, the system equations (22) can be written in a matrix form as follows: 

 

 

 

 

 

 

 

   

   

1 1

2 21 23 2 2 1 2

2

3 11 3 3 1 2

0 1 0 0

0 ,

0 0 ,

z t z t

z t a a z t f z t z t

z t z t f z t z t

      
                  
                  

                      (23) 

 

where 

             

       

   

2 2 3

2 1 2 11 1 33 3 13 1 3 111 1

2 2

133 1 3 113 1 3

2 3 2 3

3 1 2 1 2 2 2 2 3

,

.....

, ( ) ( ) ( )z z

f z t z t C z t C z t C z t z t C z t

C z t z t C z t z t

f z t z t z t z t z t  

             

     

          

     (24) 

and 

   

   

2 2

0 0
11 1 134 3

1 1

2

0
33 1112 5

1 1

2 4
3   ;  

4
  ;  

m e m e
e

b e b e

m m e

b e b e

a i a i
C z C

d z d z

a a i
C C

d z d z





   
 

    
 

                          (25) 
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As we will see later, the rest of the coefficients Cijk do not influence the calculation of 

the first Lyapunov value. 

 

Remark. It has been proved by Wang [21] that if the functions 2 3 and f f   given in Eq 

(24) are both homogeneous polynomials of a degree m such that 2k/(m-1) is not an 

integer, then Lk must be zero. In our case, we have that k = 1 and m = 3, so 2k/(m-1) = 1 

and consequently the first Lyapunov value L1 ≠ 0 can be used to analyze the stability of 

the weak focus.   

 

Step 2. 

Let P be the matrix that transforms the linear part of Eqs (23) into its Jordan 

canonical form. For details see Refs [18-20], [23-24]. Under the linear transformation 

 

 

1

2

2 11

4
3 11 21 23

0 1 1

0

0 0

z x

z x z y

z za a

 



    
            
         

P
                           (26) 

equation (28) becomes 

 

 

 

 

 

 

     

     

1

2

2

11 3

0 0 0

0 0 , ,

0 0 , ,

x t x t

y t y t f x t y t z t

z t z t f x t y t z t









     
               
               

P              (27) 

 

where 

 

 

 

           

 

4 2

11 21 23 11

1 423
11 21 234

11 21

2
4 4

2 211 21 11 21
2 2 11 33 13

23 23

4
3 11 2

111 133

0

                   0

0 0

, ,

             

a a

a
a a

a

a a
f x t y t z t f x t C y z C z C y z z

a a

a
C y z C

 

  
 



 





   
 


   
 

 
 

    
                

   


  

P

   

           

2
4

221 11 21
113

23 23

3
4

2 3
2 2 2 311 21

3 3 1 11 2 11 2

23

......

  , , z z

a
y z z C y z z

a a

a
f x t y t z t f x t x z x z z

a




      

   
      

   

 
               

 
(28) 
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 

 

 

 

 

 
 

 

 

 

2

11 23
2 34

11 21

1

1 23
2 2 34

11 21

3 3

23
34

11 21

1

0

a
f x f x

a
f x

a
f x f x f x

a
f x f x

a
f x

a



  







 
 

   
   
         

    
 

 
 

P                  (29) 

Step 3. 

We now simplify equations (27)-(29) as much as possible using the center 

manifold theorem in order to obtain a reduced two-dimensional system in a 

neighbourhood around the equilibrium point [4-5]. In the center manifold the variables z 

is approximated by: 

 

  2 2

11 22 12,z h x y b x b y b xy                                      (30) 

 

Coefficients bij (i,j = 1,2) are determined by substituting equation (34) into the equation 

which defines the center manifold, which is given by: 

 

   ( , ) , , ( , ) ( , ) , , ( , )h x y x y h x y h x y x y h x y    x mD Ax f B g               (31) 

where 

 
 

 

   
   

1

2

2

11 3

0 , , ( , )
     ;    ;  , , ( , )  

0 , , ( , )

, ,
 ; , , ( , )  ;    , ,

x f x y h x y
x y h x y

y f x y h x y

h x y h x y
B g x y h x y f h x y

x y







    
       
     

  
     

  

m

x

x A f

D

           (32) 

 

It should be noticed that the coefficients up to order three in Eqs (31) do not influence 

the calculation of coefficients bij of Eq (30), so coefficients C133, C113 and α2
2
 can be 

omitted in Eq (30). Taking into account Eqs (31) and (32) and equating the terms in x
2
, 

xy, y
2
 in the left and right sides of equation (31), the coefficients bij can be computed by 

using the following equation: 

 

 2 42
23 11 21 111 11

2

11 22

2

11 12

( )0

0 0

2 2 0

za ab

b

b

   

 

  

    
   

     
          

                          (33) 
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The equations of the system reduced to the center manifold can be written as follows: 

 

 

 
1

2

0 , , ( , )

0 , , ( , )

x x f x y h x y

y y f x y h x y





      
        

       
                             (34) 

 

In order to simplify the next calculations, the following nomenclature has been 

introduced: 

  2 2 2 3

2 02 21 12 03

4

11 21
11 13

23

02 11 21 11 12 12 03 22 111

             

                2

  ;    ;    ;  

m

xy

xy xy xy

f x p y p x y p xy p y

a
C C C

a

p C p C b p C b p C b C



   

 
   

 

    

              (35) 

 

  2 2 2 3

3 20 21 12 30

2 2 2 2

20 1 21 11 1 12 12 11 1 22 30 11 1 11

                            

  ;  2   ;  2   ;  2

m

z z z z

f x q x q x y q xy q x

q q b q b q b       

   

    
   (36) 

 

Taking into account Eqs (29), (35) and (36), the functions  , , ( , )if x y h x y (i = 1, 2) of 

Eq (34) can be written as follows: 

 

 

 

2 2 2 2 3 3

1 20 02 21 12 30 03

2 2 2 3

2 20 21 12 30

2
211 23 23

1 2 20 1 20 1 144
11 2111 21

02 11 21
02 21

          ,

                     ,

  ;    ;  

    ;  

z

f x y a x a y a x y a xy a x a y

f x y b x b x y b xy b x

a a
C C a C q C

aa

p C p
a a C

   


 

 

  

     

   

    


   

 

 

11 2

1 21 1 11 1 12

12 212
12 1 12 1 11 1 22

2 3

30 1 30 1 11 1 11 2

203
03 22 111 20 2 20 2 1

21 2 21

2   

                2   

                 2

1
       ;   

xy

z

xy

z

z z

xy z

C b
q C b

C bp
a C q C b

a C q C b

p
a C b C b C q C

b C q

 

 

 

 



 


 
 

   

 
 

 

   

  

    

 

 

2 2

2 11 1 12 12 2 12 2 11 1 22

2 3

30 2 30 2 11 1 11 2

2  ;  2   

              2

z z

z z

C b b C q C b

b C q C b

  

 

   

   

     

    

         (37) 

Step 4. 

Considering a system of the form given by Eqs (34)-(37), the first Lyapunov 

value L1 can be expressed as [18-19], [23-24]: 
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   

1 1 2 2

1

1 1 1 2 2 2 1 2 1 2

1
                  

16

1

16

xxx xyy xxy yyy

xy xx yy xy xx yy xx xx yy yy

L f f f f

f f f f f f f f f f


      

      
 

                      (38) 

 

where 1 2

1 2  ;  f f f f   and the sub-indexes xy… mean partial derivatives evaluated at 

the equilibrium point, which in our case is the origin since we are using deviation 

variables.  Applying equation (37) to equation (38), the value of L1 is: 

 

 1 30 12 12 20 20

1 1
6 2 2 2 2

16 16
L a a b a b


                                   (39) 

 

 To verify the previous calculations, the parameter ω has been plotted as a 

function of the equilibrium point r1e in Fig 3. It should be noticed that there are values 

of r1e for which there are not pure imaginary eigenvalues, since 

 
32 2 2

1 0 13 2e m e b ez a i d z    and consequently the Andronov-Poincaré-Hopf 

bifurcation does not appear for such values. In Fig 3 b an equilibrium curve similar to 

the one shown in Fig 2 has been plotted for V0 = 227.2167 V and i0e = 0.1878 A. In this 

case, the transducer has three equilibrium points P1, P2 and P3, whose values Pe and 

their corresponding eigenvalues Ee (taking α11 = 1) are the following ones:  

 

 

 
1 2 3       (0.1110) (0.0700) (0.0403)

34.9976 , 1 21.6980, 1 26.373 , 1

e

e

P P P P

E j j     
                           (40) 

 

From Eq (40) It is deduced that P2(0.0700) with eigenvalues (±21.6980, -1) is a saddle 

and therefore is unreachable, whereas P1 and P3 are weak focuses and their stability 

depends on the sign of the first Lyapunov value given by Eq (39). If L1 < 0, the 

equilibrium point (P1 or P3) will be stable, and when L1 > 0 the same equilibrium point 

will be unstable. It is interesting to remark that the case which we are analyzing (V0 = 

227.2167 V and F0 = 7.1343 N) is similar to the one plotted in Fig 2 for V0 = 230 V and 

F0 = 7.1343 N. So, among the five roots given by Eq (15), only three of them (the 

positive ones) are equilibrium points. 
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Figure 3 

 

 Fig 4 shows the variation of the first Lyapunov value (Eq (39)) as a function of 

the equilibrium points plotted in Fig 3 a, which allows to appreciate the stability change 

for the equilibrium points with pure imaginary eigenvalues as a function of αz1. For αz1 

= 0.05, α11 = 1 and αz2 = 0.001, the equilibrium point P1 is a stable weak focus and the 

equilibrium point P3 is an unstable one. The apparent convergence of the curves at r = 

0.03 is a visual effect due to the scale that has been used to represent high values of L1. 

Fig 5 shows two cases of weak stable and unstable focus plotted in the phase plane. In 

Fig 5 a, the equilibrium points P1 and P3 are unstable and stable respectively, since their 

corresponding first Lyapunov values are L1(P1) > 0 and L1(P3)  < 0. Fig 5 b shows a 

case in which the equilibrium points P1 and P3 are both unstable. According to Fig 1 it 

can be appreciated that the mobile piece reaches the end position in contact with the 

non-ferromagnetic piece, which gives rise to a rebound in which the velocity vector 

changes its direction abruptly in a short time lapse. For this purpose, a restitution 

coefficient between 0.1 and 0.3 has been assumed in the rebound. It should be noted 

that in this case the system reaches a limit cycle after an initial transient. 

 

Figure 4 

Figure 5 

  

To analyze the dynamical behavior of the transducer, Eqs (12) have been simulated 

taking fd = 1, i.e. assuming that there are not external harmonic disturbances on the 

platform. It is assumed that the control law parameter αz1 is varied as 1 1 cosz Lz zt   , 

where the equilibrium points P1, P2 and P3 are independent of αz1 (see Eqs (12)) and 

thus they remain constant. In this case, if there is a sign change in the first Lyapunov 

values L1(P1) and L1(P3) of the equilibrium points P1 and P3 respectively, the system 

will jump from one equilibrium point to another. Fig 6 a shows the sign variations for 

L1(P1) and L1(P3), whereas in Fig 6 b the simulation results for the transducer position 

clearly corroborate that the system cannot remain oscillating around an unstable weak 

focus, and thus it must jump to the other equilibrium point (with a negative first 

Lyapunov value). At the initial time instant the transducer is at point P2 (which is a 

saddle), and it holds that L1(P1) < 0 and L1(P3) > 0. Consequently, the system jumps to 
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point P1 and remains oscillating around this point while t < t1. When t exceeds t1, the 

stability of P1 and P3 is then interchanged, i.e. L1(P1) > 0 and L1(P3) < 0. The Runge-

Kutta integration method has been used taking a simulation time tm = 20 s, a simulation 

step T = 5.10
-4

 s, initial conditions: [0, 0, 10
-4

, 0] and r1e = 0.07 m. 

 

Figure 6 

 

 The results obtained from the analysis of the first Lyapunov value allow us to 

conclude that if L1 vary according to a harmonic law the system could reach chaotic 

behavior without external harmonic disturbances. To research this issue, figure 7 shows the 

results obtained by simulating the system equations (12) during large times. Figs 7 a and 7 b 

respectively depict the variations of the magnetic field in the air gap and the velocity of the 

transducer mobile mass. In Figs 7 c and 7 d the values for the current and its derivative 

corroborate that the voltage in the solenoid can be considered as negligible. It should be 

remarked that the simulation values are acceptable from a physical viewpoint. 

 

Figure 7 

  

Figs. 8 a and b show the appearance of sensitive dependence when the system is 

simulated with two very close initial conditions (at approximately t = 90 s the initial error 

has increased in 7 orders of magnitude). On the other hand, Figs 8 c and 8 d show that the 

variation of the control signals given by Eqs (14)-(16) leads to physically feasible values. 

The fourth order Runge-Kutta integration method has been used taking initial conditions 

[0, 0, 10
-4

, 0], a simulation time tm = 120 s and a simulation step T = 5.10
-4

. 

 

Figure 8 

 

 Fig 9 a shows the strange attractor in the phase plane r1(t)-dr1(t)/dt as well as the 

equilibrium points P1 and P3. To verify the hypothesis of chaotic behavior, the Lyapunov 

exponents have been plotted as a function of the time in Fig 9 b. The values obtained at tm 

= 120 s are Ly(120) = [0.4181, -0.4288, -0.9937 0], for which the presence of a positive 

exponent is an indicator of chaos. The Runge-Kutta-Fehlberg integration method has 

been used with simulation steps between 10
-4

 and 5.10
-4

 s. The zero value in Ly is due to 

the auxiliary angular variable z’4(t) defined by [5], [28]: 
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 4

4

d
  ;  ( )  mod 2

d
z

z t
z t

t
 


                                        (41) 

 

which has been introduced to transform Eqs (12) into an autonomous system when αz1 is 

varied harmonically. Fig 9 c shows the sum of Lyapunov exponents and the divergence 

of the vector field given by Eqs (12), both of them as a function of the time. The mean 

value of the vector field divergence and the sum of the Lyapunov exponents are related 

by [5], [23,24], [36-38]: 

       
0

1
div div d   ;  div

mt

y m

m

t L t
t

 f f f                           (42) 

 

On the other hand, from the simulation results it follows that:  

 

   div 1.0044  ;  1.0045y mL t   f                           (43) 

 

which is in accordance with Eq (42) with a relative error of 4.166.10
-4

 %. Thus it can be 

concluded that the numerical computations are correct. The power spectral density for 

the mass position has been plotted in Fig 9 d, in which the strong energy decay can be 

considered as another indicator of chaos. It should be noticed that Eq (43) is verified 

when the Lyapunov exponents have reached their steady state value, which in high 

dimension systems could require long time simulations. Taking into account all the 

previous results, we can reasonably affirm that the considered electromechanical device 

has a chaotic dynamic for the parameter values used in Figs 7-8. 

 

Figure 9 

 

4 Chaotic behavior and how to use it to reach a predetermined set point 

 

 In this section we are going to calculate the Melnikov function to obtain 

sufficient conditions for chaotic motion as well as to deduce the way of using the 

chaotic motion to reach a desired set point. 

 

4.1 Chaotic behavior and Melnikov function 
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 The purpose of this subsection is to investigate the presence of homoclinic orbits 

and chaotic oscillations. Assuming that 11 > 1, z1 = 0, z2 = 0 and 2 >> 1 in 

accordance with Eq (14), the value of the deviation current z’3(t) will be very small and 

approximately constant, which will allow to obtain a simplified mathematical model of 

the device consisting of the following equations: 

 

   

         

 

 
  

1 2

2 3 2 2 3

2 1 1 1 1 1 1 1 1

2

3 0 2 2 2

0 1 12

1 1

3 3

1 ( ) sin

e e e e

m e

d e d d d

b e

z t z t

z t z t z z t z z t z z t z

a z i
f f z t z b A t

d z t z

 

 

 

                


     

   

        (44) 

 

If the initial condition z’30 = z’3(0) is a very small value, taking into account that 

i0e ≈ 0.1 - 0.2 A (see table 1) it is deduced that  
2 2

3 0 0 3 02e e ez i i z i    . From these 

considerations, assuming that there are no external disturbances and expanding the 

nonlinear terms of the second Eq. (44) in Taylor series around the origin, it follows that: 

 

   

       

1 2

2 3

2 1 1 1

z t z t

z t pz t qz t rz t

 

      
                                    (45) 

where:  
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  



 
    

 


 



       (46) 

 

It should be noticed that there is no damping in the approximate model given by Eqs 

(45) and (46), so it can be considered as a Hamiltonian system. Consequently, Eqs (45)-

(46) allows to deduce the parametric equations of the homoclinic orbit [18,19], [25-29], 

i.e.: 

 

 
 

 
 

  
1 1

1
1 2 2

1 1
1 1

2 sinh2
( )   ;  ( )

cosh cosh

p C p tp
z t z t

C p t q C p t q
 

                     (47) 
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where –p = p1 > 0, q1 = -2q/3 > 0, r1 = r/2 and C
2
 = 4p1r1 + q1

2
.  

 

 Once a homoclinic orbit has been obtained and the corresponding parametric 

equations have been deduced, it is possible to calculate the Melnikov’s function [18-

19], [25-29]. Taking into account Eqs (44)-(47), the Melnikov function can be written 

as follows: 

 

     
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 
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 
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cosh

p p p e p p p

p p

p p

M t K t p I t r I t K A Cp p

p t
I t t t

C p t q

p t
I t t t

C p t q

 













     

 
 
 

 
 
 





(48) 

 

     

       

2 2

0 0 1 1 0 1 2 0 1 1

1 0 1 0 2 0 2 0

sin 2 2   ;  0

                          ;  

n p n e n p p

n p n p

M t K t p I t r I t K A Cp p

I t I t I t I t

       

  
           (49) 

 

where the subscripts “p” and “n” refer to the right (positive) and left (negative) lobes 

respectively. The integrals of Eqs (48) can be calculated by using standard methods of 

complex variable [38]. It should be noted that there is a sign change in the functions 

Mp(t0) and Mn(t0), and thus the sufficient conditions for chaotic behavior are verified. 

  

 To analyze the chaotic motion when the transducer platform oscillates 

harmonically Eqs (12) have been simulated taking Ad = 0.275 rad and ωd  = 17.35 rad/s. 

In Fig 10 the homoclinic orbit has been plotted together with the strange attractor, 

which seems more dense in comparison with the one shown in fig 9 a. Figs 11 a and b 

show a clear sensitive dependence. On the other hand, Figs 11 c and d show the 

Lyapunov exponents and the power spectral density respectively, for which the same 

considerations can be made as in the case of chaotic behavior due to a harmonically 

varying first Lyapunov value. 

Figure 10 

Figure 11 
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4.2 Using the chaotic behavior to reach a predetermined set point 

 

In this subsection we shall use the chaotic behaviors to drive the transducer to a 

prescribed position, which will be analyzed for the two previously considered routes to 

obtain chaos. It should be noticed that the control laws defined by Eqs (8)-(10) can be 

used for both chaos procedures depending on the chosen values for α1, α11, αz1 and αz2. 

According to the discussion of section 3 and subsection 4.1, the system starts with α1 = 

0 and chaotic oscillations can appear when either αz1 is harmonically varied or an 

external harmonic disturbance on the platform appears.  

 

Our purpose is to exploit the fact that a chaotic orbit will always be very close to 

a set point located inside the strange attractor. Consequently, it would be possible to 

reach the desired set point with small control efforts by varying the control laws given 

in Eq (10) and modifying the value of f0 in Eq (15) so that one stable equilibrium point -

set point- is obtained. The practical implementation of this issue consists of defining a 

capture region around the set point Ω ≡ (rcx, rcy) located inside the strange attractor in 

the phase plane r1(t)-dr1(t)/dt and changing the control law when a chaotic trajectory 

enters the capture region. For this purpose, we will consider the control laws defined by 

Eqs (8)-(10) and will assume that the nonlinear control laws are defined by:  
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(50) 

 

Regarding Eqs (50), the following remarks must be considered: 

 



 23 

 Assuming that there are not external harmonic disturbances on the platform (Ad 

= 0) and taking αLz1 ≠ 0 and ωz ≠ 0, chaotic behavior can arise due to the 

harmonic variation of the first Lyapunov value. On the other hand, taking  αLz1 

= 0, Ad ≠ 0 and ωd  ≠ 0, the Melnikov theory provides with necessary conditions 

to obtain chaotic oscillations. 

 The value for F0 is chosen to obtain three or more equilibrium points as shown 

in Fig 3 b. So, the harmonic variation of αz1 ( 1 1 cosz Lz zt   ) or the presence 

of harmonic disturbances on the platform for t < tcon can give rise to chaotic 

oscillations (see Figs 5- 8 and Figs 10-12). 

 For t ≥ tcon the value for F0 is changed so that F0n < F0, and thus it is possible to 

choose an equilibrium voltage V0 for which the system has only one 

equilibrium point. In addition, for an adequate value of α1, the eigenvalues of 

the Jacobian matrix defined by Eq (17) have negative real part and consequently 

the equilibrium point will be asymptotically stable. 

 For t ≥ tcon, new values α11n ≥ α11, αLz1 = 0 and αz2 = 0 are chosen to remove the 

Andronov-Poincaré-Hopf bifurcation conditions or the chaos conditions 

deduced from Melnikov theory, so that the control laws can drive the transducer 

to the desired position.  

 

 The previous ideas have been applied to obtain Fig 12 taking d = 0.04 m and F0 

= 7.1343 N to obtain three equilibrium points. The chosen set point r1e = 0.07 (z1e = r1e – 

b) corresponds to an equilibrium current i0e = 0.1827 A and to an equilibrium voltage 

V0e = 221.0318 V. Figs 12 a and b show the sensitive dependence for two simulations 

with very close initial conditions for V0 = 227.2167 V (i0e = 0.1878 A), F0 = 7.1343 N, 

Ad = 0, ωd = 0, α1 = 0, α2 = 10, α11 = 1, αLz1 = 0.05, αz2 = 0.001, ωz = 0.995 rad/s and the 

equilibrium point r1e = 0.07 with eigenvalues [±21.699, -1]. It should be noticed that the 

equilibrium point (r1en ≡ r1e = 0.07) has been reached when a capture region has been 

defined by rcx = 0.02 m, rcy = 0.1 m/s and the control law has been changed at t = tcon = 

160, in accordance with Eqs (60). In Figs 12 c and d the control signals have been 

plotted to confirm their physical feasibility. The fourth order Runge-Kutta integration 

method has been used taking initial conditions zpo1 = [0.005, 0, 10
-4

, 0, 0], a simulation 

time tm = 200 s, and a simulation step T = 2.10
-3

. 
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Figure 12 

 

 With the purpose of validating the robustness of the nonlinear control laws given 

by Eqs (50), we consider that the deviation variables are affected by a random noise, for 

which we will assume that: 

     

     
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1 1
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z t z t f X
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   

   

                                     (51)  

 

where X is a random variable that is uniformly distributed between 0 and 1, and fna > 0 

is  an amplification factor to obtain a uniformly distributed noise amplitude between –

fna/2 and  fna/2 [23]. Taking into account the control law given by Eqs (50), two 

simulations of Eqs (12) are plotted in Fig 13. On one hand, in fig 13 a it is assumed that 

there is no noise, and the desired set point (which coincides with the initial conditions) 

is reached when a chaotic trajectory enters in the capture zone. On the other hand fig 13 

b shows the simulation results assuming a random noise with fna = 0.04, which is 

obviously higher than the typical noise level present in a standard measurement 

equipment. In this case a steady state error appears.  

 

Figure 13 

 

 To overcome this problem, a linear PI controller has been added to the control 

force, which is now defined as: 
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   (52) 

 

where Cp is the proportional action constant and τi is the integral action or reset time 

[32-34]. Although the equilibrium points remain unchanged, the integral action gives 

rise to a system of four state variables. Assuming that there is no random noise, 

substituting Eq (52) into Eqs (7) and taking into account Eqs (6), (11) and (12), the 

linear part of the system can be written as follows: 
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From Eq (53) the Cp and τi values can be chosen so that all the eigenvalues of the matrix 

defined in Eq (53) have negative real part, and consequently the set point will be an 

asymptotic equilibrium point. On the other hand, in the presence of noise the 

equilibrium point will be reached with a small oscillation around it. 

 

 To corroborate the previous reasoning, Eqs (12) have been simulated assuming 

that there is no harmonic disturbance in the platform and that the conditions of the 

Andronov-Poincaré-Hopf bifurcation are verified. Fig 14 a shows that the system is 

chaotic for t < tcon. At t = tcon = 70 s, the control laws are changed in accordance with 

Eqs (50) and Eq (52). The chosen values for the PI control action (Cp = 1 s
-1

, Cp/τi = 15 

s
-2

) give rise to an asymptotically stable desired set point. It should be noticed that the 

random noise makes the transducer to remain with small oscillations around the set 

point with a mean value of 0.07, as it clearly appears in Fig 14 b. 

  

Figure 14 

 

It is important to remark that the integral action I(t) given in Eq (53) should not 

reach too high values as it may prevent the system to reach the set point. Consequently, 

it may be necessary to limit the values of  I t  to certain upper bound that must not be 

exceeded. As an example, Fig 15 shows two cases in which the chaotic motion is due to 

external harmonic disturbances on the platform with random noise, where the integral 

action I(t) has been limited to a maximum absolute value of 0.11. From the simulation 

results it can be deduced that the set point is reached for Cp = 0.5 s
-2

 and τi = 0.1428 s
-1

; 

however for small and high values of Cp and τi respectively (Cp = 10
-6

 s
-2

, τi = 1 s
-1

) it 

may be necessary to increase the corresponding values rcx and rcy
 
of the capture zone so 

that the set point can be reached. The control is applied at tcon = 65 s taking F0 = 0.5 N, 

α1 = 20, α2 = 10, α11 = 5, αz1 = 0, αz2 = 0 and ωz = 0. The eingenvalues of the 



 26 

equilibrium point are [-11.8344 ± 48.5334j, -0.0269, -1.3043] when the PI controller is 

present and [-11.8302 ± 48.5293j, -10
-5

, -1.3253] when PI controller is not included.  

 

Figure 15 

 

Other control strategies such as the control partial technique [35] represent an 

alternative procedure for using the chaotic behavior to maintain the system in a small 

zone of the phase plane employing very small control signals. In this sense, the sensitive 

dependence has been applied in several contexts, for which details can be found in Refs 

[39-40]. 

 

6 Conclusions 

 

 In this paper the chaotic oscillations of an electromechanical transducer have 

been examined. The device is controlled by a control voltage V(t) and an external 

control force F(t), which can be chosen with the classical structure of the PD control 

plus certain nonlinear terms. An admissible range of parameter values for the proposed 

control laws has been deduced, which has allowed to drive the transducer mobile mass 

to any desired equilibrium point. 

 

The stability analysis of the weak focuses associated to this bifurcation has been 

carried out from the analytic calculation of the first Lyapunov value. It has been both 

analytically and numerically corroborated that a weak focus is stable or unstable if its 

corresponding first Lyapunov value is negative or positive respectively. This property 

has been used to induce chaotic motions by means of a harmonic variation of the first 

Lyapunov value, whose sign change gives rise to an interchange of stability between the 

two weak focuses. 

 

 From a simplified model of the controlled system, the Melnikov theory has been 

be applied to obtain sufficient conditions for chaos when the platform is harmonically 

varied, which provides another route to obtain chaos. The chaotic oscillations have been 

corroborated by calculating the sensitive dependence, Lyapunov exponents and the 

power spectral density.  
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Another interesting aspect of this paper is the possibility of using chaotic 

oscillations to drive the transducer mass to a prescribed set point, even in the presence 

of random noise associated to the measurement process. For this purpose, a capture 

region around the set point is defined, which allows to change the control laws to reach 

the (stable) equilibrium point when a chaotic trajectory enters the capture region. The 

presence of random noise gives rise to a steady state error, which is removed by adding 

a linear PI controller to the control force.  

 

The simulation process has been carried out by using the Runge-Kutta 

integration method of order four with simulation steps of 10
-4

 s introducing the artificial 

variable z4
’
(t) to obtain an autonomous system (Eqs (12) and (41)). On the other hand, 

the Lyapunov exponents have been calculated inside the main Runge-Kutta loop by 

means of the Runge-Kutta-Fehlberg method to avoid problems of numerical instability. 

The control laws given by Eqs (8) and (9) are changed through Eqs (50)-(53) by adding 

random noise given by Eq (51), which is incorporated through random variables in the 

computational simulation. 

 

As a concluding remark, this paper shows a framework in which the nonlinear 

model of an electromechanical transducer, the design of a nonlinear control system in 

presence of random noise, self-oscillations originated by an Andronov-Poincaré-Hopf 

bifurcation, Melnikov theory and chaotic oscillations are presented in a unified 

viewpoint. The methodology of these investigations can be extended to more 

complicated nonlinear dynamical systems with more complicated behaviors, such as 

double Hopf bifurcations or Bogdanov-Takens bifurcations. 
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Figure captions 
 

Figure 1. Electromechanical transducer formed by an electric circuit, magnetic 

coupling, a mobile piece with linear damping, a nonlinear spring and (optional) 

harmonic platform disturbances. The control signals are V(t) and F(t). 

 

Figure 2. Curves for f(r1e) as a function of the equilibrium points r1e (Eq (21)) taking V0 

as a parameter and F0 = 7.1343 N. One, three or four reachable equilibrium points can 

appear depending on the value for V0. 

 

Figure 3. a) Angular frequencies ω (taking α1 = 0 in Eq (25)) as a function of the 

equilibrium points r1e which allow to obtain a Andronov-Poincaré-Hopf bifurcation. b) 

Curve for the equilibrium points deduced from Fig 2 taking V0 = 227.2167 V (i0e = 

0.1878 A) and F0 = 7.1343 N. The equilibrium points are P1 (0.111), P2(0.07) –unstable 

saddle- and P3(0.0403), whose eingenvalues are (±34.9976j, -α11
2
), (±216980, -α11

2
) and 

(±26.3730j, -α11
2
) respectively.  

 

Figure 4. a) First Lyapunov value as a function of the equilibrium points r1e and the 

control parameter αz1 assuming that α11 = 1, αz2 = 0.001 and that the values for r1e are 

near the equilibrium point P3 (see Fig 3 a)). b) Same parameters as in the previous case 

but now assuming that the values for r1e are near the equilibrium point P1.  

 

Figure 5.  a) Phase plane r1e(t)-dr1e(t) taking α1 = 0, α2 = 0, α11 = 1, αz1 = -2, αz2 = 0.02, 

r1e = 0.07, i0e = 0.1878 A and V0e = 227.2167 V. The equilibrium points are P1 

(r1e=0.111, unstable) and P3 (r1e=0.0403, stable). b) Phase plane r1e(t)-dr1e(t) taking α1 = 

0, α2 = 0, α11 = 1, αz1 = -1, αz2 = 0.3, r1e = 0.07, i0e = 0.1878 A and V0e = 227.2167 V. 

The equilibrium points are P1 (r1e=0.111, unstable) and P3 (r1e=0.0403, unstable). 

 

Figure 6. a) Harmonic variation of the first Lyapunov values (see Fig 4) taking α1 = 0, 

α2 =10,  α11 = 1, αz1 = 0.05, αz2 = 0.001, r1e = 0.07 and ωz = 0.995 rad/s. For 0 < t < t1 the 

first Lyapunov values are L1(P1)< 0 -P1 and L1(P3) > 0 -P3. b) Simulation results of Eqs 

(12) for fd = 1 and the control parameters indicated in the caption of Fig 5 a).  

 

Figure 7. Simulation results obtained with parameters of the caption of Fig 6. a) 

Magnetic field in the air gap of the device (see Fig 1). b) Velocity of the mobile mass. c) 

Solenoid current i(t), which is almost constant with small variations around the  

equilibrium current i0e. d) The time derivative di(t)/dt of the solenoid current takes very 

small values. 

 

Figure 8. Simulation results of Eqs (12) assuming V0 = 227.2167 V (i0e = 0.1878 A), F0 

= 7.1343 N. Ad = 0, ωd = 0, α1 = 0, α2 = 10, α11 = 1, αz1 = 0.05, αz2 = 0.001, ωz = 0.995 

rad/s and r1e = 0.07. a) Sensitive dependence of the mobile mass position z'1(t) = r1(t) – 

r1e. b) Error variation as a function of the time for two very close initial conditions. c) 

Control force given by Eq (8). d) Control voltage given by Eqs (9) and (10). 
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Figure 9. a) Strange attractor in the phase plane z1(t)- z2(t) indicating that a weak focus 

can appear at points P1 or P3. b) Variation with respect to time of the all Lyapunov 

exponents of the system. c) Variation with respect to time of the Lyapunov exponent 

sum and the vector field divergence of the system given by Eqs (43). d) Power spectral 

density for the mobile mass position (the parameter values and simulation data are 

indicated at the caption of Fig 8). 

 

Figure 10. Strange attractor and homoclinic orbit in terms of deviation variables 

assuming the following parameter values: V0 = 227.2167 V (i0e = 0.1878 A), F0 = 

7.1343 N. Ad = 0.275, ωd = 17.35 rad/s, α1 = 0, α2 = 10, α11 = 5, αz1 = 0, αz2 = 0, ωz = 0, 

r1e = 0.07, p1 = 4.7084.10
2
, q1 = 3.9469.10

3
, r1 = 1.9497.10

5
 and C = 1.9565.10

4
.  

 

Figure 11. Simulation results of Eqs (12) for the parameter values indicated in the 

caption of Fig 10. a) State variables z1(t), z2(t) and z3(t) as a function of the time. b) 

Sensitive dependence of the mobile mass position obtained for two initial conditions 

differing in 10
-10

. c) Lyapunov exponents of the system as a function of the time. d) 

Power spectral density for the mobile mass position. 

 

Figure 12. Simulation results of Eqs (12) before applying the control law. The control 

is applied at tcon = 160 s taking F0n = 0.6 N, α1 = 10, α2 = 10, α11n = 1, αz1 = 0, αz2 = 0, ωz 

= 0. The equilibrium point is r1en = 0.07 and has eigenvalues [-0.0877, -0.4561 ± 

37.4682j]. a) Sensitive dependence before the control is applied b) Error signal as a 

function of the time. c) Control force before and after applying the control law. d) 

Control voltage before and after applying the control law.   

 

Figure 13. Simulation results of Eqs (12) before applying the control law (parameter 

are indicated in the caption of Fig 12). Simulation time and step are tm = 100 s and T = 

5.10
-4

 respectively. Control law is applied at tcon = 70 s taking F0 = 0.5 N, α1 = 20, α2 = 

10, α11 = 5, αz1 = 0, αz2 = 0, ωz = 0. a) Trajectory without noise after the control is 

applied, with rcx = 0.02 m and rcy = 0.1 m/s. b) Trajectory assuming random noise with 

amplitude fna = 0.04 after the control is applied (same capture zone). 

 

Figure 14. a) Simulation of the case indicated in Fig 13 b) including an integral action 

with parameters Cp = 1 s
-1

 and Cp/τi = 15 s
-2

, which allows to drive the system to the set 

point (steady-state error is removed). b) Time evolution of the transducer position with 

and without random noise. 

 

Figure 15. Simulation results of Eqs (12) with a PI controller of limited integral action 

(Cp = 0.5 s
-1

, Cp/τi = 3.5 s
-2

 and maximum absolute value 0.11 for the integral action) 

and without PI controller (Cp = 10
-6

 s
-1

, Cp/τi = 10
-6

 s
-2

). The equilibrium point r1e = 0.07 

has eigenvalues [-1.3253, -11.8374 ± 48.5293j]. Trajectories after applying the control 

with fna = 0.01 with rcx = 0.04 m, rcy = 0.1 m/s. 
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