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Abstract 

Respired CO2 in woody tissues can build up in the xylem and dissolve in the sap solution to 

be transported through the plant. From the sap, a fraction of the CO2 can either radially 

diffuse to the atmosphere or be assimilated in chloroplasts present in woody tissues. These 

processes occur simultaneously in stems and branches making it difficult to study their 

specific dynamics. Therefore, an 
11

C-enriched aqueous solution was administered to young 

branches of Populus tremula L., which were subsequently imaged by positron emission 

tomography (PET). This approach allows in vivo visualisation of the internal movement of 

CO2 inside branches at high spatial and temporal resolution, and enables direct measurement 

of the transport speed of xylem-transported CO2 (    
 ). Through compartmental modelling 

of the dynamic data obtained from the PET images we (i) quantified     
  and (ii) proposed a 

new method to assess the fate of xylem-transported 
11

CO2 within the branches. It was found 

that a fraction of 0.49 min
-1

 of CO2 present in the xylem was transported upwards. A fraction 

of 0.38 min
-1

 diffused radially from the sap to the surrounding parenchyma and apoplastic 

spaces (CO2,PA) to be assimilated by woody tissue photosynthesis. Another 0.12 min
-1

 of the 

xylem-transported CO2 diffused to the atmosphere via efflux. The remaining CO2 (i.e. 0.01 

min
-1

) was stored as CO2,PA, representing the build-up within parenchyma and apoplastic 

spaces to be assimilated or directed to the atmosphere. Here, we demonstrate the outstanding 

potential of 
11

CO2-based plant-PET in combination with compartmental modelling to advance 

our understanding of internal CO2 movement and the respiratory physiology within woody 

tissues. 

 

Key words: 
11

CO2, carbon-11 (
11

C), CO2 recycling, CO2 refixation, plant-PET, radial CO2 

diffusion, stem photosynthesis, stem respiration, woody tissue photosynthesis, xylem CO2 

transport  
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Introduction 

During cell respiration, carbon substrates are oxidized in mitochondria which releases CO2 as 

a by-product. Outer tissues of the stem present substantial barriers to radial CO2 diffusion 

(Steppe et al. 2007), so that locally respired CO2 builds up in the xylem and dissolves in the 

sap solution while reaching a substantially higher concentration (often between 3 and 10 %, 

and sometimes up to 26 %, reviewed by Teskey et al. 2008) than that in the atmosphere (c. 

0.04 %). Xylem CO2 concentration ([CO2]) in the gaseous phase is hereby in equilibrium 

with CO2 species (CO2 (aq),   O3
-
 and  O3

2-
) dissolved in the sap solution (sap [CO2

*
]) (Hari 

et al. 1991; Levy et al. 1999; McGuire & Teskey 2004). Upon dissolution in xylem sap, CO2 

is transported upward with the transpiration stream throughout the plant (Stringer & 

Kimmerer 1993). Part of the internally transported CO2 (FT) (see Table 1 for a list of 

abbreviations) can diffuse to surrounding xylem and phloem parenchyma and apoplastic 

spaces (CO2,PA in Fig. 1) from where it has two main pathways: it can either radially diffuse 

into the atmosphere via stem CO2 efflux (EA) which is facilitated by the [CO2] gradient across 

the xylem – atmosphere (Teskey et al. 2008) or be assimilated (AX) in chloroplasts present in 

the bark, xylem rays, and pith tissues (van Cleve et al. 1993; Berveiller et al. 2007; Pfanz 

2008; Rentzou & Psaras 2008; Bloemen et al. 2016). This latter process will be referred to as 

woody tissue photosynthesis (Pwt), which is a recycling mechanism that has been shown to 

contribute to the total carbon budget of plants (Saveyn et al. 2010; Ávila et al. 2014). The 

remaining fraction of CO2 is stored (S) and can be regarded as build-up of CO2,PA that is to 

be assimilated or directed to the atmosphere. A schematic representation of these CO2 fluxes 

in woody plants is given in Fig. 1.  

Our understanding of xylem-transported CO2 in relation to plant respiration is less 

advanced than our knowledge of water transport or photosynthesis (Amthor 2000; Atkin & 

Macherel 2009; Thornley 2011), although progress has been made. Specifically, the classic 
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assumption of EA being a measure of local stem respiration (RS) has been refuted as it has 

been demonstrated that part of the respired CO2 dissolves in the sap solution to be transported 

upward through the xylem tissue (Hari et al. 1991; Levy et al. 1999; Teskey et al. 2008, 

2017; Höltta & Kolari 2009; Angert et al. 2012). However, questions about the transport of 

respired CO2 through the xylem (FT) still remain, as it confounds interpretation of CO2 efflux 

measurements from soil (Aubrey & Teskey 2009) and leaves (Stutz et al. 2017; Stutz & 

Hanson 2019), and it supports the mechanism of internal CO2 recycling by Pwt (Bloemen et 

al. 2013a). It is expected that assimilation of xylem-transported CO2 via Pwt is important for 

plant functioning, especially for young plant structures as well as under drought stress 

conditions (Cernusak & Marshall 2000; Bloemen et al. 2013a; Cernusak & Cheesman 2015; 

Steppe et al. 2015; Vandegehuchte et al. 2015). However, methodological constraints to 

study internal CO2 transport (FT) in woody tissues hinder accurate estimates of its dynamic 

fate (Teskey et al. 2008). Quantification of FT is not straightforward, especially in relation to 

stem respiration, and two methods are described (McGuire & Teskey 2004; Angert et al. 

2012; Salomón et al. 2018, 2019a). A mass balance approach has been proposed (on a 

volume basis; µmol CO2 m
-3

 s
-1

) to account for FT in RS estimates: 

                                +                        +                       (1) 

       
    

 
    O2

*
    +  

 
   

 
    O

2
   +  

 

 
    O

2

*
 
 
  

 

where S is the storage CO2 flux and excludes Pwt (McGuire & Teskey 2004). In this 

approach, gas exchange measurements are performed on a stem segment enclosed in a 

cuvette in addition to measurements of sap flow FH2O (L s
-1

), sapwood volume V within the 

enclosed stem segment (m
3
), sap [CO2

*
] at top and bottom of the segment ([CO2

*
]), air flow 

rate fair through the cuvette, [CO2] of the air entering and exiting the cuvette ([CO2]), length 

L of the stem segment and [CO2
*
] at start and end over a time period T ([CO2

*
]T). The 
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second approach involves measurement of CO2 and O2 exchanges at the stem surface (Angert 

et al. 2012). Hereby, an indication of FT can be obtained by calculating the apparent 

respiratory quotient (ARQ), which is defined as the ratio of CO2 efflux to the atmosphere and 

O2 influx into the stem. Carbohydrates are assumed as substrate for respiration. When no CO2 

is transported through the xylem (FT = 0), CO2 production and O2 consumption should be 

equal, and the resulting ARQ will approximate one. If CO2 is transported through the xylem, 

ARQ will deviate from one. In both approaches, the CO2 fluxes are either calculated from 

measurements (mass balance approach) or indirectly estimated via a proxy (ARQ) (e.g. 

Teskey & Mcguire 2007; Salomón et al. 2018, 2019b; Hilman et al. 2019; Wang et al. 2019). 

Results capture net fluxes of internally transported CO2 while specific dynamics are 

described with a low spatial resolution.  

We propose a novel approach to quantify the fate of CO2 dissolved in xylem sap 

(CO2,X) based on radioactive 
11

CO2 labelling coupled with positron emission tomography 

(PET). To this end, an aqueous solution of 
11

CO2 was administered to the cut-end of branches 

of European aspen (Populus tremula L.). PET allowed in vivo visualisation of the dynamics 

of internally transported carbon with a high temporal resolution (every 2.5 min), resulting in 

3D images with a high spatial resolution (± 1 mm). Image analysis resulted in direct 

estimates of the transport speed of xylem-transported CO2   
   

 
). By means of 

compartmental modelling,     

  estimation was refined, while also the relative contribution of 

CO2,X to the different carbon fluxes (Fig. 1) was determined. Revealing dynamics in CO2,X at 

high spatial and temporal resolution is essential to, for instance, better predict how plants 

cope with changing climate regimes. Furthermore, we believe that labelling of trees with 

radioactive isotopes is a promising technique to study plants in vivo. 
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Materials and methods 

Plant material  

For this study, 40-cm cuttings of Populus tremula L. (N = 3) were planted on March 23, 2016 

in 30-L pots containing commercial potting mixture (Peltracom, Gent, Belgium). They were 

grown in a greenhouse for two months at the Faculty of Bioscience Engineering, Ghent 

University, Belgium (51.053693°N, 3.706487°E) and eventually had a height ranging 

between 90 and 120 cm. The trees were subsequently transported to the small animal imaging 

facility of Ghent University (INFINITY lab) 24 h before measurement (Pickard et al. 1993) 

where they were placed outdoors during the experiments. The cuttings were watered every 

day. The one-year-old study branches (N = 3, one branch per tree) had an average (±SE) 

length and diameter at their cut end of 21.17 ± 3.63 cm and 1.91 ± 0.10 mm, respectively. 

 

Production and formulation of 
11

CO2  

The radioactive 
11

CO2 was produced using a cyclotron (18 MeV protons, IBA, Belgium) of 

Ghent University Hospital a proton (i.e. H
+
) was accelerated to a high velocity to bombard a 

N2/H2 (5%) target. The (p, ) nuclear reaction resulted in the formation of 
11

CH4 which was 

subsequently oxidized via cobalt oxide to yield 
11

CO2 as described by Landais & Finn (1989). 

Subsequently, 
11

CO2 gas was bubbled through a 40 mM citric acid buffer at a set pH of c. 5.8, 

resembling the pH of xylem sap in young P. tremula branches (pH c. 6.4, which is in the 

reported range of 4.5 – 7.4 for woody species) (Teskey et al. 2008). The resulting 
11

C-

labelled solution was supplied to the cut end of the excised branches (one at a time). Once the 

solution is taken up by the branch, equilibrium reactions will shift according to the pH of the 

xylem sap (Butler 1991). 
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Experimental set-up and 
11

C-labelling 

Dynamics in internally transported CO2 in the poplar branches was imaged following 

exposure to the 
11

C-labelled solution. Radioactive labelling of the branches (one branch per 

day) was performed in an airtight chamber consisting of two compartments, a polypropylene 

labelling compartment (6 mL in volume) in which the cut end of the branch was exposed to 

the 
11

C-label and a cylindrical plexiglass measurement compartment (135 mm inner diameter 

and 200 mm length) containing leaves and light source (ten red and blue LED lights, 

GreenPower LED strings 0842 LF Red and WPO 83 LF Blue, Philips, The Netherlands) 

providing about 250 μmol photons m
−2

 s
−1

 PAR to the leaves and branch (Fig. 2a). After 

cutting the branch under water, its position within the chamber was fixed by applying 

polysiloxane material (Terostat-IX, Henkel AG & Company, KGaA, Düsseldorf, Germany) 

around the branch at the intersection of both compartments to separate them. Extra grease 

(Vacuum grease, Dow Corning, Auburn, MI, USA) was added around the branch segment 

coming out of the polysiloxane material which ensured airtightness between both labelling 

and measurement compartments to avoid assimilation of evaporated 
11

CO2 from the solution 

(
11

CO2 (aq)  
11

CO2 (g)) by leaf photosynthesis. To avoid leaf wilting the labelling 

compartment was filled with five mL of non-labelled buffer solution prior to the arrival of the 

label. A 5-mL volume was sufficient given the averaged transpiration rate (± SE) of 0.40 ± 

0.01 mL h
-1

. Because of the isotope’s rapid decay, the labelling system was designed to give 

a minimal time-delay for the tracer to enter the branch after labelling. Therefore, the labelling 

compartment was connected to two 5-mL syringes (Fig. 2b). The first syringe, containing the 

11
C-labeled solution, provided the tracer to the cut end of the branch. Just before introducing 

the tracer (orange arrow), the plunger of the second syringe was pulled to remove the non-

labelled aqueous solution (yellow arrow). Five mL of 
11

CO2-enriched solution was supplied 

to the branch with an activity at labelling of 125.8, 340.4 and 358.9 MBq, respectively, for 
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each of the experiments. A needle introduced at the headspace of the labelling compartment 

ensured in- and outflow of air (represented by the two-headed arrow having a yellow and 

orange colour, respectively) under these procedures so that no vacuum was created in the 

compartment. For safety measures, the outflowing air was directed to a container filled with 

soda lime to strip the 
11

CO2 from the air. The branches were labelled for one hour.  

The microclimate inside the measuring compartment was characterised by an average 

(± SE) relative humidity (RH), air temperature and vapor pressure deficit of 62.8 ± 2.3 %, 

32.2 ± 1.3 °C and 1.80 ± 0.13 kPa, respectively. During the experiment air containing 400 

ppm CO2 was continuously supplied using a portable photosynthesis system (model LI-6400, 

Li-Cor Inc., Lincoln, NE, USA) as indicated by the green arrows in Fig. 2b. The H2O and 

CO2 content of the air coming in and out of the measuring compartment was analysed with a 

gas analyser (model LI-7000, Li-Cor Inc., Lincoln, NE, USA). To prevent radioactivity from 

coming into the atmosphere, the outflowing air was directed to a 1 M sodium hydroxide 

solution. Transpiration rate and photosynthetic rate, averaged (± SE) over the labelling 

periods, were 0.69 ± 0.14 mmol H2O m
-2

 s
-1

 and 1.18 ± 0.38 µmol CO2 m
-2

 s
-1

, respectively. 

 

PET scanner, image reconstruction and analysis 

PET imaging was realised by application of a LabPET8 scanner (TriFoil Imaging, 

Chatsworth, CA, USA) which was located at the INFINITY imaging lab of Ghent University, 

Ghent, Belgium. The PET scanner is characterised by a relatively small ring of detectors 

(inner diameter and a depth of 15 and 7.5 cm, respectively) which defines the field of view 

(FOV). Hence, only a section of the measurement compartment that was inside the PET 

scanner was imaged. Normalisation and calibration of the PET detectors is done twice a year. 

For radiation safety purposes, the labelling compartment was shielded using lead sheets. 

After exposing the cut end of the study branch to the aqueous solution containing dissolved 
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11
CO2 the PET scan was started and registered activity for one hour. PET images were 

eventually obtained via iterative reconstruction using the LabPET software (Version 1.12.1, 

TriFoil Imaging, Chatsworth, CA, USA). The maximum likelihood expectation maximization 

(MLEM) reconstruction algorithm was used to obtain an image showing 
11

C-distribution 

within the FOV. Both a static 3D (i.e. x,y,z) and a dynamic 4D (i.e. x,y,z,t) reconstruction 

were performed per experiment using a 3D- or a 2D-MLEM algorithm, respectively. The 3D-

MLEM algorithm allows coincidence counts (i.e. detection of gamma-photons originating 

from positron annihilation) between any of the detector rings whereas in the 2D-MLEM 

algorithm coincidences are counted only within a few consecutive rings of detectors (e.g. two 

or three rings) (Saha 2016). The 3D-MLEM reconstructed image therefore has a higher 

resolution compared to the 2D-MLEM reconstructed image and was used during image 

analysis for drawing regions of interest (ROIs - see further). On the contrary, 2D-MLEM 

reconstruction resulted in a quantitative image (voxels in MBq/ml) which could not be 

obtained using the 3D-MLEM algorithm of the LabPET software. 2D-MLEM reconstruction 

of the data allowed mutual comparison of experiments and was therefore applied to retrieve 

dynamic 4D 
11

C-images. For both MLEM reconstruction algorithms 50 iterations were used, 

whereas the dynamic data was reconstructed into timeframes of 2.5 min. Correction for 

radioactive decay is performed during reconstruction so that a decay-corrected 3D and 4D 

image were obtained consisting of one (static) and 24 (dynamic) timeframe(s) with 63 slices 

of 200 × 200 voxels. Each voxel had a bit depth of 16 bits and a size of 0.5 × 0.5 × 1.175 

mm. These images were imported in the open-source software tool AMIDE (Loening & 

Gambhir 2003) for image visualisation and analyses. Noise on the static image (Fig. 3 – 

upper left corner) was reduced using a 3D median filter with a kernel size of 3. On the 

resulting images, cylinder-shaped region of interests (ROIs) were drawn around the branch 

tissues along the direction of xylem flow. Up to six consecutive ROIs (input ROI, ROI 1-5, 
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Fig. 3 – upper left corner) were constructed, each having a length and diameter of 4 and 5 

mm, respectively. Subsequently the dynamically reconstructed image was imported into the 

same file and the cumulative amount of 
11

C-tracer in each ROI was calculated per 2.5 min 

timeframe (in MBq). Since the reconstructed images are corrected for decay, so are the 

resulting time-activity curves (TACs). The TACs (Fig. 4) were exported to be used as input 

for the compartmental model. An example of a dynamically reconstructed image is provided 

in Fig. 3 with 10 min temporal resolution. 

The two dash dotted ROIs in the utmost proximal part of the branch (upper left corner 

of Fig. 3) were not used because a petiole was present on the branch segment enclosed in 

these ROIs. Due to the spatial resolution of the PET scanner (c. 1 mm) the petiole and branch 

could not be resolved on the reconstructed image and the 
11

C-tracer detected in both branch 

and petiole was therefore added in these dotted ROIs. This caused an incorrectly higher tracer 

concentration (i.e. TACs – data not shown) with respect to the distally located ROIs. These 

TACs were therefore omitted for modelling because they would inevitably prompt wrong 

results upon parameter calibration. Hence, branch segments were selected without 

ramifications.  

A first image-based estimation of the CO2 transport speed through xylem (    

 ) was 

derived from the distance of an ROI from the cut end of the branch and the time at which the 

tracer was first detected in that ROI. However, given a temporal resolution of 2.5 min of the 

dynamic PET images, CO2 transport speed could not be accurately determined. Hence, this 

parameter was seen as an initial value and included in the model calibration to be further 

refined. Student t-test was performed to denote statistical differences between the image-

estimated and model-estimated CO2 transport speed on a 5 % significance level (p < 0.05). 
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Compartmental modelling to compute characteristics of xylem-transported CO2 

The goal of fitting a compartmental model to dynamic tracer data through calibration was to 

derive specific parameters of xylem-transported CO2 that have a physiological meaning and 

cannot be easily obtained from direct measurements. Due to the spatial resolution of the used 

PET scanner (c. 1 mm) physiological processes like the carbon fluxes between xylem and 

phloem tissues are integrated into the measured TACs (circles in Fig. 4) and therefore 

compartmental modelling is used to disentangle them. A compartmental model based on 

Bühler et al. (2011) and Hubeau et al. (2018) was implemented in the plant modelling 

software PhytoSim (Phyto-IT, Gent, Belgium) and fed with the TACs derived from ROIs 

from the image analysis (Fig. 5). Therefore, each ROI was divided into three compartments 

(Fig. 5), which correspond to the compartments defined in Fig. 1. The tracer concentration 

(TC in MBq) of each compartment is described by Eqs. (2-4) where superscript denotes 

compartment number and subscript i the ROI number. Compartment 1 embodies xylem 

conduits and is characterized by the speed of xylem-transported CO2     

  (mm min
-1

) and the 

exchange constant a (min
-1

), which represents the ratio of CO2 that moves from xylem 

conduits into compartment 2 per minute, representing the surrounding xylem and phloem 

parenchyma and apoplastic spaces (CO2,PA
 
in Fig. 1). From compartment 2, the 

11
C-tracer is 

either directed towards chloroplast-containing cells where it is assimilated by Pwt (Fig. 1) and 

relocated in storage cells (compartment 3 in Fig. 5) via b, or radially diffused to the 

atmosphere via c. Chloroplast-containing tissues have been found in xylem ray cells (Rentzou 

& Psaras 2008) and pith tissue (van Cleve et al. 1993) but mainly in phloem and bark tissues 

(Pfanz & Aschan 2001; Saveyn et al. 2010). Exchange parameters b and c (both in min
-1

) 

thus represent the net tracer fraction exchanged from compartment 2, which is assimilated via 

Pwt or alternatively diffuses to the atmosphere via efflux, respectively, and can be used to 

estimate the contribution of CO2,X to AX and EA of Eq. (1). Some CO2 remains in 
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compartment 2 (i.e. xylem and phloem parenchyma and apoplastic spaces) to be temporarily 

stored as CO2,PA
 
(S of Eq. (1)). Note that the proposed model does not allow movement of 

CO2,PA in compartment 2 between different ROIs. This movement will therefore be 

incorporated in the estimation of     

  but will be small compared to     

  as xylem tissue is 

superior by means of transport properties. The parameter search range for     

  was narrowed 

around the image-derived initial value     

  (which differed for each of the experiments). The 

search range for the other parameters was not adjusted.  

 
    

 

  
  

    

 

 
      

    
    

 

 
    

         

  (2) 

 
    

 

  
        

         

         

  (3) 

 
    

 

  
        

  (4) 

 

Constant l is the length of the ROI (i.e. 4 mm). Parameters a, b and c represent fractions of 

xylem-transported CO2 flowing across compartments and thus range from 0 to 1. Note that 

these parameters are the net result of 
11

C-tracer flowing forth (e.g. a12) and back (e.g. a21) to 

each compartment because separate parameters (in- and outflow) were not identifiable. This 

approach is comparable with the fixed ratio (e.g. a21 = h   a12) implemented by Bühler et al. 

(2011). For the first timeframe, we assumed that all measured tracer was present in 

compartment 1. This assumption was tested, and it was found that the parameter outcome 

was insensitive to whether initial activity was allocated to compartment 1 only or distributed 

over all three compartments. Branch material was checked to ensure that the dimensions did 

not change with ROI since all model parameters were assumed to be constant for each ROI as 

well as over the entire scan time (i.e. 1 h). Note that this model allows CO2 gas-liquid 

interconversion (Hari et al. 1991; Levy et al. 1999) but does not differentiate between phases. 
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Calibrated parameters should be taken with caution given that other carbon fluxes not 

accounted for by the model might bias parameter calibration.  

The input ROI is most proximally located with respect to the other ROIs and does not 

receive tracer from any ROI. Because 
11

C-tracer is actually transported into the input ROI, its 

total tracer amount (i.e.        
) was used to calculate the tracer concentration in the first 

compartment for each time step according to Eq. (5). The change in tracer concentrations for 

the other two compartments was calculated according to Eqs. (3-4) with i = input.  

        
         

        
         

  (5) 

 

Model sensitivity and identifiability analysis were evaluated according to De Pauw et al. 

(2008) by making use of the corresponding modules in the plant modelling software 

PhytoSim (Phyto-IT, Gent, Belgium). All four model parameters (    

 , a, b, c) were found 

identifiable and were characterised by a high sensitivity for the model output. Parameter 

calibration was done by applying a shuffled complex evolution (Duan et al. 1993), with 9 

complexes (i.e. two times number of model parameters + 1, which was found to result in a 

better overall calibration performance as described by Duan et al. (1994)) and an accuracy of 

10
-5

, for 5000 evaluations. Using the resulting model parameters, continuous data was 

simulated using an adaptive step size fourth order Runge-Kutta solver (accuracy 10
-5

, 

maximum step size 1 min) (Runge 1895; Kutta 1901; De Pauw et al. 2008). Calibration was 

completed when the difference between simulated and measured TACs was minimized. 

Through the uncertainty analysis 95% confidence interval of the estimated model parameters 

were obtained.  

 

Data processing and terminology 
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To assess the correlation between     

  and the transpiration rate, the computed exchange 

parameters (a, b and c) and the carbon fluxes (  
 /CO2,X, S

%
/CO2,X and   

 /CO2,X), a 

standard major axis (SMA) regression model was fitted in RStudio (R Core Team (2018), 

RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA, USA, 

version 1.1.463) using the lmodel2 function, in which     

  was treated as independent 

variable whereas transpiration rate, exchange parameters and carbon fluxes were treated as 

dependent variables. An SMA regression model was used instead of a linear model since     

  

(x-variable) is not fixed and has an error (i.e. SE). Normality of the variables was tested and 

found by Shapiro-Wilk test (on a 5% significance level), justifying the application of an SMA 

model. The SMA regression model resulted in p-values indicating whether or not the slope 

was significant at a 5 % significance level (p < 0.05) and a coefficient of determination (R
2
). 

When the slope was significant, a significant increase or decrease was mentioned. When the 

slope was not significant a tendency towards a positive or negative correlation was indicated.  

 

Assessing the fate of xylem-transported CO2 using PET and compartmental modelling 

Exchange parameters a, b and c describe the fate of the xylem-transported CO2 with respect 

to net radial diffusion, assimilation AX by Pwt and efflux to the atmosphere, respectively. 

These parameters can be used to estimate the relative contribution of xylem-dissolved CO2 

(CO2,X) to each of the carbon fluxes (  
 /CO2,X, S

%
/CO2,X and   

 /CO2,X) in accordance with 

the model described by McGuire & Teskey 2004 (Eq. (1)). Additionally, our method allows 

to identify the relative amount of CO2,X that is assimilated through Pwt (i.e.   
 /CO2,X).  

Specifically, parameter a indicates CO2 exchange from the xylem conduits to the surrounding 

parenchyma and apoplastic spaces (i.e. CO2,PA). Hence, fraction (1 – a) of the 
11

CO2-tracer 

was transported upwards on a minute basis representing   
 /CO2,X. CO2 that is present in the 

parenchyma and apoplastic spaces (CO2,PA) can be assimilated through Pwt (via b to 
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compartment 3 of the model in Fig. 5) or be released to the atmosphere via efflux (via c). 

Hence, to estimate the corresponding xylem-transported CO2 fractions multiplication of 

exchange parameters b and c with a was performed, as these products can be related to the 

relative CO2 fluxes   
 /CO2,X (i.e. assimilation flux) and   

 /CO2,X (i.e. efflux to the 

atmosphere), respectively. The remaining CO2,PA (1 – b – c) can be multiplied with a to 

retrieve the storage flux S
%

. The relative contribution of the each of the carbon fluxes is 

given in Eq. (6). 

 

         )         )         )            )) 

              
        

      
             

                 
                 

(6) 

 

Results  

PET images 

Tracer transport from the proximal (left) part of the branch to the distal part is shown in Fig. 

3. Highest tracer concentration was observed in the proximal part. The normalised sum of 

tracer concentrations (± SE) over the scanning period of one hour per ROI (averaged over all 

three experiments) is given in Fig. 6. Tracer concentration per ROI was normalised with the 

input ROI concentration.  

 

Modelling xylem-transported carbon dynamics 

Time series of tracer concentration within each ROI (Fig. 4) showed that 
11

C-tracer 

concentration increased with time. Each distally located ROI showed a lower concentration 

with respect to the adjacent proximal ROI (Fig. 6). This can be linked to the lower slope of 

the TACs for the distal ROIs compared to the proximal ROIs (Fig. 4) indicating local 

retention of tracer due to AX and/or tracer efflux to the atmosphere.  
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Measured TACs were used for compartmental modelling and closely corresponded 

with the simulated TACs (Fig. 4). In the study branches (N = 3), average (± SE) model-

estimated speed of xylem-transported CO2     

  (for the compartmental model in Fig. 5) was 

found to be 5.00 ± 1.29 mm min
-1

 and was not significantly different (p > 0.05) from the 

average (± SE) image-estimated     

  (based on the distance of an ROI from the cut end of the 

branch and the time at which the tracer was first detected in that ROI), which equalled 5.55 ± 

2.15 mm min
-1

 (Fig. 7a). The exchange rate parameters a (i.e. tracer fraction from xylem 

conduits to the surrounding xylem and phloem parenchyma and apoplastic spaces), b (i.e. the 

fraction of CO2,PA that gets assimilated by Pwt) and c (i.e. the tracer fraction that diffuses to 

the atmosphere via efflux) averaged (± SE) over the experimental branches (N = 3) 0.51 ± 

0.06, 0.71 ± 0.07 and 0.25 ± 0.06 min
-1

 (Fig. 7b). Note that actual exchange fractions might 

be higher than the obtained model-estimates, because our parameters represent net exchange 

between tissues/compartments. 

The average (± SE) relative contribution of the CO2 fluxes   
 /CO2,X,   

 /CO2,X,  

  
 /CO2,X and S

%
/CO2,X  equaled 0.49 ± 0.06, 0.38 ± 0.08, 0.12 ± 0.01 and 0.01 ± 0.01 min

-1
, 

respectively, and their sum equals one. Note that the fraction of CO2 that remains inside the 

parenchyma and apoplastic spaces (S
%

/CO2,X)  is neglectable. 

Tendency towards a positive correlation was found between the transpiration rate and 

the transport speed of xylem-transported CO2, i.e.     

  (Fig. 8a). Tendency towards a positive 

correlation was obtained for the exchange parameters a, b and     

  (p-value 0.15 and 0.22, 

respectively - Fig. 8b) and   
 /CO2,X and     

  (p-value 0.16 - Fig. 8c). A tendency to an 

inverse correlation was found between parameter c and     

  (p-value 0.23 - Fig. 8b) and 

between carbon fluxes   
 /CO2,X,   

 /CO2,X and S
%

/CO2,X and     

  (p-value 0.15, 0.27 and 

0.05, respectively - Fig. 8c).  
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Discussion 

Plant–PET to unravel dynamics in woody tissue photosynthesis 

Preceding to compartmental modelling, pure image analysis demonstrated that highest 
11

C-

concentrations were found in the proximal branch parts (Figs. 4 and 6). Part of the 
11

C-tracer 

hence accumulated during the scanning period, indicating assimilation of CO2 by Pwt. 

Comparable results were obtained in detached sycamore branches that were allowed to take 

up 
13

CO2-labelled solution (McGuire et al. 2009). Moreover, highest 
13

C-enrichment was 

found in the lower branch sections due to their proximity to the 
13

C-source. Regarding the 

transport speed of CO2, a first image-estimated     

  was obtained by determining which 

specific branch segment was inside the FOV of the PET scanner. This is, to our 

understanding, a first method to directly determine the speed of xylem-transported CO2 in 

vivo. Given the temporal resolution of 2.5 min of the dynamic PET images, this initial value 

was subsequently used to narrow the search range of model-estimated     

  upon parameter 

calibration.  

The compartmental model was able to simulate the behaviour of internally transported CO2 in 

young branches, resulting in a close correspondence between measured and simulated time–

tracer curves of 
11

C-tracer (Fig. 4). No significant difference (p > 0.05) was found between 

    

  and     

 , indicating the validity of the proposed measurement techniques, i.e. direct 

image- and model- estimation of CO2 transport speed. Since CO2 is transported through the 

xylem,     

  is expected to be linked to the sap flow rate (McGuire & Teskey 2004; Bloemen 

et al. 2013c; Salomón et al. 2018). This rationale is also used in the mass balance approach 

(Eq. 1; McGuire & Teskey 2004) as sap flow is used to calculate the carbon flux through the 

xylem. This explains the tendency towards a positive correlation between the transpiration 

rate and     

  (Fig. 8a).  
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Aside from the CO2 transport speed     

 , other dynamic characteristics of xylem-

transported CO2 within P. tremula branches were assessed using a combination of PET scans 

and compartmental modelling. Model calibration successfully resulted in the exchange 

parameters a, b and c describing the relative carbon transport fluxes originating from CO2,X. 

Analogous to the mass balance approach described by McGuire & Teskey (2004), we 

propose dynamic 
11

C-PET combined with compartmental modelling yielding the exchange 

parameters as a new method to further disentangle the different carbon fluxes inside woody 

tissues. Our method results in the relative contribution of CO2,X to each of the carbon fluxes 

of the mass balance (  
 /CO2,X, S

%
/CO2,X and   

 /CO2,X) as well as   
 /CO2,X of which the 

sum equals one. When measuring [CO2
*
] (µmol CO2 L

-1
) inside branches and branch water 

content (L m
-3

), it is possible to quantify each of the relative carbon fractions in Eq. (6) to 

fluxes expressed in µmol CO2 m
-3

 min
-1

. However, note that the obtained relative carbon 

fluxes are not comparable with the carbon fluxes of the mass balance described by McGuire 

& Teskey (2004) because our study only focusses on the fate of xylem-transported CO2 

(CO2,X). Hence, the sum of the relative fluxes does not represent stem respiration RS. 

Comparison with the mass balance fluxes boils down to determining the part of RS dissolving 

in the sap at small spatial scale. Comparison with studies involving xylem sap labelling is of 

course justified. 

In young branches of P. tremula, it was found that slightly less than half (0.49 min
-1

) 

of the 
11

CO2-tracer was transported upwards on a minute basis representing the contribution 

of   
 /CO2,X. This is plausible as a study where 7-yr-old field-grown poplar trees were 

infused with 
13

CO2-labeled solution into the base for two days described 
13

C-enrichment 

throughout the entire tree (stem, branch woody tissues and foliage) suggesting substantial 

tracer movement (Bloemen et al. 2013b). The same trend was observed for a similar study on 

4-m tall northern white-cedar trees (Powers & Marshall 2011). Additionally, a study where 
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detached 20-50 cm long branches (<1 cm in diameter) of a 7-year-old P. deltoides tree were 

labelled with aqueous 
13

CO2-enriched solutions (having different label concentration) found 

that at least 29% of the assimilated 
13

C-label was fixed in the branches (with the remaining 

part in leaves) (Bloemen et al. 2013a). These results suggest that most of the label was 

transported to the leaves to be assimilated. They can however not be used to predict 

  
 /CO2,X, which is an advantage of 

11
C-based PET over 

13
C-based labelling. 

Relative xylem-transported CO2-fraction contributing to the assimilation flux 

  
 /CO2,X (0.38) lies within the assimilation percentage (35 – 42 %) of young branches of 

poplar and sycamore that could take up a 
13

CO2-labelled solution (McGuire et al. 2009; 

Bloemen et al. 2013c). However, it is rather low compared to the reported reassimilation 

percentage of woody species (40 – 123%) (Teskey et al. 2008; Ávila et al. 2014). 

Reassimilation higher than 100% are associated with net CO2 uptake via lenticels in the stem 

periderm (Berveiller et al. 2007) but was not taken into account in this study. Furthermore, 

parameter b indicates that most of the available CO2,PA was assimilated instead of directed to 

the atmosphere (0.71 vs. 0.25 - Fig. 7b). This is in accordance to the high AX efficiency of Pwt 

observed in young P. tremula branches and petioles which are characterised by thin and 

smooth bark having a high content of chloroplasts (Aschan et al. 2001; Ávila et al. 2014; De 

Roo et al. 2019). However, upon development of the periderm, a reduction in light 

transmittance can be expected, causing a reduction in AX efficiency of Pwt (Ávila et al. 2014). 

The relative fraction of xylem-transported CO2 that was direct to the atmosphere via 

efflux   
 /CO2,X was limited (0.12) and is related to the high assimilation of CO2 by Pwt. 

Specifically, AX in the light has been estimated to reduce CO2 efflux from branches by about 

52% (McGuire et al. 2009). Hence, it is expected that CO2 efflux would increase when the 

branches would not have been irradiated with PAR. 
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Dependency of internal CO2 fluxes on transport speed 

Since sap flow and thus the transport speed of CO2 is found to substantially affect both the 

efficiency of Pwt and the efflux to the atmosphere (Teskey & McGuire 2002; McGuire et al. 

2007; Teskey et al. 2008; Bloemen et al. 2013c; Ávila et al. 2014; Stutz & Hanson 2019) the 

exchange parameter values of each experiment are described as function of     

 . Exchange 

parameter a had a tendency to increase with increasing     

  (Fig. 8b) which might be 

explained by the fact that more CO2 is delivered to the tissue at a higher transport speed.  

Studies in which the mass balance approach of McGuire & Teskey (2004) has been applied 

suggest an increasing   
 /CO2,X (calculated as 1 – a in this study) with increasing vCO2 since 

higher FT-values are obtained during the day (i.e. when transpiration and thus internal CO2 

transport is higher) than during the night (McGuire & Teskey 2004; Salomón et al. 2018). On 

the contrary, in our study, a decrease in   
 /CO2,X is observed with increasing vCO2 which can 

be linked to the increasing assimilation   
 /CO2,X with increasing     

  (Fig. 8c). The reason 

for this discrepancy is related to the exclusion of woody tissue photosynthesis and thus AX in 

mass balance studies due to the application of opaque cuvettes making these results 

incomparable. The observed decrease in   
 /CO2,X with increasing     

  in our study is valid 

given its similarity to the inverse relation found between xylem sap flux density and [CO2
*
] 

in the stem of a Liriodendron tulipifera tree (Teskey & McGuire 2002). Similarly, increasing 

sap flux density resulted in a rapid decrease in xylem [CO2
*
] in Platanus occidentalis 

branches (McGuire et al. 2007).   

Since assimilation of xylem-transported CO2 is dependent on transpiration rate 

(Bloemen et al. 2013c; Mincke et al. 2018), which provides substrate for photosynthetic 

reactions, a tendency to a positive correlation was found between b and     

  (Fig. 8b), and  

hence between assimilation flux   
 /CO2,X and     

  (Fig. 8c). The observed trend is in 

accordance to a study were leaf transpiration rates in detached poplar branches were altered, 
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while branches were allowed to take up 
13

CO2 solution (Bloemen et al. 2013c). Through 

stable isotope 13
C-analysis of branch tissues it was found that woody tissues assimilated more 

13
C-label under higher transpiration. As   

 /CO2,X increases with increasing     

  (Fig. 8c), it 

might be theorized that Rubisco present in the chlorophyll-containing woody tissues is not 

saturated with CO2 under the experimental conditions. Photosynthetic contribution of CO2,X 

to the carbon budget should therefore not be neglected in (green) woody tissues. 

Both the CO2 to be assimilated via Pwt (via b) or directed to the atmosphere via efflux 

(via c) originated from CO2 present in parenchyma and apoplastic spaces (CO2,PA). Hence, an 

increasing parameter b with rising vCO2 (Fig. 8b) results in a decreasing parameter c. 

However, radial diffusion   
 /CO2,X remains constant for varying vCO2 values (Fig. 8c), which 

can be related to the inverse effect of vCO2 on the model parameters a and c, and hence the 

neutralizing effect on   
 /CO2,X, which is calculated from a and c. Additionally, since 

parameter c has a non-zero value, our results indicate that part of xylem-transported 
11

CO2 

radially diffused to the atmosphere which illustrates the error incurred when RS is estimated 

from EA measurements (McGuire & Teskey 2004; Teskey et al. 2008; Trumbore et al. 2013). 

By means of isotopic labelling coupled with isotope ratio laser spectroscopy, Salomón et al. 

(2019) disentangled the contribution of locally respired CO2 (LCO2) and xylem transported 

CO2 (TCO2) to EA for P. tremula. When the contribution of both TCO2 and LCO2 to EA is 

desired, the current experimental set-up requires measurements of EA and internal sap [CO2
*
].  

 

Conclusion 

Tracing xylem-transported 
11

CO2 in young P. tremula branches using the medical imaging 

technique positron emission tomography (PET) enabled visualising its dynamics in vivo with 

high spatial and temporal resolution. We demonstrated the applicability of dynamic PET 

imaging in combination with compartmental modelling to quantify the transport speed of 
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internal CO2 (    
 ) as well as to retrieve dynamics in xylem-transported CO2 with regard to 

upward transport with the sap (FT), assimilation via Pwt (AX) and efflux to the atmosphere 

(EA). Pwt may efficiently reduce respiratory CO2 losses, at least in young twigs and branches, 

and thus in the outer parts of tree crowns. Hence, refixation of CO2 appears to be of great 

importance for carbon budgets in e.g. environmentally controlled leafless states of deciduous 

trees (although surely different in young and mature trees). Increasing the number of 

replications, including both smaller and larger sized branches, is needed to further confirm 

our results and could result in a statistically significant regression of the model parameters in 

function of     

 . 

Nonetheless, our findings indicate the potential of plant-PET since physiological 

parameters are obtained regarding the fate of internally transported CO2 that are otherwise 

challenging to be measured with the same spatial resolution. Therefore, we believe that in 

vivo imaging in combination with modelling, both at cell and organ scale, are necessary to 

advance our mechanistic understanding of plant physiology, including Pwt.  
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Figure captions 

Figure 1 Schematic illustrating the fate of respired CO2 in woody tissues. Internal transport 

of xylem-transported CO2 (FT) can diffuse to the surrounding xylem and phloem parenchyma 

and apoplastic spaces (represented by CO2,PA) from where it can either radially diffuse into 

the atmosphere via stem CO2 efflux (EA) or be assimilated (AX) by chloroplasts present in the 

bark, and xylem rays, which is known as woody tissue photosynthesis (Pwt). The remaining 

part is stored (S) as CO2,PA. Xylem and outer tissues (cambium, phloem and bark) are 

represented in dark and light brown, respectively. The cylinder enclosing the stem segment 

represents one ROI of the model described in Fig. 5. Arrows indicate model parameters with 

    

  the transport speed of CO2 (mm min
-1

) while a, b and c represent CO2 exchange 

fractions (min
-1

). 
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Figure 2 Schematic of the experimental set-up displaying a P. tremula branch inside an 

airtight chamber (a) and syringe set-up to provide 
11

C-label (b). A small and dark cylindrical 

labelling compartment with an aqueous solution containing 
11

CO2 (indicated in orange) and 

the cut end of the branch is hermetically sealed from the measurement compartment 

containing the illuminated part of the branch. The measurement compartment was positioned 

in the circular bore of the PET scanner and only a part of it was surrounded by the detector 

ring (i.e. the FOV of the PET scanner). The incoming [CO2] is maintained at 400 ppm by a 

LI-6400 system while the water content and [CO2] entering and leaving the measurement 

compartment is analysed by a LI-7000 system, to calculate the transpiration and 

photosynthetic rate, respectively. Measurement of the flow rate of the air entering and leaving 

the measurement compartment enabled detection of undesired leaks. For safety measures, the 

leaving air is stripped from all radioactivity by bubbling it through a basic NaOH solution. 

Regarding the introduction of 
11

C-tracer (b) the labelling compartment was connected to two 

5-mL syringes. The first syringe, containing the 
11

C-tracer solution, provided the tracer to the 

cut end of the branch (orange arrow). Just before introducing the tracer, the plunger of the 

second syringe was pulled to remove the non-labelled aqueous solution (yellow arrow). A 

needle introduced at the headspace of the labelling compartment ensured in- and outflow of 

air (represented by the two-headed arrow having a yellow and orange colour, respectively) 

under these procedures so that no vacuum was created in the compartment. For safety 

measures, the outflowing air was directed to a container filled with soda lime as to strip the 

11
CO2 from the air. 
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Figure 3 Example of a (a) P. tremula branch inside the field-of-view of the PET-scanner and 

the corresponding (b) static (upper left corner) and dynamic PET images with a temporal 

resolution of 10 min (timestamp in min shown in the upper left corner of each dynamic PET 

image). An 
11

CO2-enriched aqueous solution was administered to the cut end of the branch 

(not shown) and internal transport of the 
11

C-label was visualised by dynamic PET images. 

The static PET image has highest resolution and is used for image analysis, i.e. drawing six 

consecutive ROIs around the branch. These ROIs were applied on the dynamic PET images 

to obtain tracer concentrations per ROI over time, i.e. TACs. Dash dotted ROIs were not used 

for image analysis since a petiole originated at that part of the branch. Colours varying from 

black to red represent no to high tracer as indicated by the colour bar. 
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Figure 4 By extracting the tracer concentrations of six consecutive ROIs (ROI input, ROI 1–

5) enclosing a branch segment of P. tremula on the dynamic PET images in Fig. 3, time-

activity curves (TACs) are obtained (circles). The temporal resolution is here 2.5 min and 

time is expressed in minutes after pulse-labelling aqueous 
11

CO2 to the cut end of the branch. 

Simulation of the model as in Fig. 3 using the calibrated parameters (i.e. describing the best 

model fit to the measured TACs) resulted in the simulated TACs (lines). Input ROI 

measurements are used as input for the compartmental model. Tracer concentrations are 

expressed in MBq. 
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Figure 5 Schematic of the compartmental model used to describe 
11

CO2-tracer movement in 

six consecutive ROIs (ROI input, ROI 1-5) within a branch segment. The model is described 

by four parameters, i.e. xylem CO2 transport speed   O2
  (mm min

−1
) and exchange parameters 

a, b and c (min
−1

) as defined by Eqs. (2-5). Through sap flow, 
11

CO2 enters and moves within 

the xylem (i.e. compartment 1) of each ROI with transport speed   O2
 . Within each ROI 

11
CO2 can move from the xylem to surrounding parenchyma and apoplastic spaces (i.e. 

compartment 2) through a. The tracer can subsequently (i) enter compartment 3, via b, where 

it is assimilated by Pwt and stored, (ii) exit the ROI and be directed to the atmosphere through 

c or (iii) stay in the second compartment. For each of the ROIs, parameters are assumed 

equal, and data for the input ROI is directly calculated from measured activity. 

 

Figure 6 Normalised sum of tracer concentration per ROI over the scanning period of one 

hour, averaged over all three 
11

C-experiments performed on branches of P. tremula (error 

bars indicate SE). Tracer concentrations were normalised per experiment with respect to the 

concentration measured in the input ROI. 
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Figure 7 Average estimated parameter values for the compartmental model as defined by 

Fig. 5, with (a) average PET image-estimation of the transport speed     

  by means of the 

distance of an ROI from the cut end of the branch and the time at which the tracer was first 

detected in that ROI, and average model-estimation     

 . No significant difference (p > 0.05) 

was found between both transport speeds (b) Average model parameter estimates a, b and c. 

Average values were calculated over the experiments performed on branches of P. tremula 

while error bars indicate SE. 
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Figure 8 Estimated parameter values for the compartmental model as defined in Fig. 5 (a, b) 

and the calculated relative carbon fluxes (c), in function of the simulated transport rate of 

CO2 within xylem conduits (    

 ): (a) Relation between the measured leaf transpiration rate 

and     

  (R
2
 of 0.71); (b) Relation between exchange parameters (a, b and c) and     

  (R
2
 of 

0.88, 0.79 and 0.71, respectively). Parameters a, b and c represent the tracer fractions 

between compartments defined by Eqs. (2-4); and (c) Relation between relative carbon fluxes 

  
 /CO2,X,   

 /CO2,X and   
 /CO2,X and     

 . Storage flux S
%

/CO2,X was omitted as its 

values averaged 0.01. Error bars indicate 95% confidence interval and are derived from the 

uncertainty analysis. 
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Tables 

 

Table 1: Abbreviations and definition of variables and carbon fluxes in woody tissues. 

Abbreviation Definition 

RS Stem respiration 

EA Stem CO2 efflux to the atmosphere 

FT CO2 transport through xylem 

ΔS Storage flux of gaseous CO2 

AX Assimilation of CO2,X through Pwt 

CO2,X Xylem-transported CO2  

Pwt Woody tissue photosynthesis 

    

  Transport speed of internal CO2 
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