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Abstract

A construction of Alon and Krivelevich gives highly pseudorandom
Kk-free graphs on n vertices with edge density equal to Θ(n−1/(k−2)).
In this short note we improve their result by constructing an infinite
family of highly pseudorandom Kk-free graphs with a higher edge
density of Θ(n−1/(k−1)).

1 Introduction

Pseudorandom graphs are deterministic graphs that in some sense behave like
random graphs. They have played an important role in modern graph theory
and theoretical computer science. We refer to the survey by Krivelevich and
Sudakov [16] for background and applications of pseudorandom graphs.

One well studied measure of pseudorandomness is in terms of the eigenval-
ues (of the adjacency matrix) of a graph. A graph is called an (n, d, λ)-graph
if it is a d-regular graph on n vertices, with its second largest eigenvalue
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(in absolute value) at most λ. By looking at the trace of the square of the
adjacency matrix, we see that λ = Ω(

√
d) for any such graph, whenever, say,

d < n/2. Graphs which have λ = O(
√
d) are known as optimally pseudoran-

dom graphs.
In [1], Alon constructed a family of dense triangle-free optimally pseu-

dorandom graphs to provide explicit graphs for a lower bound on the off-
diagonal Ramsey number R(3, t) (see [2] for a recent survey on many appli-
cations of his construction, and [8, 15] for alternate constructions). Alon’s
family is in fact extremal in the sense that any triangle-free (n, d, λ)-graph
with λ = O(

√
d) must have d/n = O(n−1/3), and Alon’s family satisfies

d/n = Ω(n−1/3). The natural extension of this is to look at Kk-free graphs
with the largest possible edge-density d/n. A simple application of the ex-
pander mixing lemma (cf. [16, Thm. 2.11]) shows that any Kk-free (n, d, λ)-
graph with λ = O(

√
d) satisfies

d

n
= O

(
n

−1
2k−3

)
.

Several people have asked about the tightness of this bound [2, 9, 10, 17, 22].
Despite years of effort, this problem remains open for every k ≥ 4. The best
known general construction for such graphs is the 20 year old construction
by Alon and Krivelevich [3], where the density d/n is equal to Θ(n−1/(k−2)).
As a step towards the conjecture, Conlon and Lee suggest that “A first aim
would be to beat the construction of Alon and Krivelevich” [9, Sec 6]. We
provide such an improvement by constructing an infinite family of Kk-free
optimally pseudorandom graphs with d/n = Θ(n−1/(k−1)).

2 Construction

Our construction makes use of the finite geometry associated with a quadratic
form over a finite field, see [4, 19] for the general theory behind it. We
repeat the relevant facts in the following. We denote the (k−1)-dimensional
projective space over Fq by PG(k− 1, q). The points of PG(k− 1, q) are the
1-spaces of Fkq . As there are qk − 1 non-zero vectors in Fkq , each non-zero
vector spans a 1-space, and each 1-space contains q − 1 non-zero vectors,
PG(k − 1, q) contains (qk − 1)/(q − 1) = (1 + o(1))qk−1 points. We assume
in the following that q is the power of an odd prime.
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Define the quadratic form Q : Fkq → Fq with Q(x1, . . . , xk) = ξx21 +∑k
i=2 x

2
i , where ξ is a non-square of Fq, which exists because q is odd. We

say that two points x = 〈(x1, . . . , xk)〉 and y = 〈(y1, . . . , yk)〉 of PG(k − 1, q)
are orthogonal, denoted by x ∈ y⊥, if

1

2
(Q(x+ y)−Q(x)−Q(y)) = ξx1y1 +

k∑
i=2

xiyi = 0.

Let X0 be the set of singular points, X� be the set of square points and X�

be the set of non-square points of PG(k − 1, q) with respect to Q, that is

X0 = {x ∈ PG(k − 1, q) : Q(x) = 0},
X� = {x ∈ PG(k − 1, q) : Q(x) is a square in Fq \ {0}},
X� = {x ∈ PG(k − 1, q) : Q(x) is a non-square in Fq}.

Note that these point-sets of PG(k − 1, q) are well defined since Q(λx) =
λ2Q(x), and hence being a square or not is a property of 1-spaces of Fkq .
Let Γε(k, q) be the graph with vertex set Xε where two vertices x and y are
adjacent if x ∈ y⊥, for ε ∈ {�,�}. The graph Γ�(k, q) will be our Kk-free
pseudorandom graph.

Remark 1. These objects naturally belong to finite classical groups and they
have been studied in the literature for more than 80 years (cf. [23]). One can
even argue that Jordan already understood them in 1870 [14]. For a study of
the associated graphs see for example Bannai et al. [5]. For k odd, Γε(k, q)
is either the graph with vertex set Ω1 and adjacency relation R(q+1)/2 in [5,
Sec. 6] or the graph with vertex set Ω2 and adjacency relation R(q+1)/2 in [5,
Sec. 7]. For k even, Γε(k, q) either corresponds to the graph with adjacency
relation R(q+1)/2 in [5, Sec. 4] or [5, Sec. 5]. Note that [5] uses a different
quadratic form (see Remark 3), so Γ�(k, q) can be isomorphic to their graph
on non-zero squares or non-squares. According to [5], the results of [5], which
we use, can also be obtained from Soto-Andrade’s work in [20, 21] for k even.
Our graphs are also mentioned by Hubaut [12, §8.10 and p. 377] for q = 3,
and for q = 5 when n is odd by Willbrink [7, §7.D] as they are strongly
regular graphs.

Remark 2. Our graphs are very similar to the ones used by by Alon and
Krivelevich [3, Sec. 2]. The differences are that (1) we use the bilinear form
ξx1y1 +

∑k
i=2 xiyi to define adjacency while they use

∑k
i=1 xiyi; and that
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(2) our vertices are the points in X�, while their vertices are all points x of
PG(k − 1, q) with x /∈ x⊥, that is, the points in X� ∪X�. We will see that
Γ�(k, q) has almost the same edge density as the Alon-Krivelevich graph,
but while their graph is only Kk+1-free (and has plenty of Kk’s) our graph is
Kk-free.

Remark 3. It follows from the general theory of quadratic forms (cf. [4, 19,
23]) that our choice of Q does not matter (much) as there are only two
isometry types of non-degenerate quadratic forms on Fkq . The isometry type
depends on the discriminant of the form. For k odd, for any non-degenerate
quadratic form either the graph on non-zero squares or the graph on non-
squares is Kk-free. For k even, for one type of non-degenerate quadratic
form the graph on non-zero squares and the graph on non-squares are both
Kk-free. In each case, the corresponding Kk-free graph is isomorphic to our
graph with the same parameters.

It is well-known, see for instance Proposition 4.1 in [19], that |X0| =
(1 + o(1))qk−2. Hence, |X� ∪X�| = (qk − 1)/(q− 1)− |X0| = (1 + o(1))qk−1.
The number of vertices |Xε| is in fact (1 + o(1))qk−1/2. The number of
solutions of Q(x) = a is roughly the same for any a. As (q − 1)/2 of the
elements of Fq are non-zero squares, and (q − 1)/2 of the elements of Fq are
non-square, |Xε| = (1+o(1))qk−1/2 is plausible. The exact number is exactly
the sum of the first row in the corresponding character table in [5]. These
are the tables VI–IX, Theorem 6.3 and Theorem 7.3.

We use the following fact which can be deduced from the general theory
of quadratic forms due to Witt from 1937 [23]:

Lemma 4. The graph Γε(k, q) is vertex-transitive.

Let V be the Fq-vector space Fkq . The orthogonal group associated to
Q is the subgroup of GL(V ) given by G = {f ∈ GL(V ) | Q(f(x)) =
Q(x) for all x ∈ V }. The group G obviously preserves the orthogonality
relation ⊥. We provide a sketch of a proof that shows that G acts transi-
tively on X�. A similar proof works for transitivity on X�.

Sketch of proof. Let B be the matrix associated to Q, that is Q(x) = xTBx,
and hence we have the bilinear form β(x, y) = 1

2
(Q(x+ y)−Q(x)−Q(y)) =

xTBy. If A is the matrix of f ∈ GL(V ), then f ∈ G if and only if ATBA = B.
Hence, if c1, c2, . . . , ck are the columns of A, then we have β(ci, cj) = 0 for
all i 6= j, β(c1, c1) = ξ and β(ci, ci) = 1 for all i > 1. Let x = 〈(0, . . . , 0, 1)〉
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and 〈y〉 any other element of X�. For any subspace U of PG(V ) which is
not entirely contained in X0 (that is, a non-singular subspace), Q induces a
non-degenerate quadratic form on U and hence |U ∩Xε| = (1 + o(1))qdimU/2
for ε ∈ {�,�}. Let ck = y and iteratively pick ck−1, ck−2, . . . , c1 such that
ci ∈ 〈ci+1, . . . , ck〉⊥ for all 1 ≤ i ≤ k−1, 〈c1〉 ∈ X� and 〈c2〉, . . . , 〈ck−2〉 ∈ X�.
We can scale these vectors so that β(c1, c1) = ξ and β(ci, ci) = 1 for all i > 1.
Then the map f associated to the matrix A with ci’s as its column is in G
and we have f(〈x〉) = 〈y〉.

Lemma 5. For any k ≥ 3, the graph induced on the neighborhood of every
vertex of Γ�(k, q) is isomorphic to Γ�(k − 1, q).

Proof. We can choose the vertex as x = 〈(0, . . . , 0, 1)〉 since Q(x) = 1 is a
square and the graph is vertex-transitive by Lemma 4. As x⊥ = {〈y〉 : y =
(y1, . . . , yk) ∈ Fkq , yk = 0}, the quadratic form on x⊥ is ξx21 +

∑k−1
i=2 x

2
i , and

hence the neighborhood of x is isomorphic to Γ�(k − 1, q).

Lemma 6. The graph Γ�(2, q) is K2-free and has (1 + o(1))q/2 vertices.

Proof. Let 〈(a1, a2)〉 be an arbitrary point of X�. The point orthogonal to
〈(a1, a2)〉 is 〈(a2,−ξa1)〉. As ξ is a non-square, Q(a2,−ξa1) = ξa22 + ξ2a21 =
ξQ(a1, a2) is a non-square. Therefore, 〈(a1, a2)〉 ∈ X� and its orthogonal
point 〈(a2, ξa1)〉 ∈ X�, which shows that Γ�(2, q) has no edges. Furthermore,
this gives a bijection between X� and X�. At most two points 〈(a1, a2)〉
satisfy 0 = Q(a1, a2) = ξa21 + a22, and hence |X� ∪ X�| ≥ q − 1. Therefore,
|X�| = (1 + o(1))q/2.

By combining Lemmas 5 and 6, we obtain the following.

Theorem 7. The graph Γ�(k, q) is Kk-free for all k ≥ 2.

Remark 8. The graph Γ�(1, q) has no vertices since for every non-zero square
λ ∈ Fq the element ξλ is a non-square, and hence this graph is K1-free. We
could have started with this as the base case of our induction but we believe
that the non-trivial case of k = 2 is more instructive.

To estimate the second largest eigenvalue of our graph we use interlacing
of eigenvalues. Let Γ′ be a graph on m vertices and Γ an induced subgraph
of Γ′ on n vertices. Let λ′1 ≥ λ′2 ≥ · · · ≥ λ′m be the eigenvalues of Γ′, and
λ1 ≥ λ2 ≥ · · · ≥ λn the eigenvalues of Γ. Interlacing says that λ′i ≥ λi ≥
λ′m−n+i, for all i = 1, . . . , n (see for example [11, Corollary 2.2]).
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Theorem 9. The graph Γ�(k, q) is an (n, d, λ)-graph with n = Θ(qk−1),
d = Θ(qk−2) and λ = q(k−2)/2.

Proof. We know that the number of vertices in Γ = Γ�(k, q) is (1+o(1))qk−1/2.
By Lemma 5, the graph is d-regular with d = (1 + o(1))qk−2/2.1 Consider
the graph Γ′ with vertex set X0 ∪ X� ∪ X� and adjacency defined by or-
thogonality with respect to our quadratic form. We will first show that the
second largest eigenvalue of Γ′ is q(k−2)/2 (following the same argument as
in [3, Sec. 2]) and then use interlacing to deduce that every eigenvalue of Γ
except d has absolute value at most q(k−2)/2 = O(

√
d).

The graph Γ′ has m = qk−1 + · · · + q + 1 vertices, and since the points
orthogonal to any given point form a hyperplane the graph is δ-regular with
δ = qk−2 + · · · + q + 1. As any two distinct hyperplanes intersect in a
codimension 2 subspace, any two distinct vertices have exactly µ = qk−3 +
· · · + q + 1 common neighbours. Therefore, the adjacency matrix2 A of Γ′

satisfies
A2 = µJ + (δ − µ)I,

where J is the all one matrix and I is the identity matrix, of dimension
m × m. The largest eigenvalue of A is δ as Γ′ is δ-regular. Moreover, the
graph is clearly connected and thus the eigenspace corresponding to δ is of
dimension 1. Let v be an eigenvector with eigenvalue not equal to δ. Then
Jv = 0, and hence A2v = (δ − µ)v, which implies that the square of the
eigenvalue of v is δ − µ = q(k−2). Thus, all eigenvalues of Γ′ except for the
largest one have absolute value q(k−2)/2.

Say λ′1 ≥ λ′2 ≥ · · · ≥ λ′m are the eigenvalues of Γ′ and λ1 ≥ λ2 ≥ · · · ≥ λn
are the eigenvalues of Γ. Then by interlacing we have λ2 ≤ λ′2 = q(k−2)/2 and
−λn ≤ −λ′m = q(k−2)/2. Therefore, every eigenvalue of Γ except λ1 = d has
absolute value at most q(k−2)/2.

3 Conclusion

The first value of k > 3 for which we have a separation in the density of
our Kk-free graphs from Alon’s triangle-free graphs is at k = 5. It will be

1The precise degree of the graph is also given in [5]. It corresponds to the value of
k(q+1)/2 in, depending on the case, Section 4, 5, 6, or 7. In each section k(q+1)/2 is either
given in the first lemma or just before the first lemma.

2The diagonal entries corresponding to the set of vertices that have a loop around them,
that is X0, are equal to 1.
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interesting to find a family of K4-free optimally pseudorandom graphs that
have a higher density than Alon’s graph. Even more exciting would be to find
tight examples for the conjecture, for any k > 3, or prove that such examples
do not exist. We believe that graphs coming from finite geometry, especially
those related to quadratic forms, can play a role in better constructions.

In a recent work, Mubayi and Verstaëte [18] have shown that for any fixed
k ≥ 3, an optimally dense construction of Kk-free (n, d, λ)-graphs would im-
ply the lower bound R(k, t) = Ω∗(tk−1) on the off-diagonal Ramsey numbers,
which matches the best known upper bound of O∗(tk−1). In fact, any con-
struction with edge density Ω(n−1/k) would already match the best known
lower bounds on R(k, t), proved by Bohman and Keevash [6]. Therefore, even
such a small improvement on our construction would be very interesting.
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