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Abstract. We prove the classical Hausdor�-Young inequality for the

Lebesgue spaces on a compact hypergroup using interpolation of sublin-

ear operators. We use this result to prove the Hausdor�-Young inequality

for Orlicz spaces on a compact hypergroup.

1. Introduction

For a locally compact abelian group G, 1 ≤ p ≤ 2 and p′ = p
p−1

, the classical

Hausdor�-Young inequality says, �If f ∈ L1(G) ∩ Lp(G) then the Fourier

transform f̂ ∈ Lp′(Ĝ) and ‖f̂‖p′ ≤ ‖f‖p."
This is proved by using Riesz convexity complex interpolation theorem

between p = 1 and p = 2 (the Plancherel theorem).

Hypergroups are probabilistic generalization of locally compact groups

where the convolution of two points is a point mass measure. In the spirit

of locally compact abelian group, Vrem [15] and Degenfeld-Schonburg [3]

proved Hausdor�-Young inequality for compact hypergroups and commu-

tative hypergroups respectively using the complex interpolation technique.

It is well known that between any two Lebesgue spaces there is an Orlicz

space which is not a Lebesgue space. M. M. Rao [8] studied the Hausdor�-

Young inequality for Orlicz spaces on locally compact abelian groups. In

fact, the celebrated work of M. M. Rao in the context of Orlicz spaces on

locally compact groups (see [8, 9, 12, 10]) motivates the authors for study-

ing Orlicz spaces of hypergroups [7]. In this article, we study the classical

Hausdor�-Young inequality with an enlargement of the space, namely, an

Orlicz space on a compact hypergroup. This work can be considered as a

generalization of [8] as well as [15].

It is to be noted that the Riesz convexity theorem is useful to the Lp-

spaces only. For Orlicz spaces, results are obtained �rst by extending a key

inequality of Hausdor�-Young in the form of Hardy-Littlewood [5, pg. 170].
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It is worth mentioning here that we apply the method of Hausdor�-Hardy-

Littlewood [5] which does not require the Plancherel theorem.

In Section 2, we present needful basics of Orlicz spaces and compact

hypergroups in the form we use in the sequel. In Section 3, we prove the

classical Housdor�-Young inequality for compact hypergroups; this proof is

slightly di�erent from that of Vrem [15]. Then we prove a key Lemma which

occupies a major part of this section, and �nally, we prove the Hausdor�-

Young inequality for Orlicz spaces on compact hypergroups.

2. Preliminaries

2.1. Basics of Orlics spaces. For basics of Orlicz spaces one can refer to

two excellent monographs by Rao and Ren [11, 12] and articles [8, 9, 10, 7].

However we present a few de�nitions and results here in the form we need.

A non-zero convex function Φ : R→ [0,∞] is called a Young function if

it is an even function with Φ(0) = 0. For any Young function Φ, and y ∈ R,
the complementary function Ψ of Φ is given by ,

Ψ(y) = sup{x|y| − Φ(x) : x ≥ 0},

which is also a Young function. If Ψ is the complementary function of Φ

then Φ is the complementary function of Ψ; the pair (Ψ,Φ) is called a com-

plementary pair. In fact, a complementary pair of Young functions satis�es

xy ≤ Φ(x) + Ψ(y) (x, y ≥ 0).

If a complementary pair of Young functions (Φ,Ψ) satis�es Φ(1)+Ψ(1) = 1

then the pair (Φ,Ψ) called a normalized complementary pair.

Let K be a compact hypergroup with a left Haar measure m. Denote the

set of all complex valued m-measurable functions on K by L0(K). Given

a Young function Φ, the modular function ρΦ : L0(K) → R is de�ned by

ρΦ(f) :=
∫
K

Φ(|f |) dm and the Orlicz space is de�ned by

LΦ(K) :=
{
f ∈ L0(K) : ρΦ(af) <∞ for some a > 0

}
.

Then the Orlicz space is a Banach space with respect to the norm NΦ(·)
de�ned by

NΦ(f) := inf

{
r > 0 :

∫
K

Φ

(
|f |
r

)
dm ≤ Φ(1)

}
.

Let Cc(K) denote the space of complex valued continuous functions with

compact support on K. The closure of Cc(K) inside LΦ(K) is denoted by

MΦ(K). Another useful description of MΦ(K) is that f ∈ MΦ(K) if and

only if for every α > 0, αf ∈ LΦ(K).
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An operator T : X → Y, where X is a Banach space and Y is a Banach

lattice, is called sublinear if |T (αf)| = |α| |T (f)| for α ∈ C, f ∈ X and

|T (f1 + f2)| ≤ |T (f1)|+ |T (f2)| for f1, f2 ∈ X (see [12, p. 193] and [2]).

The partial order≺ on th set of all Young functions is de�ned as: Φ1 ≺ Φ2

whenever Φ1(ax) ≤ bΦ2(x) for |x| ≥ x0 > 0 and Φ2(cx) ≤ dΦ1(x) for all

|x| ≤ x1, where a, b, c, d, x0 and x1 are �xed positive constants independent

of x. In particular, for Lp-spaces p ≥ 1 we can see that a = b = c =

d = 1, x1 ≥ 1 and x0 ≥ 1. With the help of this ordering we can de�ne

inclusion relation in Orlicz spaces: if Φ1,Φ2 are continuous Young functions

and Φ1 ≺ Φ2 then L
Φ2(K) ⊂ LΦ1(K) and NΦ1(·) ≤ αNΦ2(·) for some α > 0.

If K is a discrete space then LΦ(K) becomes `Φ(K) and in this case Φ1 ≺ Φ2

implies that `Φ1 ⊂ `Φ2 and NΦ2(·) ≤ β NΦ1(·) for some β > 0. The following

result is well-known (see [12, Lemma 1, p. 209]).

Lemma 2.1. Let (Φi,Ψi), i = 1, 2 be complementary pairs of continuous

Young functions and Φ1 ≺ Φ2. Then Ψ2 ≺ Ψ1.

2.2. Basics of compact hypergroups. For the basics of compact hyper-

groups one can refer to standard books, monographs and research paper

[4, 6, 1, 13, 14, 15, 16]. However we mention here certain results we need.

Let K be a compact hypergroup with the normalized Haar measure m

and let K̂ = {πα}α∈Λ, where Λ is an index set, be the set of irreducible

inequivalent continuous representations of K. The set K̂ equipped with the

discrete topology is called the dual space of K. Vrem [16] showed that

every irreducible representation (πα,Hπα) of a compact hypergroup is �nite

dimensional. For any πα ∈ K̂, the map x 7→ 〈πα(x)u, v〉 for u, v ∈ Hπα

is called a matrix coe�cient function and is denoted by παu,v. Let π
α(x) =

[παi,j]dπα×dπα be the matrix representation of any (πα,Hπα) of dimension

dπα with respect to an orthonormal basis {ei}dπαi=1 of Hπα . For each pair

πα, πβ ∈ K̂ there exists a constant kπα ≥ dπα such that

(2.1)

∫
K

παi,j(x)πβk,l(x) dm(x) =

{
1
kπα

when i = k, j = l, andα = β

0 otherwise.

If K is a compact group then kπα = dπα [16, Theorem 2.6].

For each πα ∈ K̂, the Fourier transform f̂ of f ∈ L1(K) is de�ned as

f̂(πα) = [〈f, παi,j〉]
dπα
i,j=1. where 〈·, ·〉 is the inner product on L2(K). Since

LΦ(K) ⊂ L1(K), the Fourier transform of f ∈ LΦ(K) is well de�ned. For

f ∈ L2(K), we have

(2.2) f =
∑
πα∈K̂

kπα

dπα∑
i,j=1

f̂(πα)i,jπ
α
i,j
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and the series converges in L2(K) [16, Corollary 2.10]. Hence,

‖f‖2
2 =

∑
πα∈K̂

kπα

dπα∑
i,j=1

|f̂(πα)i,j|2 =
∑
πα∈K̂

kπα‖f̂(πα)‖2
2.

3. The Main result

Throughout this section, we assume thatK is a compact hypergroup and

K̂ = {πα}α∈Λ, where Λ is an index set, be the set of irreducible inequivalent

continuous representations of K. At times, we also use an element of Λ

to describe an element of K̂. From now onwards, we assume that the pair

of complementary continuous Young functions (Φ,Ψ) is a normalized pair.

Note that continuity of a Young function guaranties the existence of its

derivative [11, Corollary 2, p. 10].

For f ∈ LΦ(K) de�ne Ff : Λ→ R+ by

(3.1) F 2
f (α) =

dπα∑
i,j=1

|f̂(πα)i,j|2

kπα
=

Tr(f̂(πα)∗f̂(πα))

kπα
forα ∈ Λ,

where for a matrix A, A∗ = Āt. Now, the gauge norm of f and Ff are

de�ned as follows:

(3.2) NΦ(f) := inf

{
r > 0 :

∫
K

Φ

(
|f |
r

)
dm(x) ≤ Φ(1)

}
,

and

(3.3) NΦ(Ff ) := inf

{
r > 0 :

∑
α∈Λ

Φ

(
Ff (α)

r

)
k2
πα ≤ Φ(1)

}
.

The space (LΦ(K), NΦ(·)) and (`Φ(K̂), NΦ(·)) are Orlicz spaces. If Φ is con-

tinuous then there exists k0 := NΦ(Ff ) such that inequality in (3.3) is an

equality with r = k0, i.e.,
∑

α∈Λ Φ
(
Ff (α)

k0

)
k2
πα = Φ(1).

The following theorem presents a proof of Hausdor�-Young inequality

moderately di�erent from Vrem's proof [15, Theorem 3.10].

Theorem 3.1. Let K be a compact hypergroup with the normalized Haar

measure m and let f ∈ Lp(K,m) for 1 ≤ p ≤ 2. Suppose 1
p

+ 1
p′

= 1. If

{Ff (α) : α ∈ Λ} is as in (3.1) then

(3.4) ‖f̂‖p′ =

(∑
α∈Λ

Ff (α)p
′
k2
πα

) 1
p′

≤ ‖f‖p.

Proof. Let `p
′
(k2) denote the space of p′th summable sequences on K̂ relative

to the weights {k2
πα : α ∈ K̂}. De�ne the operator T : Lp(K) → `p

′
(k2) by
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T (f) = Ff , where Ff is given by (3.1). It is easy to see that T is sub-linear.

Moreover, by Parseval formula,

(3.5) ‖Tf‖2
2 =

∑
α∈Λ

Ff (α)2k2
πα =

∑
α∈Λ

dπα∑
i,j=1

|f̂(παi,j)|2kπα = ‖f‖2
2.

By de�nition,

‖Tf‖p′ =

{(∑
α∈Λ Ff (α)p

′
k2
πα

) 1
p′ 1 ≤ p′ <∞,

supα∈Λ
Ff (α)

kπα
p′ =∞.

Now,

Ff (α) =

(
1

kπα

dπα∑
i,j=1

|f̂(πα)i,j|2
) 1

2

≤ 1

k
1
2
πα

dπα∑
i,j=1

|f̂(πα)i,j|

≤ 1

k
1
2
πα

∫
K

|f(x)|
dπα∑
i,j=1

|πα(x)i,j| dm(x).

Using Cauchy-Schwarz inequality, we get

Ff (α) ≤ 1

k
1
2
πα

∫
K

|f(x)|

(
dπα∑
i,j=1

|πα(x)i,j|2
) 1

2

dπα dm(x).

Since πα(x) is a dπα×dπα orthogonal matrix and the hyperdimension kπα ≥
dαπ , we get

Ff (α) ≤
(
dπα

kπα

) 1
2
∫
K

|f(x)| dπα dm(x) ≤ kπα

∫
K

|f(x)| dm(x).

Hence, we have

(3.6) ‖Tf‖∞ ≤ ‖f‖1.

From (3.5) and (3.6), the required inequality follows by the Riesz-Thorin

theorem for sub-linear operators [2]. �

The proof of our main result depends on the following key lemma which

is an extension of an important inequality in the case of Lp due to Hardy

and Littlewood [5].

Lemma 3.2. Let K be a compact hypergroup with the normalized Haar mea-

sure m and let (Φ,Ψ) be a pair of continuous normalized Young functions

such that

(i) Φ ≺ Φ0, where Φ0(t) = 1
2
|t|2,

(ii) Ψ′(t) ≤ c0 t
p, ∀ t ≥ 0, for some p ≥ 1, and for some c0 > 0.
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Suppose Λ0 is a �nite subset of Λ. De�ne fΛ0 : K → C by

(3.7) fΛ0(x) :=
∑
α∈Λ0

kπα

dπα∑
i,j=1

cαi,jπ
α
i,j(x),

where cαi,j ∈ C. If FΛ0 = Ff is as in (3.1) with f = fΛ0 , then

(3.8) NΨ(FΛ0) ≤ r̄0NΦ(fΛ0),

where r̄0 > 0 depends only on Φ and the ordering ≺ .

Proof. Let Λ0 be a �nite subset of Λ. If fΛ0 is as in the statement of

the lemma, f̂Λ0(πα)i,j = cαi,j χΛ0(α). For simplicity of expressions, we set

SΦ(fΛ0) = NΦ(FfΛ0
). For a non-zero f ∈ LΦ(K), the Fourier coe�cients

f̂(πα)i,j of f are denoted by c̃αi,j. Let f̃Λ0 be the function given by (3.7) with

cαi,j = c̃αi,j. Following an idea of Hardy and Littlwood [5], we de�ne,

(3.9) M = MΦ(Λ0) := sup

{
SΨ(f̃Λ0)

NΦ(f)
: f 6= 0

}
.

We prove the lemma in three steps.

STEP I. M <∞.
Since M is described by a ratio of norms, without loss of generality we as-

sume that SΨ(f̃Λ0) = 1 to �nd a bound onM . It follows by using continuity

of Ψ and the de�nition of the gauge norm (with k0 = 1) that

(3.10)
∑
α∈Λ

Ψ(Ff̃Λ0
(α))k2

πα = Ψ(1).

Since kπα ≥ 1, Ff̃Λ0
(α) = 0 for α ∈ Λ − Λ0 and 0 < Ψ(1) < 1, at least one

term on the left hand side of (3.10) is greater than or equal to Ψ(1)
#(Λ0)

, where

#(Λ0) is the cardinality of Λ0. If such a term is obtained for α = α0 ∈ Λ0

then we have

(3.11) 1 ≤ Ψ−1

[
Ψ(1)

#(Λ0) k2
πα0

]
≤ Ff̃Λ0

(α0).

Next,

Ff̃Λ0
(α) =

(
1

kπα

dπα∑
i,j=1

|c̃αi,j|2
) 1

2

≤ 1

k
1
2
πα

dπα∑
i,j=1

|c̃αi,j|

≤ 1

k
1
2
πα

∫
K

|f(x)|
dπα∑
i,j=1

|πα(x)i,j| dm(x).

Using Cauchy-Schwarz inequality, we get

Ff̃Λ0
(α) ≤ 1

k
1
2
πα

∫
K

|f(x)|

(
dπα∑
i,j=1

|πα(x)i,j|2
) 1

2

dπα dm(x).
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Since πα(x) is a dπα×dπα orthogonal matrix and the hyperdimension kπα ≥
dαπ , we get

Ff̃Λ0
(α) ≤

(
dπα

kπα

) 1
2
∫
K

|f(x)| dπα dm(x) ≤ dπα

∫
K

|f(x)| dm(x).(3.12)

Now by Hölder's inequality

(3.13) Ff̃Λ0
(α) ≤ dπα NΦ(f).

Now by combining (3.11) and (3.13), we have

(3.14)
1

NΦ(f)
≤

 dπα0

Ψ−1
(

Ψ(1)

#(Λ0)k2
πα0

)
 <∞.

Since the right hand side of (3.14) is independent of f, we have M <∞.
STEP II. M is independent of Λ0.

For fΛ0 as in (3.7), de�ne g by

(3.15) g(x) := Ψ′

(
|fΛ0(x)|
NΨ(fΛ0

)

)
sgn(fΛ0(x)).

It is easy to see that NΦ(g) = 1. It follows from [11, Proposition 9, p. 80]

and [17, p. 175] that the Hölder's inequality is an equality, that is,

NΨ(fΛ0) = NΦ(g)NΨ(fΛ0) =

∫
K

g(x)f̄Λ0(x) dm(x).

Using the Parseval formula, we have

NΨ(fΛ0) =
∑
α∈Λ0

dπα∑
i,j=1

ĝ(πα)i,j f̂(πα)i,j

≤
∑
α∈Λ0

k2
πα FfΛ0

(α)Fg̃Λ0
(α) (by Cauchy-Schwarz inequality)

≤ SΦ(fΛ0)SΨ(g̃Λ0).

By STEP I, we know that SΨ(g̃Λ0) ≤MNΦ(g) = M and therefore

NΨ(fΛ0)

SΦ(fΛ0)
≤ SΨ(g̃Λ0) ≤M.(3.16)

Note that M ≥ 1. In fact, for f = 1, we note that NΦ(1) = 1 as the Haar

measure m is normalized. By continuity of Φ,∑
α∈Λ

Φ

(
Ff̃Λ0

(α)

S(f̃Λ0)

)
k2
πα = Φ(1).

Now, by choosing α0 ∈ Λ0 such that (3.11) holds, i.e., Ff̃Λ0
(α0) > 1, we have

(3.17) SΨ(f̃Λ0) ≥ 1[
Φ−1

(
Φ(1)

k2
πα0

)] = r0 ≥ 1 (say)
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so that M ≥ SΨ(f̃Λ0
)

NΦ(f)
≥ r0 ≥ 1. By continuity of norms, there is a function

fΛ0 such that M =
NΨ(fΛ0

)

SΦ(fΛ0
)
. Consequently, from (3.16) we get SΦ(g̃Λ0) = M.

We �x this fΛ0 and set g as in (3.15) for the remaining part of this step.

Suppose S2 denotes SΨ if Ψ(x) = |x|2
2
. Using the Bessel inequality, we

get

(3.18) S2
2(g̃Λ0) =

∑
α∈Λ0

k2
πα

dπα∑
i,j

|ĝ(πα)i,j|2 ≤
∫
K

|g(x)|2 dm(x) ≤ NΨ(g2),

where the last inequality follows from Hölder's inequality (since NΦ(1) = 1).

Set Ψ1(t) = Ψ(t2). Then Ψ1 is a Young function satisfying Ψ ≺ Ψ1. Since g

is a bounded function, by setting a2 = NΨ(g2)(<∞), we get

Ψ1(1) = Ψ(1) =

∫
K

Ψ

(
|g|2

a2

)
dm(x) =

∫
K

Ψ1

(
|g|
a

)
dm(x),

whence a = NΨ1(g). Thus, by (3.18), we have

(3.19) S2(g̃Λ0) ≤ NΨ1(g).

Now, we �nd an absolute bound for M . If a = NΨ1(g) then, by de�nition,

there exists b0 > 0 such that

1 =

∫
K

Ψ1

(
g

ab0

)
dm(x) =

∫
K

Ψ1

[
1

ab0

Ψ′
(
|fΛ0|

NΨ(fΛ0)

)]
dm(x).

Since Ψ′(t) ≤ c0 t
p for some p ≥ 1, we get

(3.20) 1 ≤
∫
K

Ψ1

[
c0

b0a

(
|fΛ0|

NΨ(fΛ0)

)p]
dm(x) =

∫
K

Ψ2

[
b1
|fΛ0 |

NΨ(fΛ0)

]
dm(x),

where Ψ2(t) = Ψ1(tp) and b1 =
(
c0
b0a

) 1
p
> 0. Thus Ψ2 is a Young function

satisfying Ψ ≺ Ψ1 ≺ Ψ2. Then (3.20) gives the following important inequal-

ity: there exists a constant b2 depending only on Ψ2 and independent of fΛ0 ,

such that

(3.21) NΨ2

(
b1fΛ0

NΨ(fΛ0)

)
≥ b2 > 0,

(see [11, Theorem 2, Chapter III]). Since NΨ2(·) is a norm, by the de�nition

of b1, we get

(3.22)

[
NΨ2(fΛ0)

NΨ(fΛ0)

]p
≥ bp2

(
b0

c0

)
NΨ1(g) = b3NΨ1(g),

where b3 = bp2
b0
c0
. Since we have Ψ0 ≺ Ψ ≺ Ψ1 ≺ Ψ2, by Lemma 2.1,

Φ2 ≺ Φ1 ≺ Φ ≺ Φ0 so that `Φ2 ⊂ `Φ1 ⊂ `Φ ⊂ `Φ0 = `2 ⊂ `Ψ ⊂ `Ψ1 ⊂ `Ψ2 .

Now, for some r2 > 0, we get the following inequalities:

1 ≤M = MΦ = SΨ(g̃Λ0) ≤ r2S2(g̃Λ0) ≤ r2

b3

[
NΨ2(fΛ0)

NΨ(fΛ0)

]p
≤ r2

b3

[
NΨ3(fΛ0)

NΨ(fΛ0)

]p
,(3.23)
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where Ψ3(t) = c0
p+1
|t|2p(p+1), so Ψ2 ≺ Ψ3, (Since Ψ′(t) ≤ c0 t

p). Let Φ3 be the

complementary function of Ψ3. Then SΦ3(fΛ0) ≤ b4SΦ(fΛ0) for some b4 > 0

depending only on Φ3 and Φ only. Therefore, by (3.23), we have

1 ≤M = MΦ ≤ r2

b3

[
MΦ3SΦ3(fΛ0)

MΦSΦ(fΛ0)

]p
≤ r2

b3

[
b4
MΦ3

MΦ

]p
(3.24)

Hence,

(3.25) 1 ≤Mp+1
Φ ≤ rp3 M

p
Φ3
,

for some positive constant r3 > 0 which depend only on Φ,Φ2,Φ3 and the

ordering constants. But note that LΨ3(K) = Lp
′
(K), where p′ = 2p(p+1) ≥

2. It follows from Theorem 3.1 that MΦ3 ≤ r4 <∞, for a positive constant

r4 depending on c0 and r. Therefore (3.25) gives

1 ≤MΦ ≤ r5 <∞

where r5 = (r3r4)
p
p+1 , which is independent of Λ0.

STEP III. By setting r̄0 = r5, equations (3.9) immediately give the required

inequality in (3.8). Since Ψ2 and Ψ3 depend on the complementary Young

function Ψ of Φ, all the constants involve depend on Φ and the ordering Φ ≺
Φ0, and perhaps on c0 and p. This completes the proof of the lemma. �

Now, we are ready to prove the Hausdor�-Young inequality for Orlicz

spaces on compact hypergroups.

Main Theorem 3.3. Let K be a compact hypergroup with the normalized

Haar measure m and let (Φ,Ψ) be a pair of continuous normalized Young

functions such that

(i) Φ ≺ Φ0, where Φ0(t) = 1
2
|t|2,

(ii) Ψ′(t) ≤ c0 t
p, t ≥ 0, for some p ≥ 1,

where c0 is a positive constant. If f ∈MΦ(K) then there is r0 ≥ 1 such that

NΨ(Ff ) ≤ r0NΦ(f).

Proof. Let f ∈MΦ(K) and let Λ0 be �nite subset of Λ. Suppose f̃Λ0 is given

by (3.7) where cαi,j = f̂(παi,j). It is known that the set {f̃Λ0 : Λ0 ⊂ Λ} of such
functions is dense in MΦ(K) (see [16] and [7]). If {Ff̃Λ0

(α) : α ∈ Λ0} is

corresponding function in `Ψ(k2), then we have

lim
Λ0⊂Λ

NΦ(f − f̃Λ0) = 0, and lim
Λ0⊂Λ

NΨ(Ff̃Λ0
) = NΨ(Ff ),

where the limit as Λ0 varies in Λ is taken using the partial order de�ne

by inclusion of subset of Λ. Now, by using this with the inequality (3.8),

NΨ(FfΛ0
) ≤ r̄0NΦ(fΛ0), of Lemma 3.2, we get NΨ(Ff ) ≤ r0NΦ(f), where

r0 = r̄0. This completes the proof. �
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Remark 3.4. (i) Examples of Young functions Φ satisfying the condi-

tions in Theorem 3.3 but di�erent from |x|p/p can be found in [12,

p. 226].

(ii) For the Lebesgue space, constant r0 is simply 1 (see Theorem 3.1);

however it is clear from the proof of Lemma 3.2 that the constant

r0 in Theorem 3.3 is greater or equal to 1.

Remark 3.5. It would be interesting to �nd whether the Hausdor�-Young

inequlity for Orlicz spaces holds if K is a commutative hypergroup. For a

locally compact abelian group, this inequality was established by M. M. Rao

[8]. An obvious generalization of the techniques does not work as Rao uses

the structure theorem of locally compact abelian groups.
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