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Abstract

The optical power of a thick spherical lens and its Coddington shape factor are essential 

magnitudes that characterize its image quality. Here, we propose an experimental procedure and 

apparatus that allow accurate determination of those magnitudes for any spherical lens from 

geometrical measurements. The performance of the technique and the used instruments are 

simple since it only requires a microscope and an optical mouse. The propose overcomes the 

drawbacks of other devices that need of the refractive index or may damage the lens surfaces, 

like spherometers, and provides similar results to those from commercial lensmeters. 

Keywords: Thick lens; Effective focal length; Shape factor



Page 2 of 15

Acc
ep

te
d 

M
an

us
cr

ip
t

2

1. Introduction

The optical power and the shape factor are essential magnitudes that characterize the image 

quality of any lens, including ophthalmic, contact or intraocular lenses. In fact, optical 

aberrations are highly dependent on the shape and the index of refraction of the lens [1-3]. 

Despite the determination of the effective focal length (EFL) of a lens is an old topic in optical 

metrology, new works are still published [4-6]. Some methods, like interferometry or Moiré 

deflectometry, provide very accurate measurements of EFL [7-9]; however, they need of 

sophisticated material with complex experimental setups.

Spherical lenses are the most common ones since they are simpler and cheaper to 

manufacture. The optical power and the shape factor of these lenses are usually computed from 

the measurement of the curvature radii of its surfaces through a spherometer [10]. However, this 

simple procedure cannot be translated to delicate lenses since the spherometer may produce 

scratches on the optical surface and damage the treatment layers.

The general spherical thick lens consists of two spherical surfaces in air with their centres 

aligned. The optical power of a thick lens, P, the equivalent EFL, and the Coddington shape 

factor can be respectively obtained as:

   2

1 2 1 2

11 1 1
1

·

n d
P n

r r n r r EFL

 
     

 

2 1

2 1

r r
q

r r





(1)

where r1 and r2 are the curvature radii, n is the refractive index of the media and d stands for the 

central thickness of the lens. Geometrical Optics [11] determines the optical power of a thick 

lens as a function of the back vertex power, Pb, as
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In this work, we present a simple method to obtain the EFL and shape of a lens just through 

measuring the location of some points on its surfaces. We mark several dots on the surface of the 

lens and determine the position of each dot in the cloud just with the aid of a microscope and a 

gauge. With these points, we calculate the curvature radii of both surfaces and the Coddington 

shape factor in (1). Then, through the calculation of lens thickness, we can also obtain the final 

EFL. Since very precise location of the spots on the surface is needed, the experimental errors, 

although small, play a fundamental role here. Thus, the sample size and convergence of results 

are also discussed.

The manuscript is structured as follows: In the Methods section, we develop the steps that 

allow determining the curvature radii of the surfaces and the central thickness. Later, we make 

some considerations about the condition number of the equation system to be solved and discuss 

about the sample size. Next, the Results, where we apply the technique to a spherical surface to 

test the method and compare the curvature radius; and to a meniscus contact lens and compare 

the obtained power to that provided by a commercial lensmeter. Finally, we discuss the 

conclusions of the work.

2. Method

A spherical surface centred at  , ,c c cC x y z  and curvature radii r can be represented by the 

equation:

     2 2 2 2
c c cx x y y z z r      (3)
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Let us consider n points located on a spherical shell at the Cartesian coordinates  , ,p p p pP x y z , 

with  0, ... , 1p n  ; and let us suppose that the origin of the spatial reference system is set on 

one of these points, 0P . The remaining ( 1)n   points with respect to 0P  can be expressed as:

0 0 0;    ;    p p p p p px x x y y y z z z         (4)

From expressions (2) and (3), we get that the n considered points fulfill:

           2 2 2

0 0 02 2 2 0p c p p c p p c px x x x y y y y z z z z               (5)

Now, if in (5), we make the changes    0 0 0 0' ; 'c cx x x y y y     and  0 1' cz z z  , it results:

     2 2 2

0 0 02 ' 2 ' 2 ' 0p p p p p px x x y y y z z z            ; (6)

which is a system of ( 1)n   equations with three unknowns  0 0 0' , ' , 'x y z , that are the 

coordinates of the origin of the new spatial reference system with respect to the centre of the 

sphere. 

A system of equations has solution if it is compatible and determinate, i.e., in our case, it 

should have, at least, 3 equations. In order to fulfill this condition, the minimum number of 

points in the surface must be n =4. Therefore, from (6), we get:

     2 2 2

0 0 0

1
' ' ' ;       1, 2,3

2p p p p p px x y y z z x y z p               
; (7)

that, in matrix form, can be written as:

     
     
     

2 2 2

1 1 11 1 1 0
2 2 2

2 2 2 0 2 2 2 0

2 2 2
3 3 3 0 3 3 3

'
1

'     '  
2

'

x y zx y z x

x y z y x y z AX B

x y z z x y z

                                            

(8)

We just must solve 1
0'

X A B and finally obtain the curvature radius of the sphere as: 
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2 2 2 2
0 0 0' ' 'x y z r   (9)

Therefore, if we manage to measure three points over a shell with respect to a fourth one, it 

is possible to determine the curvature radius of the lens. To this end, we select several points on 

one surface of a spherical lens, just by marking them with black ink. Then, we place the lens on a 

microscope plate, with the marks oriented towards the objective (Fig. 1). We have used a 

microscope (Alphaphot-2 microscope from Nikon with a 10x objective and NA=0.25) with a 

plate that can be moved in the horizontal plane (X and Y directions) and vertically (Z axis). Two 

gauges of 0.1 mm sensitivity provide the measurement of position in the horizontal XY plane, 

while a 0.0022 mm sensitivity micrometer measure vertical movements. In order to increase the 

sensitivity in the XY plane, we have attached an optical mouse to a platform, which is mounted 

attached to the vertical displacement of the microscope. The optical mouse shows the horizontal 

movement on a computer screen (1280x1024 px). The variation of the cursor location (in pixels) 

is directly related to the horizontal movement through a calibration factor of 0.021 mm/px, so the 

sensitivity is improved in 5 times.

Fig. 1. a) Experimental setup consisting of a microscope and an optical mouse. b) Image of a mark on the surface

The measuring process begins by setting the origin 0P . So, we first simply focus one of the 

marks on and, then, focus the 3 remaining points on and measure the displacements 

 , ,p p px y z    with respect to the origin point. Hence, we can solve the system in (8) and, 

consequently, obtain the curvature radius (9) for each surface. 
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Curvature radii help us to obtain the central thickness of the lens. In the scheme in Fig. 2, we 

start focusing 0P  on and then we look for focusing  0,0,V r  on, just by moving the plate of the 

microscope. The movement of the plate consists of a horizontal displacement, 0'x and 0'y  above 

obtained from (8), and a vertical shift until we reach the vertex. 

Fig. 2. Location of 0P , the origin of a spatial reference system, on a spherical surface.

Once reached 1V , the determination of the central thickness is different depending on the 

shape of the lens. In Fig. 3, we represent three different types of thick lenses. In cases 3(a) and 

3(b), central thickness is obtained just by looking for the point K , which is directly marked on 

the supporting plate. The lens is removed from the microscope and the plate is focused. The 

vertical movement of the microscope is directly the central thickness of the lens. 

Fig. 3. (a) Biconvex lens. (b) Meniscus. (c) Biconcave lens

The process is more complex in the case 3(c). One possibility would be as follows. If we 

look at Fig. 4, where different distances are defined, it can be deduced that, if we manage to 

measure distances e and g, we can obtain the thickness. From 1V , we can horizontally displace 
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the plate and look for the point A, just in the border of the lens. That displacement corresponds to 

the distance e. Then, we go back to 1V  and remove the lens in order to focus on the plate base. 

The vertical displacement from 1V  to the base is the distance g. Therefore, the central thickness 

of the lens can be calculated as:

2 2
2 22 2

2 2

       
  

h r r e
d g r e r

d g h
(10)

Last magnitude we need to obtain before computing the EFL in expression (1) is the 

refractive index. Again, we follow the scheme in Fig. 4 and start focusing on V1. Then, without 

removing the lens, we focus the opposite vertex on, by displacing the plate an amount |s’2|. Since 

we are looking at V2 through the lens, what we see is the image V’2. This image is given by the 

upper surface, with curvature radius r1, that separates a medium of refractive index n (index of 

the lens) from air.

Fig. 4. Scheme that shows distances needed to obtain the central thickness and the refractive index
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From Geometrical Optics, and taking into account the sign convention for the curvature radii 

(biconvex: r1>0, r2<0; meniscus: r1>0, r2>0, biconcave: r1<0, r2>0) and for distances (s’2<0 in all 

cases), we can deduce that the refractive index is

 
 
1 2

2 1

'

'






d r s
n

s r d
(11)

Finally, from expressions (1), (10) and (11), the optical power of a thick lens can be 

obtained as a function of the measured variables as:

 
2 2 2 2

2 2 2 2 1 2
2 1

2 2
2 12 2 2 2 1

'

''

r s g r e r r g r e
P r r

s rr s g r e r r

                 
(12)

3. Experimental considerations: Stability

Although the presented method is clear, we notice that equation system in (8) is very 

sensitive to small changes of the measurements, even within the experimental error. This 

happens because the matrix A is often ill conditioned, i.e. the condition number is too high [12]. 

Consequently, a small variation in some of the elements of the array causes the results to be 

completely different. As shown in [13], a condition number higher than 30 implies an unstable 

system of equations. Therefore, in order to avoid the ill conditioning of A, it becomes necessary 

to increase the number of sampled points in the spherical shell and, accordingly, to obtain a new 

system of equations. Now, instead of expression (8), the system is an overdetermined linear 

system of m equations with 3 unknowns:

3 0 1'm mA X B  (13)

Overdetermined linear systems are generally incompatible since the vector B does not 

belong to the subspace generated by the columns of the matrix A. However, there are several 

approximated solutions to an overdetermined linear system. Matlab offers a tool named lscov to 
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provide a least square solution that minimizes the sum of squared errors  2

3 0 1 2
'm mA X B 

[14], where the vector 0'
mX �  is the approximate and unique solution. We have applied this 

script on equation (12),    0 3 1
' ,

m m
X lscov A B

 
     to determine both the solution and the 

standard deviation of each one of the elements of the matrix solution (see more details in the 

Appendix). First, we have evaluated the suitability of the amount of samples selected. An 

analysis of the condition number provides information about the numerical stability of the 

solution. As we will show in an example, the condition number tends to stabilize after a number 

of samples.

Besides the stability of the solution, another issue to consider is the error in obtaining of the 

coordinates  0 0 0' , ' , 'x y z . We consider the set of solutions corresponding to a stable condition 

number and take as result the mean of those solutions. Therefore, the absolute error assigned to 

the final result (the curvature radius) is: 

     0 0 0 0 0 0' ' ' ' ' ' 
 

x x y y z z
r

r

  
; (14)

where       0 0 0' , ' , 'x y z    are the standard deviation of each coordinate.

4. Results

Initially, and in order to test our method, we measured curvature radii of a spherical steel 

ball of diameter 12.00 0.01 mmd   . As we stated in the method, we mark several points on the 

surface and measure their location using a microscope. We compute the coordinates of the origin 

solving the system of equation (13). Fig. 5a show the evolution of the condition number with the 

number of sampled points on the sphere. It is observed that the condition number tends to 
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stabilize after a certain amount of samples. Furthermore, if we represent the coordinates of the 

origin as a function of the number of points (Fig. 5b), we also find that stabilization.

Fig. 5. Evolution of the computed a) condition number and b) coordinates of the origin for different sampling. Note 

that, after 17 samples the solution (curvature radius), stabilizes.

We establish that a result is reliable if it is located at the range of stability of the condition 

number ( 17N , in our case) and assign the mean of the results at this range as final value. 

Therefore, the origin results    0 0 0' , ' , ' 0.19 0.05, 0.07 0.05, 5.95 0.08 mm    x y z  and the 

curvature radius 5.96 0.08 mm r . The deviation of the curvature radius respect to the real 

value only is 0.66% so the method is useful to accurately obtain small curvature radii.
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After this consideration, we apply the technique to measure the shape factor and power of an 

ophthalmic meniscus contact lens. First, we have measured the back vertex power) of the lens 

through a lensmeter (Nidek LM-770) and it results 4.00 0.12 bP D  . Next, we have sampled 

different points at the two surfaces of the lens and we have determined the condition number of 

the system in (13). In Fig. 6, we show the variation of the condition number with the number of 

sampled points for both surfaces. As can be seen, the system tends to stabilize after 9 and 13 

samples for the concave and convex surface respectively. 

Fig. 6. Variation of the condition number with the number of sampled points for both surfaces

We have also computed the coordinates of the origins and their errors as above for both surfaces 

and using different number of sampled points. Obtained parameters are in Table 1. Parameters in 

Table 1 lead us to conclude that the curvature radii are 68.09±0.08 mm and 151.9±0.1 mm, for 

convex and the concave sides of the lens, respectively. 

Table 1. Parameters obtained for each radius and its error 

 0'x mm  0'y mm  0'z mm

Convex surface -14.001±0.004 -14.96±0.02 64.94±0.08

Concave surface -10.08±0.01 -8.28±0.01 151.4±0.1
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Finally, we have completed the measurements by estimating e, g and 2's . They result 

22.49 0.03e mm  , 6.982 0.003g mm   and 2' 3.693 0.007s mm   , so the optical power 

and the shape factor are 3.92 0.06 P D  and 2.625 0.005 q , respectively. If we apply 

equation (2), we get 4.02 0.06 bP D , which implies a relative deviation below 0.5% 

compared to the value measured using the commercial lensmeter. 

5. Conclusions

We have proposed a method for measuring the geometry and optical power of a spherical 

lens. The principal advantages in front of other methods are that the experimental setup is 

simple, and allows controlling the accuracy of the obtained magnitudes. Moreover, it does not 

need of contact devices, like spherometers or callipers that can spoil the optical surface and it is 

able to provide the curvature radii and power of lenses of any size. Applying spherometers is not 

always possible if the lens is too small. We just have to accurately measure the location of 

different points on the surfaces. In principle, this can be achieved simply by changing the 

microscope. At last, but not least, the method does not need of the refractive index, whereas 

other instruments used to measuring optical power or curvature radii do.

In this work, we have just presented a meniscus lens case. However, the procedure can be 

extended to any shape of lens, just by modifying the technique, and be applied to astigmatic or 

toric lenses. In this case, the solution must provide the coordinates of the reference point and the 

two principal curvature radii. The system of equations would not be lineal anymore and, then, the 

calculation method would have to be different. 
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Appendix

Let us consider an overdetermined linear system of m equations with 3 unknowns:

3 0 1'm mA X B  (A.1)

A usual way to solve the system is to minimize the norm of the residual 3 0 1'm mA X B    . If 

3mA   is full rank, the approximate and unique solution will be the vector 0' �
mX  that 

minimizes the value  2

3 0 1 2
' m mA X B , i.e. the Euclidean norm of  . This approach applied to 

(A.1) leads to the following system of normal equations:

     3 3 0 3 1 0 3 1'       '


       T T

m m m m m mA A X A B X A B ; (A.2)

where       
1

3 3 3 3

T T

m m m mA A A A


     is the Moore-Penrose pseudo-inverse matrix of 

3mA  [11]. Unfortunately, the use of normal equations often presents a problem of numerical 
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stability since the condition number of  3 3

T

m mA A   is the square of that of 3mA  . Thence, the 

solutions of the normal equations are extremely sensitive to possible disturbances in the 

measurements.

The most reliable methods to solve the problem with equation (A.2) involve the reduction of 

the 3mA   matrix to a canonical form by using orthogonal transformations. Among these methods, 

the most commonly used is the QR factorization. In this case, the matrix 3
3

m
mA 
 �  is 

decomposed into the product 3mA QR  , where Q is orthogonal and 3mR � is upper triangular. 

Then, after calculating 1
T

mY Q B  , where 1mY � , one can resolve the upper triangular system 

1 0 1' R X Y ; where 3 3
1R �  and 3 1

1Y � ; and  1 0
T

R R  and  1 2

T
Y Y Y . This process is 

the one followed in Matlab to solve equation through the tool lscov used in the text.


