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Abstract  

 Two petroleum residues were pyrolysed under two different conditions to obtain 

pitches with low or high mesophase content. The effect of the KOH: precursor ratio and 

the activation temperature on the packing density and porous texture of the carbons 

have been studied and optimized. Activated carbons combining high micropore volume 

(>1 cm3/g) and high packing density (0.7 g / cm3) have been successfully prepared. 

Regarding excess methane adsorption capacities, the best results (160 cm3 (STP) / cm3 

at 25 ºC and 3.5 MPa) were obtained using the pitch with the higher content of the more 

organized mesophase, activated at relatively low temperature (700ºC), with a medium 

KOH: precursor ratio (3:1). Some of the activated carbons exhibit enhanced adsorption 

capacity at high pressure, giving values as high as 175 cm3 (STP) /cm3 at 25ºC and 5 

MPa and 200 cm3 (STP)/cm3 at 25ºC and 10 MPa (the same amount as in an empty 

cylinder but at half of the pressure), indicating a contribution of large micropores and 

narrow mesopores to adsorption at high pressure. The density of methane in pores 

between 1-2.5 nm at pressure up to 10 MPa was estimated to understand their 

contribution to the total adsorption capacity. 
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1. Introduction 

 The use of natural gas as vehicular fuel is becoming an attractive alternative to 

gasoline and diesel fuel due to its clean burning and low cost. Compressed natural gas 

(CNG) is being used in vehicles but the high storage pressure (20 MPa) requires heavy 

stainless steel cylindrical storage vessels for safety. Adsorbed natural gas is an 

alternative that could reduce the methane storage pressure to around 1/5-1/6 of CNG at 

ambient temperature. Therefore, the storage vessels could be manufactured with lighter 

and less resistant materials than stainless steel, such as aluminum or carbon-carbon 

composites. Moreover, a more suitable shape for the storage tank could be employed to 

take advantage of the unusable space on board the vehicle. 

 In order to be economically viable, the Department of Energy of the United 

States (DOE) stablished in 1995 a volumetric objective for adsorbed natural gas value 

of 150 cc (STP: 0ºC, 1 bar)/cc, which was changed in 2002 to 180 cm3 (STP: 0ºC, 1 

bar)/cm3 and recently revised to a value of 263 cm3 (STP: 0ºC, 1 bar)/cm3; the 

equivalent gravimetric value for the later would be 0.5 g/g [1].  To achieve this 

objective the adsorbent must have a narrow pore size distribution, between 0.8 and 1.1 

nm, which is the pore width where maximum packing density of molecules of methane 

occurs, and an appropriate bulk density to obtain the maximum stored value per volume 

of adsorbent  [2, 3]. Recent studies show that activated carbon can be used as a 

component for high pressure storage tanks provided that high-pressure compressors are 

available, as pressures around 10 MPa are required to reach the new DOE value [4]. 
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Petroleum residue is an excellent precursor material to produce graphitizable 

carbons but it can also be used to produce activated carbons with specific textural 

properties [5, 6]. The selection of the petroleum residue and the control of the 

experimental parameters for the subsequent pyrolysis treatment determine the 

characteristics of the mesophase pitch influencing the process of activation with KOH 

[5, 7]. Our previous investigations have shown that the pore volume increases with the 

pyrolysis temperature reaching a maximum value just at the transition temperature 

between a fluid pitch and a solid coke, the pitch with the highest mesophase content 

being the one developing the maximum porosity when activated with KOH [5]. On the 

other hand, the density of mesophase pitch and coke increases when enhancing the 

pyrolysis temperature and it also depends on mesophase microstructure. Therefore, to 

maximize the methane adsorption capacity of the activated carbons prepared from 

petroleum residues not only the microporosity of a specific size has to be optimised but 

also the density of the carbon. Thus, it is necessary to systematically study the influence 

of the nature of the petroleum residue precursor as well as the preparation conditions on 

packing density of the carbon in addition to methane adsorption.    

In the present work mesophase pitches with specific characteristics obtained from 

different petroleum residues were used as carbon precursors for the preparation of 

activated carbons using KOH as activating agent. The main objective of this study is to 

reach a compromise between microporosity development and packing density to 

achieve the largest possible amount of volumetric methane storage, studying the effects 

at pressures up to 10 MPa.  It is also important to evaluate the density of the methane 

adsorbed up to 10 MPa in function of the pore size of the carbon.  
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2. Experimental 

 2.1 Mesophase pitch preparation 

 Two petroleum residues with different aromaticity were used as starting 

material: decanted oil (DO) and ethylene tar (PY). The characteristics of the petroleum 

residues and their treatments can be found elsewhere (DO and PY as R2 and R1, 

respectively) [8, 9]. The pyrolysis conditions for each residue (Table 1) were selected in 

order to prepare two mesophase pitches with low mesophase content (DO10 and PY56), 

and two with high mesophase content (DO100 and PY100).  Pyrolysis was carried out 

in a laboratory-scale pilot plant, using 350 g of residue. The resulting mesophase pitches 

were ground in a ball mill to obtain a particle size lower than 500 µm.  

Table 1. Pyrolysis conditions of the petroleum residues. 

Petroleum Temperature  Pressure  Soaking time Mesophase Nomenclature 

 residue ºC  bar h %   

PY 
440 10 4 56 PY56 

480 10 3 100 PY100 

DO 
460 10 1.5 10 DO10 

480 10 6 100 DO100 
 

2.2 Activated carbons preparation 

 Four different series of activated carbons have been prepared by physical 

mixture of anhydrous KOH and mesophase pitch (DO10, DO100, PY56 and PY100), 

varying the KOH: precursor ratio from 1:1 to 4:1 (wt./wt.). In the specific case of the 

PY56 pitch, the precursor was also activated using a 6:1 and 8:1 ratio. Activation 

treatments were carried out in a horizontal furnace at 800 ºC for 2 h, under a nitrogen 

flow of 100 ml/min, using a heating rate of 5 ºC/min. The final materials were washed, 

first with a 10% HCl solution and afterwards with distilled water in a Soxhlet apparatus, 

until complete removal of chloride ions, and finally dried overnight at 110 ºC. New 
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additional series were prepared from DO10 and PY100 by changing the activation 

temperature. In this new series the KOH: precursor ratio was fixed at 3:1, but the 

activation temperature was varied between 600 ºC and 800 ºC in order to evaluate its 

effect in the porosity and in the packing density on the final material. Labelling of the 

different samples includes: two letters to specify the type of petroleum residue, a 

number indicating mesophase content and finally the KOH/precursor ratio, followed by 

the activation temperature used (e.g., PY56-1:1_800 ºC to indicate a petroleum residue 

PY with 56 % mesophase, activated with a KOH: precursor ratio 1:1 at 800 ºC). 

2.3 Characterization 

 The development of porosity on the activated carbons was evaluatedby nitrogen 

adsorption measurements at -196 ºC using a homemade automatic manometric 

equipment designed and constructed by the Advanced Materials Group (LMA), now 

commercialized as N2Gsorb-G (Gas to Materials Technologies (www.g2mtech.com). 

The samples were previously degassed for 4 h at 250 ºC. Nitrogen adsorption data were 

used to determine: i) the total pore volume (Vt) at a relative pressure of 0.95, ii) the BET 

specific surface area (SBET), according to the criteria established by Rouquerol et al. 

[10] and iii) the micropore volume (VN2,DR), pores < 2 nm, by the application of the 

Dubinin-Radushkevich equation (DR) [11]. The difference between Vt and VN2,DR is 

considered to be the mesopore volume (Vmeso). The volume of narrow micropores, pores 

< 0.7 nm, was calculated by applying DR equation to the CO2 adsorption data at 0ºC 

(VCO2,DR). The characteristics curves of N2 and CO2 isotherms (LnV vs A2/β2) for 

representative samples can be found in the supporting information material. Pore size 

distribution was calculated by the application of the Quenched-Solid Density Functional 

Theory (slit pore, QSDFT equilibrium model) to the nitrogen adsorption isotherm data 

[9, 10] for pores > 1 nm and the Non-Linear Density Functional Theory (NLDFT) to the 
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CO2 adsorption isotherm data for pores < 1 nm. Packing density has been determined by 

pressing a given mass of activated carbon in a mold with a cross-sectional area of 1.30 

cm2 at a pressure of 500 kg/cm2. The methane excess adsorption capacity of the 

synthesized activated carbons was estimated from the methane adsorption isotherms at 

25 ºC and up to a pressure of 4 and/or 10 MPa. Before any adsorption measurement, 

activated carbons were degassed at 250 ºC for 4 h. The experiment was carried out in a 

homemade automatic manometric equipment (designed and constructed by the 

Laboratorio de Materiales Avanzados de la Universidad de Alicante (LMA), now 

commercialized as iSorbHP by Quantachrome Corporation). This equipment takes into 

account the compressibility factor (Z) calculated by the Helmholtz equation and the 

nonlinear behavior caused by the differences in temperature between the manifold and 

the cells. Helium is used to calculate the void volume.  Transmission electron 

microscopy (TEM) observations of some of the activated carbons were performed on a 

JEOL JEM-2100F microscope.  

 

3. Results and discussion 

 The results obtained along the study will be discussed in terms of the effect of 

the mesophase pitch (nature and mesophase content) and the activation conditions 

(temperature and KOH: pitch ratio) on the characteristics of the resulting activated 

carbon: i.e., microporosity development and packing density.  

3.1 Effect of the KOH: precursor ratio 

 Mesophase pitch PY56 was selected to evaluate the effect of the amount of 

activating agent, using a KOH: precursor ratio ranging from 1:1 to 8:1; the activation 

temperature being fixed at 800 ºC. The nitrogen adsorption- desorption isotherms of the 
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samples prepared are presented in Figure 1. The isotherms clearly show the effect of 

KOH: precursor ratio on the activation process. Nitrogen isotherms are all type I, typical 

of microporous solids. However, an increase in the amount of activating agent results in 

an enhancement of the amount of nitrogen adsorbed and in a change in the isotherm 

shape, thus indicating a higher porosity development.  

 

Figure 1. Nitrogen adsorption-desorption isotherm at -196 ºC up to 1 bar for the precursor 

PY56 activated at different KOH: precursor ratio. Closed symbols: adsorption, open symbols: 

desorption. 

 Despite the fact that N2 adsorption isotherms follow a clear trend, it is worth 

analyzing them in detail. Sample activated with KOH: precursor ratio 1:1 shows a 

narrow knee indicating the presence of a narrow pore size distribution (PSD). The 

corresponding PSD estimated by applying the QSDFT method [12, 13] (Figure 2), 

shows the presence of only a contribution located at 0.9 nm. There is a second group of 

isotherms for samples activated using ratios above 2:1 which exhibit a wider knee in the 

nitrogen adsorption isotherm, thus suggesting the development of wider micropores. It 

is important to highlight the fact that for ratios above 4:1 these isotherms exhibit a linear 

region in the low-medium relative pressures range where the volume of nitrogen 
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adsorbed increases linearly with the pressure, thus reaching a plateau afterwards (at a 

relative pressure between 0.3 and 0.6).  The widening of the knee indicates the 

progressive development of wide microporosity and narrow mesoporosity. A closer 

look to the pore size distribution (Figure 2) shows that the peak appearing at 0.9 nm 

progressively decreases with the activation treatment while it is shifted to larger values 

(up to 1.1 nm). Additionally, there is a new wide peak appearing at 1.7-2.5 nm, which 

widens with an increase in the amount of KOH.  

 

Figure 2. Pore size distribution by applying Quenched Solid Density Functional Theory 

analysis over nitrogen adsorption isotherm at -196ºC (QSDFT) for the precursor PY56 activated 

at different KOH: precursor ratio.  

 Table 2 summarizes the textural properties for these samples calculated from the 

nitrogen adsorption data and the volume of narrow micropores (size lower than 0.7 nm) 

calculated by the application of DR equation to the CO2 adsorption data obtained at 0ºC. 

The apparent BET surface area reaches values as high as 3290 m2/g for the activated 

carbon PY56-8:1_800 ºC. This value is comparable to the highest values reported in the 

literature for this kind of materials [14]. In accordance with previous observations, the 

volume of narrow micropores (VCO2,DR) progressively increases with the amount of 
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activating agent, reaching a maximum for a 3:1 ratio. On the other hand, the total pore 

volume (Vtotal) and mesopore volume increase with KOH ratio, reaching a maximum for 

8:1 ratio, which correspond to values of 2.20 cm3/g and 1.10 cm3/g, respectively. 

Regarding the total micropore volume (VN2, DR), values are higher than 1.0 cm3/g for 

KOH: precursor ratios larger than 3:1, reaching a maximum of 1.10 cm3/g for 8:1 ratio. 

Therefore, increasing the amount of activating agent implies an enlargement of the pore 

size distribution in the region of the wide micropores-narrow mesopores, as it is inferred 

from the analysis of the nitrogen adsorption isotherms. The amount of potassium 

hydroxide used for the chemical activation also has a notable influence on the process 

yield, decreasing from 76 wt% for 1:1 to 19 wt % for 8:1 ratio. 

Table 2. Porous textural characteristic for samples activated at different KOH: PY56 ratios and 

the yield of the process.  

Sample SBET Vtotal VN2,DR VCO2,DR Vmeso Yield* 

  m2/g cm3/g cm3/g cm3/g cm3/g wt% 

PY56-1:1_800ºC 1470 0.63 0.61 0.56 0.02 76 
PY56-2:1_800ºC 2295 1.13 0.83 0.71 0.30 59 
PY56-3:1_800ºC 2670 1.21 1.01 0.94 0.20 46 
PY56-4:1_800ºC 3170 1.63 1.03 0.74 0.60 35 
PY56-6:1_800ºC 3265 2.05 1.07 0.73 0.98 25 
PY56-8:1_800ºC 3290 2.20 1.10 0.68 1.10 19 

*Yield(wt%)= (dry carbon weigh/ precursor weigh)*100 

3.2 Effect of mesophase pitch 

 The effect of mesophase content on the structure of the synthesized activated 

carbons was evaluated by selecting four mesophase pitches (PY56, PY100, DO10 and 

DO100), activated at 800 ºC using a variable amount of activating agent. The 

relationship between packing density and microporosity development for PY and DO 

samples is presented in Figure 3. As expected, an increase in KOH: precursor ratio 

gives rise to an increase in the porosity development, which is accompanied by a 
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decrease in the sample density. The maximum development of microporosity is 

achieved for the PY (Figure 3 a) and DO (Figure 3 b) residues with values as high as 

VN2,DR= 1.07 cm3/g and a packing density of 0.48 g/cm3; and VN2,DR=1.01 cm3/g and a 

packing density of 0.53 g/cm3, respectively are reduced. Similar values of micropore 

volume with a notable reduction of the density is observed when the potassium 

hydroxide ratio is higher than 3:1, indicating that a widening of porosity is taking place, 

with a lower creation of new pores.  

  

Figure 3. Evolution of the packing density as a function of nitrogen volume calculated by 

Dubinin-Radushkevich (DR) for precursors with high and low content of mesophase activated 

at different KOH: precursor ratio;  a) PY56 and PY100; b) DO10 and DO100. 
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aromaticity and produce a highly ordered mesophase, despite their significant 

differences in the initial aromaticity. In this case, it is reasonable to conclude that if the 

amount of mesophase increases, the density of the carbon precursor should also 
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PY100 and DO100 have higher density. Figures 4 a, b show the transmission electron 

microscopy (TEM) images for the activated carbons DO10-3:1_800ºC and DO100-

3:1_800ºC, respectively. These micrographs compare two activated carbons derived 

from the same petroleum residue but with different mesophase content. Graphene-like 

layers with different dimensions and shapes are clearly observed, all co-bonded to 

create spaces between them, microporosity [15]. A more detailed observation can 

provide an explanation for the density of these samples. There exists a very remarkable 

difference when the microstructure of both samples is compared; it seems that the 

activated carbon prepared from the precursor with high mesophase content (DO100) has 

a more compact structure, whereas the one obtained from the precursor with low 

mesophase content (DO10) has a more open microstructure. It is clear that DO100 must 

be denser; nevertheless, both samples have almost the same value of packing density 

(0.54 cm3/g). To explain this uncertainty it must be remembered that the volume 

occupied by a carbon is a result of adding the non-microporous contribution (space 

between particles and macro-mesopores), the carbon skeleton and the micro-plus 

mesopore volume. The best materials for methane storage application should minimize 

the first and second ones and enhance the last one [16]. Apparently the carbon skeleton 

of sample DO100-3:1-800 ºC occupies less volume whereas it has a larger micropore 

volume (more than 1 cm3/g) than DO10-3:1_800 ºC (closed to 0.95 cm3/g).  
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Figure 4. TEM images for activated carbons from mesophase pitch with a high and low content 

of mesophase a) DO100-3:1_800 ºC and b) DO10-3:1_800 ºC. 

 

 Thus, it seems that it has been possible to minimize the volume of carbon 

skeleton and maximize the microporous volume using the precursors with high 

mesophase content. The second step of this work is to control the volume and size of 

mesopores. For this reason DO100 and PY100 pitches were selected to prepare another 

series of activated carbons changing the activation temperature.  

3.3 Effect of activation temperature 

 For this part of the research, the activation process was performed at 600, 700 

and 800 ºC for 2 h using a 3:1 KOH ratio. N2 adsorption isotherms at -196 ºC for the 

series DO100-3:1 and PY100-3:1 are presented in Fig 5 a and b, respectively, all of 

them normalized at the relative pressure of 0.5. These isotherms clearly shows that the 

higher the activation temperature, the wider the knee of the isotherm. Hence, a decrease 

in the activation temperature brings a narrowing of the pore size distribution. Table 3 

a b 
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includes the textural characteristics calculated from the nitrogen adsorption data. The 

values show that by reducing the temperature of the activation process by two hundred 

degrees, it was possible to minimize the mesoporosity drastically by 54-60%, without 

compromising largely the microporosity (reduce 13-17%). In terms of methane storage, 

the density of methane is lower in the mesopores than inside the micropores; 

nonetheless a minimum amount of mesoporosity is necessary to facilitate the connection 

between the inner porous structure and the exterior of the carbon particle in order to 

maximize the adsorption/desorption kinetics during the charge/discharge process under 

real conditions. It is noteworthy to mention that even at the lowest temperature (600 ºC) 

it was possible to prepare highly activated carbon materials with a simultaneous 

enhancement of the packing density (more than 20%).  

 

Figure 5. Normalized nitrogen adsorption isotherm at -196 ºC up to 1 bar for the precursor with 

high content of mesophase a) DO100, b) PY100, activated at different temperature. 
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Table 3. Textural characteristic and excess methane uptake (cm3/g and cm3(STP)/cm3) at 25ºC 

and 3.5 MPa for samples activated at different temperature. 

  3.5 MPa, 25ºC 

Sample SBET Vtotal VN2,DR Vmeso Density 
CH4 

uptake 
CH4 

uptake 

 
m2/g cm3/g cm3/g cm3/g g/cm3 

cm3(STP)/
g 

cm3(STP)/
cm3 

PY100-3:1_800 2800 1.31 0.94 0.37 0.55 260 145 

PY100-3:1_700 2465 1.12 0.89 0.22 0.60 250 150 

PY100-3:1_600 2225 0.99 0.82 0.17 0.65 220 140 

DO100-3:1_800 3005 1.43 1.07 0.36 0.54 260 140 

DO100-3:1_700 2700 1.23 0.93 0.30 0.62 255 160 

DO100-3:1_600 2300 1.05 0.89 0.16 0.70 220 155 

 

 To sum up, in a first step, the precursors with higher mesophase content were 

selected for the final activated carbons due to presence of an optimum density together 

with a great development of microporosity. In a second step these precursors were 

activated at a lower temperature in order to eliminate most of the mesoporosity. In the 

following section the performance of these materials on methane adsorption will be 

discussed.  

3.4 Application: methane adsorption 

One of the requirements for an adsorbent to exhibit an optimum behavior in 

methane storage below 3.4 MPa is to have a large micropore volume, where methane 

molecules can be strongly adsorbed, together with a certain mesopore volume to 

increase the adsorption/desorption kinetics. In addition, the adsorbent must exhibit a 

narrow pore size distribution, centered at around 0.8-1.2 nm [17], which is the size 

required to accommodate two or three methane molecules. Under these circumstances, 

the packing density of the adsorbed phase achieves a maximum.  



  

15 

 

 The amount of excess methane adsorbed at 3.5 MPa (cm3(STP)/g and cm3 

(STP)/cm3 , taking into account packing density for the calculation) into the carbons has 

been deduced from the adsorption isotherm at 25 ºC. A clear relationship between the 

excess amount of methane adsorbed at 3.5 MPa and the volume of micropores was 

found (Figure 6), in agreement with previous results described in the literature [18-20]. 

In this sense, the largest amount adsorbed in a gravimetric basis (expressed as wt.%) 

was 19.5 wt.% for sample DO100-4:1-800 ºC, the sample with the highest micropore 

volume (VN2,DR=1.1 cm3/g). Interestingly, this methane uptake exceeds previous values 

reported in the literature at ambient temperature and 3.5 MPa [21-22].  
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Figure 6. Relationship between volume of micropores (VN2,DR) and methane excess adsorption 

capacity (expressed as wt%) at 25 ºC and 3.5 MPa for all of series. 

 The methane excess adsorption isothems calculated on a gravimetric basis for 

sample DO100-3:1 activated at three different temperatures (800, 700 and 600 ºC) is 

presented in Figure 7, a. The shape of the isotherms is similar to that described for other 

types of activated carbons [23]. Moreover, these materials show a considerable 

enhancement of methane adsorption with pressure in the pressure range studied, 

superior to that expected by the compression of the gas. Activated carbon DO100-
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3:1_800 ºC shows the highest storage capacity (close to 19 wt.% at 3.5 MPa) due to the 

highest microporosity development compared to its homologous one activated at a 

lower temperature. The activated carbons obtained using PY100 pitch shows an 

identical trend and methane adsorption values expressed on a gravimetric basis are quite 

similar. 

 Choosing the appropriate density is an important factor when volumetric 

capacity is evaluated (expressed as cm3 (STP)/cm3) [24]. The packing density calculated 

by compressing the powder is a useful approach because it represents the bulk density. 

Indeed, for samples with similar nature than the published in this paper it was 

demonstrated that a mechanical compression does not affect the adsorption behavior, 

i.e. a change in the micro/mesopores structure is not expected [25]. Thus, taking into 

account the methane excess adsorption results (cm3 (STP)/g) and the packing density of 

the activated carbon, it is possible to estimate the volumetric adsorption capacity (cm3 

(STP)/cm3) (Figure 7, b).  A change in the trend is observed, since now the activated 

carbon DO100-3:1_800 ºC is the sample which presents the lowest amount of methane 

adsorbed due to its lower packing density. Samples activated at 700 ºC and 600 ºC 

exhibit values larger than 150 cm3 (STP)/cm3 (old DOE target). Table 3 includes the 

gravimetric and volumetric methane uptake for the activated carbons described and for 

the PY100-3:1 series. The highest value (160 cm3 (STP)/cm3) was obtained for sample 

DO100-3:1_700 ºC, where a compromise between packing density (0.62 g/cm3) and 

micropore (VN2,DR=0.93 cm3/g) volume was reached. Furthermore, this sample exhibits 

a certain amount of mesopores which guarantees a good adsorption/desorption kinetics. 



  

17 

 

  

Figure 7. Methane excess adsorption isotherm at 25 ºC up to 4 MPa for the samples DO100-3:1 

activated at different temperature, a) gravimetric basis and b) volumetric basis. Discontinue line, 

old DOE target. 

 In the case of the activated carbons obtained using PY100 pitch a similar trend is 

observed. However, as packing density of the activated carbons becomes lower, storage 

capacity values decrease, Table 3. As the porosity achieved within these carbons is 

rather similar and the methane adsorbed values, expressed on a gravimetric basis, are 

also similar, the reduction on the methane adsorption capacity, in cm3 (STP)/cm3, can be 

explained in terms of a lower density of the carbon skeleton.  It seems that the more 

ordered mesophase produced by DO residue (flow domains) can be the responsible for 

this improvement. 

The first section of this work was mainly focused in finding a balance between 

porosity and density of the carbon, trying to maximize microporosity and reduce 

mesoporosity. However, some of the evaluated carbons, especially those presenting 

high micro- and mesopore volumes, presented excess methane adsorption isotherms at 

25ºC and 3.5 MPa that show significant enhancement at this pressure. Motivated for this 

issue, isotherms up to higher pressures (10 MPa) have been obtained for samples PY56-

1:1_800°C (essentially microporous), DO100-3:1_700°C (with higher microporosity 
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and some mesoporosity, exhibiting at 3.5 MPa the best methane excess adsorption 

values), sample PY56-8:1_800°C (showing the largest development of microporosity 

and mesoporosity) and commercial MaxSorb MSC-30 (for the sake of comparison). The 

characterization of porosity of the activated carbons, obtained by nitrogen adsorption 

isotherms at -196ºC is presented in Table 4. When values of methane uptake are 

expressed on a gravimetric basis (Figure 8 a) it can be observed that the isotherm of the 

sample with only microporosity saturates at pressures below 3.5 MPa, showing a 

maximum value of 13.8 wt%. On the other hand, samples DO100-3:1_700°C and MSC-

30 have similar curves, although they do not reach saturation at 3.5 MPa but rather at 

higher values (above 7.5 MPa), giving maximum uptake values of 22.7 and 21.6 wt.%, 

respectively. Moreover, in case of the sample PY56-8:1_800°C, with more 

mesoporosity, saturation is not appreciated at 10.0 MPa, reaching values of methane 

uptake as high as 26.0 wt.%, see Table 4. Figure 8b shows the methane adsorption 

capacity at 10 MPa on a volumetric basis. The behavior found is very similar, although 

in this case sample DO100-3:1_700°C presents a higher methane uptake than sample 

MSC-30 due to the higher packing density of the former. Interestingly, the samples 

DO100-3:1_700°C and PY56-8:1_800°C present methane uptakes near 165 and 175 

cm3/cm3, respectively, very close to the 2002 DOE target by only increasing pressure 

from 3.5 to 5 MPa. Furthermore, with sample PY56-8:1_800°C the amount of methane 

uptake increases continuously with the adsorption pressure up to 10 MPa, reaching 

values close to 200 cm3 (STP)/cm3. It is important to highlight that the DOE target 

refers to storage capacity while these values are referred to excess adsorption capacity. 

To compare the values it is necessary to convert excess to storage values, as described 

recently by Casco et al. [4].  
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The results obtained indicate the importance of mesoporosity in the adsorption 

of methane at high pressures. These values are in the range of those found in the 

literature for methane storage on wet carbons, which were at lower temperature, 2ºC 

and similar pressure [26, 27]. Thus, the storage capacity for methane of carbon sample 

PY56-8:1 800ºC is similar than the one reached for CNG at 20 MPa, but using half of 

the pressure.  

Table 4. Textural characteristic and volumetric methane uptake at 25ºC and different pressure 

for different samples. 

Sample SBET Vtotal VN2,DR Vmeso 
CH4 uptake cm3 

(STP)/cm3 

 
m2/g cm3/g cm3/g cm3/g 

5.0 
MPa 

10.0 
 MPa 

PY56-1:1_800 1470 0.63 0.61 0.02 130 140 

PY56-8:1_800 3290 2.20 1.10 1.10 165 195 

DO100-3:1_700 2700 1.23 0.93 0.30 170 200 

MSC-30 2970 1.53 0.90 0.63 150 165 

 

 

Figure 8. Methane excess adsorption isotherm at 25 ºC up to 10 MPa for the samples PY56-

1:1_800ºC, PY56-8:1_800ºC, MSC-30 and DO100-3:1_700ºC, a) gravimetric basis and b) 

volumetric basis. 
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cycles of adsorption/desorption of methane, at 25°C and 5 MPa without degassing 

between cycles, using two of the activated carbons with large differences in porous 

distributions, PY56-1:1_800°C (essentially microporous) and PY56-8 1_800°C (with 

increased mesoporosity), Figure 9. Both materials have a very homogeneous behavior 

during the cycles.  

 

Figure 9. Cycles of excess methane adsorption isotherms on a gravimetric basis at 25 

ºC up to  5 MPa for: a) PY56-1:1_800 ºC and b) PY56-8:1_800 ºC . 

3.5 Average methane density in pores 

From the excess methane adsorption isotherms at 25°C of all the studied 

activated carbons and the volume of narrow micropores (VCO2) and the volume of 

micropores (VN2) determined using CO2 and  nitrogen isotherms, the density of methane 

in narrow micropores and in wide micropores can be estimated using the method 

suggested by Rodriguez-Reinoso et al. [28]. As highly concentrated clusters of methane 

molecules easily form in micropores regardless the application of small pressure of 2-3 

MPa [29], in that work the method was applied in a pressure range of 5.0 MPa, 

assuming that of all the methane was adsorbed preferentially in narrow micropores and 

wide micropores. In addition, the activated carbons used were essentially microporous.  

In the present work it has been observed that in some carbons methane storage at 
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pressures above 5.0 MPa has to be considered, as it seems that there can be a 

contribution not only of narrow micropores but also wide micropores and even narrow 

mesopores for the adsorption above that pressure.  

To improve the previous results, all the adsorption data obtained in this study 

have been used to calculate the average density of the methane storage in pores of 

different range of sizes. The method only allows calculating the density of methane 

adsorbed in two ranges of pore size. Thus, nine different situations have been analyzed. 

The analysis was carried out using the pore volumes obtained for a size range of pores 

determined by NLDFT and QSDFT cumulative plots from CO2 and N2 adsorption 

isotherms, respectively (slit pore assumption). Table 5 summarizes the different ranges 

of pore size studied. 

Table 5.  Different range of pores studied for the determination of methane density 

Pores < 0.8 nm 
Pores  0.8-1.5 nm 

Pores < 0.8 nm 
Pores  0.8-2.0 nm 

Pores < 0.8 nm 
Pores  0.8-2.5 nm 

Pores < 1.0 nm 
Pores  1.0-1.5 nm 

Pores < 1.0 nm 
Pores  1.0-2.0 nm 

Pores < 1.0 nm 
Pores  1.0-2.5 nm 

Pores < 1.2 nm 
Pores  1.2-1.5 nm 

Pores < 1.2 nm 
Pores  1.2-2.0 nm 

Pores < 1.2 nm 
Pores  1.2-2.5 nm 

 

Figure 10 (a-c) presents the evaluation of average methane density in pores < 1.0 

nm and 1.0-1.5 nm (a), < 1.0 nm and 1.0-2.0 nm (b) and < 1.0 nm and 1.0-2.5 nm, as 

examples of all the situations analyzed. When all the methane is forced to be stored in 

pores ranges <1nm and 1.0-1.5 nm (Figure 10 a), the density of methane in the largest 

pores have to reach values superior to the methane stored in narrower pores, as high as 

0.45 g/cc, to fulfill the methane uptake values reached at high pressure, which seems to 

be rather improbable. When the possibility of using larger pores (1.0-2.0 nm) is allowed 

there is an increase in the density of methane in the narrower pores and a reduction of 

the density in the wider pores, but at pressures higher than 6 MPa the density of 
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methane in the wider pores slightly surpasses that of the narrower pores, which is 

difficult to understand. However, if the adsorption occurs in the pores below 1.0 nm and 

the pores between 1.0 and 2.5 nm a more reasonable situation occurs as the density in 

the narrower pores is always larger than in the wider pores in all the ranges of pressure 

studies. In fact, for pores below 1 nm it seems that density increases fast with pressure 

for pressures below 4 MPa, reaching values close to 0.24-0.25 g/cm3 [28]. In the cases 

of wider pores the filling is faster below 6 MPa and similar to the free gas at higher 

pressures, reaching values close to 0.16-0.17 g/cm3. Average correlation coefficients for 

the plots of Figure 10 a are 0.89, 0.93 for Figure 10 b and 0.95 for Figure 9 c. In fact, 

the latter presents the best correlation coefficient of all the sceneries studied, the results 

of this conditions showing the best approach (see supporting information, figure S1). 

Thus, these results indicate that it is necessary the contribution of pores as large as 2.5 

nm to explain the high methane uptake measured at 10 MPa in micro-mesoporous 

carbons. 
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Figure 10. Density of methane calculated from methane excess adsorption isotherms (at 25 ºC 

up to  10 MPa) and CO2 (0ºC) and N2 (196ºC) DFT pore size distribution curves: a) in pores 

smaller than 1 nm and in pores between 1.5-1 nm; b) in pores smaller than 1 nm and in pores 

between 2-1 nm; c) in pores smaller than 1 nm and in pores between 2.5-1 nm. 

 

4. Conclusions 

 Activation conditions of mesophase pitches have been optimized in terms of 

developing a very high methane adsorption capacity together with a high packing 
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density. In general, when carbon precursors with high content of highly oriented 

mesophase are activated with KOH, high packing density and high micropores volume 

can be obtained. The KOH/pitch ratio of 3:1 is the optimum to obtain a most favorable 

porosity development with a narrow pore size distribution. Temperatures of activation 

of 700 ºC it seems to be appropriate to minimize the mesopores content but at the same 

time to guarantees a small content required to improve the adsorption kinetics. All this 

parameters were evaluated by a systematic study that derived in a good volumetric 

capacity of methane adsorption at 25ºC and 3.5 MPa, higher than the target of 150 cm3 

(STP)/cm3. Interestingly, the activated carbons presenting a large volume of 

microporosity and narrow mesoporosity exhibit large excess methane adsorption at high 

pressure, giving values of 175 cm3 (STP)/cm3 at 5 MPa and 200 cm3 (STP)/cm3 at 10 

MPa (the same amount as in a cylinder with no adsorbent but at half of the pressure). To 

understand these results, the density of methane in narrow micropores and in micro-

mesopores up to 10 MPa has been calculated using methane adsorption isotherms at 

25ºC and pore size distributions obtained by DFT. Results indicate a contribution of 

pores below 1-2.5 nm in methane uptake at high pressures. 
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