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Abstract 

Outliers are objects that show abnormal behavior with respect to their context or that have 

unexpected values in some of their parameters. In decision-making processes, information 

quality is of the utmost importance. In specific applications, an outlying data element may 

represent an important deviation in a production process or a damaged sensor. Therefore, the 

ability to detect these elements could make the difference between making a correct or an 

incorrect decision. This task is complicated by the large sizes of typical databases. Due to their 

importance in search processes in large volumes of data, researchers pay special attention to the 

development of efficient outlier detection techniques. This article presents a computationally 

efficient algorithm for the detection of outliers in large volumes of information. This proposal is 

based on an extension of the mathematical framework upon which the basic theory of detection 

of outliers, founded on Rough Set Theory, has been constructed. From this starting point, 

current problems are analyzed; a detection method is proposed, along with a computational 

algorithm that allows the performance of outlier detection tasks with an almost–linear 

complexity. To illustrate its viability, the results of the application of the outlier–detection 

algorithm to the concrete example of a large database are presented. 

 

1.- Introduction 

Decision support systems are computer-based programs that assist decision makers in effective 

and efficient decision-making. The proper functioning of these systems requires large amounts 

of precise, high-quality data. However, if the data contain abnormal, unrealistic or simply 

erroneous elements, it may misguide the decision-making process, thereby leading to incorrect 
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results. These abnormal elements must be detected, isolated and analyzed to check whether they 

have any real meaning or simply represent a monitoring error. Currently, data sets in the real 

world and their environments present a wide range of difficulties that limit the efficiency of 

some existing detection methods. One of the most noteworthy problems is data sets can be very 

large and dynamic, imposing the need for efficient algorithms with regard to time complexity. 

Recent investigations related to Knowledge Discovery in Databases (KDD) have paid special 

attention to issues regarding the detection of outliers, which become more serious with the large 

volumes of information stored in today‘s databases [1, 2]. If, in general, KDD-Data mining 

(KDD-DM) processes are directed toward the discovery of representative behavioral patterns, 

the detection of outliers takes advantage of the high marginality of these objects, (marginality 

refers to how much or little different which is an element from the rest), and they are detected 

by measuring their degree of deviation with respect to the aforementioned patterns. From the 

perspective of KDD-DM, outlier detection can be viewed in two different ways: outliers can be 

considered undesirable objects that must be treated or eliminated at the stage of preparation of 

the data, as their presence in the set may interfere with the efficient detection of trustworthy 

patterns [3]; or they can be considered as objects that should be identified for their implicit 

relevance to the processing of the data [2]. In the latter case, they must not be eliminated from 

the data set, because for some applications, outliers are more representative and interesting than 

common events from the point of view of information discovery. Therefore, outlier detection is 

also a process of information (knowledge) discovery and is of great utility for the analysis and 

interpretation of data. 

The range of applicability of outlier detection is very wide and diverse, and applications can be 

found in widely varied scenarios. In wireless networks, outlier allows for the detection of 

atypical readings and their subsequent correction [4]. By monitoring activities of various kinds, 

such as the activity of a mobile phone or an online store, it is possible to detect suspicious or 

unlawful activities [5]. In the study of DNA irregularities, outlier detection may lead to the 

discovery of genetic alterations that result in disease and structural defects [6]. In the automated 

control of assembly lines, it allows the detection of production defects [7]. In pharmaceutical 

research, it aids in the identification of new molecular structures [8]. This diversity in the range 

of application is one of the justifying motives for the wide variety of existing methods of outlier 

detection. The data in each situation possess a distinct nature and definition space, and 

therefore, the detection methods must adjust to the data types and contexts where they will be 

applied [9]. Therefore, the search for efficient methods that may be utilized in any situation, 

which are more flexible, adaptable and scalable, is a problem of great interest. 

Some of the techniques being applied efficiently in KDD-DM processes are related to Rough 

Set Theory [10, 11], which is advantageous due to its flexibility and adaptability to different 

scenarios. This adaptability is demonstrated by the variety of related works found in the 

literature, including the process of evaluation of Complex Information Systems [12], learning in 

neural networks [13], analysis of Reconfigurable Manufacturing Systems (RMS) [14], solutions 

to problems in the field of investment [15], application to the Grid Scheduling Process [16], 

adjudication of bank credits [17], image processing [18], and the evaluation of business 

innovation capabilities [19]. Thus, the ability of these techniques to model a wide range of real–

world situations, their efficiency in the resolution of various types of problems, and their wide 

range of applicability have been made manifest. 

The use of rough sets (RS) extends within the KDD-MD and is also beginning to be utilized as 

the foundation for the characterization and detection of outliers. This approach is a novel point 

of view with great potential that shows promise for the construction of efficient algorithms 

[20,21], capable of detecting outliers with a high degree of marginality. However, these 

detection schemes have as a disadvantage the inconvenience of using the concept of non–
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redundant exceptional sets to classify the most contradictory elements of a data set, from which 

the outliers are obtained. The weak point of this scheme is that identifying such sets requires the 

identification of a power set, which leads to a problem of exponential time complexity (Ω(2
n
), n 

being the cardinality of the data set). In today‘s world, where data volumes are of great size, this 

problem makes such schemes unfeasible from a computational point of view, even though they 

may be formally sound in mathematical rigorous terms. 

The present article analyzes the problem of exponential temporal complexity exhibited by 

current algorithms based on rough set theory [20]. We propose an expansion of the existing 

mathematical framework, which allows for the creation of a method of outlier detection based 

on rough sets that is in fact computationally viable, with a corresponding algorithm of almost 

linear time complexity. Furthermore, a runtime study of the use of the proposed algorithm 

applied to a realistic data set is presented, showing that, indeed, it shows in practice the behavior 

that is described mathematically.  

The remaining sections of the article have been organized as follows: Section 2 summarizes the 

current state of the technique, along with some background for this research work, relevant 

aspects of RS theory, and its main inconveniences. In Section 3, we discuss the foundations of 

rough set theory and present a simple example to clarify its inner workings. In Section 4, the 

expansion of the mathematical framework is developed, which will subsequently allow the 

proposal of the computational algorithm. In Section 5, an algorithm is proposed for the 

detection of outliers based on the basic model of rough sets, emphasizing specific aspects of its 

implementation. In Section 6, the different tests that were performed with the proposed 

algorithm on a real data set are shown, corroborating the theoretical results. Finally, in Section 

7, the main conclusions of this work are presented, along with the main lines of future research. 

In the Appendix at the end of this work, the theoretical framework proposed in Section 4 is 

explicitly demonstrated. 

 

2.- Background 

Generally speaking, in data mining, the detection of outliers allows for the identification of 

unexpected input in a database and, on these grounds, the determination of various types of 

errors, data usage fraud, the existence of valid but atypical values, and many other features of 

interest. Therefore, its applications are highly diverse, for example, the detection of intruders in 

computer networks [22]; the data mining of manuscripts in the context of a project for the 

digitalization of the cultural and scientific heritage of Bulgaria [23]; applications in medical 

diagnosis, where outlier detection can aid in the diagnosis of a given pathology [24]; the 

detection of outliers in climate studies related to the temperature ranges in different world cities 

[25]; the analysis and processing of population data for the US Census Bureau‘s Income report 

[26, 27, 28]; the detection of traffic risks based on which accident prevention measures can be 

taken [29]; outlier detection techniques in data sets of credit card usage information, employed 

to detect their misuse [30]; outlier detection used for the adequate classification of crystals 

based on chemical and physical tests [30]; in the context of sports, outlier detection used to 

monitor the performance of NBA players in the USA [31]; and in video surveillance, outlier 

detection allows guaranteed safety in public areas (video/image data mining) [32]. As can be 

appreciated, outlier detection is a subject of applicability as vast as the existing types of 

databases. 

Due to the great number of scenarios and data types, different approaches to the problem of 

outlier detection have arisen, and above all, proposals that address large data volumes have 

begun to gain importance. This problem was treated first in the field of statistics: statistical 
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models are generally appropriate for the processing of data sets with quantitative, real, 

continuous values, or at least qualitative data with ordinal values. Nowadays there is an ever-

increasing need for the processing of categorical (non–ordinal) data. This requirement 

considerably limits the applicability of statistical methods. Another deficiency of statistical 

methods is their limited functionality in high–dimensionality (multivariable) spaces, where it is 

generally exceedingly difficult to find adequate models [33]. 

There are methods based on non–parametric approximations, among which distance–based 

outlier detection methods can be found. One of the most widely utilized is the method of k–

nearest neighbors (K-NN) [34, 35]. There are different approaches to the K-NN algorithm, but 

all use a metric that is appropriate for the calculation of distances between neighbors, such as 

the Euclidean distance or the Mahalanobis distance. There are also proposals that optimize the 

basic K-NN algorithm [36]. 

In general, it can be said that there are numerous techniques for the detection of outliers in 

which algorithms of different kinds are combined [20, 37]. Among the most outstanding 

methods, some categories can be identified, such as methods based on distributions [38], depth 

[39], distances [34, 36], densities [40], clusters [41], or support vectors [42]. Most recent 

research works address various detection methods based on artificial intelligence techniques, 

fundamentally, techniques related to machine learning [43]. In [44], we find a very complete 

compilation of the most outstanding outlier detection methods. Most of the distance–based 

methods are of at least quadratic of time completion order with respect to the number of 

elements in the data set, which may be unacceptable if the data set is very large or dynamic. On 

a different front, statistical methods essentially center on the detection of outliers among single–

variable data. They require a priori knowledge of the data distribution. In these cases, the user 

must model the data utilizing a statistical distribution, and the outliers are determined depending 

on how they appear in relation to the postulated model. The main problem with this approach 

lies in the number of possible situations and on the possibility that the user may lack sufficient 

knowledge of the data distribution.  

Considering that no universally applicable outlier detection approach is available and that 

researchers must focus their efforts on the selection of an acceptable method for their specific 

data set, this subject still poses a very open problem. A consequence is the continued 

appearance of new models and new methods based on a diversity of schemes and approaches to 

the problem at hand. One of these new propositions is the application of Rough Set Theory to 

outlier detection, where previous studies [20] and the results and achievements already attained 

in this line of research [45] serve as the main precedents. 

Rough Set Theory [11] is an extension of Set Theory for application to the case of incomplete or 

insufficient information. This theory arises from the practical need to solve classification 

problems, and it assumes that with every object in the universe there is associated a certain 

amount of information: the existing knowledge about the object, expressed in terms of the 

values of some set of properties that describe it. This theory has the added appeal of a simple 

and solid mathematical foundation: the theory of equivalence relations, which here allows for 

the description of partitions constituted by indiscernible classes that group objects of similar 

attributes, that is, a data classification methodology.  

The successful application of Rough Set Theory in multiple contexts demonstrates its efficiency 

and versatility for the solution of a variety of problems. In particular, it has been applied with 

outstanding results in KDD-DM processes. Examples include the following: in the field of 

trading systems, the theory has been used for prediction purposes [46]; in the field of machine 

learning, through the conception of classification algorithms based on decision trees [47]; in 
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basic research on the development of intelligent systems [48]; in classification problems, 

through the use of decision trees [49]; and in the field of bioinformatics [50]. 

 

3.- Rough Set Theory Groundwork 

Although in [11], one can find a full explanation of the mathematical foundations of Rough Set 

Theory, the following definitions are reiterated to lay the groundwork for our work. 

Let U  be the (finite) universe, and let UXUr  be some equivalence relation defined over 

U. 

Let rU /  be the set of equivalence classes induced by   in  . 

Let UX  be a set of elements that satisfy a given concept (in other words, the elements of a 

study set that meet with characteristics). Two approximations are defined that characterize X:  

Upper approximation: )(Xr = }:/{  XYrUY . The union of all equivalence 

classes induced by r in U whose intersection with X is not empty. These are the equivalence 

classes induced by   in   that contain some elements that satisfy the concept. 

Lower approximation: )(Xr


= }:/{ XYrUY  . The union of all equivalence classes 

induced by r in U that are contained in X. These are the equivalence classes induced by r in U 

where all of the elements satisfy the concept. 

Rough Set theory itself defines the concept of the boundary as )()()( XrXrXBN  . These 

are the equivalence classes induced by r in U that each contain some element that satisfies the 

concept and also some element that does not.  

Using these definitions, in [20] the mathematical characterization of outliers is developed. This 

characterization is focused on the concept of the Inner Boundary. This work proposes a series of 

mathematical concepts whose main elements are collected below. These definitions lead to the 

formalization of the concept of a non–redundant exceptional set. This set defines the exceptional 

elements, which therefore are classified as outliers. 

Definition 1 – Inner boundary: Let },...,,{ 21 mrrr  be m equivalence relations defined 

over the universe U. The inner boundary of X with respect to ri is defined as follows: 

)()()( XrXXXBNXB iii   

In other words, the inner boundary is the intersection of the concept X with the elements of the 

boundary. These elements represent a type of contradiction in X because in its equivalence class, 

there are some elements that satisfy X and others that do not. Figure 1 shows the abstract ideas 

of the universe U partitioned according to the equivalence relation r, the concept X contained 

within U, the upper and lower approximations, the boundary, and the inner boundary. 
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Figure 1. Illustration of the universe U partitioned according to r, the concept X in U, the upper 

and lower approximations, the boundary and the inner boundary. 

Definition 2 – Exceptional set: Let Xe   such that: ri , )(XBi , and 

 )(XBe i . The set e is called an exceptional set of X with respect to  .  

Exceptional sets are made out of elements that contradict all of the equivalence relations that 

characterize U. 

Definition 3 – Dispensable element: Let e be an exceptional set of X  with respect to  , and 

let xe such that e-{x} is also exceptional with respect to  . It is then said that x is dispensable 

in e with respect to . In the opposite case, x is indispensable in e with respect to  . 

Dispensable elements can be eliminated from an exceptional set such that the exceptional set 

still represents all of the contradictions that characterize U. 

Definition 4 – Non–redundant exceptional set: An exceptional set is said to be non–redundant 

if all its elements are indispensable. These sets contain elements that are contradictory according 

to all of the equivalence relations that characterize U, and all of these sets are representative of 

at least one contradiction. In addition, these sets constitute the fundamental source of elements 

to be considered outlier candidates in subsequent stages of the detection method. 

Definition 5 – Degree of marginality: Let x be an arbitrary element of X. The degree of 

marginality of x with respect to  is the number of different inner boundaries of X with respect 

to   that contain x:  )(:,...,2,1),()( XBxmiXBXBD ii 
. 

The degree of marginality represents the degree of contradiction of an element with respect to 

the equivalence relations that characterize U. 

X  U 

U/r 

boundary lower approximation upper approximation 

BN
r
(X) x x B

r
(X) 

Inner boundary 

U 
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Definition 6 – Degree of exceptionality: The degree of exceptionality of x is defined as 

follows: OD(x)=BD(x) /    

This concept serves to normalize the degree of marginality of an element such that it can be 

limited to values between 0 and 1. 

Definition 7 - Outlier: An outlier in X with respect to is an object x that belongs to some 

non–redundant exceptional set of X with respect to   and that has a degree of exceptionality 

larger than some given threshold µ. 

3.1.- Example of the search for outliers in a data set 

This subsection shows a simple example that exposes the inner workings of the proposed 

algorithm. This example strives to show the functional aspects of the proposal, not to validate it. 

In Section 5, we examine a realistic case based on a large data set, which does serve as 

validation of the proposal. 

In this example, the universe U represents 21 patients. Table 1 shows the data for this universe. 

In the database, a diagnosis is established for each patient based on their temperature and on 

whether or not they have a headache, to determine whether they have a cold. 

Table 1. Example data that represent the universe U. 

ID Headache Temperature Diagnosis 

1 Yes Normal Unknown 

2 No Very high Cold 

3 Yes High Cold 

4 No Normal Unknown 

5 Yes Very high Cold 

6 No High Unknown 

7 No High Sunstroke 

8 No Very high Cold 

9 Yes Normal - 

10 Yes Normal Sunstroke 

11 Yes Very high Cold 

12 No Normal - 

13 Yes Normal Headache 

14 Yes Normal Headache 

15 No High Sunstroke 

16 No Very high Cold 

17 No Very high Cold 

18 No Normal - 

19 No Very high Cold 

20 Yes High Cold 

21 Yes High Unknown 

 

Two equivalence relations that will be considered in the analysis are defined in Figure 2. Each 

of these relations partitions the universe U into a given number of equivalence classes. 
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Figure 2. Equivalence relations that will be used in the analysis and definition of the concept to 

be searched. 

Starting from the equivalence relation r1, in Figure 3, the equivalence classes formed in the 

universe U are shown. In this case, in both classes there exist elements that satisfy the concept 

and elements that do not; therefore, both classes lie inside the inner boundary of C with respect 

to r1. The elements of both classes that satisfy the concept form the inner boundary. 

 

Figure 3. Equivalence classes in the universe U starting from r1 and the definition of the 

boundary in terms of whether the classes satisfy the concept. 

On the other hand, Figure 4 shows the equivalence classes that belong to the partition of U from 

r2. In this case, equivalence class 1 does not contain elements that satisfy the concept, and thus, 

the class is irrelevant for the analysis. Class 2 has elements that satisfy the concept and elements 

that do not. The elements that satisfy the concept belong to the inner boundary. On the other 

hand, all elements of class 3 meet the concept, and thus this class is completely included in the 

lower approximation of r2. 

 

1     3    5    9 

10  11  13  14   

20   21 

2     4     6     7 

8     12   15   16   

17   18   19 

Objects that meet the 

concept 

U(r1) 

Equivalence 

class 1 
Equivalence 

class 2 

Both equivalence classes 

contain elements which 

satisfy and elements that do 

not satisfy the concept. 

Therefore, both classes are 

included in the boundary. 

The elements that meet the 

concepts will be in the 

inner boundary, and those 

that do not will be in the 

outer boundary. 
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r1=   x  U: 
1 yes_headache(x) 

0 otherwise 

r
2
=   x  U: 

0 yes_normal_temperature(x) 

1 yes_high_temperature(x) 

2 otherwise 

CONCEPT C = {xU ^ cold(x)} 

 

U
(
r
1
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Figure 4. Equivalence classes in the universe U, from r2, and the definition of the boundary in 

terms of whether the classes satisfy the concept or not. 

The following inner boundaries are obtained: 

B1 = {2, 3, 5, 8, 11, 16, 17, 19, 20} 

B2 = {3, 20} 

The calculated set E that contains all elements of U that belong to some non–redundant 

exceptional set is as follows: 

E = {3, 20} 

The degree of exceptionality (number of inner boundaries to which it belongs, divided by the 

total number of inner boundaries) for each element of E is as follows: 

Degree_of_Exceptionality(3) = 2/2 = 1 

Degree_of_Exceptionality (20) = 2/2 = 1 

Bearing in mind that the value of the degree of exceptionality is a value between 0 and 1, it can 

be stated that both elements would be considered outliers for any given threshold µ larger than 

0. This fact can be interpreted as both elements being in contradiction with element 21, which 

has the same symptoms but is nevertheless not diagnosed as a COLD. 

3.2.- Conclusions regarding the temporal complexity of the present proposal 

The definitions given in previous section demonstrate that for determining whether an element 

is an outlier in X with respect to , it is necessary to first evaluate all non-redundant 

exceptional sets along with their degree of exceptionality. A simplified approximation of the 

proposed detection method can be summarized in two steps: 

- Step one: determine all non-redundant exceptional sets on the given set X (a concept).  

- Step two: detect the outliers from the elements of the non-redundant exceptional sets. 

Every element whose degree of exceptionality is higher than a given threshold µ will be 

considered an outlier. 

If it is assumed that all outliers in X must belong to non-redundant exceptional set, then, if any 

element in X does not meet this condition, we can state that such an element is not an outlier. 

The proposed detection method is simple with respect to the theoretical foundation on which it 

is based, but its computational implementation from the given definition of an outlier is an 

intractable problem. This is because it is required to determine all subsets X (the power set of X) 

1     4    9 

10  12  13  

14   28 

Objects that meet the 
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U(r2) 

Equiv. 

Class 1 

Class 1 does not contain elements 

that satisfy the concept, thus it is 
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boundary. Class 3 satisfies all 

concepts; therefore it is contained 

within the inner approximation. 
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and evaluate whether they are redundant. From a mathematical point of view, it is well known 

that the cardinality of the power set is Ω(2
|X|

). Its construction is therefore computationally 

unfeasible because it produces algorithms of exponential temporal complexity. 

As mentioned above, the large sizes of current databases, which contain hundreds of millions of 

data records, do not allow for the use of current algorithms based on rough set theory. Thus, a 

method to reduce the order of temporal complexity of the algorithm must be developed before 

such a rough-set-theory-based algorithm can be used.  

The results of [20] provide a theoretical framework for the detection of outliers based in rough 

sets, but without a concrete solution, remaining within the bounds of the theoretical. The Rough 

Set Model [11] has been successfully applied to solve a vast number of problems, which 

demonstrates its efficiency and versatility. As a consequence, the proposal of [20]— being 

based on the aforementioned model— is expected to be powerful and efficient when used in 

data mining problems where its application is feasible. One of the elements that may limit the 

efficiency of a method of outlier detection is the nature of the data on which the method is 

implemented. The method proposed in the coming sections is applicable to both continuous and 

discrete (categorical) data and does not pose any limitations on the size of the data set. 

4.- Expansion of the mathematical framework 

To conceive the design and implementation of a computationally efficient algorithm for outlier 

detection, we propose an expansion of the theoretical framework presented above. The 

following lemmas and propositions constitute the mathematical foundation of the outlier 

detection algorithm to be proposed. This expansion complements the definition of an 

exceptional set such that the use of a power set is not necessary for the construction of an 

algorithm for outlier detection, and one can instead resort to other means to characterize an 

element as an outlier. 

Let C be the concept, and let be a set of equivalence relations defined over a 

finite data universe U. Let XU be the set of elements of U that meet C, and let Bi be the inner 

boundary of X with respect to ri. 

Proposition 8: Xee  ', , if e  is exceptional and 'ee  , then 'e  is also exceptional. In other 

words, if e is an exceptional set, any set that contains e is also exceptional. In the example 

shown in Section 3.1, element 3 belongs to both inner boundaries. Therefore, the set {3, 4} is 

exceptional (it has elements from all inner boundaries). Thus, any set that contains all elements 

of {3} is also exceptional: {3, 4, 10} {3, 4, 5}. 

Lemma 9: Let f be a non–redundant exceptional set, and let a: aX  af,  f  i, 1  i  m 

such that 
c

iB  {a} is an exceptional set (where B
c
 is a boundary of the concept c). That is, 

given that f belongs to a non-redundant exceptional set, there exists some inner boundary such 

that its complement, the union element a, is exceptional. In the example presented in Section 

3.1, the set {3} is non-redundant exceptional (it has elements of all inner boundaries, and all of 

its elements are indispensable). 

Therefore,   
                                         is also an exceptional set. 

Lemma 10: If  aBi, 1  i  m, such that 
c

iB   {a} is not an exceptional set, then  j, 1  j  

m, ji, such that Bj  Bi. 

In other words, if element   belongs to an inner boundary and the union of the said element 

with the complement of the boundary is not exceptional, then there exists another inner 

boundary that is a subset of it. 

},...,,{ 21 mrrr
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Let us take the inner boundary    in the example presented in Section 3.1. Then,   
      

                                  . This set is not exceptional (it does not contain elements 

of the inner boundary   ). Thus, there exists some inner boundary that is its subset. In this 

example, it is easy to note that      . 

Corollary 11: If  j, 1  i, j  m, ji, and the condition that Bj  Bi is met (which means that the 

inner boundary Bi does not completely contain any other inner boundary), then  aBi, 
c

iB   

{a} is an exceptional set.  

In the example presented in Section 3.1, let us take as a reference the inner boundary     It is 

easy to see that B1  B2.,Thus, the following holds: 

  
      and   

       are exceptional sets (the elements 3 and 20 belong to all inner 

boundaries). 

Lemma 12: Let aX. If  j, ji, 1  i, j  m, such that Bj  Bi and 
c

iB   {a} is an exceptional 

set, then 
c

jB   {a} is also an exceptional set.  

In the example presented in Section 3.1, B2  B1 . Then, 

  
                                         is an exceptional set (element 3 belongs to 

both inner boundaries), and thus, 

  
                                                           is also an exceptional set.  

Definition 13: Let f be any non–redundant exceptional set. The set Ei, 1  i  m, is defined as 

follows: Ei = {a: aX, af, fBi = {a}}. Ei will contain all the elements of X that belong to 

some non–redundant exceptional set (all taken into account) and that are also members of the 

inner boundary Bi.  

Starting from this point, one can reach the following conclusion: E = 
m

i

iE
1

, which is the set of 

all elements of X that belong to some non–redundant exceptional set.  

Lemma 14: i, 1  i  m, the condition is met that Ei  Bi, that is, all the elements of some 

particular Ei are elements of the inner boundary Bi.. This result is trivial and stems directly from 

the definition of the set Ei. 

Lemma 15: Let aX, 1  i  m. 
c

iB   {a} is an exceptional set if and only if aEi . 

In the example presented in Section 3.1, if we take the inner boundary   , we have the 

following: 

  
                                        . This set is exceptional; however,   

  
                                       is not because element 3 belongs to E1, whereas 

element 5 does not. 

All of these results have been formally demonstrated. For clarity throughout the text, the formal 

demonstrations are placed in the Appendix. From these mathematical foundations, in the 

following section, the proposed algorithm and the mathematical aspects of the theoretical 

framework on which it is based are presented in detail. 
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5.- Algorithm for the detection of outliers based on the basic Rough Set Model 

Before presenting the actual detection algorithm, let us establish a few preliminaries. 

Let X be the concept to be considered, and let },...,,{ 21 mrrr be a set of equivalence relations 

(criteria) defined over U.  

The inner boundaries (Bi) of X are calculated with respect to every element of  . For every 

element that satisfies X and that also belongs to any inner boundary Bi , its degree of marginality 

is calculated.  

Input: U: Universe, X: Concept, R: The set of all equivalence relations. 

Output: B: inner boundaries, regions of the rough set model. 

Initializations:    = {}    = {}           = {} 

1 for each r  R    // For each equivalence relation  <r> 

2    Pr = CLASSIFY-ELEMENTS (U, r) // Pr is the partition induced by the equivalence 

relation r 

3    for each class  Pr   // For each equivalence relation induced by r 

4          if class  X =class // All elements of the class meet the concept 

5               =    class // The set   is updated. 

6          else if class  X ≠ // There exist elements that meet the concept, 

and others that do not. 

7                =     class // The set    is updated. 

8                 =      (class  X) // The set    is updated. 

Algorithm 1. Algorithm for  the construction of the main regions of the rough sets model. 

Once this process is concluded, the set E is constructed from the elements of the sets Ei. If the 

analysis of a particular set Ei detects some element of C that had previously been identified as a 

member of some other set Ej  and therefore had already been included in E, this element will not 

be considered. 

As a theoretical assumption, the algorithm considers only different, not empty, inner 

boundaries. There is no loss of generality, because if there are two identical boundaries, the 

elements in them that belong to some non–redundant exceptional set would be the same in both 

cases, and therefore having a duplicate does not contribute anything of relevance to the results. 

The empty inner boundaries are not taken into account by definition (Definition 2— 

Exceptional set). 

The essence of the algorithm is to determine the inclusion relation between inner boundaries 

and, based on these relations, to make decisions and perform actions that are simply direct 

applications of one of the Lemmas and Corollaries presented and demonstrated above, which 

serve as the theoretical framework for the algorithm itself. Finally, the set E is obtained, 

containing all elements of the universe U that belong to some non–redundant exceptional set. 

The following Algorithm 1 is a pseudo–code version of the proposed detection algorithm.  
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Input: U: Universe, X: Concept, R: Set of equivalence relations, β: Classification error, μ: 

Exceptionality threshold, B: Inner boundaries. 

Output: E: outliers 

Initialization: OUTLIERS = {}, E = {} 

 

1 BUILD-REGIONS (U, X, R, β)  

2 for each r  R    // For every equivalence relation <r> 

3    existsBoundary = FALSE // No inner boundary exists that is a subset of   
 

 

4       for each q  R   // For each equivalence relation <q> different from <r> 

5          if r == q 

            continue 

 

6          if Bq   Br   // If the inner boundary of q is a subset of the inner  

// boundary  of <r>, then its elements are ruled out as 

// members of the set  of possible OUTLIERS: E 

7             existsBoundary = TRUE  

8          break       // No need to continue 

9       if NOT existsBoundary // If no inner boundary is a subset of the one being  

// analyzed,  

// then all elements of the inner boundary of r make up  

// the set of possible OUTLIERS: E 

10          E = E    
 

  

11 for each e  E  // Impose a condition on each element of E given the  

// exceptionality threshold 

12    if EX-DEGREE(e) ≥ μ   

13       OUTLIERS = OUTLIERS  

{e} 

 

 

Algorithm 2. Algorithm for the construction of the set OUTLIERS 

As demonstrated and thanks to the expansion of the mathematical framework, it is no longer 

necessary to determine all subsets of the universe U. The algorithm works on the elements 

included in the inner boundaries. As demonstrated below, the implications of this simplification 

are transcendental for the method of calculation because it changes the order of the temporal 

complexity of the problem from 2
n
 (exponential) to n x m, which can be considered linear. n is 

the cardinality of the universe U, and m is the number of equivalence relations. 

This change in the order of the temporal complexity allows for the application of rough set 

theory to very large data sets. In addition, as stated above, some outlier detection methods are 

limited by the nature of the data that they can handle (e. g., continuous data, discrete data, or a 

mixture of both). The mathematical framework utilized here uses equivalence relations that do 

not suffer from this type of limitation because the elements of the data set are perfectly 

classified within an equivalence class, given the equivalence relation ri. 

This algorithm is utilized for the computational implementation of a tool that allows the 

application of the method described. Below, the details of its implementation are described. 

5.1.- Considerations regarding the computational implementation 

The following are the input parameters of the algorithm: the universe U, the concept C, the 

relations ri, 1 i  m - },...,,{ 21 mrrr , and the established degree of exceptionality 

(threshold value µ). 
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The basic data structure utilized in the algorithm is the dictionary structure, where by dictionary 

is understood a set of pairs (key, value) where the key is an arbitrary object to which one and 

only one object of the type value is associated. 

In the algorithm, the keys are obtained as a result of applying a classifier to a given element of 

the universe. This classifier is associated with a particular equivalence relation ri, with 1 i m, 

and it allows the classification of the members of the equivalence classes, as defined by the 

equivalence relation. The values associated with the keys are lists of elements that belong to the 

equivalence class identified by the key associated with the given value. 

 

Figure 5. Data structures utilized 

Figure 1 shows that, for each equivalence relation, a dictionary is built and a list of dimension m 

is formed, where m is the number of equivalence relations considered. The input to the 

algorithm is stored as lists. A list is a basic type, and therefore, it is not necessary to give any 

details regarding its functionality. 

Following the example of Section 3.1, the data structure is determined by the following 

dictionaries: 

 

Figure 6. Data structures utilized in the example presented in Section 3.1. 

To each equivalence relation corresponds a dictionary, and each dictionary is formed by 

equivalence classes that produce the application of the relation on the U.  

According to the data structures utilized, it can be said that the spatial complexity of the 

algorithm is O(n x m), where n is the cardinality of the universe, and m is the number of 

equivalence relations considered in the analysis, as each dictionary (each region formed from an 

equivalence relation) may contain at most all the elements of the universe. The amount of 

memory occupied by the rest of the data structures does not exceed this order of magnitude. 
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The computational implementation of the algorithm consists of two fundamental stages: 

Stage 1 – Formation of inner boundaries: the classifiers are applied (one per equivalence 

relation) to the elements of the universe (data set) with the goal of forming the inner boundaries 

for each of the equivalence relations considered in the analysis. This operation is carried out in 

the algorithm by the routine BUILD-REGIONS (U, X, R, β). The time complexity of this 

operation is O(n x m x c), where c is the cost of classifying each element. 

Stage 2 – Process of outlier detection: concrete implementation of the rest of the proposed 

algorithm. Time complexity O(n x m
2
). 

Considering stages 1 and 2, the execution time for the full algorithm is estimated as 

O(max(O(stage 1), O(stage 2)))= O(stage 2)=O(n x m
2
).  

In general, the number of equivalence relations involved in the analysis in the vast majority of 

cases is not very large in relation to the number of rows in the table. Therefore, the quadratic 

dependence of the execution time on the number of equivalence relations does not greatly affect 

the algorithm‘s execution time, as we will be able to verify using a realistic case. As will be 

shown in the results, this quadratic dependence is almost linear for small values of m (m ≤ 20). 

The calculation of the degree of exceptionality of an element in the universe is relatively simple, 

once the inner boundaries have been calculated. It lies in determining— for each element in the 

universe— the number of inner boundaries to which it belongs and finding the ratio of this 

number to the total number of inner boundaries. This task is performed by the EX-DEGREE(e) 

function. 

5.2.- Classification error 

One particularly critical topic in classification systems is the occurrence of classification errors, 

which are known as false positive/negatives. The classification of  a non-exceptional element as 

exceptional is called a false positive, whereas the failure to classify an exceptional element as 

exceptional is called a false negative.  

In our case, classification errors can occur in two places of the algorithm: during the formation 

of the inner boundaries (algorithm 1) and during the construction of the set of outliers 

(algorithm 2). 

Regarding the first point, because we use equivalence relations that partition the universe into 

equivalence classes, the inclusion of elements that do not belong to the equivalence class is out 

of the question, assuming that the relations have been appropriately defined. The opposite 

case—non-inclusion of an element that does belong to the equivalence class—is likewise out of 

the question. 

Regarding the point about the construction of the set of outliers, however, the algorithm uses as 

the degree of exceptionality EX-DEGREE(e) to determine when an element belongs to this set. 

The degree of exceptionality, which results from dividing the number of inner boundaries to 

which the element belongs by the total number of existing equivalence relations, is a number 

between 0 and 1. In the algorithm, the threshold μ can be tuned; that is, we can vary the value 

that determines whether an element is exceptional enough to be considered an outlier, e.g. the 

elements with a value μ >0,6 are outliers. As a consequence, elements with degrees of 

exceptionality below this arbitrary threshold will not be classified as outliers. We will 

demonstrate how variation of the threshold modifies the detection of outliers.  
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6.- Tests and validation 

In this section, a realistic case of the proposal is demonstrated over a widely used database. The 

tests that were performed had the fundamental goal of validating the time complexity of the 

algorithm on the basis of the theoretical analysis of this parameter and of measuring the 

detection quality. 

It was decided that a data set from the UCI Machine Learning Repository, from the Center for 

Machine Learning and Intelligent Systems of the University of California, Irvine [44], would be 

used for the tests. The UCI Machine Learning Repository offers a collection of databases (data 

sets) that are used by the scientific community for research on topics related to Machine 

Learning and Data Mining for the empirical analysis of algorithms. In particular, the tests were 

performed using a data set from this site that contains data extracted from the Census Bureau 

Database of the USA [26], including 48,842 instances with 14 attributes that mix continuous 

and categorical data. Explicit references to more than 50 articles where this data set is utilized 

are shown on the website of the UCI Machine Learning Repository. On this website [44], the 

most outstanding characteristics of the data set are noted, and a detailed explanation of its 

attributes can be found. 

The hardware on which the results were validated has the following characteristics: 1.5 GHz 

INTEL Pentium 4 CPU with 256 MB of RAM. Platform: Windows XP SP3. The goal of these 

tests was the empirical observation of the theoretical conclusions; among them, that the 

execution of the algorithm produces results with linear complexity. For this reason, it was 

decided not to utilize specialized or high–performance hardware. 

6.1.- Execution time 

The tests were performed considering the variation of all parameters that define the size of the 

input to the algorithm. That is, the size of the data set, the number of columns and the number of 

equivalence relations were considered in the analysis. 

Figure 7 shows the results of executing the algorithm on the data set. For this test, 30,000 rows 

were utilized, and the number of columns considered in the analysis was varied from 5 to 14. 

Figure 7 also shows the corresponding execution times. The results presented in this figure lead 

to the conclusion that the dimensionality of the data set (number of columns in the table) does 

not influence the execution time. It can be seen that an increase in dimensionality does not 

represent a problem for the correct execution of the method. The results of the execution times 

corroborate the theoretical analysis for the calculation of the time complexity of the algorithm. 
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Figure 7. Execution times (min, sec) as a function of the number of columns of the data set (5 

to 14), with 30,000 rows, 5 equivalence relations, and 1 concept. 

The results shown in Figure 8 reflect the execution times achieved by the algorithm as the 

number of rows of the data set was varied. The variation considered goes from 5,000 to 30,000 

rows. It can be seen that the number of rows considered is indeed a determining factor of the 

execution time, as it is the factor that modifies the complexity of the proposed algorithm the 

most.  

 

Figure 8. Execution time (min., sec.) as a function of the number of elements in the data set, 

with 14 columns, 5 equivalence relations, and 1 concept. 

Figure 9 shows the dependence of execution time on the number of equivalence relations. It was 

theoretically demonstrated that this dependence is quadratic, and in this plot, we can observe 

that for small values of m, it is in fact almost linear. That is to say, everything indicates that all 

the constants define a very open parabola; therefore, for small enough values of m (≤ 20)— 

which is the most common case— the quasi–linearity of the time complexity of the algorithm 

with respect to the number of equivalence relations is guaranteed. 
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Figure 9. Execution time (min., sec.), as a function of the number of equivalence relations, with 

30,000 rows and 14 columns in the data set. 

6.2.- Detection 

In the tests for the measurement of the detection quality, the following parameters were chosen: 

− The individuals in the table who were the subject of the study were the individuals who 

satisfied the following CONCEPT: 1 ≤ people_with_age ≤ 10. 

− The criteria for the analysis were established by the following equivalence relations: 

r1: defined from the categorical attribute workclass 

c1.1: workclass = [‗private‘ OR ‗self-emp-not-inc‘ OR ‗self-emp-inc‘ OR ‗federal-gov 

local-gov‘ OR ‗state-gov without-pay‘] 

c1.2: workclass = [‗never-worked‘] 

r2: defined from the categorical attribute education  

c2.1: education = [‗bachelors‘ OR ‗some-college‘ OR ‗11th‘ OR ‗9th‘ OR ‗7th-8th‘ OR 

‗12th‘ OR ‗10th‘ OR ‗HS-grad‘ OR ‗prof-school‘ OR ‗assoc-acdm‘ OR ‗assoc-voc‘ 

OR ‗masters‘ OR ‗doctorate‘] 

c2.2: education = [‗preschool‘ OR ‗1st-4th‘ OR ‗5th-6th‘] 

r3: defined from the categorical attribute marital-status  

c3.1: marital-status = [‗married-civ-spouse‘ OR ‗divorced‘ OR ‗separated‘ OR 

‗widowed‘ OR ‗married-spouse-absent‘ OR ‗married-AF-spouse‘]  

c3.2: marital-status = [‗never-married‘] 

r4: defined from the categorical attribute occupation 

c4.1: occupation = [‗tech-support‘ OR ‗craft-repair‘ OR ‗other-service‘ OR ‗sales‘ OR 

‗exec-managerial‘ OR ‗prof-specialty‘ OR ‗handlers-cleaners‘ OR ‗machine-op-

inspct‘ OR ‗adm-clerical‘ OR ‗farming-fishing‘ OR ‗transport-moving‘ OR ‗priv-

house-serv‘ OR ‗protective-serv‘ OR ‗armed-Forces‘] 

c4.2: occupation = [‗student‘] 
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Note that any element that satisfies the concept and belongs to class c1.1, c2.1, c3.1 or c4.1 is 

contradicted by the relation rx, keeping in mind that the individuals subject to analysis are 

children between 1 and 10 years of age who have therefore never worked, have not studied 

beyond 6th grade, have never married and have the occupation of student.  

To verify the correction capabilities of the detection process, the data set was bombarded with a 

variable set of outliers that were prepared artificially. This test allows us to verify that the 

outliers are in fact detected. The set of outliers with which the data set was bombarded is shown 

in Table 2. 

Table 2. List of outliers introduced to the data set. The fields marked with an asterisk (*) 

indicate the incorrect data. 

Age WorkClass Education Marital-Status Occupation 

7 *self-emp-inc 1st-4th never-married student 

6 never-worked *master never-married student 

9 never-worked *doctorate never-married student 

9 never-worked 5th-6th never-married *armed-forces 

7 never-worked 1st-4th never-married *adm-clerical 

8 *self-emp-inc *master never-married student 

8 never-worked *doctorate *married-civ-

spouse 

student 

6 never-worked 1st-4th *divorced *armed-forces 

9 *federal-gov 5th-6th never-married *adm-clerical 

3 *self-emp-inc *master *married-civ-

spouse 

student 

7 never-worked *doctorate *divorced *adm-clerical 

2 *federal-gov *master *divorced *armed-forces 

8 *self-emp-inc *doctorate *married-civ-

spouse 

*armed-forces 

 

Figure 10 shows the number of outliers detected for different values of the detection threshold µ 

in the different tests that were performed. The differences among the tests illustrated in Figure 

10 are based on the number of outliers in Table 2, which were introduced into the data set. 

  

Figure 10. Number of outliers detected as a function of the detection threshold µ and the 

number of outliers introduced. 
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One aspect of the results that is worth pointing out is that the set of outliers found always 

contained at least some the outliers introduced. This condition was met both when the number 

of outliers detected was larger than the number of outliers introduced and when it was smaller. 

This result indicates that the algorithm correctly detects outliers; some of the outliers detected 

belong to the set of artificially prepared outlying elements, and the rest were present in the 

original data set. 

Figure 11 shows the number of real outliers in the data set that were detected during the analysis 

as a function of the number of artificial outliers introduced and the threshold value µ. The larger 

the value of µ, the smaller the number of outliers detected. This result is to be expected because 

µ determines the minimum degree of exceptionality necessary, i.e., how many inner boundaries 

an element needs to be included in and, therefore, how far it is from values considered 

consistent with the concept being analyzed, for the element to be classified as an outlier. 

 

Figure 11. Number of real outliers detected in the data set as a function of the number of 

artificial outliers introduced and the threshold µ. 

Figure 12 shows how many of the introduced artificial outliers were detected. Detection of these 

elements indicates that the algorithm is truly classifying outliers because these elements are 

outliers by definition—that is, they are by construction in conflict with the concept that is being 

analyzed.  
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Figure 12. Number of artificially introduced outliers detected as a function of the total number 

of outliers introduced and the threshold µ. 

As mentioned above, the elements that are classified as outliers are those that are somehow at 

odds with the concept that is being analyzed. In the present case, the concept is 1 ≤ 

people_with_age ≤ 10. The variation of the threshold value µ modifies the number of elements 

that are classified as outliers because a larger threshold indicates that the degree of 

exceptionality of an element must be larger to be considered an outlier. That is, it must be 

further from what is considered normal in the set.  If an excessively large exceptionality 

threshold is set, it is possible that no outliers would be detected; this would be an error of the 

false-negative type. In reality, it is a matter of adjusting the algorithm based on the degree of 

exceptionality required at each moment.  

The above demonstrates the efficiency that can be achieved by the algorithm in terms of 

detection. The variation of the threshold µ implies a certain fine-tuning of the detection, which 

in some cases is not achieved. This issue is manifested by the detection getting ―stuck‖, which 

can be observed in the plots. In some instances, the detection of outliers stops suddenly, which 

is made evident in the plots by the steep drops to zero. The cause for this lack of refinement is 

the deterministic nature of the method in terms of classification: because it is based on Rough 

Set Theory, it inherits that theory‘s limitations. This issue leads to the supposition that, when a 

certain degree of declassification is allowed, a better detection quality may be reached in some 

instances, finally identifying the most contradictory elements as outliers. 

7.- Conclusions 

In this work, a method for the detection of outliers has been proposed with a simple and 

rigorous theoretical setup, starting from a definition of outliers that is simple, intuitive and 

computationally viable for large data sets. From this method, an efficient algorithm for outlier 

mining has been developed, conceptually based on a novel and original approach using Rough 

Set Theory, which has not been applied in any previous category of classification for the 

methods of rough set detection. 

The proposed algorithm is linear with respect to the cardinality of the data universe over which 

it is applied, and it is quadratic with respect to the number of equivalence relations used to 

describe the universe. However, this number of relations merely represents a constant, as it is 

usually significantly smaller than the cardinality of the universe in question. 

In contrast to many other methods that present difficulties in their application depending on the 

nature of the data to be analyzed, our proposal is applicable to both continuous and discrete 
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data. The possibility that the data sets may contain a mix of attribute types (e.g., a mix of 

continuous and categorical attributes) does not present a limitation for the applicability of the 

proposed algorithm. 

Furthermore, the method is applicable to data in table form: the data structure of the Relational 

Model. The table must be at least in the 1st normal form to guarantee that there are no 

redundancies, and its attributes must be single–valued. Otherwise, they would contradict with 

the essence of the method, as it would not be possible to establish equivalence relations from 

them. All of the above points imply the method‘s applicability in outlier mining in current large 

databases.  

Therefore, the proposed work is perfect for use in scenarios where cross Decision Suport, 

Knowledge Discovery and Data Mining, and Big Data. This proposal allows to locate within 

specified times, elements in a data set that differ from the rest in some degree. This degree can 

be regulated, so that the elements can be very different or a bit different. This allows: locate 

errors in data collection to discard or correct, locate elements of a system having a malfunction 

in comparison with the rest, or detecting a set of records that bear some similarity to each other 

and differ from the rest revealing a new knowledge. All in datasets where other techniques 

would be impossible for their temporary costs. 

We are currently working on a new version of the algorithm that allows the modeling of 

uncertain information. In practice, being able to admit a certain level of uncertainty in the 

classification process may lead to a deeper understanding and to better use of the properties of 

the data at hand. The theoretical framework developed in this paper is based on the basic model 

of RS which is unable to model uncertain information. To advance this line, our proposal is to 

extend again the mathematical framework using concepts and formalisms needed to incorporate 

uncertainty in the classification of elements. Specifically, there are works on RS modeling using 

Rough Sets with variable precision [51], and it is necessary to study the feasibility of 

incorporating this variable precision to the current framework proposed. 
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Appendix  

This appendix provides the formal demonstrations of the expansion of the mathematical 

framework presented in Section 4, in terms of which the outlier detection algorithm of Section 5 

is developed. 

Let U  be the (finite) universe, and let UXUr   be an equivalence relation defined over 

U. Let UX   be a CONCEPT. 

Proposition 8: Xee  ', , if e  is exceptional and 'ee  , then 'e  is also exceptional.  

Demonstration: trivial 

Lemma 9: Let f  be a non–redundant exceptional set, and let a: aX  af,  f  i, 1  i  m, 

such that  {a} is an exceptional set. 
c
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Demonstration: 

() 

 is not exceptional, because it does not contain any element that belongs to the inner 

boundary 
 
(by virtue of the definition of the complement of a set). Notwithstanding, by 

hypothesis, if  {a} is an exceptional set, then a is an indispensable element in said set. 

It would suffice to extract from  {a} all dispensable elements and so obtain a set to 

which a belongs, all of whose elements are indispensable, making it a non–redundant 

exceptional set. 

( ) 

By hypothesis, af, and f is non–redundant exceptional. Therefore, a is indispensable in f, 

which implies that i, 1  i  m, so that f  Bi = {a} (by virtue of the definition of an 

indispensable element); that is, a would be the only representative of the inner boundary of 

Bi inside f. Therefore,y such that y f-{a}, and it is true that yBi, which in turn implies 

that y , and so f-{a}  .  

Let us construct the union of both sets with the set {a}: (f-{a})  {a}    {a} 

f    {a}. 

Because f is an exceptional set, then  {a} will be exceptional, too, by Proposition 8. 

Lemma 10: If aBi, 1  i  m, such that {a} is not an exceptional set, then  j, 1  j  m, 

ji such that Bj Bi. 

Demonstration: 

If   {a} is not an exceptional set, then there will exist some j, 1  j  m such that y

 {a}, yBj. 

Because aBi, the absent inner boundary cannot be Bi. Therefore, ji. Ify  {a}, 

yBj, then y . 

It follows that, because y  {a}, y , then,  

  {a}           

Applying the contraposition to Lemma 10, the following corollary can be enunciated. 

Corollary 11: If j, 1  i, j m, ji, then it is true that Bj  Bi (which means that the inner 

boundary Bi does not completely contain any other inner boundary). Therefore, aBi.   

{a} is an exceptional set. 

Lemma 12: Let aX. If j, ji, 1  i, j  m such that Bj Bi and  {a} is an exceptional set, 

then  {a} is also an exceptional set. 
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Demonstration: 

Bj  Bi      (  {a})  (  {a}) 

Therefore, because   {a} is an exceptional set, by applying Proposition 8, we may 

conclude that  {a} is also an exceptional set. 

Lemma 14: i, 1  i  m, it is true that Ei  Bi.  

In other words, all the elements of some particular Ei are elements of the inner boundary Bi. 

Demonstration: 

aEi, and by the definition of Ei, there exists a non–redundant exceptional set e such that 

eBi = {a}. Therefore, aBi. 

Lemma 15: Let aX, 1  i  m, and then  {a} is an exceptional set if, and only if, aEi. 

Demonstration: 

() 

Because {a} is an exceptional set in which a (see the demonstration of Lemma 9) is an 

indispensable element (if the element a were eliminated from this set, we would be left with 

the set , which is known to be non–exceptional, as it does not contain any element of Bi), 

one can obtain a set f {a} such that f is a non–redundant exceptional set (eliminating 

from {a} all dispensable elements), and in said set, the only representative of the inner 

boundary Bi is a (inferred from the previous arguments); that is, aEi. 

() 

If aEi, then there is a non–redundant exceptional set e that contains the element a and Bi  

e = {a}. 

Making the union of the set  and the sets that are in both members of the equation, the 

following is obtained: 

  (Bi  e) =   {a} 

(   Bi)  (   e) =   {a} 

X  (   e) =   {a} 

  e =   {a} 

Therefore, because e is exceptional and e  (   e), by virtue of Proposition 8,   e 

is also exceptional. And because  

  e =   {a}, then,   {a} is an exceptional set. 
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Highlights 

• We propose a formal expansion to the theory of rough sets. 

• We propose an efficient algorithm for the detection of outliers.  

• We have implemented the algorithm and verified the theoretical results. 


