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Estimation of Time-Limited Channel Spectra

from Nonuniform Samples
J. Selva

Abstract

This paper deals with the estimation of a time-invariant channel spectrum from its own nonuniform

samples, assuming there is a bound on the channel’s delay spread. Except for this last assumption, this

is the basic estimation problem in systems providing channel spectral samples. However, as shown in

the paper, the delay spread bound leads us to view the spectrum as a band-limited signal, rather than

the Fourier transform of a tapped delay line (TDL). Using this alternative model, a linear estimator is

presented that approximately minimizes the expected root-mean-square (RMS) error for a deterministic

channel. Its main advantage over the TDL is that it takes into account the spectrum’s smoothness (time

width), thus providing a performance improvement. The proposed estimator is compared numerically

with the maximum likelihood (ML) estimator based on a TDL model in pilot-assisted channel estimation

(PACE) for OFDM.

I. INTRODUCTION

The interpolation of band-limited signals from nonuniform samples is a recurrent topic in signal

processing [1], [2]. Just to mention a few relevant scenarios, it appears in A/D conversion for wideband

signals, where the existing fast A/D converters produce a nonuniform sampling scheme that must be

corrected [3]–[9]. It also appears in image processing, where the sampling positions may be nonuniformly

spaced due, for instance, to the geometry of the scenario in which a given image was captured [1, Ch.

6]. And, finally, the demodulation of an FM signal can be performed from its zero-crossings using

nonuniform sampling techniques, [1, Ch. 16].
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In the literature, there are two basic approaches for addressing the nonuniform sampling problem,

that we may term “spectral” and “trigonometric”. In the spectral approach, the signal’s bandwidth is

assumed known and the signal is modeled through either a nonuniform sampling series, or by passing

to the frequency domain using the Fourier transform. This approach comprises classical results as Yen’s

[10] and recent results like [3], [11], and is the common way to model the problem in circuit design

for A/D conversion. In the trigonometric approach, the signal is approximated using a trigonometric

polynomial, and there is no assumption about the signal’s bandwidth. Then, the problem consists of

efficiently estimating the polynomial coefficients and, afterward, the signal itself. Its theoretical foundation

is the fact that the interpolation error converges to zero with the polynomial order, [12, Th. 1]. This

approach has been extensively studied by Feichtinger et al. [13]–[18]. The usual zero-padding FFT

interpolation [19, Sec. 3.11] is an instance of this approach.

One atypical scenario for nonuniform sampling is the estimation of a channel spectrum from its own

nonuniform samples in OFDM [20]–[22]. In this scenario, the PACE (pilot-assisted channel estimation)

techniques comprise the methods to perform this spectral estimation under various statistical assumptions.

Among them, the maximum likelihood (ML) and the minimum mean-square (MMSE) estimators are

benchmarks against which other estimators are compared in terms of statistical efficiency and complexity

[23]. This scenario is atypical because the signal to be estimated is not a time- or spatial-domain signal,

but the spectrum of a propagation channel that is sampled by means of pilot carriers. The techniques

in PACE follow the trigonometric approach, and the polynomial’s coefficients are usually referred to as

TDL or channel impulse response (CIR) [24, Ch. 11].

This paper deals with the generic problem of estimating a time-limited static channel spectrum from its

own nonuniform samples, assuming there is an upper bound on the channel’s delay spread. In practice,

such a bound can either be inferred from basic considerations about the channel (its type or geometry),

or estimated, [25], [26]. We present a model in which the channel’s spectrum is viewed as a band-limited

signal and modeled using a sinc series. Then, we propose a linear estimator that approximately minimizes

the RMS error. The problem addressed in this paper is the basic one in PACE for OFDM, but the inclusion

of the delay spread bound as a new parameter produces a model following the spectral rather than the

trigonometric approach. Since the proposed estimator makes use of additional information (delay spread

bound), we may expect a performance improvement. The numerical examples confirm that this is so for

the basic estimation problem in PACE for OFDM.

The paper has been organized as follows. In the next section, we first introduce the problem of

estimating a static time-limited channel from its own nonuniform samples, and then follow the usual

approach in which the channel’s spectrum is approximated using a trigonometric polynomial, and then

April 2, 2015 DRAFT



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2421479, IEEE Transactions on Signal Processing

3

estimated by means of an ML estimator. We also discuss the usual justification of this trigonometric

approach which is based on a so-called transmit-receive (tx-rx) pulse. Then, we state the spectral approach

in Sec. III, and derive the estimator proposed in this paper in Sec. IV, termed spectral (SP) estimator.

We discuss several aspects of this last estimator in Sec. V and, finally, compare the performances of the

ML and SP estimators in Sec. VI numerically.

A. Notation

In the paper, we employ the following notation:

• New symbols or functions are introduced using “≡”.

• Signals are written in lower case letters and their corresponding spectra in upper case letters. Thus,

U(f) and H(f) are the spectra of u(t) and h(t) respectively.

• Vectors and matrices are denoted in lower- and upper-case bold font, respectively, (m, M ).

• I stands for an identity matrix of proper size.

• For a given matrix A or vector a, [A]p,q and [a]r respectively denote the p, q component of A, and

the rth component of a.

• AH and AT respectively denote the Hermitian and transpose of A.

• A† denotes the pseudo-inverse of A.

• a� b stands for the component-wise product of vectors a and b, that is, [a� b]m = [a]m[b]m.

• E{·} denotes the expectation operator.

II. ESTIMATION OF A TIME-LIMITED CHANNEL SPECTRUM FROM ITS OWN NONUNIFORM SAMPLES

In a variety of applications, the spectrum of a propagation channel must be estimated from a set

of noisy samples. For a simple static channel, we may describe this situation by considering a set of

frequencies fm, fm < fm+1, m = 1, . . . , M , and a set of samples

Vm ≡ H(fm) + Em, (1)

where H(f) is the channel’s spectrum, and Em are zero-mean independent complex Gaussian noise

samples of equal variance σ2E . The objective is then to design an estimator Ĥ(f ;v) of H(f), where

[v]m+1 ≡ Vm, m = 1, . . . , M, (2)

and a proper error measure for this design is the expected quadratical error

E{|H(f)− Ĥ(f ;v)|2}, (3)

where we view H(f) as deterministic for simplicity.
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Eqs. (1) and (2) describe a basic estimation problem in systems providing channel spectral samples,

like OFDM systems equipped with pilot carriers [20]–[22], and channel sounding systems in general.

In some applications, the problem is more complex than the one just stated, given that the channel’s

response is assumed time variant. However, in this last case the usual models are extensions of (1) that

take into account the Doppler shifts, [21].

The trigonometric approach is the usual way to address the estimation of H(f) from (1), and is based

on the interpolator

H(f) ≈
n2∑

n=n1

hne
−j2πnTf , (4)

for specific truncation indices n1 and n2, time period T > 0, and set of coefficients hn, [24, Ch. 11].

This interpolator greatly simplifies the estimation problem, because after inserting (4) into (1), we obtain

the model

Vm ≈
n2∑

n=n1

hne
−j2πnTfm + Em,

in which the only parameters to estimate are the coefficients hn, n1 ≤ n ≤ n2. At this point, there exists

a variety of estimators for hn and, in turn, H(f). One of the reference estimators is that based on the

ML principle [23], in which the estimate of hn, ĥML,n, is the least-squares solution of the linear system

Vm ≈
n2∑

n=n1

ĥML,ne
−j2πnTfm .

From ĥML,n, the ML estimate of H(f) is the result of replacing hn with ĥML,n in (4). This last estimate

can be concisely written as

ĤML(f ;v) ≡ φ(f)TΦ†v, (5)

where

[φ(f)]n−n1+1 ≡ e−j2πnTf ,

[Φ]m,n−n1+1 ≡ e−j2πnTfm ,

(m = 1, 2, . . . , M, n = n1, n1 + 1, . . . , n2).

The usual justification for the trigonometric interpolator in (4) is based on an analytical tool, the so-

called (tx-rx) pulse, [24, Ch. 11]. A tx-rx pulse u(t) is a band-limited signal whose spectrum U(f) selects

the band in which the estimation is to be performed. More precisely, for a fixed initial frequency fuo and

a sampling period T > 0, with fuo ≤ f1 and fM ≤ fuo + 1/T , the spectrum U(f) of such pulse fulfills

the conditions,

1) U(f) = 1 if f1 ≤ f ≤ fM .
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2) U(f) = 0 if f ≤ fuo or fuo + 1/T ≤ f , [band-limited u(t)].

3) u(t) has finite energy.

Typical pulses u(t) are a modulated sinc or raised cosine, though u(t) is not even mentioned in most

references in the literature.

For justifying (4) using u(t), note that this pulse allows us to state the problem in (1) and (3) in terms

of the spectrum

Hu(f) ≡ H(f)U(f),

rather than H(f), given that U(f) neither affects the value of H(f) at the sampling frequencies fm,

m = 1, 2 . . . , M , nor at the possible estimation frequencies f . But now Hu(f) can be modeled as the

discrete-time Fourier transform (DTFT) of the sequence hu,n ≡ T (h ∗ u)(nT ), n ∈ Z, [27, Sec. 4.26].

Specifically, we have

Hu(f) =

∞∑
n=−∞

hu,ne
−j2πnTf . (6)

Next, the truncation of this DTFT at two indices n1 and n2 produces a trigonometric polynomial,

Hu(f) ≈
n2∑

n=n1

hu,ne
−j2πnTf .

This polynomial also approximates H(f) in the band in which U(f) = 1 and, therefore, we have just

validated the interpolator in (4) if we identify hu,n with hn.

In this trigonometric approach, the truncation at indices n1 and n2 constitutes a way to restrict the

smoothness of H(f), given that in performing the truncation we are regarding the harmonics hu,ne−j2πnTf

for n < n1 or n > n2 as negligible. In practice, however, we may often give a stronger description of

this smoothness, given that we may find out an upper bound Tho on the delay spread of h(t) such that

h(t) = 0 if t < 0 or t > Tho. This is so for the following reasons:

• In practice, we may determine an upper bound on the channel’s delay spread Tho from basic

considerations about the channel, (channel’s average geometry, type of channel, etc) [25], or by

estimating it [26].

• The synchronization circuits in practical receivers deliver a reference that may be used to shift the

time variable in h(t), so that the support of h(t) lies in [0, Tho].

With the range [0, Tho] bounding the support of h(t), we have that H(f) can be viewed as a band-

limited signal whose spectrum lies in [−Tho, 0]. This is a direct consequence of the duality property of

the Fourier transform, given that the spectrum of H(f) is h(−t). So, we have that the estimation problem

can be tackled using sampling theory tools. We follow this approach, termed spectral, in the next section.
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III. STATEMENT OF THE SPECTRAL APPROACH

As already discussed, the tx-rx pulse is the key for obtaining a proper interpolation model for H(f)

in the trigonometric approach, given that it enables the use of the DTFT in (6). Note, however, that this

pulse plays no role in the final interpolator (4). In the spectral approach, we proceed to introduce another

pulse, denoted w(t), and also consider its convolution with h(t). Thus, we define the following response

and spectrum

hw(t) ≡ (h ∗ w)(t), Hw(f) ≡ H(f)W (f).

However, the conditions we impose on w(t) are different. For a time width Tw > 0, they are the following,

1) W (f) ≈ e−jπTwf if f1 ≤ f ≤ fM .

2) w(t) = 0 if t is outside the range [0, Tw], [time-limited w(t)].

3) w(t) has finite energy Ew.

The first condition will have the same function as the corresponding condition on U(f) in the previous

section, but here it is an approximation due to condition 2). This last condition makes it possible to

exploit the knowledge of Tho, given that now hw(t) has a known duration

Th ≡ Tho + Tw.

Finally, the third condition will allow us to employ basic tools like the Cauchy-Schwarz inequality in

the sequel. A pulse w(t) fulfilling these three conditions can be constructed by multiplying a proper

window function with a sinc pulse (App. A) though, as in the trigonometric approach, it is not necessary

to specify this pulse in order to derive an estimator.

Next, consider hw(t). This response has finite energy, denoted EH,w, for the usual responses of the

form

h(t) = hd(t) +

K∑
k=1

akδ(t− τk),

for a finite number of deltas K and a diffuse component hd(t) with finite L1 norm, i.e, following∫ Tho

0
|hd(t)|dt <∞.

So, its Fourier transform Hw(f) can be viewed as a band-limited signal with spectrum lying in [−Th, 0],

and it can be represented using a sinc series. In order to introduce this series, it is convenient to re-state

the estimation problem in terms of the following normalized spectrum,

η(x) ≡ Hw

( x
Th

)
ejπx, (7)
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where x denotes a new variable. It can be easily checked that the spectrum of η(x) lies in [−1/2, 1/2]

and its energy is

Eη ≡ ThEH,w.

Now, the Shannon sampling theorem yields the well-known sinc series representation for η(x),

η(x) =

∞∑
p=−∞

η(p)sinc(x− p). (8)

Note that if f1 ≤ x/Th ≤ fM , then η(x) is also a normalized version of H(f) due to condition 1) on

W (f),

η(x) =H
( x
Th

)
W
( x
Th

)
ejπx ≈ H

( x
Th

)
e−jπTwx/Thejπx

=H
( x
Th

)
ejπ(1−Tw/Th)x.

(9)

In terms of η(x), the estimation problem in (1) can be re-stated as

zm = η(xm) + εm,

where zm, xm and εm are related with Vm, fm and Em through (9). Specifically, we have the definitions

Sampling abscissas: xm≡ fmTh

Data samples: zm≡Vmejπ(1−Tw/Th)xm

Noise samples: εm≡Emejπ(1−Tw/Th)xm

(10)

Additionally, (3) is equivalent to designing an estimator η̂(f ; z) of the deterministic signal η(x) with

small error given by

E{|η(x)− η̂(x; z)|2}, (11)

where

[z]m+1 ≡ zm, m = 1, 2, . . . , M.

Given an estimator η̂(x; z) of η(x) for f1 ≤ x/Th ≤ fM , the corresponding estimator of H(f) can be

easily obtained by inverting (9),

Ĥ(f ;v) = η̂(fTh; z)e−jπ(1−Tw/Th)fTh

= η̂(fTh; z)e−jπThof .

(12)
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In the spectral approach, we propose to find the linear estimator of η(x) that minimizes the maximum

of (11) over the set of spectra η(x) with energy at most Eη. Specifically, the estimator will be termed

“spectral” (SP) in the sequel and has the form

η̂SP(x; z) ≡
M∑
m=1

zmĉSP,m(x), (13)

where the coefficients ĉSP,m(x) are given by the minimax problem

{ĉSP,m(x)} = arg min
{cm(x)}

max
η(x)

E{|η(x)−
M∑
m=1

zmcm(x)|2}. (14)

In this last expression, the curly braces {·} denote the corresponding set of coefficients for m =

1, 2, . . . , M , and the inner maximum is taken over the set of possible η(x) with energy at most Eη
and spectrum in [−1/2, 1/2]. The linearity constraint in (13) is convenient for two reasons. First, as is

well known the derivation of an estimator is greatly simplified under this constraint. And second, the

optimal interpolator in the noise-free setting is linear for bounded band-limited signals [28]. This last

argument implies that for high signal-to-noise (SNR) ratios the linearity constraint is not a significant

limitation.

We derive a closed-form expression for η̂SP(x; z) in the next section.

IV. CLOSED-FORM EXPRESSION OF THE PROPOSED ESTIMATOR

Let us derive an explicit expression for η̂SP(x; z). We first apply the condition E{εm} = 0 to the cost

function in this problem to separate the mismatch and noise terms:

E{|η(x)−
M∑
m=1

zmcm(x)|2}

= E{|η(x)−
M∑
m=1

(η(xm) + εm)cm(x)|2}

= |η(x)−
M∑
m=1

η(xm)cm(x)|2 + σ2E

M∑
m=1

|cm(x)|2. (15)

At this point, we insert the sinc series (8) into this expression, and then use the Cauchy-Schwarz

inequality to obtain an upper bound for fixed cm(x). We only need to consider the first term:

|η(x)−
M∑
m=1

η(xm)cm(x)|2 = |
∞∑

p=−∞
η(p)sinc(x− p)

−
M∑
m=1

∞∑
p=−∞

η(p)sinc(xm − p)cm(x)|2
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=
∣∣∣ ∞∑
p=−∞

η(p)
(

sinc(x− p)−
M∑
m=1

sinc(xm − p)cm(x)
)∣∣∣2

≤ Eη
∞∑

p=−∞

∣∣∣sinc(x− p)−
M∑
m=1

sinc(xm − p)cm(x)
∣∣∣2. (16)

Besides this bound is tight; (for this point see Sec. V-A).

Substituting into (15), we obtain

E{|η(x)−
M∑
m=1

zmcm(x)|2} ≤

Eη
∞∑

p=−∞

∣∣∣sinc(x− p)−
M∑
m=1

sinc(xm − p)cm(x)
∣∣∣2

+ σ2E

M∑
m=1

|cm(x)|2. (17)

Next, we minimize this bound in the set of coefficients cm(x). The minimum occurs for real coefficients

cm(x), given that sinc(x) is a real function whenever x is real. So, for real cm(x) we expand the argument

of the first sum in (17) to obtain

∣∣∣sinc(x− p)−
M∑
m=1

sinc(xm − p)cm(x)
∣∣∣2

= sinc2(x− p)− 2

M∑
m=1

sinc(x− p)sinc(xm − p)cm(x)

+

M∑
m=1

M∑
m′=1

sinc(xm − p)sinc(xm′ − p)cm(x)cm′(x). (18)

In this expression, note that all terms contain a product of two sinc functions. But the sinc function has

the property
∞∑

p=−∞
sinc(y − p)sinc(y′ − p) = sinc(y − y′),

which is valid for any y and y′. So summing (18) for p ∈ Z and using this last property, we obtain

∞∑
p=−∞

∣∣∣sinc(x− p)−
M∑
m=1

sinc(xm − p)cm(x)
∣∣∣2

= 1− 2

M∑
m=1

sinc(x− xm)cm(x)

+

M∑
m=1

M∑
m′=1

sinc(xm − xm′)cm(x)cm′(x).
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Next, substitute this formula into (17),

E{|η(x)−
M∑
m=1

zmcm(x)|2}

≤ Eη − 2Eη
M∑
m=1

sinc(x− xm)cm(x)

+ Eη
M∑
m=1

M∑
m′=1

sinc(xm − xm′)cm(x)cm′(x)

+ σ2E

M∑
m=1

|cm(x)|2.

This inequality can be concisely written as

E{|η(x)−
M∑
m=1

zmcm(x)|2} ≤

Eη
(
c(x)T

(
G+ I/γ

)
c(x)− 2c(x)Tg(x) + 1

)
, (19)

where

γ ≡ Eη
σ2E

, [G]m,m′ ≡ sinc(xm − xm′),

[g(x)]m ≡ sinc(x− xm), [c(x)]m ≡ cm(x),

1 ≤ m ≤M, 1 ≤ m′ ≤M.

Note that the bound in (19) is a quadratic form in cm(x) whose matrix G + I/γ is positive definite.

This fact implies that it has a unique global minimum which is attained at

ĉ(x) ≡ (G+ I/γ)−1g(x).

The corresponding minimum value is obtained by substituting this last expression into (19)

E{|η(x)−
M∑
m=1

zmcm(x)|2}

≤ Eη
(

1− g(x)T (G+ I/γ)−1g(x)
)
. (20)

In summary, the solution of the minimax problem in (14) is

η̂SP(x; z) = g(x)T (G+ I/γ)−1z. (21)

The estimator for H(f) is readily obtained from (12),

ĤSP(f ;v) = ejπThofg(Thf)T (G+ I/γ)−1(v �ψ), (22)
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where

[ψ]m ≡ ejπThfm , [v]m ≡ Vm.

Additionally, the bound in (20) as a function of the frequency f is

Eη
(

1− g(Thf)T (G+ I/γ)−1g(Thf)
)
.

It is worth mentioning that (21) coincides with the minimum energy interpolator in [10] when γ →∞.

V. COMMENTS

A. Sharpness of the SP estimator

In the derivation of the SP estimator, the only relaxation has been the Cauchy-Schwarz inequality is

(16). However, as is well known, this inequality is attained by the sequence

η(p) = K
(

sinc(x− p)−
M∑
m=1

sinc(xm − p)c∗m(x)
)
, p ∈ Z,

(matched-filter principle), where K is selected to set the energy equal to Eη. Besides, this sequence

corresponds to the signal

η(y) = K
(

sinc(x− y)−
M∑
m=1

sinc(xm − y)c∗m(x)
)
,

whose energy is Eη and whose spectrum lies in [−1/2, 1/2]. So the estimator is optimal under the

following conditions:

1) We restrict the estimator to be linear.

2) The error in the approximation W (f) ≈ e−jπTwf , f1 ≤ f ≤ fM is negligible.

3) The set of possible spectra η(x) is the set of complex finite-energy band-limited functions with

spectrum in [−1/2, 1/2] and energy at most Eη.

B. Estimate of γ parameter

The SP estimator has been designed for a deterministic spectrum H(f) and requires the parameter γ.

In practice, H(f) is usually random and the value of γ unknown. So, in order to make the SP usable

for random H(f), we propose to substitute γ with the following estimate

γ̂ ≡ P̂H
σ2E

,

where P̂H is an estimate of the average spectral power, given by

PH ≡
1

fM − f1

∫ fM

f1

E{|H(f)|2}df. (23)

This is the estimate of γ that will be employed in the numerical examples in Sec. VI.
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C. Selection of Th/Tho ratio

The proposed estimator depends on a pulse w(t) of time-width Tw which is not specified. Therefore,

if Th is fixed then it is not clear for what Tho the estimator is usable, given that Th = Tho + Tw. The

answer is that it is usable for any Tho following Tho < Th. This is so for the following two reasons. First,

we have that for any Tw > 0, we may obtain any product BwTw, simply by selecting a proper Bw. And

second, there exist pulses as the one in App. A for which the conditions on w(t) hold for a sufficiently

large BwTw product. In practice, if Tho ≈ Th or, equivalently, if Th/Tho ≈ 1 then the estimator has a

poor performance for single-delay channels with delay either close to zero or Tho. This aspect is analyzed

in Sec. VI-B numerically.

D. Computational burden

The computational burden of the proposed method can be easily derived from (21). We have the

following operations and complexity orders:

• Computation of matrix G+ I/γ: O(M2).

• Inversion of matrix G+ I/γ: O(M3).

• Multiplication of (G+ I/γ)−1 and z: O(M).

• Multiplication of g(x) and (G+ I/γ)−1z assuming N estimation frequencies: O(MN).

The most expensive operation computationally is the inversion in step 2). Note, however, that such

inversion is also involved in the ML estimator in (5), in which it is necessary to compute the pseudo-

inverse. If the set of frequencies fm is constant, then steps 1) and 2) can be pre-computed and the

corresponding operations spared. In this last case, the total cost is linear in both the number of data and

estimation frequencies, [O(MN) complexity].

VI. NUMERICAL EXAMPLE

In order to assess the SP estimator, we proceed to compare it with the ML estimator in (5). We present

the simulation setup in the next subsection, and then assess the performance of both estimators for single

delay channels in Sec. VI-B, and a standard channel model in Sec. VI-C.

A. Numerical example setup

1) OFDM signal: Following the example in [23, Sec. IV.C], we select an OFDM signal with the

following parameters:

• DFT size: 512.
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• Number of modulated carriers: 433.

• Number of pilots: M = 28.

• Indices of pilot carriers: im = 40 + 16m, m = 0, 1, . . . , M − 1.

• Carrier spacing: ∆f ≡ 1/(NT ). This parameter and in turn T will be specified as a function of the

spectral oversampling ratio, defined in the sequel.

2) Selection of noise variance σ2E: We have defined the signal to noise ratio

SNR ≡ PH
σ2E

,

where PH was defined in (23) and depends on the channel model. Then we have set SNR = 30 dB and

σ2E = SNR · PH .

3) Estimate of γ in the proposed estimator: We have used the estimate in Sec. V-B.

4) Carrier spacing: We select ∆f as a function of the oversampling factor. Specifically, the oversam-

pling ratio is defined by

α ≡ 1

BavTh
,

where Bav is the average pilot spacing

Bav ≡
iM−1 − i0
M − 1

∆f.

So, for a specific α, we take

∆f =
M − 1

αTh(iM−1 − i0)
.

5) Estimators: We compare in the next sub-sections three estimators:

• ML: Trigonometric ML estimator in (5) with the number of taps providing the smallest RMS error.

• SP: Proposed spectral estimator in (22) with Th = Tho.

• SP60: This last estimator but with γ = 60 dB. For higher values of this parameter, the matrix inverted

in (22) becomes ill conditioned. Therefore this estimator can be viewed as the one assuming “infinite”

γ.

B. Assessment for single-delay channels

Fig. 1 shows the difference in RMS error between the ML and SP estimators, for each possible delay

and frequency, and three oversampling factors, α = 2, 4, and 8. For these factors, the number of taps in

the ML estimator were 17, 13, and 13 respectively. For α = 2, we can see that the estimators have similar

performance, and the SP estimator performs better away from either the limit frequencies or delays. For

α = 4, 8, the SP estimator performs worse at the limits of the delay range, i.e, close to delays 0 or Th.
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(a) α = 2, (ML with 17 taps)
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(b) α = 4, (ML with 13 taps)
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(c) α = 8, (ML with 13 taps)

Fig. 1. Difference in dBs between the RMS errors of the SP and ML estimators for oversampling factors α = 2, 4, and 8.

However, these values can be easily excluded by selecting a Th/Tho ratio slightly above 1. Except in this

last case, the SP estimator outperforms the ML estimator. In average, the improvement of the SP over

the ML estimator is -0.1 dB, 1.76 dB, and 3.5 dB for α = 2, 4, and 8 respectively.

Fig. 2 shows the performance of the SP estimator for α = 0.25. Note that the error increases strongly

close to either the zero or Th delay. This increase can be eliminated by selecting Tho slightly smaller

than Th.
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Fig. 2. RMS error of proposed estimator.

C. Assessment for a standard channel model

We select the indoor propagation model in the ITU-R M.1225 recommendation (channel A, no Doppler),

[29, Table 3, p. 28], but assume the delays to lie inside the range [0, Tho] with Tho = 340 nsec. For this,

we assume the first delay is at t = 20 nsec. In this model, the channel response realizations take the

form

h(t) =

6∑
k=1

akδ(t− τk),

where the amplitudes ak are independent and follow a complex Gaussian zero-mean distribution. The

delays τk and the variances of the amplitudes ak are the following:

Delay (ns) 20 70 130 190 310 330

Av. power (dB) 0 -3 -10 -18 -26 -32

We take Th = Tho and perform 104 Monte Carlo trials for each figure.

Figs. 3(a) to 3(c) show the RMS error for α = 2, 4, and 8. The number of taps in the ML estimator were

19, 15 and 13 for α = 2, 4, and 8 respectively. We can see that estimator SP outperforms estimator ML

significantly, and the improvement grows with the oversampling factor α. In average, the improvement

is 0.36 dB, 1.83 dB, and 3.54 dB for oversampling factors α = 2, 4, and 8 respectively. Estimator SP60

also outperforms estimator ML, though with a somewhat larger RMS error than estimator SP.
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Fig. 3. Bound and RMS error for the ML, SP, and SP60 estimators.

D. Assessment for a nonuniform sampling scheme

The previous examples were based on a uniform sampling scheme, in order to facilitate the comparisons

with other results in the literature like [23, Sec. IV.C]. However, the SP and ML estimator are usable

with nonuniform samples. A non-uniform distribution can be used to obtain a more uniform RMS error.

Fig. 4 shows the repetition of Fig. 3(c) but for pilots placed in the OFDM frequency grid at positions

close to the roots of a Chebyshev polynomial with proper scaling. Specifically, the pilots were placed at

indices 40, 43, 48, 56, 67, 80, 95, 112, 131, 152, 173, 196, 220, 244, 268, 292, 316, 339, 360, 381, 400,

417, 432, 445, 456, 464, 469, and 472. Note that, except at the frequency limits, the error distribution is

more uniform and the SP estimator error is below -31.5 dB.
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Fig. 4. RMS error for the Chebyshev sampling scheme with α = 4.

VII. CONCLUSIONS

In this paper, we have discussed two approaches for designing an estimator for a static channel spectrum,

that take as input nonuniform spectral samples. The first, called trigonometric approach, is the usual one

in the literature, and is based on approximating the spectrum using a trigonometric polynomial. The

second, called spectral approach, is the one proposed in this paper and introduces the delay spread

as a new parameter in order to improve the estimation performance. Using this second approach, we

have derived a linear estimator that approximately minimizes the RMS estimation error assuming a

deterministic channel. We have shown in the numerical examples that the proposed method improves on

the ML estimator based on the trigonometric approach in RMS error performance significantly. Besides,

this improvement increases with the spectral oversampling factor.

APPENDIX A

A POSSIBLE PULSE w(t)

Consider the Kaiser-Bessel window

wo(t) ≡


I0

(
πBwTw

2

√
1−

( 2t

Tw

)2)
I0(πBwTw/2)

if |t| ≤ Tw/2

0 otherwise,
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where I0 is the modified Bessel function of the first kind and order zero, and Tw and Bw respectively

denote the time- and frequency-domain widths of wo(t). The interval [−Tw/2, Tw/2] contains all the

energy of wo(t) in the time domain, whereas [−Bw/2, Bw/2] contains most but not all of its energy

in the frequency domain. Besides, the energy leakage outside [−Bw/2, Bw/2] decreases exponentially

with the product BwTw, and is negligible even for small values of BwTw, [7], [30], [31]. Assuming that

this last leakage is negligible, we may construct from wo(t) a pulse w(t) with small energy such that

W (f) ≈ e−jπTwf if f1 ≤ f ≤ fM . Let us write w(t) and its time and frequency supports in the following

way
Pulse: wo(t),

Supports: [−Tw/2, Tw/2], [−Bw/2, Bw/2].
(24)

We may construct w(t) in the following steps,

1) Construct a pulse with spectrum approximately equal to one in a band [−B1/2, B1/2], B1 > 0, by

convolving Wo(f) with a rectangular pulse of width B1 +Bw,

Wo(f) ∗Π
( f

B1 +Bw

)
.

Using the notation in (24), we obtain

Pulse: wo(t)(B1 +Bw)sinc((B1 +Bw)t),

Supports: [−Tw/2, Tw/2], [−Bw −B1/2, B1/2 +Bw].

2) Center the spectrum around a frequency fc,

Pulse: wo(t)(B1 +Bw)sinc((B1 +Bw)t)ej2πfct,

Supports: [−Tw/2, Tw/2],

[fc −Bw −B1/2, fc +B1/2 +Bw].

Now the spectrum is approximately equal to one in [fc −B1/2, fc +B1/2].

3) Delay the last pulse by Tw/2 to obtain a pulse with the desired time support [0, Tw] and spectrum

approximately equal to e−jπTwf in [fc −B1/2, fc +B1/2],

Pulse: wo(t− Tw/2)(B1 +Bw)

· sinc((B1 +Bw)(t− Tw/2))ej2πfc(t−Tw/2),

Supports: [0, Tw],

[fc −Bw −B1/2, fc +B1/2 +Bw].

4) Set B1 = fM − f1 and fc = (f1 + fM )/2 to obtain the final pulse

Pulse: wo(t− Tw/2)(fM − f1 +Bw)

·sinc((fM − f1 +Bw)(t− Tw/2))ejπ(f1+fM )(t−Tw/2),

Supports: [0, Tw], [f1 −Bw, fM +Bw].
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whose spectrum is approximately equal to e−jπTwf in [f1, fM ].
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