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ABSTRACT: Copper nanoparticles supported on activated carbon have been found to catalyze 

the multicomponent synthesis of indolizines from pyridine-2-carbaldehyde derivatives, 

secondary amines and terminal alkynes in dichloromethane; in the absence of solvent, however, 

heterocyclic chalcones are formed. We provide compelling evidence that both processes take 

place through aldehyde-amine-alkyne coupling intermediates. In contrast to other well-known 

mechanisms for chalcone formation from aldehydes and alkynes, a new reaction pathway is 

presented involving propargyl amines as intermediates which do not undergo rearrangement. The 

formation of indolizines or chalcones is driven by inductive and solvent effects, with a wide 

array of both being reported. In both reactions, the nanoparticulate catalyst has been shown to be 

superior to some commercially available copper catalysts and it could be recycled in the case of 

the chalcone synthesis. 
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heterocycles, propargylamines, reaction mechanisms 

 

Introduction 

Indolizines1 and chalcones2 share a large variety of pharmacological activities, including 

anticancer, antibacterial, antifungal, anti-inflammatory, anti-tubercular, antioxidant or analgesic 

activity, among others (Chart 1). In particular, some heterocyclic chalcones have been recently 

shown to possess prominent antibacterial activity.3 The indolizine system is also an important 

scaffold in natural product synthesis,4 whereas, in the last years, chalcones have been studied in 

materials science because of their interesting photophysical properties.5 

Indolizines have been synthesized following classical methods6 or by iodine-mediated7 and 

transition-metal catalyzed8 cycloisomerization of pyridines bearing alkynyl, propargyl, allenyl or 

cyclopropenyl substituents at the 2 position. Some methods based on two-component annulations 

catalyzed by copper have also been reported.9 However, the multicomponent reaction of 2-

pyridinecarbaldehyde derivatives, secondary amines and terminal alkynes has emerged as a 

powerful tool whereby the synthesis of indolizines can be attained in a single operation and 

atom-efficient manner. Catalytic processes with gold,10 silver,11 iron12, copper13 and zinc14 have 

been described for this purpose. 

Chalcone synthesis is normally accomplished following the classical Claisen-Schmidt 

condensation between aromatic ketones and aldehydes [Scheme 1, eq. (1)];15a other methods 

such as the Suzuki coupling, Friedel-Crafts acylation or Julia-Kocienski olefination have been 

also practiced.15b Propargyl alcohol derivatives16 have been used as chalcone precursors by 
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 3

 

Chart 1. Structure of some bioactive indolizines and heterocyclic chalcones. 

 

isomerization to the corresponding enones [Scheme 1, eq. (2)]16a-c,16e or through the Meyer-

Schuster rearrangement17 [Scheme 1, eq. (3)].16d,16f More interesting is the direct reaction of 

aromatic aldehydes and alkynes to furnish chalcones. Ytterbium(III) triflate,18a Amberlyst-1518b 

or graphite oxide18c have been found to promote the latter transformation with rearrangement 

[Scheme 1, eq. (4)], whereas the solid base Cs2CO3/Al2O3
19a or the quaternary ammonium 

hydroxide base Triton B19b produced the non-rearranged products [Scheme 1, eq. (5)]. More 

recently, propargyl amines derived from fluorinated aldehydes, m- and p-nitroaniline, and 

phenylacetylene gave the rearranged chalcone when irradiated with microwaves in the presence 

of montmorillonite doped with copper(I) chloride [Scheme 1, eq. (6)].20 It was considered that 

the nitroaniline moiety acted as a good leaving group, generating allenic cation species which led 

to the chalcone after reaction with water, in a similar manner as was invoked for propargyl 

alcohol derivatives [Scheme 1, eq. (3)].16d,16f,17 
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 4

 

Scheme 1. Different methods for chalcone synthesis. 

In organic chemistry, selective transformations of the same starting materials into two or more 

different products can be done by the choice of the catalyst.21 More challenging is to reach the 

same objective conversely, by deploying a single catalyst but different solvent systems. Owing to 

our interest in metal colloids22 and the application of supported copper nanoparticles (CuNPs) in 

organic chemistry,23 we have recently communicated the multicomponent synthesis of 

indolizines from pyridine-2-carbaldehyde derivatives, secondary amines and terminal alkynes 

catalyzed by copper nanoparticles on activated carbon in dichloromethane (Scheme 2).24 

Interestingly, the same starting materials (with piperidine as the secondary amine) and catalyst 

used for this purpose gave rise to heterocyclic chalcones in the absence of solvent, with this 

representing the first copper-catalyzed synthesis of chalcones (without rearrangement) from 

aromatic aldehydes and alkynes. We wish to present herein a complete study which includes the 

scope of this methodology, more focused on the synthesis of chalcones and, most importantly, 

our endeavour to understand mechanistically the formation of both the indolizines and chalcones. 
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 5

 

Scheme 2. Synthesis of indolizines and chalcones catalyzed by CuNPs/C. 

Results and Discussion 

All the supported copper catalysts used in this study were prepared by adding a variety of 

supports to a recently prepared suspension of the CuNPs,25 readily generated, in turn, by 

reduction of anhydrous copper(II) chloride with lithium metal and a catalytic amount of 4,4'-di-

tert-butylbiphenyl (DTBB, 10 mol%) in THF at room temperature;26 the supported catalysts 

were not subjected to any treatment prior to use. 

 

Synthesis of indolizines 

The metal support, solvent and conditions were previously optimized using pyridine-2-

carbaldehyde (1a), piperidine (2a) and phenylacetylene (3a) as model compounds; oxidized 

copper nanoparticles (Cu2O and CuO) on activated carbon (CuNPs/C) was found to be the 

catalyst of choice in dichloromethane at 70 ºC.24 With the optimized conditions in hand, a wide 

range of indolizines were synthesized in modest-to-high isolated yields by using low catalyst 

loading (0.5 mol%) (Table 1). Pyridine-2-carbaldehyde (1a) was successfully combined with six 

different secondary amines (2a–f) and seven aryl acetylenes containing electron-neutral, -

withdrawing or -releasing substituents (3a–g). Aliphatic alkynes (3h, 3i) were found to be more 

reluctant to react, leading to the expected indolizines (4afh, 4afi, 4ach) in relatively lower yields 
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 6

(42–64%) due to partial decomposition during chromatographic purification. Likewise, reactions 

with pyridine-2-carbaldehydes substituted at the 6 position (1b–d) required prolonged heating, 

probably because of steric reasons. Poor yield was noted for the 5-bromoindolizine 4bfa due to 

the major formation of the A3 coupling product. However, we could make use of this result to 

prove the reaction mechanism (vide infra). This methodology was also effectual when applied to 

quinoline-2-carbaldehyde (1e), giving the corresponding pyrrolo[1,2-a]quinolines 4eaa–eag in 

good-to-high isolated yields (72–92%). Unfortunately, this catalyst, which showed good 

recycling properties in other multicomponent reactions,25 could not be efficiently recycled in the 

present case (40% yield in a second cycle). The substantial metal leaching observed, together 

with the possible catalyst poisoning could account for this behavior. This fact is not so important 

if we take into account that the copper loading used in these experiments is low. 

In principle, any laboratory-made catalyst should be more efficient than commercially 

available catalysts used for the same purpose. Otherwise, it is difficult to economically justify the 

time, materials and human resources employed during its preparation. Taking into account this 

premise, we undertook a comparative study on the reactivity of CuNPs/C with that of some 

commercial copper catalysts. The standard conditions were applied to the model reaction of 

pyridine-2-carbaldehyde (1a), piperidine (2a) and phenylacetylene (3a). As shown in Table 2, 

the best performance was attained with CuNPs/C (entry 11) in terms of catalyst loading, reaction 

time and conversion. The kinetic profile for the synthesis of 4aaa shows almost a linear increase 

of the conversion within the first 3 h (up to 92%), being nearly quantitative after 4 h (98%) 

(Figure 1). For this particular reaction, TON and TOF of up to 200 and 65 h-1, respectively, have 

been recorded. 
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Table 1. Multicomponent synthesis of indolizines catalyzed by CuNPs/C.a 

N

N

Ph

N

N

Ph

O

N

N

N N

Ph

N NBu2

Ph

N

NBu2

Ph

N

Ph

N

N

N

OMe

N

N

Br

N N N N

F3C

N

NBu2

N

N

Ph

Me

N

NBn2

Ph

4aaa

(3 h, 86%)

4aea

(10 h, 80%)
4ada

(10 h, 80%)

4aca

(9 h, 91%)4aba

(14 h, 74%)

4afb

(9 h, 91%)

4aag

(9 h, 73%)
4aaf

(9 h, 86%)

4aac

(9 h, 76%)

4eaa

(10 h, 82%)

4eca

(9 h, 92%)

4eab

(9 h, 84%)

4eac

(12 h, 79%)

4ach

(12 h, 64%)

CF3

N N

MeO
4eaf

(9 h, 84%)

N

N

4aab

(9 h, 69%)

N

N

NMe2

4aae

(9 h, 93%)

N

N

CO2Me

4aad

(9 h, 59%)

N N

Br
4eag

(9 h, 72%)

9

Me

Ph

N

Ph

NBn2

4afa

(10 h, 93%)

N

NBn2

CF3

4afc

(6 h, 76%)

N

NBn2

OMe
4aff

(6 h, 66%)

N

NBn2

4afh

(12 h, 55%)

9

N

NBn2

4afi

(12 h, 42%)

N

Ph

NBn2

4bfa

(20 h, 20%)b,c

N

NBn2

CF3

4cfc

(20 h, 70%)c

N

Ph

NBn2

4dfa

(20 h, 80%)c

Br

SO2Me
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 8

a Reaction conditions: 1 (0.5 mmol), 2 (0.5 mmol), 3 (0.5 mmol), CuNPs/C [20 mg, ca. 0.5 
mol%, determined from the Cu content (1.4 wt%) and the Cu2O/CuO area from XPS (ca. 1:1)], 
CH2Cl2 (1 mL), 70 ºC; reaction time and isolated yield in parentheses. b The propargylamine 
5bfa was the major product (72%). c NMR yield based on the starting aldehyde. 

 

Table 2. Comparison of CuNPs/C with commercial copper catalysts.a 

 

Entry Catalyst 
mol
% 

t 
(h) 

Conversion 
(%)b 

1 CuCl 1 20 27 

2 CuCl2 1 20 55 

3 CuBr 1 20 28 

4 CuI 1 20 50 

5 CuO 1 20 55 

6 Cu2O 1 20 57 

7 Cu(OAc)2 1 20 23 

8 CuOAc 1 20 24 

9 CuBr·SMe2 1 20 40 

10 CuOTf 1 20 42 

11 CuNPs 0.5 4 98 

a Reaction conditions: 1a (0.5 mmol), 2a (0.5 mmol), 3a (0.5 mmol), catalyst, CH2Cl2 (1 mL), 70 
ºC. b Conversion into 4aaa was determined by GC. 
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 9

 

Figure 1. Plot showing the evolution of the synthesis of 4aaa catalyzed by CuNPs/C. 

 

Based on our previous mechanistic studies on the aldehyde-amine-alkyne coupling (A3 

coupling),23b as well as on other methodologies,10–13 we can propose a reaction mechanism for 

this multicomponent synthesis of indolizines including: (a) CuNPs-mediated enhancement of the 

alkyne acidity by coordination to the carbon-carbon triple bond,27 so that enables the formation 

of the corresponding copper(I) acetylide; (b) addition of the latter to the in-situ generated 

iminium ion derived from the aldehyde and the secondary amine; (c) copper-promoted 

cycloisomerization of the resulting propargylamine (A3 product) through a 5-endo-dig and 

aromatization processes; and (d) protonolysis of the intermediate copper indolizide (Scheme 3). 

The participation of propargyl amines as indolizine precursors has been often postulated10–14 but, 

to the best of our knowledge, never demonstrated. These pyridinyl propargyl amines must be 

rather elusive intermediates, which once generated in the reaction medium, rapidly cyclize to the 

corresponding indolizines. It is noteworthy that tiny peaks attributable to propargylamines were 

detected by GC-MS (same m/z as that of indolizines) in some of the reaction crudes derived from 

pyridine-2-carbaldehyde (1a). Notwithstanding the limitations to isolate a pyridinyl 

propargylamine and transform it into the corresponding indolizine, we turned our attention to the 
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 10

6-substituted pyridine-2-carbaldehyde derivatives. The steric hindrance arisen between the 6-

substituent of the pyridine and the alkyne substituent prior to ring closure, could be a chance to 

isolate the pursued propargylamine. We capitalized on the low indolizine conversion recorded 

for some 6-bromopyridin-2-carbaldehyde derivatives and managed to isolate propargylamine 

5bfa. Subsequent treatment of 5bfa with CuNPs/C in dichloromethane furnished the expected 

indolizine 4bfa after prolonged heating (Scheme 4). These results distinctly unveil that 2-

pyridinyl propargyl amines are the precursor intermediates of indolizines. 

 

N CHO

N

N
R1 R2

R3
N

N

R1

R2

R3

H

[Cu]

C

CuNPs

R1

N
H

R2

R1

N
R2+ HO

R3

R3 H

increased
acidity

R3 H

HOH

H

N

N

N
R1

R2

R3

[Cu]
N

N
R1

R2

R3

[Cu]

+

- H+

H+

 

Scheme 3. Reaction mechanism proposed for the three-component synthesis of indolizines 

catalyzed by CuNPs/C. 
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 11

 

Scheme 4. Transformation of propargylamine 5bfa into indolizine 4bfa. 

 

Synthesis of chalcones 

We discovered that the reaction of pyridine-2-carbaldehyde (1a), piperidine (2a) and 

phenylacetylene (3a) catalyzed by CuNPs/C, when performed in the absence of solvent mainly 

led to the corresponding chalcone (6aa). We considered it was convenient to optimize the copper 

catalyst in order to get the best possible conversion into the desired chalcones. The 

aforementioned substrates were used in a model reaction, carried out with CuNPs on diverse 

supports at 70 ºC in the absence of solvent (Table 3). In a control experiment, we confirmed the 

necessity of copper for the reaction to take place (Table 3, entry 1). Among the different catalysts 

tested, NPsCu/C and NPsCu/graphite gave the highest conversions, with the former reaching a 

higher one with lower metal content (Table 3, entries 2 and 3). Other supports based on metal 

oxides, microporous or organic materials were not effective in this transformation (Table 3, 

entries 5–12). The introduction of a second metal in the catalyst supported on carbon had a 

deleterious effect in the conversion (Table 3, entries 13–16). 

With CuNPs/C as the catalyst of choice, we undertook the optimization of the base, amount of 

catalyst, and reaction temperature (Table 4). The results obtained were found to be crucial to 

understand the reaction pathway (vide infra). For instance, tertiary amines such as Et3N, 

pyridine, DABCO, (i-Pr)2NEt, N,N-dimethylaniline, N-methylpiperidine or TMEDA were found  
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 12

Table 3. Optimization of the copper catalyst in the chalcone synthesis.a 

 

Entry Catalyst %wt Cub 
Conv. 
(%)c 

1 none - - 

2 NPsCu/C 1.4 85 

3 NPsCu/graphite 2.3 70 

4 NPsCu/MWCNTd 2.4 26 

5 NPsCu/TiO2 3.0 39 

6 NPsCu/MgO 1.5 45 

7 NPsCu/ZnO 1.8 39 

8 NPsCu/zeolite Y 3.7 57 

9 NPsCu/MK-10e 1.8 47 

10 NPsCu/cellulose 2.9 49 

11 NPsCu/chitosan 2.5 53 

12 NPsCu/Al silicate 1.2 < 4 

13 NPsCu-Co/C 0.6 (0.9) 22 

14 NPsCu-Ni/C 0.9 (0.9) 27 

15 NPsCu-Fe/C 0.4 (1.2) - 

16 NPsCu-Zn/C 1.4 (0.8) 50 

a Reaction conditions: 1a (0.5 mmol), 2a (0.5 mmol), 3a (0.5 mmol), catalyst (20 mg), neat, 70 
ºC, 20 h. b %wt Cu in the catalyst; %wt of the second metal in parentheses. c Conversion into 6aa 
was determined by GC. d Multi-walled carbon nanotube. e Montmorillonite K-10. 
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 13

Table 4. Optimization of the reaction conditions in the chalcone synthesis.a 

 
Entry Base (equiv.) T (ºC) Conv. (%)b 
1 Et2NH (1.0) 70 10 

2 t-BuOK (1.0) 70 10 

3 Cs2CO3 (1.0) 70 10 

4 pyrrolidine (1.0) 70 40 

5 piperidine (0.3) 70 5 

6 piperidine (0.4) 70 8 

7 piperidine (0.5) 70 32 

8 piperidine (1.0) 70 85 

9 piperidine (1.0)c 70 - 

10 piperidine (1.0)d 70 2 

11 piperidine (1.0)e 70 60 

12 piperidine (1.0) rt - 

13 piperidine (1.0) 60 10 

14 piperidine (1.0) 80 34 

15 piperidine (1.0) 100 56 
a Reaction conditions: 1a (0.5 mmol), 2a (0.5 mmol), 3a (0.5 mmol), CuNPs/C (20 mg), neat, 20 
h. b Conversion into 6aa was determined by GC. c 5 mg CuNPs/C. d 10 mg CuNPs/C. e 30 mg 
CuNPs/C. 

 

to be ineffective, with no trace of chalcone 6aa being detected. The reaction was also unfruitful 

with the inorganic bases NaHCO3 or K2HPO4 (<1% and 0% conversion, respectively). Bases 
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such as Et2NH, t-BuOK or Cs2CO3 led to poor conversions of ca. 10% (Table 4, entries 1–3), 

whereas better ones were recorded with pyrrolidine (Table 4, entry 4). Piperidine was found to 

be the best base, even though a stoichiometric amount was required to achieve high conversion 

(Table 4, entries 5–8). Other amounts of catalyst or reaction temperatures gave conversions < 

60% (Table 4, entries 9–15). The kinetic profile for the synthesis of 6aa shows a conversion of 

up to 82% within the first 3 h, to reach a maximum fixed at 85% after prolonged heating (Figure 

2). 

 

Figure 2. Plot showing the evolution of the synthesis of 6aa catalyzed by CuNPs/C. 

The optimized reaction conditions (Table 4, entry 8) were extended to the reaction of a variety 

of aldehydes and alkynes (Table 5). Pyridine-2-carbaldehyde (1a) and its derivatives substituted 

at the 6 position (1b,c,f) were reacted with several phenylacetylenes, producing the 

corresponding chalcones in modest-to-good yields (40–77%). In general, the 6-substituted 

carbaldehydes were found to be less reactive than the unsubstituted counterparts. This method 

was also applicable to other heteroaromatic aldehydes, such as quinoline-2-carbaldehyde (1e), 1-

methyl-1H-imidazole-2-carbaldehyde (1g) and thiazole-2-carbaldehyde (1h), with a scanty 

conversion being obtained in the latter case. We sought to extend this procedure to non- 

heteroaromatic aldehydes by combining different p-substituted benzaldehydes (1i–k) with 
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Table 5. Synthesis of chalcones from aldehydes and alkynes catalyzed by CuNPs/C.a 

 

6ga

(12 h, 55%)

6gc

(9 h, 44%)

6ha

(12 h, 30%)

O

Ph

N

N

Me O

N

N

Me

CF3

O

Ph

N

S

6eg

(12 h, 50%)

O

N

Br

6ea

(12 h, 65%)

O

Ph
N

6bc

(3 h, 40%)

6ba

(9 h, 40%)

6fa

(9 h, 50%)

O

NBr
Ph

O

N

CF3

O

NMeO
Ph

Br

O

6fc

(9 h, 70%)

NMeO

CF3

O

6aa

(9 h, 77%)

6ad

(9h, 63%)

6ag

(9h, 64%)

Ph
N

O

N

CO2Me

O

N

Br

6ca

(9 h, 48%)

O

NMe
Ph

O

6ia

(12 h, 58%)

6ic

(12 h, 65%)

6ja

(12 h, 21%)

6jc

(9h, 35%)

6ka

(15 h, 20%)

6kc

(12 h, 46%)

Ph

O

CF3

NC

NC

O

Ph

O

CF3

O2N

O2N

O

Ph

O

CF3

O

O

 
a Reaction conditions: 1 (0.5 mmol), 2a (0.5 mmol), 3 (0.5 mmol), CuNPs/C (20 mg, 0.5 mol%), 
70 ºC; reaction time and isolated yield in parentheses. 
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phenylacetylene (1a) and p-(trifluoromethyl)phenylacetylene (1c). The electron-withdrawing 

effect exerted by the CF3 group in the alkyne improved the yield with respect to the unsubstituted 

phenylacetylene. It is worth noting that the presence of electron-withdrawing groups, either (or 

both) in the aldehyde or (and) the alkyne, was fundamental for the chalcones being formed. In 

fact, pyridine-2-carbaldehyde (1a) did not react with phenylacetylenes containing electron-

donating groups, such as 4-methoxyphenylacetylene (3f) or 4-N,N-

(dimethylamino)phenylacetylene (3e), to form the expected chalcones but the corresponding 

indolizines in variable amounts (2% 4aaf, 16 h; 77% 4aae, 17 h); quinoline-2-carbaldehyde (1e) 

and 4-methoxyphenylacetylene (3f) gave indolizine 4eaf (18%, 17 h) and the corresponding 

chalcone in only 7% conversion. Likewise, the reaction of benzaldehyde with phenylacetylenes 

bearing any kind of substituents led to 10–38% chalcone conversion [4-bromophenylacetylene 

(10%), methyl 4-ethynylbenzoate (22%), 4-methylphenylacetylene (34%), 4-

methoxyphenylacetylene (38%) and 4-ethynyl-N,N-dimethylaniline (12%)]; side products 

derived from the A3 coupling or alkyne homocoupling were detected. Aliphatic alkynes as well 

as aliphatic aldehydes did not react towards the formation of the enones in any case. Other non-

heteroaromatic aldehydes, such as 4-methylbenzaldehyde, 4-methoxybenzaldehyde, 4-N,N-

dimethylaminobenzaldehyde, 4-bromobenzaldehyde, or piperonal, reacted with phenylacetylene 

to give the A3 and alkyne homocoupling products. 

In spite of the fact that this methodology is not high yielding, it is worthy of note that, under 

the same conditions, the alkyne homocoupling23a and A3 coupling24b (or indolizine formation) 

can take place and compete with the chalcone formation. Nevertheless, efficient chalcone 

synthesis was achieved in some cases by using a minute catalyst loading (0.03 mol%, TON 2367, 

TOF 197 h–1) (Scheme 5). 
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Ph

O

1i

3a

6ia

71% conversion

60% yield

Ph

NC

0.03 mol%

CuNPs/C

piperidine
(2a, 1 equiv.)

neat, 70 ºC, 12 h+

CHO

CN

 

Scheme 5. Synthesis of chalcone 6ia using very low catalyst loading. 

 

Moreover, contrary to the behavior observed for CuNPs/C in the synthesis of indolizines, when 

recovered by filtration or centrifugation, the catalyst could be reused over four cycles in the 

synthesis of chalcone 6ia using low loading (0.13 mol%) with a decrease in the catalytic activity 

(Figure 3). Attempts to reutilize the catalyst in the synthesis of heterocyclic chalcone 6aa were 

unfruitful, what was ascribed to the known tendency of this type of compounds to form stable 

complexes with copper,28 in this case with a poisoning effect. 

 

 

Figure 3. Reutilization of the catalyst in the synthesis of the chalcone 6ia using 0.13 mol% 

CuNPs/C. 
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As previously studied for the synthesis of indolizines, we compared the performance of 

CuNPs/C with that of some commercial copper catalysts in the synthesis of chalcones (Table 6). 

Chalcone 6aa was used as the model target, which was obtained in < 50% conversion in all cases 

with the exception of CuI (Table 6, entry 4); moderate conversion was obtained with the latter,  

 

Table 6. Comparison of CuNPs/C with commercial copper catalysts.a 

 

Entry Catalyst mol% t (h) 
Conv. 
(%)b 

1 CuCl 1 20 47 

2 CuCl2 1 20 33 

3 CuBr 1 20 44 

4 CuI 1 20 70 

5 CuI 10 20 18 

6 CuO 1 20 2 

7 Cu2O 1 20 25 

8 Cu(OAc)2 1 20 10 

9 CuOAc 1 20 4 

10 CuBr·SMe2 1 20 18 

11 CuOTf 1 20 28 

12 CuNPs 0.5 9 85 

a Reaction conditions: 1a (0.5 mmol), 2a (0.5 mmol), 3a (0.5 mmol), Cu catalyst, neat, 70 ºC. b 
Conversion into 6aa was determined by GC. 
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though larger amount of this non-recyclable catalyst and longer reaction time were required than 

with CuNPs/C (Table 6, entry 12). Moreover, an increase in the amount of CuI had a detrimental 

effect on the conversion (Table 6, entry 5). 

From the structural point of view, we must underline that all chalcones were obtained as single 

E diastereoisomers, showing typical values of trans-coupled vinylic protons (3
JH-H = 15.7–16.4 

Hz). The regiochemistry of the products was originally proposed by comparison of the NMR 

chemical shifts with those in the literature (Figure 4)29 and unequivocally established by X-ray 

crystallographic analysis of chalcone 6fc (Figure 5).30 This information proves that no 

rearrangement is involved in the chalcone formation. 

 

N
Ph

N

O

Ph

O

δH = 7.95 ppm

δC = 120.7 ppm

δ H = 8.33 ppm

δ C = 144.5 ppm

δH = 7.77 ppm

δC = 142.5 ppm

δ H = 8.12 ppm

δ C = 125.2 ppm

6aa

 

Figure 4. Comparison of the chemical shifts of 6aa and its regioisomer.29 

 

Figure 5. Plot showing the X-ray structure and atom numbering for compound 6fc. 50% disorder 

was observed for the CF3 group.30 
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In order to gain an insight into the reaction mechanism of the chalcone formation, three 

isotopic-labeling experiments were conducted (Scheme 6) using deuterated pyridine-2-

carbaldehyde [(D1)-1a, eq. (1)], piperidine [(D1)-2a, eq. (2)] and phenylacetylene [(D1)-3a, eq. 

(3)]. The deuterium incorporation was estimated by integrating the triplet signals of the H-D 

coupling relative to those of the H-H coupling (Figure 1, Supporting Information). The 

corresponding chalcone 6aa was formed with different degree of deuterium incorporation at the 

α and β positions with respect to the carbonyl group. The low deuteration degree achieved in all 

cases suggests a favored D-H exchange for the three reagents in play. This behavior was 

somewhat expected for phenylacetylene (D1)-3a and piperidine (D1)-2a due to the acidity of the 

acetylenic D and N-D, respectively. The scarce deuterium incorporation also observed in the 

case of pyridine-2-carbaldehyde (D1)-1a points to a new mechanism different from those 

previously published.16–19 The kH/kD = 0.47 determined for eq. (1) in Scheme 6 reveals the 

absence of a primary kinetic isotopic effect and rules out the cleavage of the formyl group C-H 

as being the determining step of the reaction (Figure 2, Supporting Information). This number is 

closer to that of an inverse secondary kinetic isotopic effect, implying a sp
2-to-sp

3 

rehybridization of the carbonyl group of 1a during the reaction.31 

The fact that the chalcone 6aa was not formed in the presence of tertiary amines and that the 

best conversions were achieved with the secondary amines piperidine and pyrrolidine (Table 4, 

entries 4 and 8, respectively), led us to conceive the reaction taking place through the A3 

coupling product. It is well known that this coupling is especially favored when using piperidine 

as the secondary amine and involves a sp
2-sp

3 rehybridization as commented above. In this 

sense, piperidine-derived propargyl amine (D1)-5laa was subjected to the reaction with 

piperidine (2a) in the presence of CuNPs/C and water under prolonged heating (Scheme 7). It  
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Ph
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N

O

Ph
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O
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+

+

N
H

N
H

Ph+

N CHO
N

O

Ph+
N
D

H(D)

H(D)

H(D)

H(D)

H(D)

H(D)

16%

< 1%

11%

20%

23%

13%

1a

(D1)-1a

2a

2a

(D1)-2a
1a

(D1)-3a

3a

3a

CuNPs/C

neat, 70 ºC

CuNPs/C

neat, 70 ºC

6aa

6aa

6aa

(3)

(1)

(2)

H

H

 

Scheme 6. Deuterium-labeling experiments in the synthesis of chalcone 6aa catalyzed by 0.5 

mol% CuNPs. 

was gratifying to observe the formation of the corresponding chalcone (6la), albeit the 

conversion was low, in agreement with the absence of electron-withdrawing groups in the 

aldehyde and alkyne components, as noted above. In contrast, the propargyl amine 5lac,32 

bearing the electron-withdrawing trifluoromethyl group, led to the expected chalcone 6lc either 

in the presence or the absence of the copper catalyst. Therefore, copper seems to be essential to 

obtain the A3 coupling product but not to transform it into the chalcone. The fact that no D-H 

exchange was detected in (D1)-5laa supports a type of irreversible process driven to the 

formation of the chalcone. 

On the basis of all the aforementioned experiments, we can propose a mechanism for the 

copper-catalyzed synthesis of chalcones from aldehydes and alkynes including: (a) the formation 

of the piperidine-derived propargylamine catalyzed by CuNPs/C, in the terms shown in Scheme  
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Scheme 7. Experimental evidence on propargyl amines acting as chalcone precursors. 

3 and previously published by our group;23b (b) piperidine-promoted isomerization of the 

propargylamine to the corresponding allenylamine; and (c) hydrolysis of the allenylamine to the 

E chalcone (Scheme 8). There are several features in this mechanism which, in our opinion, play 

a decisive role in the outcome of the reaction. First, the acidity of the propargylic hydrogen; we 

believe that this hydrogen atom is particularly acid because it is at the same time propargylic, 

benzylic and at α-position with respect to the nitrogen. This acidity might be also enhanced in 

certain cases by coordination of the CuNPs to the carbon-carbon triple bond. Up to this point the 

scenario is the same as previously described for the A3 coupling or the multicomponent synthesis 

of indolizines. However, it is the absence of solvent, in conjunction with the presence of 

electron-withdrawing groups in the starting materials, what really makes a difference in the 

pathway towards the synthesis of chalcones. We believe that piperidine plays a double role  
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Scheme 8. Reaction mechanism proposed for the synthesis of chalcones from aldehydes and 

alkynes catalyzed by CuNPs/C. 

acting as both a component in the A3 coupling and as a base; the unsolvated piperidine would 

manifest a more effective basic power, deprotonating the propargyl hydrogen atom and driving 
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the course of the reaction on the chalcone formation. The negative inductive effect caused by the 

presence of electron-withdrawing groups would work in the same direction: increasing the 

acidity of the propargylic hydrogen atom and stabilizing the negative charge generated after 

deprotonation in the propargyl-to-allenyl amine isomerization. This explanation is concordant 

with the observation that the synthesis of chalcones from aromatic aldehydes and/or alkynes with 

electron-donating substituents is troublesome. 

Although it may well be plausible that the hydrolysis step leading to the chalcone takes place 

in situ, it is important not to overlook the possibility for this step occurring during the work-up. 

With this aim, we studied by NMR the progress of the reaction of 2-pyridinecarbaldehyde (1a), 

piperidine (2a) and phenylacetylene (3a) under solvent-free conditions at 70 ºC; DMSO-D6 was 

used as an external reference. It is noteworthy that the formation of the chalcone 6aa was 

observed at an early stage (ca. 1 h), as proven by the coupling constant of the two vinylic protons 

(J = 16.1 Hz) in 1H NMR and the chemical shift of C=O (180.2 ppm) in 13C NMR (Figure 4, 

Supporting Information). This lends weight to the argument that hydrolysis of the chalcone 

precursor occurs to some extend in the reaction medium, involving the in situ-formed water 

though, probably, not fast enough to allow piperidine to work catalytically. 

 

Nature of the catalysis 

The following experiments were implemented in order to ascertain the nature of the catalysis: the 

standard indolizine (4aaa) and chalcone (6aa) syntheses were run up to 42% and 38% 

conversion (referred to the starting aldehyde), respectively. The catalyst was removed by 

filtration and the filtrates were subjected to additional heating for a total reaction time of 5 h 

(40% and 37% conversion, respectively) and 10 h. After the latter time, 54% conversion was 
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recorded in the indolizine synthesis, albeit to the detriment of the indolizine (15% 4aaa + 39% 

by-products), and 34% conversion in the chalcone synthesis. Apparently, decomposition of the 

indolizine occurs in the absence of the supported catalyst after prolonged heating. 

On the other hand, ICP-OES analyses of the filtrates showed substantial Cu leaching in the 

indolizine synthesis (39.7%) and some leaching in the chalcone synthesis (1.4%). These data are 

in agreement with the fact that catalyst reutilization was more effective in the later than in the 

former and also suggest that the leached species into solution are catalytically inactive, thus 

pointing to a catalysis of heterogeneous nature. 

 

Conclusions 

The multicomponent synthesis of a series of indolizines and pyrrolo[1,2-a]quinolines has been 

effectively accomplished from pyridine-2-carbaldehyde derivatives, secondary amines and 

alkynes using CuNPs/C as catalyst in dichloromethane. The methodology has been applicable to 

a variety of amines and alkynes, with the latter including aryl alkynes (bearing electron-neutral, -

releasing and -withdrawing groups) as well as aliphatic alkynes (42–93%). Interestingly, the 

same procedure, when applied in the absence of solvent using piperidine as the secondary amine, 

has led to heterocyclic chalcones as major products in modest-to-good yields (40–77%). Non-

heterocyclic chalcones have also been obtained though the presence of electron-withdrawing 

groups is crucial for their formation. In both processes, the catalyst was shown to be superior to 

some commercially available copper catalysts and it could be reused in the chalcone synthesis 

over four cycles with a decrease in activity (85–64% conversion). Reaction mechanisms have 

been proposed for the indolizine and chalcone formation, based on the strong experimental 

evidence of participation of propargyl amines as intermediates in both cases. To the best of our 
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knowledge, there is only one example in the literature in which propargyl amines have been used 

as chalcone precursors, albeit the rearranged products are obtained [Scheme 1, eq. (6)].20 It can 

be hence inferred that the synthesis of chalcones from aryl aldehydes and alkynes disclosed 

herein and the corresponding mechanism are unprecedented. Based on leaching studies, both the 

indolizine and chalcone syntheses are suggested to proceed under heterogeneous catalysis. 

 

Experimental 

General procedure for the synthesis of indolizines 4 catalyzed by CuNPs/C: The aldehyde 

(1, 0.5 mmol), amine (2, 0.5 mmol) and alkyne (3, 0.5 mmol) were added to a reactor tube 

containing CuNPs/C (20 mg, ca. 0.5 mol%) and dichloromethane (1.0 mL). The reaction mixture 

was warmed to 70 ºC without the exclusion of air and monitored by TLC and/or GLC until total 

or steady conversion of the starting materials. The solvent was removed in vacuo; EtOAc (2 mL) 

was added to the resulting mixture followed by filtration through Celite and washing with 

additional EtOAc (4 mL). The reaction crude obtained after evaporation of the solvent was 

purified by column chromatography (silica gel, hexane/EtOAc) or preparative TLC 

(hexane/EtOAc) to give the corresponding indolizine 4. 

General procedure for the synthesis of chalcones 6 catalyzed by CuNPs/C: The aldehyde (1, 

0.5 mmol), piperidine (2a, 0.5 mmol) and alkyne (3, 0.5 mmol) were added to a reactor tube 

containing CuNPs/C (20 mg, ca. 0.5 mol%) in the absence of solvent. The reaction mixture was 

warmed to 70 ºC without the exclusion of air and monitored by TLC and/or GLC until total or 

steady conversion of the starting materials. EtOAc (2 mL) was added to the resulting mixture 

followed by filtration through Celite and washing with additional EtOAc (4 mL). The reaction 
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crude obtained after evaporation of the solvent was purified by column chromatography (silica 

gel, hexane/EtOAc) to give the corresponding chalcone 6. 
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