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FFT Interpolation from Nonuniform Samples

Lying in a Regular Grid
J. Selva

Abstract

This paper presents a method to interpolate a periodic band-limited signal from its samples lying at

nonuniform positions in a regular grid, which is based on the FFT and has the same complexity order

as this last algorithm. This kind of interpolation is usually termed “the missing samples problem” in

the literature, and there exists a wide variety of iterative and direct methods for its solution. The one

presented in this paper is a direct method that exploits the properties of the so-called erasure polynomial,

and provides a significant improvement on the most efficient method in the literature, which seems to be

the burst error recovery (BER) technique of Marvasti’s et al. The paper includes numerical assessments

of the method’s stability and complexity.

I. INTRODUCTION

In a variety of applications, a band-limited signal is converted from the analog to the discrete domain,

but some of the resulting samples are lost due to various causes. Then, the problem is to interpolate the

lost samples from the available ones, assuming the average rate of the latter fulfills the Nyquist condition.

Just to cite a few applications in which this problem arises, it is a task required whenever a sampled signal

is sent through a packet network and there exist losses [1]. Also, it is a basic spectral estimation problem

whenever a channel spectrum must be estimated from its nonuniform samples in OFDM systems [2], [3],

(pilot-aided estimation). It is equivalent to the error calculation step for the so-called Bose-Chaudhuri-

Hocquenghem (BCH) DFT codes, in which the coding is performed in the real field, before quantization,

[4]–[6]. Finally, in time-interleaved analog-to-digital converters (TI-ADCs), some samples at arbitrary

positions can be unavailable due to a jitter calibration process, and they must be recovered, [7], [8].
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In sampling theory, this problem is usually termed “the missing samples problem”, and is addressed

assuming the signal’s bandwidth is unknown but fulfills the Nyquist condition. The basic interpolation

model is then the trigonometric one, i.e, the signal is viewed as a trigonometric polynomial, and the

problem reduces to computing the polynomial’s coefficients and from them the missing samples [9],

[10, Ch. 17]. As can be easily deduced, this task is equivalent to solving a linear system for which

there exist various standard techniques. There are, however, two main issues. The first is the numerical

stability, due to the fact that the round-off errors accumulate heavily if there is a large number of

consecutive missing samples. The second is the complexity, given that the linear system size is large and

the complexity order of the standard techniques depends cubically on it. Though there exist conventional

stable techniques like the pseudo-inverse, no conventional technique seems able to deal with both the

stability and complexity drawbacks. This situation has led to the development of various direct and

iterative algorithms for recovering the lost samples during the last decades. Probably, the earliest solution

in the literature was the Papoulis-Gerchberg algorithm [11], [12], which is an iterative method based

on the FFT. Standard techniques like the conjugate gradient and Lagrange interpolation methods have

also been employed [13, Sec. 3]. [1] presents another iterative method and several ways to speed up its

convergence using extrapolation. The BER technique of Marvasti et al. in [13] seems to be the most

efficient technique to date. The numerical experiments show that this technique is stable, and achieves

the complexity order O(NP ), where N is the total number of samples and P the number of known ones.

This complexity order is a clear improvement compared to the order of the standard methods which is

O(P 3).

The purpose of this paper is to present a new direct solution for the missing sampling problem whose

complexity order is O(N logN). If a denotes the ratio of total to known samples N/P and is assumed

constant, then the complexity of the BER technique is O(N2) while that of the proposed method is

O(N logN). Thus, the proposed method provides a significant improvement in terms of complexity.

Actually, its arithmetic operations count is up to factor twenty smaller than the corresponding count

of the BER technique, for typical values of N . The method proposed in this paper is based on two

theorems. The first gives a procedure for obtaining the missing samples which consists of two FFTs

plus three weighting operations. The coefficients of two of the three weighting operations depend on the

sampling positions, and thus the procedure is efficient but only usable if these last coefficients have been

pre-computed. The second theorem provides a solution to this last shortcoming, by specifying a procedure

to compute the weighting coefficients in just two FFTs plus the computation of one complex exponential

per sample. The combination of these two theorems yields the proposed method whose complexity is

O(N logN).
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The efficient recovery of a band-limited signal from its own nonuniform samples has been a fundamental

topic during the last decades. In [14], the authors proposed a filterbank approach for reducing the

implementation complexity, while in [9] efficiency was achieved by processing the signal’s samples

block-wise. In [15], [16], the sampling instants varied sample-wise and the signal was assumed to have

a known bandwidth strictly below the Nyquist rate. In these last references, the efficiency was the result

of exploiting the properties of the Lagrange and barycentric interpolators. The method in the present

paper assumes perfect knowledge of the samples’ positions. Therefore, it can be a useful tool for more

complex problems in which these positions are unknown, as those dealt with in areas like compressed

sensing and random sampling [17]–[20], though is not directly applicable.

The paper has been organized as follows. In the next two sub-sections, we introduce the notation

and recollect several basic results about periodic signals and the FFT. Then, in Sec. II we introduce the

missing samples problem, comment on standard solution methods like the pseudo-inverse, and discuss

in detail the BER technique. Afterward, we present in Secs. III and IV the two theorems making up

the proposed method. The complexity order of the standard pseudo-inverse, BER and proposed methods

are then discussed in Sec. V. Finally, these methods are compared in terms of numerical stability and

computational burden in Sec. VI.

A. Notation and basic concepts

We will employ the following notation:

• Throughout the paper, t ∈ R will denote the time variable, and n, p and q integer variables.

• Definitions of new symbols and functions will be written using ’≡’.

• Vectors will be denoted in lower-case bold face, (s, d), and matrices in upper-case bold face (A,

Φ).

• A† is the pseudo-inverse of A.

• [v]n will denote the nth component of vector v.

• For integer M ≥ 0, IM will denote the set

{0, 1, . . . , M − 1}.

• For any signal or sequence f and a set of integers A, {f(n), n ∈ A} will denote the set of samples

f(n) taken at positions n ∈ A. With this definition, we jointly give information about the values

f(n) and their corresponding sampling positions n. A rigorous definition is

{f(n), n ∈ A} ≡ {(n, f(n)) : n ∈ A},
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i.e, {f(n), n ∈ A} is the set of pairs formed by the sampling positions and their corresponding

values.

• DFT{v} and IDFT{v} will respectively denote the DFT and IDFT of vector v, but computed using

a fast algorithm based on the FFT. Note that there exist fast algorithms of this kind for any vector

length, like the chirp transform, [21, Sec. 6.9.2].

• For two sets, A and B, A\B will denote the set of elements in A not in B.

• a � b will denote the component-wise product of a and b, i.e, for a and b of equal length,

[a� b]n = [a]n[b]n.

• For two N -period discrete sequences, a(n) and b(n), (a
N∗b)(n) will denote their cyclic convolution,

defined by

(a
N∗ b)(n) ≡

q+N−1∑
p=q

a(p)b(n− p),

where q can be any integer, given that a(n) and b(n) have period N . The cyclic convolution can

be efficiently evaluated using the FFT by means of the formula

(a
N∗ b)(n) = [IDFT{DFT{a} � DFT{b}}]n+1, n ∈ IN , (1)

where

[a]n+1 ≡ a(n), [b]n+1 ≡ b(n), n ∈ IN .

B. The basic set of trigonometric polynomials and two evaluation procedures based on the FFT

In the paper, a key concept will be the set of trigonometric polynomials of the form

v(t) =

N−1∑
p=0

Vpe
j2πpt/N , (2)

where N > 0 is the number of polynomial coefficients, Vp ∈ C and t ∈ R. This set will be denoted FN ,

and we will exploit two evaluation procedures for its elements based on the DFT.

The first procedure is the usual way to switch the time and frequency domains using the DFT/IDFT

pair. More precisely, for v(t) ∈ FN we may group the time samples and coefficients in corresponding

vectors, v and ṽ,

[v]n+1 ≡ v(n), [ṽ]p+1 ≡ Vp, (n, p ∈ IN ), (3)

and then obtain ṽ from v and vice versa using the equations

v = N IDFT{ṽ},

ṽ =
1

N
DFT{v}.
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Also, we may express these relations as

{vn, n ∈ IN}
DFT−−→ {NVp, p ∈ IN}. (4)

The second procedure is the method to differentiate v(t) ∈ FN using the DFT/IDFT pair, and exploits

the fact that FN is closed under differentiation, i.e, if v(t) ∈ FN then v′(t) ∈ FN . This last property

is obvious since the Fourier coefficients of v′(t) are {j2πpVp/N, p ∈ IN}. If v′ denotes the derivative

samples vector of v(t),

[v′]n+1 ≡ v′(n), n ∈ IN ,

then the procedure is expressed by the formula

v′ = IDFT{DFT{v} � d}, (5)

where

[d]p+1 ≡ j2πp/N, p ∈ IN . (6)

II. THE MISSING SAMPLES PROBLEM

A basic interpolator for a band-limited signal so(t) is the trigonometric one, i.e, it consists of viewing

so(t) as a trigonometric polynomial of the form

so(t) ≈
p1+P−1∑
p=p1

So,pe
j2πpt/T , (7)

where we assume that so(t) is interpolated in the range [0, T ] with T > 0, So,p denotes the pth coefficient,

p1 the first polynomial index, and P > 0 the number of coefficients. If (7) is sufficiently accurate and so(t)

is sampled with period T/N for integer N ≥ P , then it is well-known that the coefficients So,p and the

value of so(t) at any t ∈ [0, T ] can be efficiently computed from the set of samples {so(nT/N), n ∈ IN}

using algorithms from the FFT family [22].

In some applications, however, N − P samples from the set {so(nT/N), n ∈ IN} are lost due to

various causes, and then the problem consists of recovering these missing samples from the known ones

in a numerically stable way and with low complexity. More precisely, if J denotes the indices n of the

known samples, then J has P elements and the objective is to obtain the samples {so(nT/N), n ∈ Jc},

where Jc is the complement of J relative to IN ,

Jc ≡ IN\J.
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In this problem, the initial index p1 and time period T are irrelevant, given that we may scale so(t)

so that its period is N and its first frequency is zero. So, in order to simplify the notation, we may state

the problem in terms of the following normalized signal

s(t) ≡ so(tT/N)e−j2πp1t/N .

From (7) we have that s(t) has the form

s(t) =

P−1∑
p=0

Spe
j2πpt/N , (8)

where Sp ≡ So,p+p1 . In terms of s(t), the problem consists of computing the samples {s(n), n ∈ Jc},

assuming the samples {s(n), n ∈ J} are known.

As can be readily checked, the solution to this problem just involves the inversion of the linear system

s(n) =

P−1∑
p=0

Spe
j2πpn/N , n ∈ J, (9)

in which the unknowns are the coefficients Sp, followed by the computation of the desired samples using

(8) for t ∈ Jc. This inversion can in principle be tackled using conventional linear algebra techniques.

However, (9) is ill conditioned if there are long sequences of missing samples, and it is then necessary

to resort to a method ensuring stability. The usual one is based on the pseudo-inverse and its first step

consists of computing estimates {Ŝps,p, p ∈ IP } of the coefficients {Sp, p ∈ IP } through the equation

s̃ps = Φ†s, (10)

where

[s̃ps]p+1 ≡ Ŝps,p, [Φ]k,p+1 ≡ ej2πpn(k)/N ,

[s]k ≡ s(n(k)), (p, k ∈ IP ),

and n(k) runs through the elements of J for k ∈ IP . Then, {s(n), n ∈ Jc} can be readily obtained by

evaluating (8) with Ŝps,p in place of Sp for t ∈ Jc. The main drawback of conventional methods like

this one is their O(P 3) complexity order, which is too high for most practical applications. Specifically,

in the pseudo-inverse method just stated, the computation of Φ† in (10) involves one singular value

decomposition (SVD) with O(P 3) complexity. This drawback has led to the development of a variety of

iterative and non-iterative methods with lower complexity during the last decades; (see [10, Ch. 17] for

a review on this topic).

In [13], Marvasti et al. presented the so-called BER technique for this problem whose complexity order

is O(NP ). This order is a clear improvement compared to the O(P 3) order of the standard solutions,
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and relative to other methods like the Lagrange interpolation and conjugate gradient methods. The key

of the BER method consists of two relations between the following three polynomials:

• sJ(t): Element of FN such that sJ(n) = s(n) if n ∈ J and sJ(n) = 0 if n ∈ Jc.

• sJc(t): Polynomial with the same definition as sJ(t) but with J and Jc switched.

• φ(t): Erasure polynomial. This is the monic element of FN of degree N −P with one simple zero

at each missing sample instant (set Jc), i.e, the polynomial

φ(t) ≡
∏
n∈Jc

(ej2πt/N − ej2πn/N ). (11)

To introduce the first relation in the BER technique, note that to compute the desired samples {s(n), n ∈

Jc} is equivalent to compute {sJc(n), n ∈ IN}, given that sJc(n) = 0 if n ∈ J . Additionally, from the

definitions of sJ(t) and sJc(t), it is clear that

s(n) = sJ(n) + sJc(n), n ∈ IN . (12)

This equation can be written in the coefficients (frequency) domain using (4),

Sp = SJ,p + SJc,p, p ∈ IN , (13)

where SJ,p and SJc,p respectively denote the Fourier coefficients of sJ(t) and sJc(t). But Sp = 0 if

P ≤ p < N and, therefore, (13) implies

SJc,p = −SJ,p, P ≤ p < N. (14)

So, the DFT of the samples {sJ(n), n ∈ IN} gives partial information about sJc(t), namely its coefficients

SJc,p for P ≤ p < N .

The second relation links sJc(t) with the erasure polynomial φ(t) and is the following

sJc(n)φ(n) = 0, n ∈ IN . (15)

This relation is also a direct consequence of the definitions of sJc(t) and φ(t), given that J ∪ Jc = IN ,

sJc(n) = 0 if n ∈ J , and φ(n) = 0 if n ∈ Jc. If we take (15) to the frequency domain using the DFT

(4), we have that (15) is turned into a cyclic convolution of the coefficients of sJc(t) and φ(t). More

precisely, we have
N−P∑
p=0

φN−P−pSJc,q+p = 0, q ∈ Z, (16)

where φp denotes the coefficients of φ(t), and we take SJc,p as a periodic sequence, i.e, SJc,p+N = SJc,p,

p ∈ Z. This second relation can be written as a recursive formula for computing SJc,q, if SJc,q+p is known

for 1 ≤ p < N − P . For this, just note from (11) that φN−P = 1 and solve for SJc,q in (16),

SJc,q = −
N−P∑
p=1

φN−P−pSJc,q+p. (17)
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We have that (14) already provides the coefficients SJc,q+p in this sum if q = P . So we may recursively

apply this last formula for q = P, P − 1, . . . , 0, in order to compute the missing coefficients SJc,q,

0 ≤ q < P .

Finally, from {SJc,p, p ∈ IN} we obtain the desired samples {sJc(n), n ∈ Jc} through one inverse

DFT,

s(n) = sJc(n) = [IDFT{sJc}]n+1, n ∈ Jc, (18)

where

[s̃Jc ]p+1 ≡ SJc,p, p ∈ IN .

We can see in this method that the insertion of zeros, either in a vector or using the erasure polynomial,

is the key to obtaining an efficient solution. Actually, the zero insertion in the definitions of sJ(t) and

sJc(t) permits the use of the DFT in going from (12) to (13). And the multiplication by the erasure

polynomial in (15) produces a zero sequence and the corresponding cyclic convolution in (16). There is,

however, a more powerful way to insert zeros, that leads to a method entirely based on the DFT and

weighting operations with complexity O(N). The method is based on considering the properties of the

signal s(t)φ(t) and is presented in the next section. It yields the desired samples in just two DFTs, if

some samples of φ(t) and its derivative are known.

III. PROPOSED METHOD FOR FIXED SAMPLING POSITIONS

We present in the sequel a theorem specifying the first part of the proposed method. More precisely,

it gives an efficient method to compute the desired samples {s(n), n ∈ Jc} assuming that the samples

{s(n), n ∈ J}, index set J , and values {φ(n), n ∈ J} and {φ′(n), n ∈ Jc} are known. The re-

computation of these last two sets of values will be addressed in the next section. The theorem is the

following.

Theorem 1. The desired samples are given by the formula

s(n) =
1

φ′(n)
[IDFT{DFT{sφ} � d}]n+1, n ∈ Jc, (19)

where d was defined in (6) and

[sφ]n+1 ≡

 s(n)φ(n) if n ∈ J

0 if n ∈ Jc.
(20)

The implementation of the procedure specified in this theorem is straight-forward. First, it is necessary

to form the nonuniformly zero-padded vector sφ in (20), and then perform the steps specified in (19), i.e,

1) Compute the DFT of sφ.
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2) Weight the result component-wise using d.

3) Compute the inverse DFT.

4) Multiply the samples with n ∈ Jc by 1/φ′(n).

If what is required is the set of Fourier coefficients {Sp, p ∈ IP }, then they can be computed from

{s(n), n ∈ IN}, through one FFT using the formula

Sp = DFT{s1}, p ∈ IP ,

with

[s1]n+1 ≡ s((N/Q)n), n ∈ IQ,

where Q is the smallest divisor of N such that Q ≥ P .

Proof of theorem 1. Consider the signal

sφ(t) ≡ s(t)φ(t)

and two key facts related with it. The first is that we know its value at all instants in the regular grid

IN . This is so because either n ∈ J and then both factors of the product s(n)φ(n) are known, or n ∈ Jc

and then s(n)φ(n) = 0 because φ(n) = 0. As a consequence, we have enough information to form the

vector sφ in (20), akin to v in (3), given that the only samples of s(t) appearing in (20) are the known

ones, [s(n), n ∈ J].

The second fact is that sφ(t) belongs to FN . We can see that this is so if we view (8) and (11) as

polynomials in the variable z = ej2πt/N . Since the right-hand side of (8) has degree P − 1 and (11) has

degree N − P (number of elements of Jc), then s(t)φ(t) has degree N − 1 in z. In other words, sφ(t)

has the form in (2). As a consequence, we may compute the derivative samples of sφ(t) using (5). We

have

s′φ = IDFT{DFT{sφ} � d}, (21)

where

[s′φ]n+1 ≡ s′φ(n), n ∈ IN .

Finally, the product differentiation rule allows us to obtain the desired samples s(n), n ∈ Jc, from s′φ,

given that φ(t) has placed zeros at the instants n ∈ Jc. Specifically, since φ(n) = 0 if n ∈ Jc, we have

s′φ(n) = s′(n)φ(n) + s(n)φ′(n) = s(n)φ′(n).

So, solving for s(n) we obtain

s(n) =
s′φ(n)

φ′(n)
=

[s′φ]n+1

φ′(n)
, n ∈ Jc.
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Note that the division by φ′(n) is valid because the instants n ∈ Jc are simple zeros of φ(n). The

theorem’s formula in (19) is the result of substituting (21) into this last equation.

IV. COMPUTATION OF THE ERASURE POLYNOMIAL WEIGHTS φ(n) AND φ′(n)

In Theorem 1, the samples of φ(n) and φ′(n) depend on the sampling scheme and, therefore, they

must be re-computed whenever the set J changes. If this re-computation is performed using (11) directly,

then the cost of obtaining {φ(n), n ∈ J} is O((N −P )P ). As to the samples {φ′(n), n ∈ Jc}, they can

be computed from the derivative of (11),

φ′(t) =
j2π

N
ej2πt/N

∑
k∈Jc

∏
n∈Jc\{k}

(ej2πt/N − ej2πn/N )

with complexity O((N − P )2(N − P − 1)). These complexities are too high for real-time systems. The

following theorem presents a method to compute these values with complexity O(N logN). It involves

the computation of two size-N FFTs and N complex exponentials.

Theorem 2. Consider the N -period sequence specified by

α(n) ≡

 log(1− e−j2πn/N ), 1 ≤ n < N

0, n = 0
(22)

and α(n+N) = α(n), n ∈ Z. Let β(n) denote the cyclic convolution

β(n) ≡ (1Jc
N∗ α)(n), (23)

where 1Jc(n) is the cyclic indicator sequence for Jc, defined by

1Jc(n) ≡

 1 if n ∈ Jc

0 if n ∈ J
(24)

and 1Jc(n) = 1Jc(n+N), n ∈ Z. The samples of φ(t) and φ′(t) required in theorem 1 are given by

φ(n) = exp
(
− j2πnP

N
+ β(n)

)
, n ∈ J, (25)

φ′(n) =
j2π

N
exp

(
− j2πnP

N
+ β(n)

)
, n ∈ Jc. (26)

Note that the sequence α(n) is independent of the sampling scheme and, therefore, it can be computed

offline. This theorem implies that the computation of the required samples of φ(n) and φ′(n) just requires

the cyclic convolution in (23) and the computation of one complex exponential per sample. Since the

cyclic convolution can be performed using the FFT [Eq. (1)], the total computational cost is O(N logN).

In computing the cyclic convolution, the DFT of the sequence α(n) can be spared, given that it can be

performed offline. So to update φ(n) and φ′(n) just requires two FFTs.
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Proof of theorem 2. Let us write (11) in terms of α(n), taking into account that Jc has N −P elements.

If n ∈ J , we have:

φ(n) =
∏
k∈Jc

(ej2πn/N − ej2πk/N ) (27)

=
∏
k∈Jc

(ej2πn/N (1− ej2π(k−n)/N ))

=
∏
k∈Jc

(ej2πn/Neα(n−k))

= ej2πn(N−P )/N
∏
k∈Jc

eα(n−k)

= exp
(
− j2πnP

N
+
∑
k∈Jc

α(n− k)
)
. (28)

In this last step, note that the summation is the cyclic convolution of α(n) with the indicator sequence

of Jc in (24); i.e, ∑
k∈Jc

α(n− k) = (1Jc
N∗ α)(n),

and we have from (28)

φ(n) = exp
(
− j2πnP

N
+ (1Jc

N∗ α)(n)
)
, n ∈ J. (29)

Thus we have proved (25).

For deriving (26), we must consider first the signal φ1(t) with the same definition as φ(t) in (11), but

with J in place of Jc, i.e, the signal

φ1(t) ≡
∏
n∈J

(ej2πt/N − ej2πn/N ). (30)

For φ1(t), we may repeat the derivations in (27) to (29) already performed for φ(t) and, as can be easily

checked, the result is the formula in (29) but with J and Jc switched and N − P in place of P in the

first term of the exponent. Specifically, we obtain

φ1(n) = exp
(
− j2πn(N − P )

N
+ (1J

N∗ α)(n)
)
, n ∈ Jc, (31)

where 1J(n) is the indicator sequence of J , defined by 1J(n+N) = 1J(n), n ∈ Z, and

1J(n) ≡

 1 if n ∈ J

0 if n ∈ Jc.

Next, we require two simple results about α(n) and the indicators 1Jc(n) and 1J(n). The first is the

property
N−1∑
n=0

α(n) = log(N), (32)
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which is proved in Ap. A. The second is the fact that we may write (31) in terms of 1Jc(n) rather than

1J(n), because these two indicator functions are complementary; i.e, since J ∪Jc = IN and J ∩Jc = ∅,

we have

1all(n) = 1J(n) + 1Jc(n), (33)

where 1all(n) is the all-ones sequence.

Now, using (32) and (33) we have that (1J
N∗ α)(n) can be obtained from (1Jc

N∗ α)(n):

(1J
N∗ α)(n) = (1all

N∗ α)(n)− (1Jc
N∗ α)(n)

= log(N)− (1Jc
N∗ α)(n).

And substituting this formula into (31), we obtain a result of the form in (29) but for φ1(n),

φ1(n) = N exp
(
− j2πn(N − P )

N
− (1Jc

N∗ α)(n)
)
, n ∈ Jc. (34)

Let us derive the formula for φ′(n), n ∈ Jc. For this, consider the product φ(t)φ1(t). From (27) and

(30), we have that this product is a monic polynomial whose root set is {ej2πn/N , n ∈ IN}, given that

J ∪ Jc = IN and J ∩ Jc = ∅. So, we have

φ(t)φ1(t) =

N−1∏
n=0

(ej2πt/N − ej2πn/N ) (35)

=

N−1∏
n=0

(z − ej2πn/N )

∣∣∣∣∣
z=ej2πt/N

= (zN − 1)|z=ej2πt/N = ej2πt − 1.

In this derivation, we have used the fact that the monic N th-order polynomial with root set {ej2πn/N , n ∈

IN} is zN − 1.

Next, let us apply the product differentiation rule to the equation derived in (35),

φ(t)φ1(t) = ej2πt − 1,

at t = n, n ∈ Jc. For its left-hand side, we have

(φ(t)φ1(t))
′
t=n =

(
φ′(t)φ1(t) + φ(t)φ′1(t)

)
t=n

= φ′(n)φ1(n), (36)

given that φ(n) = 0 if n ∈ Jc. And for its right-hand side, we have

(ej2πt − 1)′t=n = j2π. (37)
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Operation Flops

Real sum 1

Complex sum 2

Real multiplication 1

Complex multiplication 6

Complex exponential 7

Size-N FFT, IFFT 5N log2N

Fig. 1. Flop counts for basic operations.

So, the combination of (36) and (37) yields

φ′(n) =
j2π

φ1(n)
, n ∈ Jc.

Finally, substituting (34) into this last formula we obtain

φ′(n) =
j2π

N
exp

(
− j2πnP

N
+ (1Jc

N∗ α)(n)
)
, n ∈ Jc,

which is (26).

V. COMPLEXITY ANALYSIS

In this section, we present counts of the number of floating point operations (flops) for the pseudo-

inverse, BER, and proposed methods. Since the complexity of basic operations like multiplication and

complex exponential may vary wildly with the hardware implementation, we have employed the conven-

tion in Fig. 1 for measuring the complexity.

The pseudo-inverse method consists of two steps with the following flop counts:

• Computation of coefficients {S̃ps,p, p ∈ IP } from (10) using a complex singular value decomposition

(SVD), [23, p. 293]: 96P 3.

• Evaluation of (8) for t ∈ Jc: (N − P )(8P − 1).

Thus, the total cost of the pseudo-inverse method is

96P 3 + (N − P )(8P − 1). (38)

The flop count of each step in the BER technique, as explained in Sec. II, is the following:

• Computation of {φ(n), n ∈ J} using (11),

10P (N − P )− 11P + 3.
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• DFT of the sequence {φ(n), n ∈ IN} for obtaining the coefficients {φp, p ∈ IN−P } in (17):

5N log2N .

• DFT of sequence {sJ(n), n ∈ IN}, for computing {SJ,p, p ∈ IN}: 5N log2N .

• Computation of recursive formula in (17),

8P (N − P )− P.

• Inverse DFT for obtaining the final result {sJc(n), n ∈ IN}: 5N log2N .

The total cost of the BER technique is the following

18P (N − P )− 12P + 3 + 15N log2N. (39)

The implementation of the proposed method has the following flop counts:

• Computation of {α(n), n ∈ IN} in (22). We assume zero cost for this operation, given that it can

be performed offline.

• Computation of {β(n), n ∈ IN} in (23). This operation involves two FFTs plus N complex

multiplications. The cost is

10N log2N + 8N − 1.

• Computation of samples φ(n), n ∈ J , in (20) using (25). We assume the factor −j2πP/N in the

exponent of (25) has been pre-computed. The cost of this operation is

18P − 3.

• Computation of second factor in (19). This operation involves two DFTs and N real-to-complex

products with total cost

10N log2N + 4N − 2.

Computation of {1/φ′(n), n ∈ Jc} from (26), and product with the output of the previous step. The

cost is

20(N − P )− 4.

The total cost of the proposed technique is the following

20 log2N + 32N − 2P − 10.

By comparing (39) with this last equation, we can readily see that the complexity of the proposed

method is free of quadratic terms, while the complexity of the BER techniques is dominated by these

terms whenever P is separated from 0 and N . From (38), we can see that the pseudo-inverse has the

highest complexity order among the three methods, O(P 3).
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VI. NUMERICAL EXAMPLES

A. Numerical stability

The linear system in (9) is ill conditioned if there are long sequences of missing samples. This implies

that a given method can be mathematically correct but not usable in practice, due to the accumulation

of round-off errors. A well-known instance of such method is the Gaussian elimination procedure. For

the proposed method, we can see from theorems 1 and 2 that it consists of a concatenation of a small

number of stable operations. Specifically, there are three weighting operations, four DFTs, and N complex

exponentials, and all these operations are stable numerically. This fact suggests that the proposed method

is stable, though this assertion must be validated numerically. We perform this validation in the sequel

by comparing the following three methods using double precision arithmetic:

• Pseudo-inverse method: Solution based on (10) and (8).

• BER technique: Combination of (14), (17), and (18).

• Proposed method: Method in theorem 1 using the computation procedure for φ(n) and φ′(n) in

theorem 2.

In the examples that follow, we employ test signals of the form in (8) with Sp = SR,p + jSI,p, where

SR,p and SI,p are independent realizations of a uniform distribution in the interval [−1, 1]. The figures

are based on 100 Monte Carlo trials.

We present two examples. In the first, we assume a sampling grid which is the result of shifting the

samples of a uniform grid (jittered sampling). In the second, we address the extrapolation problem, i.e,

the sampling grid has a long gap that must be filled.

1) Round-off error for a jittered sampling scheme: In this example, we fix an oversampling factor a = 8

and relate N and P through N = aP . Then, we take sampling instants tp = 8p+up, p = 0, 1, . . . , P −1

where up is randomly taken from the set {0, 1, . . . , a− 1} with uniform distribution (jittered sampling).

Fig. 2 shows the round-off error versus the number of output samples N . The ordinate in this figure is

the largest error among the N − P interpolated samples and all trials. The proposed method improves

on the BER technique slightly, and these two methods show a slight accuracy loss (one to two decimal

digits) compared to the pseudo-inverse solution. The error of the proposed method is sufficiently small

for most applications.

2) Round-off error for extrapolation: In this example, we fix N = 64 and take as input samples those

at t = 0, 1, . . . , P −1. The objective is to interpolate the signal at t = P, P +1, . . . , N−1. Fig. 3 shows

the maximum round-off error versus P among all interpolated samples and trials. Note that there is little
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Fig. 2. Maximum round-off error among all interpolated samples and trials versus number of output samples (N ), for the

proposed, BER and pseudo-inverse methods.
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Fig. 3. Maximum round-off error among all interpolated samples and trials versus number of input samples P , for the proposed,

BER and pseudo-inverse methods.

difference between the performances of the three methods, with the BER technique having a slightly

better performance.

B. Computational burden

In this section, we evaluate the computational burden of the proposed method relative to the pseudo-

inverse and BER techniques, using the results in Sec. V.

1) Complexity versus grid size N : Fig. 4 shows the flop counts for the three methods versus the grid

size, assuming a = N/P = 8. There are two variants of the proposed method in this figure. In variant

“Prop. A”, β(n) in (23) is computed using the FFT (1), while in variant “Prop. B” (23) is evaluated
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Fig. 4. Complexity versus grid size N for two variants of the proposed method and the BER and pseudo-inverse techniques.

Variant “Prop. A” computes β(n) in (23) using the FFT, while variant “Prop. B” performs this last computation by directly

evaluating the convolution in (23).

directly. The proposed methods shows a clear improvement compared to the BER technique. For large

N , “Prop. A” is roughly a factor 16 less complex than the BER technique. Also, note that “Prop. B”

improves on “Prop. A” for small N . This is due to the fact that the cyclic convolution in (23) can be

directly evaluated without any multiplications. Finally, the pseudo-inverse is by far the most expensive

technique due to the computation of one SVD.

2) Complexity versus N/P ratio: Fig. 5 shows the ratio

BER tech. flop count
“Prop. A” flop count

,

versus the factor a = N/P for N = 1024, where “Prop. A” was described in the previous sub-section.

This figure shows that “Prop. A” improves on the BER technique for all a values except for the very

small or very large. Actually, the BER technique is more efficient only if a < 0.0049 or a > 0.96, (P ≤ 5

or P ≥ 1019). The maximum improvement is factor 20 roughly.

3) Complexity compared with the zero-padding FFT algorithm : If N/P is an integer and J is a

regular grid with spacing N/P , then the missing samples problem can be solved using the zero-padding

FFT (ZP-FFT) algorithm, [24, Sec. 3.11]. Fig. 6 shows the complexity of this well-known algorithm and

that of the method in this paper. The curve “Proposed, no weight comp.” is the count of “Prop. A” but

discounting the complexity of computing {φ(n), n ∈ J} and {φ′(n), n ∈ Jc}, given that the sampling

grid is constant. This figure shows that the proposed method is, in rough terms, only factor two more

complex than ZP-FFT if the weight factors are available, and factor 4 if not.
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Fig. 5. Improvement factor of the proposed method relative to the BER technique in terms of flop count, (proposed method’s

count / BER technique’s count).
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Fig. 6. Complexity versus the zero-padding FFT algorithm.

VII. CONCLUSIONS

We have presented a solution for the missing samples problem based on the FFT. The method has

complexity O(N logN) and consists of four FFTs plus several operations of order O(N). It provides a

significant improvement on the burst error recovery (BER) technique, which seems to be the most efficient

method in the literature. For typical values of N , the complexity is reduced up to factor 20, relative to this

last technique. The method has been assessed in terms of numerical stability and computational burden

numerically.
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APPENDIX A

PROOF OF (32)

In order to prove (32), write the summation as the logarithm of a polynomial in z = ej2πt/N :
N−1∑
n=0

α(n) = log
(N−1∏
n=1

(z − e−j2πn/N )
)∣∣∣
z=1

. (40)

Note that zN − 1 is the monic polynomial with roots ej2πn/N , n = 0, 1, . . . , N − 1, and these roots

also appear in (40), except for the root at z = 1. So we have that the polynomial in (40) is actually

(zN − 1)/(z − 1) and

N−1∑
n=0

α(n) = log
(zN − 1

z − 1

)∣∣∣
z=1

= log
(N−1∑
n=0

zn
)∣∣∣
z=1

= log(N).
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