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Novel hierarchical SiO2 monolithic microreactors loaded with either Pd or Pt 

nanoparticles have been prepared in fused silica capillaries and tested in the Preferential 

Oxidation of CO (PrOx) reaction. Pd and Pt nanoparticles were prepared by the 

reduction by solvent method and the support used was a mesoporous SiO2 monolith 

prepared by a well-established sol-gel methodology. Comparison of the activity with an 

equivalent powder catalyst indicated that the microreactors show an enhanced catalytic 

behaviour (both in terms of CO conversion and selectivity) due to the superior mass and 

heat transfer processes that take place inside the microchannel. TOF values at low CO 

conversions have been found to be ~2.5 times higher in the microreactors than in the 

powder catalyst and the residence time seems to have a noticeable influence over the 

selectivity of the catalysts designed for this reaction. The Pd and Pt flexible 

microreactors developed in this work have proven to be effective for the CO oxidation 

reaction both in the presence and absence of H2, standing out as a very interesting and 
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suitable option for the development of CO purification systems of small dimensions for 

portable and on-board applications.  

 

Keywords: Noble metal nanoparticles, mesoporous SiO2, capillary microreactors, 

hierarchical monoliths, Preferential Oxidation of CO (PrOx CO). 

 

1. Introduction. 

 

Due to the steep rise in environmental pollution, in the last few years new policies of 

sustainability are being encouraged in order to boost renewable energies usage and the 

development of cleaner technologies and industrial processes [1]. In this context, 

polymer electrolyte membrane (PEM) fuel cells stand out as a clean and efficient way to 

obtain energy directly from the chemical reaction between H2 and O2, both in large 

scale but also in smaller scale applications, such as portable devices, substituting the 

traditional Li-ion batteries. Micro fuel cells are preferred to traditional Li-ion batteries 

since they provide a higher energy density and can therefore serve as micro-power 

sources for certain systems [2]. However, these devices require the catalytic treatment 

of the H2 streams to deliver them with sufficient purity to the fuel cell. This treatment 

involves, among other steps, the selective oxidation of CO (also referred to as 

Preferential Oxidation of CO or PrOx in the literature) which is mandatory to comply 

with the H2 purity levels required in a fuel cell (CO concentration level <10 ppm). 

Microreactors are both an interesting and viable option for this operation in 

miniaturized PEMFC. Microreactors, in addition to their small size, also present several 

advantages with respect to packed-bed reactors, such as large surface-to-volume ratios 

which lead to optimized heat and mass transfer processes that reflect in process 



  

intensification as well as the ability to be incorporated in complex, non-conventional 

reactor architectures including very small reaction units. Furthermore, as a consequence 

of the small size of the channels, the radial diffusion time in the gas phase is very short, 

helping avoid the formation of unwanted by-products and improving temperature 

control significantly. These systems also display a faster response time, lower pressure 

drop and higher ease in integration and safety in operation than typical particulate 

catalysts, as it has been stated for different wall coated microreactors for methanol 

steam reforming [3] and selective oxidation processes [4]. For all these reasons 

microreactors are very promising candidates for their application in H2 purification 

processes (in the PrOx reaction) for portable fuel cell and micro fuel cell applications, 

as we postulate in this work. 

Different catalytic systems have been developed and tested in the PrOx reaction. 

Nowadays, it is widely accepted that platinum group metals deposited over inorganic 

supports (with and without promoters) perform very well under realistic conditions in 

the appropriate range of temperatures for this reaction [5],[6]. Our group recently 

reported that palladium-based catalysts can be interesting for their application in the 

preferential oxidation of CO [7,8].  

There are several microreactor configurations that have been successfully developed for 

the PrOx reaction, including micromonoliths, silicon chips and metal foils [9]-[10][11]. 

Usually, the microreactors designed for this application consist on thin layers of catalyst 

deposited on these structures [4],[12],[13]. However, the preparation of mechanically 

stable, homogeneous crack-free coatings of the catalyst along the microchannel is not 

straightforward. In this sense, the preparation of the catalyst bed as a continuous porous 

monolith along the channels poses an advantage from a synthetic point of view, due to 

the high reliability and robustness of the synthetic procedures. Since the PrOx reaction 



  

is a gas-solid catalytic system, distribution of the catalytic active phase in a highly 

porous structure that favours the gas-catalyst contact also involves an enhanced catalytic 

behaviour of the system. The microreactor systems have shown to perform very 

successfully in several applications, including other gas-solid reactions [5],[14],[15]. 

For these reasons, we undertook the preparation of flexible capillary microreactors for 

the PrOx reaction in small devices, where the active phase consists on noble metal 

nanoparticles (Pd or Pt) deposited on a hierarchical porous SiO2 structure. In this sense, 

SiO2 based materials present very interesting properties and can be synthesized as single 

or mixed oxides to improve its performance (due to a synergetic effect) in a variety of 

applications [16][17][18]. These microreactors have been evaluated in the PrOx reaction 

and proved to perform effectively under the desired conditions displaying also a good 

long-term activity in CO oxidation in the absence of H2.  

 

2. Materials and methods. 

 

2.1. Synthesis and purification of the metal nanoparticles. 

 

Palladium and platinum nanoparticles were synthesized by the reduction-by-solvent 

method under an inert atmosphere, according to a previously published procedure 

[7],[8],[19]. Briefly, the metal precursors were dissolved in an alcohol solution 

containing a polymer (PVP, poly-n-vynilpyrrolidone) that acts as surfactant and avoids 

sintering of the metal nanoparticles once generated. The nanoparticles were synthesized 

by thermal treatment of the solution and stable colloids were obtained. Purification of 

the resulting nanoparticles resulted in suspensions of known final metallic concentration 



  

of the ready-to-use colloids. Impregnation of the samples was performed immediately 

after purification of the nanoparticles.  

 

2.2. Synthesis of the mesoporous SiO2 monoliths. 

 

Mesoporous SiO2 monoliths were prepared inside fused silica capillaries by a sol-gel 

methodology, adapting an already published procedure [20],[21]. The silica capillaries 

used in the synthesis are 20 cm long, have an inner diameter of 0.25 mm and were 

purchased from Varian. Before the synthesis, the capillaries were activated by flowing a 

1M solution of NaOH through them, sealing their endings and heating them at 40ºC for 

3 h. After that, the capillaries were rinsed with glacial acetic acid followed by H2O to 

rinse the capillary.  

The SiO2 precursor solution was prepared by dissolving 1.054 g polyethylene glycol 

(PEG) (10K, Sigma Aldrich) and 1.081 g urea in 12 g of acetic acid (0.01M). The 

solution was moved to an ice bath and 4.81 g of tetramethyl orthosilicate (TMOS) were 

then added dropwise to form a very viscous transparent solution that was kept under 

vigorous stirring at 0ºC for 40 minutes.  

To prepare the SiO2 monoliths, this solution is flowed through the capillaries by means 

of a vacuum pump. Once the capillaries were filled with the precursor solution, they 

were sealed and the gels were aged by submitting the samples to a thermal treatment of 

40ºC overnight and 120ºC for 3 h. At 120ºC, the urea is known to decompose 

generating ammonia and this process is responsible for the formation of mesopores, as 

other authors have reported [21]. A final calcination step was performed under vacuum 

at 300ºC for 24 h (heating rate of 3ºC/min) in order to remove the surfactant, with this 

decomposition being responsible for the formation of the macroporous structure of the 



  

monoliths. This calcination procedure has been reported to be effective for the total 

decomposition of the surfactant from the silica structure [20]. Since the Si precursor 

concentration in the solution prepared is perfectly known, it is possible to estimate the 

amount of SiO2 generated inside the capillaries just from the volume of solution filling 

the capillary, assuming complete gelation of the Si precursor and total removal of the 

surfactant.  

Powder mesoporous SiO2 has also been prepared from the abovementioned solution. 

For the preparation, the gel was introduced in cylindrical containers (1.5 cm inner 

diameter) and submitted to the same thermal treatment as the capillaries. After the 

vacuum calcination the macromonoliths obtained were crushed to a fine powder, which 

was used as catalyst support and for characterization purposes.  

 

2.3. Preparation of the capillary microreactors.  

 

The mesoporous SiO2 monoliths were loaded with the metal nanoparticles (Pd or Pt) by 

impregnation. In order to deposit the nanoparticles onto the SiO2 structure, the 

appropriate amount of metal suspension was evaporated and the dry Pd or Pt 

nanoparticles were redispersed in the same volume of methanol corresponding to the 

capillary volume. By this procedure, the metal suspension is flowed through the 

capillary and the particles remain within the capillary, dispersed on the SiO2 monolith. 

As a final step, the capillaries were dried at 150ºC for 4 h to ensure complete removal of 

the methanol solvent. Microreactors with a nominal metal loading of 1.5 wt% metal 

have been prepared in this work. An equivalent powder catalyst (Pd/SiO2) was also 

prepared by the wet impregnation method, as described elsewhere [7]. For this 

synthesis, the appropriate amount of metal nanoparticles (to yield 1 wt% of metal 



  

loading) was stirred with 1 g of powder mesoporous SiO2 (10K) for 48 h at room 

temperature. After that, the solvent was evaporated and the catalyst was dried at 60ºC 

and ground to a fine powder. 

 

2.4. Characterization of the samples.  

 

The metal nanoparticles were characterized by transmission electron microscopy (TEM, 

JEOL-2010) in order to analyze the average particle size and particle size distribution, 

by counting a minimum of 100 particles in each case, as explained in our previous work 

[19]. Due to the spherical shape of the nanoparticles, the metal dispersion (D) of the 

nanoparticles on the supports can also be estimated from the particle size (d) with the 

following approximation [22]: 
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Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to 

analyze the real metal loading of the microreactors and the powder catalyst. For the 

powder catalyst, a certain amount of sample was extracted with 2 ml of aqua regia for 

48 h at room temperature. The sample was filtered and the liquid phase recovered and 

diluted to 25 ml with deionized water. For the microreactors, a section of capillary was 

cut into smaller pieces and mixed with 0.5 ml of aqua regia. After the metal extraction, 

the samples were filtered and the liquid phase recovered with a known volume of 

deionized water. The metal concentration of the samples was calculated by comparing 

the results with calibrated standards prepared with the same acid matrix.  



  

The textural characterization of the powder SiO2 samples was carried out by means of 

adsorption of N2 at -196ºC and CO2 at 0ºC (Autosorb 6, Quantachrome). Before the 

adsorption measurements the samples were outgassed in situ under vacuum at 250ºC for 

4 h in order to remove adsorbed impurities. Apparent surface area values were 

calculated from nitrogen adsorption isotherms using the BET equation (SBET). Total 

micropore volume (VDR(N2)) and narrow micropore volume (VDR(CO2)) were 

calculated applying the Dubinin–Radushkevich (DR) equation to the N2 adsorption data 

at -196ºC and the CO2 adsorption data at 0ºC, respectively [23],[24]. The mesopore size 

distributions were calculated by applying the Barrett–Joyner–Halenda (BJH) method to 

the isotherms desorption branch [25]. The mesopore volume (Vmeso N2) was calculated 

from the N2 isotherm considering the volume adsorbed between the partial pressures 0.9 

and 0.2 in the desorption branch.  

The morphology, texture and homogeneity of the Pd/SiO2 monoliths was assessed by 

the analysis of different sections of the samples by optical microscopy and scanning 

electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM-EDX, 

Hitachi S3000N). Elemental mapping was also performed on these samples in order to 

analyze the metal distribution on the monoliths.  

X-ray photoelectron spectroscopy (XPS) measurements were performed on the 

microreactors before and after the catalytic tests, by using a VG-Microtech Multilab 

3000 spectrometer equipped with a Mg Kα X-ray source and an analyzer adjusted at 

50eV pass energy. Further calibration was made with respect to the C 1s peak of carbon 

at 284.6 eV. 

 

2.5. Catalytic tests.  

 



  

The microreactors activity in the PrOx reaction was evaluated under non-isothermal 

conditions at a heating rate of 2ºC/min with a gas feed composition of 2% CO, 2% O2, 

30% H2 in He and a total gas flow of 5 ml/min (λ=2·([O2]/[CO]), in this case λ=2). In 

some cases, gas flow rates of 1.25, 2.5 and 7.5 ml/min were also used in order to adjust 

the space velocity within the reactor. The powder catalyst was tested under the same 

conditions, using a U-shaped quartz reactor with 100 mg of sample and a gas flow of 

100 ml/min. Prior to the reactions, all the samples underwent a reducing treatment 

which was carried out under 10% H2 in He at 200ºC for 2 h (heating rate 5ºC/min). 

Isothermal experiments at the same flow rates were conducted in some cases. 

Experiments in the absence of H2 were also performed for some samples with a gas feed 

composed of 1% CO, 20% O2 in He and a gas flow of 5 ml/min. In these cases the 

samples were submitted to the same thermal treatment described above prior to reaction, 

in a gas stream containing 10% O2 in He. 

The performance of the samples was evaluated by analyzing the gas composition exiting 

the reactor with a GC chromatograph (Agilent 6890N) working with a CTR-I column 

(Alltech) operating at 80ºC and a TCD detector. The parameters used to assess the 

catalysts behaviour were CO conversion, O2 conversion and selectivity (towards CO 

oxidation), which were calculated as follows: 

 

[ ] [ ]
[ ]

100(%).
0

0 ⋅
−

=
CO

COCO
COConv  

 

[ ] [ ]

[ ]
100(%).

02

202
2 ⋅

−
=

O

OO
OConv  

 



  

[ ] [ ]
[ ] [ ]

50(%)
202

0 ⋅
−

−
=

OO

COCO
ySelectivit   

 

The space velocity (GHSV, ml h-1 g-1) was calculated from the amount of catalyst and 

the gas flow rate used in each experiment. The Turn Over Frequency (TOF, s-1), defined 

as the amount of CO converted per mol of surface metal, was also used as a parameter 

to evaluate the performance of the samples.  

 

3. Results and discussion. 

 

3.1. Nanoparticles characterization. 

 

Previous works carried out by our group have shown that metal nanoparticles 

synthesized by the reduction-by-solvent method display a very small particle size and 

very narrow particle size distribution [19]. Figure S1 shows the TEM images of the Pd 

and Pt nanoparticles prepared for this work and the histograms showing the particle size 

distributions. As it can be observed, highly stable metallic colloids are obtained by this 

method, with nanoparticles smaller than 4 nm (average size) in both cases that are very 

well dispersed in the suspension and stable against sintering. The long-term stability of 

the metallic colloids prepared by this methodology has been widely stated in the 

literature [26]. 

 

3.2. Characterization of the support. 

 

As for the support, Figure 1 (a) shows the N2 isotherm and Figure 1 (b) shows the 

mesopore size distribution of the powder SiO2 prepared by the sol-gel methodology 



  

with PEG-10K. As it can be observed, the sample displays a I+IV type isotherm typical 

for materials with both micro- and mesoporosity and the hysteresis cycle corresponds to 

the type H2 characteristic of bottle-necked pores or irregular interconnected porous 

structures with a wide mesoporous size distribution [25]. It must be noted that these two 

types of pores coexist with the macropores generated in the monolithic structure 

resulting from the decomposition of the PEG surfactant, giving rise to a hierarchical 

porous material. The BET surface area of the sample is ~110 m2/g. 

 

 

Sample SBET 
(m2/g) 

VDR N2  
(cc/g) 

VDR CO2 
(cc/g) 

Vmeso N2 
(cc/g) 

SiO2 (PEG-10K) 113 0.05 0.03 0.20 
 

Fig. 1. (a) N2 adsorption isotherm of the SiO2 support prepared with PEG-10K and (b) 

BJH mesopore size distribution and porous texture characterization of the SiO2 

structure. 

 

3.3. Characterization of the powder catalyst and the capillary microreactors. 

 

A Pd/SiO2 powder catalyst (1 wt% Pd) was prepared with the same surfactant (PEG-

10K) as the one used in the SiO2 monolith synthesis. ICP analysis indicated that it 

contains a metal amount close to the nominal metal loading (0.89 wt% Pd). TEM 
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analyses indicated that the average Pd particle size in the powder is slightly larger 

(d=3.4 ± 0.7 nm) than the one obtained for the nanoparticles in the colloid, as observed 

in our previous report [7]. This effect has been already observed for similarly prepared 

catalysts and might be due to some metal sintering taking place during the impregnation 

process and also to a change in the shape of the nanoparticles due to deposition on the 

supports, as it has been previously stated [7]. 

 

Table 1 contains the characterization results of the Pd/SiO2 and Pt/SiO2 capillary 

microreactors prepared in this work.  

 

Table 1. Characterization results of the prepared Pd/SiO2 and Pt/SiO2 microreactors. 

Sample Metal 
dTEM 
(nm) 

DTEM  
(%) 

Amount of 
SiO2 (mg) a 

Metal loading 
ICP (%) 

MR-Pd Pd 3.4±0.7 26.5 1.0  1.32 
MR-Pt Pt 3.5±0.7 26.0 1.0 1.20 

a

 Contained in each microreactor, estimated from the precursor concentration in the solution and the 
capillary length (20 cm).  
 

 

For all the microreactors studied, the final metal loading determined by means of ICP-

OES is very close to the nominal metal loading. Figure 2 shows the TEM micrographs 

of the catalysts within the microreactors, where it can be observed that the average 

metal particle size in the microreactors is similar to that obtained for the powder catalyst 

and no agglomerates of particles were detected in any case for the different samples. 



  
 

 

Fig. 2. TEM images of the microreactors (a) MR-Pd and (b) MR-Pt and the 

corresponding histograms showing the particle size distribution in each case. 

 

Figure 3 shows, as a representative example, an optical microscopy of a SiO2 monolith 

section from sample MR-Pd, as prepared and loaded with Pd nanoparticles. Figure 3 (a) 

shows the two SiO2 monoliths inside the fused silica capillaries, where a continuous 

SiO2 structure can be observed along the capillaries. The analysis of several sections of 

the samples indicated that the SiO2 structures generated grow as continuous structures 

in all cases. Figure 3 (b) shows a magnification of the SiO2 structures generated inside 

the capillaries. Due to impregnation with the metal, the sample changes its colour from 

white (pure SiO2) to dark grey, corresponding to the metal-impregnated sample. From 

this analysis we observe that the monoliths prepared by this procedure are highly 

mechanically stable, since they retain their structure even after taking a small piece of 

monolith out of the capillary for its characterization. Furthermore, the capillaries could 

be handled without detachment of the monolith from the capillary walls.  

Elemental mapping analyses (SEM-EDX) performed on several sections of these 

samples (Figures 3c - 3f) indicated that there is a very homogeneous distribution of the 
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metal nanoparticles throughout the SiO2 structures. Spherical SiO2 particles can be seen 

forming a continuous structure with a high degree of connected porosity, with the 

particles having an average size of 1-2 µm in the SiO2 (see Figure S2). Since the 

macropores size is directly related to the skeleton particle size, a highly macroporous 

structure is therefore established. In addition, these materials are also highly 

mesoporous in character, according to the N2 adsorption measurements (Figure 1). The 

continuous SiO2 structure generated displays a surface enhancement factor F (defined as 

the surface area of the SiO2 monolith (m2) with respect to the geometrical area of the 

empty capillary (m2)) of ~720 m2/m2.  

 

Fig. 3. Optical microscopy of the MR-Pd microreactor. (a) SiO2 monoliths inside the 

fused silica capillaries and (b) magnification of the SiO2 structures generated inside the 

capillaries. The white monolith is the as synthesized sample and the dark monolith is the 

Pd-loaded sample. Elemental mapping analysis (SEM-EDX) of the MR-Pd 

microreactor. The scale bar is 50 µm in all cases. c) SEM image of the section of the 

monolith analyzed. d) Si. e) Pd. f) Overlapping of Si (in red) and Pd (in green) elements 

detected in the sample. 

 

3.4. Catalytic performance. 

c d e f
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Figure 4 shows the comparison of the catalytic activity of the Pd/SiO2 active phase in 

the microreactor (MR-Pd) and as powder (100 mg) under the same gas space velocity 

conditions.  

As it can be observed, significant differences can be found between the two 

configurations. On the one hand, both active phases display a similar onset temperature 

for the reaction, which is ~130ºC, and this is due to the similar nature of both catalysts. 

However, important differences in the CO conversion and selectivity can also be 

observed, achieving these two parameters higher values for the Pd/SiO2 catalyst 

incorporated in the microchannel. In this sense, the Pd active phase in the microreactor 

displays 70% CO conversion at 180ºC, whereas the powder Pd/SiO2 catalyst barely 

reaches 20% CO conversion at the highest temperatures of the reaction. For the activity 

curve of the Pd microreactor (MR-Pd), the result seems to indicate that there is a 

tendency for the CO conversion to slightly decrease at high temperatures (above 

170ºC), which could be due, as previously observed for similar active phases [7] to the 

water-gas shift reactor becoming more relevant at high temperatures, as previously 

stated in the literature [27]. 

 

 



   

Fig. 4. Catalytic performance of MR-Pd (♦), MR-Pt (■) and Pd/SiO2 powder catalyst 

(●). CO conversion (solid symbols, ●) and selectivity (hollow symbols, ○). Gas 

composition: 2% CO, 2% O2, 30% H2, balance He.  GHSV=60000 ml g-1 h-1. 

 

The enhanced performance of the microreactor with respect to the powder catalyst has 

been previously stated in the literature for several catalytic systems in microreactor 

configurations [11],[28],[29],[30]. In general, this enhanced microreactor behaviour is 

ascribed to mass and heat transfer processes favoured in the microchannels 

[4],[31],[27]. Also, since the catalyst is distributed as a highly interconnected porous 

structure inside the microchannel, this results in a favoured gas-catalyst interaction and 

provides a better catalytic performance of the metal nanoparticles, which is in 

accordance to the surface enhancement factor. Thus, the results found for the catalysts 

in the different reactor configurations in this work are in good agreement with those 

presented in the literature. 

As observed in Figure 4, the powder Pd-based catalyst is also highly active in the 

undesired H2 oxidation reaction and very low selectivity values have been obtained in 

the temperature interval analysed for this catalyst, reaching only ~10% throughout the 

reaction. However, the specific characteristics of the microreactors and the processes 
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that take place inside them reflect in an improved selectivity of the Pd/SiO2 catalyst, 

obtaining selectivity values in the microchannels above those displayed by the powder 

catalyst, with values close to 50% over a wide temperature interval.  

If we analyze these results in terms of activity of the surface metal atoms in the sample, 

we find that the Pd/SiO2 catalyst in the microreactor exhibits a TOF value that is ~5 

times larger (0.1 s-1) than the one obtained for the powder catalyst (0.02 s-1) at the same 

temperature (130ºC) for low CO conversions. This further evidences the benefits of 

incorporating the catalyst within the microchannels for an enhanced performance of the 

active phase in this particular application.  

In order to check the effect of residence time over the performance of the Pd/SiO2 active 

phase, several experiments were performed at different gas space velocities for MR-Pd. 

These results (Figure S3) served to establish that the CO conversion diminishes from 

100% to ~6% at the highest flow rates tested (450000 ml h-1 g-1). However, selectivity 

increases as the gas space velocity is increased (i.e. CO oxidation is favoured at higher 

space velocities). From these measurements, the results seem to confirm the idea that 

residence time has an influence over the performance of the catalysts designed for this 

particular application.  

When compared to the MR-Pd microreactor, we can see that the Pt-based microreactor 

shows a significantly different activity, since the CO conversion curve is shifted 

towards higher temperatures. In this sense, T50, defined as the temperature 

corresponding to 50% CO conversion for each sample, is 30ºC higher for the Pt-based 

sample, compared to sample MR-Pd. Although this might mean a slightly lower activity 

for the Pt active phase, it can be seen that for the same amount of catalyst within the 

microchannels, the maximum CO conversion values achieved are slightly higher for Pt, 

with values above 80% at 200ºC, compared to the ~70% obtained for the Pd active 



  

phase. In addition, that active phase displays a much higher selectivity (under the same 

conditions) than the one based on Pd. At T50, the selectivity of the Pt catalysts is twice 

as high as that of the Pd active phase. Also, for MR-Pt, the selectivity stays over 90% in 

the temperature interval analyzed, which is well within the operational window of the 

catalysts designed for this reaction. This result highlights the fact that Pt is a much more 

suitable option for this application, as previously noticed by other authors, with highly 

suitable parameters for the catalysts designed for the PrOx CO process.  

The long term stability of the microreactors prepared for this reaction was also 

evaluated at different temperatures. For the Pd microreactor in the PrOx reaction, low 

temperature (140ºC) was selected to analyze the performance of this active phase under 

the best conditions previously obtained (see Figure S3). For the Pt microreactor, 200ºC 

was chosen as test temperature because of the good performance of the Pt catalyst at 

this temperature (see Figure 4).  

 

Fig. 5. Time-on-stream CO oxidation activity of MR-Pd and MR-Pt in the presence and 

absence of H2. 

 

The results indicate that the catalytic activity remains constant at 100% CO conversion 
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application times (~75% after ~5 h of reaction). No sintering of the metal particles was 

detected by TEM in this case due to reaction conditions (d=3.5 ± 0.9 nm). The reason 

for this deactivation could be related to H2O being generated as a by-product inside the 

microreactor, since steam is known to affect the textural and/or structural properties of 

SiO2 structure [32], but since this is only observed in the case of the Pd-based 

microreactor, this effect may be ruled out as the cause for this observation. In this 

respect, some alteration of the PVP structure or the stripping of the PVP by the action of 

steam could occur under the reaction conditions that would affect the Pd catalytic 

performance. An experiment of CO oxidation in the absence of H2 (Figure 5) indicates 

that no loss of activity is detected for periods of time over ~7 h (in this case at 200ºC) 

for MR-Pd, confirming the negative effect of steam over the Pd/SiO2 active phase. In 

the light of this significant deterioration of its catalytic activity when tested under 

realistic conditions, XPS analyses were performed on the Pd/SiO2 fresh and used 

microreactors (MR-Pd). The results indicated that the N/Pd ratio diminishes from 3.0 to 

1.8 and that the Pd(0)/Pd(II) ratio also diminishes (from 4.3 to 2.6) when the reaction 

takes place. Since the only N source in the microreactors is the PVP surfactant, some 

degradation of its structure (or its removal from the Pd surface) may be inferred for the 

Pd-based samples. This could be due to the pressurization inside the capillary system 

during experiments, which is lower than 3 bars in all cases, but could cause (together 

with the presence of steam) the release of N-containing fragments from the structure of 

the polymer. Also, the loss of a significant amount of capping agent on the metal 

surface due to aging of the catalyst makes the nanoparticles more prone to oxidation 

under reaction conditions, as indicated by XPS and in good agreement with what was 

previously reported [8]. Considering that Pd selectivity is highly dependent on the PVP 

molecules anchored on the surface and that the deterioration of this protecting agent 



  

strongly affects the selectivity of the catalyst, this deterioration of the Pd surface upon 

reaction justifies the impoverishment in selectivity with time for MR-Pd. Since no loss 

of catalytic performance has been observed for the MR-Pd sample in the absence of H2 

in the gas stream, no reasons to suspect alteration of the active phase in this case 

(relating to the Pd surface or the PVP on the nanoparticles) can be found.   

As for the Pt microreactor, total CO oxidation can be obtained with the system 

displaying no loss of activity for several working hours (CO conversion ~100%) and 

with selectivity values ~50% throughout the experiment. These selectivity values differ 

significantly from those obtained in the non-isothermal experiment for this catalyst, 

indicating that the working regime is different in both cases. In this sense, the results 

shown in Figure 5 correspond to the steady-state performance of the catalysts, and 

therefore the thermodynamic selectivity values (as determined from equilibrium 

constants at those temperatures) is obtained (selectivity ~50%, for λ=2). On the 

contrary, for the results of MR-Pt shown in Figure 4, much higher selectivity values 

have been found (~90%), which are quite far from the values dictated by 

thermodynamics. Therefore, those values correspond to kinetic selectivity due to the 

non-isothermal experimental conditions.  

From this result, significant differences between the Pd and the Pt systems can be 

observed. While both metal nanoparticles have been prepared and loaded on the SiO2 

support by the same experimental procedure, the Pd system shows a marked loss of 

selectivity when tested under isothermal conditions, whereas the Pt system maintains its 

activity over 8 h of continuous operation. These results point out that the Pd 

nanoparticles form an active phase which is more susceptible to modification during the 

reaction and is therefore not suitable for this particular application. In this sense, the 

critical effect of the electronic environment of Pd-based systems towards their catalytic 



  

performance must be highlighted. On the other hand, the Pt system seems to be 

unaffected by the same reaction conditions and can withstand the working conditions 

for at least 8 h without deactivation or apparent modification of the electronic structure 

of the active phase, fulfilling the PrOx CO aimed catalysts requirements with very high 

selectivity towards the desired process. 

When comparing the results obtained for the microreactors prepared in this work with 

other results found in the literature, Pt has long been reported as a more appropriate 

active phase for this reaction compared to other noble metal catalysts and is the most 

widely noble metal used in the latest works on catalysts for PrOx CO [33],[34],[35]. Pd 

has never been included in the catalyst compositions tested in microreactors, probably 

due to the poor performance in this application of traditionally synthesized Pd-based 

powder catalysts [36],[37]. The Pd-based microreactors prepared in this work present a 

good catalytic behaviour under a model gas composition to effectively purify H2 

streams for their further application. However, these microreactors strongly deactivate 

due to the instability of the active phase due to the degradation of the capping agent 

during the catalysis experiments. Regarding the deactivation of the catalysts in the long-

term catalytic tests, it should be mentioned that only few works related to microreactors 

technology have addressed this issue [13],[31] and, in some cases, deactivation of the 

catalysts has also been found, even for Pt-based catalysts. This is not the case of the 

Pt/SiO2 microreactor presented in this work that displays selectivity values at complete 

CO depletion of ~50%, very similar to that previously reported for other kind of 

microreactors in the literature [4],[12],[38]. It should me mentioned that in some cases 

where very good activity performances have been reported, selectivity results are not 

provided [27]. Also, in some cases, other catalyst compositions have displayed very 



  

good performances in microreactors, but at temperatures well above those desirable for 

the PrOx reaction [39]. 

Microreactors designed for this reaction consist on thin films of the catalytically active 

phase deposited onto robust structures previously machined to prepare the 

microchannels. The microreactors described here present several positive aspects for 

this process, the main one being the outstanding catalytic performance displayed by 

such a small amount of catalyst, both in terms of activity and selectivity, and 

comparable to other microreactor configurations. In addition, these systems are small 

and highly flexible, without their manipulation affecting the nature of the sample inside 

them, which makes them highly suitable for small scale applications in which PrOx CO 

would be required, such as portable devices with on-board energy demand with micro 

fuel cells systems. For these reasons, the microreactor system presented here stands out 

as a promising purification device for systems which would need a relatively low flow 

(up to 7.5 ml/min) of high purity H2 feed. Furthermore, scale up for larger applications 

(in situations where higher H2 feeds are required) is a very simple process, since 

stacking of the capillaries in arrays where they are located in parallel would allow one 

to easily increase productivity in multichannel microreactors [40]. 

In addition to their outstanding performance in the PrOx CO reaction, these 

microreactors have also demonstrated a very good activity with high long term stability 

in the CO oxidation reaction both in absence of H2 (for Pd-based microreactors) as well 

as for H2-containing systems (for Pt-based microreactors), which also allows 

implementation of these materials in a different application.  

 

4. Conclusions. 

 



  

In summary, we have prepared Pd/SiO2 and Pt/SiO2 microreactors consisting on 

capillaries filled with a hierarchical monolith-based catalyst bed in order to obtain a 

homogeneous distribution of the active species along a microchannel by a simple and 

reproducible methodology. These microreactors behave more efficiently in terms of 

activity and selectivity than the reactor setup with the classical powder catalyst due to 

the superior mass and heat transfer processes that take place inside the microchannels. 

The possibility of achieving lower residence times in the microreactors is also 

responsible for the high selectivities obtained in these configurations.  

These microreactors have proven to effectively purify a H2 stream under the appropriate 

conditions. In this sense, Pt based microreactors achieve complete CO removal from the 

gas stream under time-on-stream experiments for more than 8 h without deactivation. 

Their very good catalytic behaviour, together with their flexibility, easily handling and 

ease of scale-up make these microreactors very good candidates for their application in 

the purification of H2 streams for portable fuel cells or on-board applications.  
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Highlights 
 

� Pd/SiO2 and Pt/SiO2 capillary microreactors were designed for the Preferential 
Oxidation of CO. 

� Enhanced mass and heat transfer properties and catalytic activity in the 
microreactors.  

� Residence time influences selectivity in the microreactors.  

� Outstanding performance of the microreactors in the CO oxidation in the 
presence and absence of H2.  

 


