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Abstract 

____________________________________________________________ 

Several bifunctional organocatalysts bearing the 2-aminobenzimidazole unit have been designed in order 
to act as bifunctional systems by hydrogen bonding. Chiral 2-aminobenzimidazoles are conformational 
rigid guanidines able to catalyze enantioselectively Michael reaction, direct SN1 of alcohols and aldol 
reactions. Some of these organocatalysts can be easily recovered by simple isolation methods and reused 
without loss of catalytic activity. Related (2-aminoalkyl)benzimidazoles have been used as chiral 
organocatalysts in aldol and amination reactions of carbonyl compounds. 

 

1. Introduction 

Benzimidazole, firstly described by Hobrecker in 1872, is an important heterocyclic 

motif1 present in many natural products,2 in material science fuel cells,3 in ionic 

liquids,4 and in pharmaceutical industry,5 as for instance in the proton pump inhibitor 

esomeprazole 1, which also is an antiulcer and antiviral drug (Figure 1). Molecules 

containing the benzimidazole unit are important in medicinal chemistry due to 

antiarrythmic, antihistamine, anticancer, fungicidal, antihelmintical, and ionotropic 

activities, and in many biological processes.6 Recently, chiral benzimidazole derivatives 

have enmerged as valuable structures in asymmetric catalysis either as metal ligands or 

as organocatalysts. The main features of benzimidazole are the basic character (pKa = 

5.4),6 high stability, facile synthesis of derivatives,1 and its capability to form hydrogen 

bonding. In 2005, Göbel’s group discovered that 2-aminobenzimidazoles were good 
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candidates for acid/base catalysis and can substitute guanidinium groups in receptor 

molecules designed as phosphoryl transfer catalysts.7 Thus, amine 2 (Figure 1) was able 

to cleave RNA by phosphate activation by means of hydrogen bonding under neutral 

conditions. In supramolecular chemistry, the combination of two benzimidazole units 

bonded to 4,5-diamino-9,9-dimethylxanthene 3 (Figure 1) provided an excellent 

receptor for neutral guests with oxygen atom such as sulfoxides, ketones and alcohols.8 

In addition, carboxylic acids and carboxylates are also suitable substrates for this 

receptor by hydrogen bond formation.     

Figure 1. Selected benzimidazole derivatives.  

 

 Asymmetric organocatalysis by chiral hydrogen bonding (HB) has become an 

efficient activation mode in many enantioselective synthesis.9 Among different HB 

moieties, thiourea such as 4,10 quinazolines 5,11 and benzothiadiazines 6,11 developed by 

Takemoto’s group (Figure 2) are privileged structures and specially thioureas have been 

applied in a plethora of enantioselective reactions. Other HB-catalysts have been 

developed, such as sulfinylureas 7
12 by Ellman’s group and squaramides 8a-c

13,14 by 

Rawal’s group (Figure 2). In all these compounds 4-8, the presence of an additional 

amino group, gave them a bifunctional character able to work both as Brønsted acid and 

base for the activation of the electrophilic and the nucleophilic partners. In this Digest 

we compile the recent achievement using organocatalysts bearing a benzimidazole unit, 

which can activate the substrates not only as hydrogen donor but also as acceptor, in 

enantioselective processes. 
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Figure 2. Hydrogen bonding organocatalysts.  

 

2. 2-Aminobenzimidazoles 

The 2-aminobenzimidazole structural unit is conformationally more rigid than 

guanidines and can form dual hydrogen bonding (HB) like thioureas and squaramides 

acting as Brønsted acid. On the other hand, the presence of an amino group at the 2-

position would increase the basic character of the benzimidazole unit (pKa ~7).7 They 

can be easily prepared by nucleophilic substitution of 2-chlorobenzimidazoles with 

amines. Independently, in 2009 our group and Park’s group reported new 

organocatalysts, bearing the 2-aminobenzimidazole unit, 9
15 and 10-11

16 as excellent 

HB derivatives (Figure 3). The observed distances between the two hydrogens in the 

case of 2-aminobenzimidazoles 9a-c are in between the reported ones for thiourea 410 

and squaramide 813a derived organocatalysts (Figure 2). From the crystalographic and 

computational data of catalyst 9a the distances are between 2.41 and 2.61 Å, 

respectively.15 Therefore, the designed organocatalysts should be privileged structures 

acting as bifuctional catalysts bearing a Brønsted base and a HB donor units. 

Conjugate addition of 1,3-dicarbonyl compounds to nitroalkenes is a model process 

for this type of dual activation. For the Michael reaction of diethyl malonate with β-

nitrostyrene the efficiency of organocatalysts 9-11 was evaluated (Scheme 1 and Table 

1). In addition, several bifunctional double HB catalysts 4-6 and 8 have been included in 

Table 1 for comparison purposes.  All 2-aminobenzimidazole derived organocatalysts 
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gave similar results than thiourea at room temperature but lower enantioselection than 

squaramide 8. 
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9c: X = H, R = Et

9d: X = H, R = H

9e: X = 5,7-(CF3)2, R = Me

H
H

Aº2.41-2.61

N

OMe

NH

N

HN N

CF3

F3C10

F3C

CF3

N

NH

NH

N

N

OMe

11  

Figure 3. Bifunctional 2-aminobenzimidazoles bearing an amino group.  

 

In the case of the trans-cyclohexane-1,2-diamine derived catalyst 9a, the presence of 

trifluoroacetic acid (TFA) as cocatalyst was crucial to achieve 92% ee (Table 1, entry 

6). The presence of trifluoromethyl groups in the benzimidazole, such in the case of 

9b,16b allows to perform the reaction under neutral conditions (Table 1, entry 7). 

Pseudoenantiomeric Cinchona derived organocatalysts 10 and 11 also worked under 

neutral conditions affording the adduct (S)-14 and (R)-14, respectively (Table 1, entries 

8 and 9).16a In these two cases working at -20 ºC was possible to obtain compound 14 in 

95 and 97 % ee, respectively. 

 

 
Scheme 1. Michael reaction of diethyl malonate with nitrostyrene organocatalyzed by organocatalysts 4-6 

and 8-11. 

 

Table 1  

Michael addition of diethyl malonate to nitrostyrene  
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Ent. Cat. 
(mol%) 

Solvent T  
(ºC) 

t  
(h) 

Yield  
(%) 

ee (%)  Ref. 

1 4 (10) Toluene 25 24 83 92 10 
2 5a (10) Toluene 25 24 70 85 11 
3 6a (10) Toluene 25 24 65 78 11  
4 8 (0.5) CH2Cl2 25 9 98 97 13a  
5 9a (10) Toluene 25 24 99 78 15  
6 9a (10)a Toluene 25 48 97 92 15  
7 9b (10) CH2Cl2 25 6 99 90b 16b  
8 10 (2) CH2Cl2 25 7 99 93 16a 
9 11 (2) CH2Cl2 25 6 99 90 16a 

        
a TFA (10 mol%) was added. 
b For the (S)-14. 
 
 

The simplest 2-aminobenzimidazole 9a can be recovered in 94% yield after simple 

acid-base extractive workup. These organocatalysts afforded products of the type 14 

derived from different nitroalkenes in 95-98% yields and 87-94% ee.15 Its efficiency as 

organocatalysts in Michael additions of 1,3-dicarbonyl compounds such as 1,3-

diketones and β-keto esters 15 has been evaluated (Scheme 2). Pentane-2,4-dione gave 

compounds 16a and 16b in high yields and in 96 and 86% ee, respectively. In the case 

of 1-phenylbutane-1,3-dione and other β-keto esters, diastereomeric mixtures of 

compounds 16c-16f were obtained in high ee. The best dr 91/9 was obtained in the case 

of ethyl 2-oxocyclopentanecarboxylate giving 16e in 70 and 93% ee. 

 

 
Scheme 2. Michael reaction of 1,3-dicarbonyl compounds with nitroalkenes organocatalyzed by 9a. 
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Mechanistic studies were carried out using DFT calculations at B3LYP/6-

311++G**//B3LYP/6-31G* level for the conjugate addition of dimethyl malonate and 

acetylacetone to β-nitrostyrene (Figure 4).15 Two possible scenarios have been postulted 

for thiourea catalysis: (a) nitrostyrene activation through binding to the Brønsted acidic 

NH moieties by Takemoto10 or (b) alternative binding of the two NH moieties to 

malonate according to DFT calculations by Pápai.17 In our case, either under neutral or 

in the presence of TFA the results are very similar (Figure 4).  

 

 
Figure 4. Representation of the computed transition states for the Michael reaction of 1,3-dicarbonyl 

compounds with nitrostyrene. Single-point values in a toluene model (IEF-PCM) are shown in 

parenthesis.15 
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The lowest energy transition states TSa correspond to the formation of two hydrogen 

bonds between the nucleophile and the 2-aminobenzimidazole and one hydrogen bond 

between the nitroalkene and the protonated tertiary amine. In general, the other possible 

ones TSb are 2-6 Kcal/mol higher in energy. In addition, only the nucleophile-

aminobenzimidazole interaction confirms the observed enantioselective bias since R-

TSa lies an average of 3.8 Kcal/mol lower in energy than S-TSa. However, for the other 

TSb similar energies ES-ER = 0.6 Kcal/mol, were calculated predicting the formation of 

quasi-racemic compounds. 

For the Michael addition of indol to nitroalkenes with the thiourea derived from cis-

1-amino-2-indanol, the 3,5-bis(trifluoromethyl)phenyl moiety 17
18a has been substituted 

by quinoline, pyridine, and benzimidazole units. The latest one 18 accelerates the 

reaction but in lower enantioselection than the quinoline derivative 19 (Scheme 3).18b 
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Scheme 3. Michael reaction of indol with nitrostyrene catalyzed by 17-19. 

 

 The asymmetric organocatalyzed addition to maleimides is a straightforward strategy 

for the synthesis of enantioenriched succinimide derivatives.19  Further applications of 

2-aminobenzimidazoles 9 in the conjugate addition of 1,3-dicarbonyl compounds to 

maleimides were evaluated.20 In the case of using different organocatalysts with a 

tertiary 9a,c-e and a primary amine 9f (Figure 5) for the addition of acetylacetone to the 
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challenging maleimide very poor enantioinduction was observed in the presence of 

TFA. Unexpectedly, the C2-symmetric bis(2-aminobenzimidazole) 20, which failed in 

the previous described Michael addition of diethyl malonate to β-nitrostyrene,21,16b 

provided the adduct 21a in 94% yield and 97% ee in the presence of TFA (10 mol%) 

and only 51% ee under neutral conditions (Scheme 4).20 Surprisingly, when 20 mol% of 

TFA was used the reaction failed. The addition of acetylacetone to maleimide can be 

also performed with only 1 mol% loading of 20/TFA affording product 21a in 96% 

yield and 93% ee.  

 
Figure 5. Benzimidazole-derived organocatalysts 9 and 20. 

 

 
Scheme 4. Michael reaction of  acetylacetone with maleimide catalyzed by 20. 

 

 Additional studies on catalyst concentration revealed that ee values were consistent 

with the diffusion coefficients (D) of 20/TFA. This fact indicates that the degree of 

hydrogen bonds self-association of the catalyst in solution plays a crucial role in the 

enantioselectivity of this Michael addition.  

 

 The study of the scope of the conjugate addition of 1,3-diketones to different 

maleimides indicates a high degree of enantioselectivity affording products 21 in good 

yields (Scheme 5). The absolute configuration was determined by X-ray analysis of the 

bromo-substituted derivative 21f.20a In the case of unsymmetrical diketones such as 1-

phenylbutane-1,3-dione the product 21i was obtained in low dr. However, the cyclic 2-

acetylcyclopentanone gave product 21j in 97:3 dr and in 93% ee for the major 
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diastereomer. Several β-ketoesters were assayed yielding succinimides derivatives 21k-

n in moderate dr and high ee (Scheme 5). 

 
Scheme 5. Michael reaction of 1,3-dicarbonyl compounds with maleimides organocatalyzed by 20. 

 

 Several experiments were performed on gram-scale (5-40 mmol of maleimides) 

providing the corresponding succinimides 21a, 21d, 21g, and 21k as optically pure 

compounds in 81-89% yields just by simple filtration from the crude reaction mixture, 

and only with 2-5 mol% of organocatalysts 20/TFA. The recovery of the catalyst was 

performed in the case of 21f by treatment of the crude reaction mixture with 
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isopropanol. In the precipitate, the product 21f was isolated in 90%  yield and 97% ee 

and from the isopropanol solution 20/TFA was obtained in 99% yield, which was used 

in a second run without purification giving product 21f in 99% yield and 93% ee. 

 The conjugate addition of diethyl malonate to maleimides was performed in the 

presence and in the absence of TFA yielding the corresponding products 22 in better 

results under neutral conditions (Scheme 6). In general, lower yields were obtained in 

the presence of TFA as well as enantioselectivities. 

 
Scheme 6. Michael reaction of dimethyl malonate with maleimides organocatalyzed by 20. 

 

 DFT computational studies for the Michael addition of acetylacetone to maleimide  

assumed that the reaction was initiated by deprotonation of the nucleophile by the 

organocatalyst forming an enolate/protonated catalyst binary complex, which was taken 

as the ground G = 0 energy level (Figure 6). Further hydrogen bonding with maleimides 

provides a ternary complex which evolves to the final products.  
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Figure 6.  Main structures proposed along the reaction coordinate for the Michael reaction of 

acetylacetone with maleimide. 

 

 Three possible mechanistic alternatives were evaluated: A) in the absence of acid, B) 

partial protonation (1 equiv) of the organocatalyst, and C) double protonation of the 

catalyst. The calculated difference in energy in model A for the TSA2(S) and TSA2(R) is 

1.7 Kcal/molar in agreement with the 51% ee obtained in the absence of TFA (Figure 

7). For the model B the difference is 4.6 Kcal/mol in agreement with the experimental 

97% ee. The inclusion of a second molecule of TFA gave <5% yield due to the 

cancelation of the basic character of the organocatalyst suppressing the deprotonation of 

the nucleophile observing a high computed activation energy (46.3 Kcal/mol).20b  

 

 In the case of the addition of dimethyl malonate to maleimides, the TFA-protonated 

catalyst (mechanism B, Figure 7) is a disfavored process (Figure 8).20b Therefore, the 

mechanism A with a computed 86% ee in fair agreement with the experimental 74-78% 

ee, although at different rates with and without TFA. 
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Figure 7. Computed mechanism alternatives A-C and main transition structures computed in models A 

and B. 
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Figure 8. Different binding properties of the computed nucleophiles acetylacetone and dimethyl malonate 

with organocatalyst 20. 

 

 The enantioselective catalytic alkylation of carbon nucleophiles using activated 

alcohols, instead of organic halides or sulfonates, through a SN1 mechanism, is a new 

strategy for carbon-carbon bonds formation which generates only water as byproduct.22 

Pioneer work on this field has been performed with copper(II) triflate and BOX-ligands 

as catalysts for the reaction of benzydrylic alcohols with β-ketophosphonates23 and 1,3-

dicarbonyl compounds.24 Cozzy’s group has described the organocatalyzed asymmetric 

α-alkylation of aldehydes with alcohols through an enamine activation mode.25 We 

envisaged a possible strategy for SN1 alkylation of 1,3-dicarbonyl compounds based on 

dual hydrogen bonding activation of both components. 

 For the model reaction between benzylic alcohol 25 and ethyl 2-

oxocyclopentanecarboxylate different  hydrogen donor organocatalysts such as 

thioureas 4 or 23 and 2-aminobenzimidazoles 9a, 9f, 20, and 24, derived from trans-

cyclohexane-1,2-diamine, were tested (Scheme 7).26 The reactions were performed at 
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room temperature in toluene and in the presence of TFA as cocatalyst, and only the 

bis(2-aminobenzimidazole) 20 gave product 26a in a modest 33% ee. Further studies 

with organocatalysts 20 in the presence of TFA or triflic acid (TfOH) at -20 ºC afforded 

product 26a in 85% or 90% yield and in 64 and 67% ee, respectively (Scheme 8). Also 

in these cases, when the amount of acid was 20 mol% the ee decreased dramatically. 

Concerning evidences about a SN1 mechanism, a deep blue color was observed just after 

addition of the alcohol 25 and the acid due to the formation of cationic species 

(Michler’s hydrol blue).27 The scope of this alkylation was studied with other carbon 

nucleophiles (Scheme 8).  

 
Scheme 7. Asymmetric alkylation of ethyl 2-oxocyclopentanecarboxylate with benzylic alcohol 25 

organocatalyzed by different  hydrogen donors. 

 
 

 Several β-ketoesters, 1,3-diketones, ethyl nitroacetate  and  α-phenylsulfonylacetone 

were allowed to react with the alcohol 25 using 20/TFA and 20/TfOH as 

organocatalysts, the best results being summarized in Scheme 8.  
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Scheme 8. Asymmetric alkylation of β-ketoesters with benzylic alcohol 25 organocatalyzed by 20. 

 

 

 Other alcohols such as bis(4-methoxyphenyl)methanol, xanthydrol and 

thioxanthydrol gave racemic compounds. Only the later alcohol gave product 27a and 

27b in modest to good enantioselectivities at rt (Figure 9). On the other hand, in the case 

of the allylic alcohol (E)-1,3-bis(4-methoxyphenyl)prop-2-en-1-ol (28) it only reacted  

 

 
Figure 9. Products 27 from the asymmetric alkylation of activated methylene compounds with 

thioxanthydrol organocatalyzed by 20. 

 

with cyclic β-ketoesters affording the corresponding products 29 with modest diastereo- 

and enantioselectivities (Scheme 9).  
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Scheme 9. Asymmetric alkylation of β-ketoesters with allylic alcohol 28 organocatalyzed by 20. 

 

 According to previous DFT calculations performed for the 20/TFA catalyzed 

Michael addition of 1,3-dicarbonyl compounds to maleimides,20b the proposed 

mechanism is based on the ability of the 2-aminobenzimizadole unit to deprotonate and 

to bond to the enolate derived from the 1,3-dicarbonyl compound. The other 2-

aminobenzimizadole unit, which is protonated by the acid, bonds the alcohol generating 

the cationic species, which can form an ionic pair with the enolate. After final alkylation 

the product is released and the bifunctional catalyst is recovered (Scheme 10). By using 

the reaction of alcohol 25 and ethyl 2-oxocyclopentanecarboxylate at 1 mmol scale, the 

organocatalyst 20 could be recovered after extractive work-up in 62% yield and was 

reused giving the same results. 
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Scheme 10. Proposed reaction mechanism for the asymmetric alkylation of β-ketoesters with benzylic 

alcohols organocatalyzed by 20. 

 

 Intramolecular enantioselective oxa-Michael reaction of α,β-unsaturated amides of 

the type 30 has been carried out using different HB-donor organocatalysts such as 

thiourea 4, squaramide 8, 2-aminobenzimidazole 9a, quinazoline 6a and 

benzothiadiazine 7a (Scheme 11).28 The process was carried out at rt in 

dichloromethane obtaining the product 31 in 92% yield and 95% ee with the latest 

organocatalyst 7a. However, the 2-aminobenzimidazole derivative 9a failed in this 

reaction.  



  

18 
 

 

 
Scheme 11. Intramolecular enantioselective oxa-Michael reaction of α,β-unsaturated amides 30. 

 

 On the other hand, 9a has shown a better catalytic activity than thiourea 4 in the 

amination reaction of ethyl 2-oxocyclopentanecarboxylate with di-tert-

butylazodicarboxylate (Scheme 12).29 However, modest results were obtained with 

other 1,3-dicarbonyl compounds. 

 

 
Scheme 12. Enantiocatalyzed amination of ethyl 2-oxocyclopentanecarboxylate with di-tert-

butylazodicarboxylate. 

 

 Different chiral pyrrolidine-2-aminobenzimidazole bifunctional organocatalysts have 

been designed for the asymmetric Michael addition of ketones to nitroalkenes through 

enamine formation and hydrogen bond activation of the nitro group.30 The best results 

have been obtained with the pyrrolidine-2-aminobenzimidazole 33 (compared to the 

prolinamide derivative 32) for the conjugate addition of cyclohexanone to β-

nitrostyrene (Scheme 13). Further screening of the reaction conditions with 

organocatalyst 33 revealed that the use of 4-methoxybenzoic acid as cocatalyst (10 

mol%) and brine as solvent gave the corresponding adduct in only 9 hours in 93% yield, 

99/1 dr and 98% ee with only 2 equivalents of cyclohexanone. The process has been 

extended to different nitroalkenes in excellent results concluding that the 2-
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aminobenzimidazole unit is a better HB-donor than amides, azoles, sulfonamides and 

thioureas, which are the most commonly used in pyrrolidine derivatives.30  

 

 
Scheme 13. Asymmetric Michael addition of cyclohexanone to nitrostyrene organocatalyzed by 32 and 

33. 

 
 

 The pyrrolidine-2-aminobenzimidazole derivative 33 has been further used as 

organocatalyst in enantioselective intermolecular aldol reaction of ketones with 

aromatic aldehydes and for the synthesis of the Wieland-Miescher ketone by an 

intramolecular process.31 In this case, TFA was used as cocatalyst in a 1/1 mixture of 

EtOAc/H2O at room temperature giving the corresponding aldol products in good 

yields, 95/5-98/2 anti/syn ratios, and high ee (Scheme 14). However, the Hajos-Parrish-

Wiechert-Eder-Sauer (HPWES) aldol reaction took place in 93% yield and in a 

moderate 73% ee. 
 

 
Scheme 14. Enantioselective aldol reactions organocatalyzed by 33. 

 

 N-Heterocyclic carbenes (NHCs) functionalized with hydrogen bond donor moieties 

have been evaluated as bifunctional organocatalysts involving homoeneolate 
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intermediates.32 Enals can react with NHCs forming a conjugate Breslow intermediate33 

in which the β-position behaves as nucleophile and the carbonyl group is prone to suffer 

nucleophilic substitution liberating the NHC catalyst (Scheme 15).33 Several chiral 

hydroxyl-functionalized imidazolium salts35 were selected to prepare the corresponding 

 

 
Scheme 15. Breslow’s mechanism for the generation of homoenolates by N-heterocyclic carbenes from 

enals.  

 

amino-imidazolium salts, which were transformed into the benzimidazole 34, the 

thiourea 35, and ureas 36 (Scheme 16). These precatalysts failed in the enantioselective 

Michael addition of β-ketoamides to methyl vinyl ketone.35 However, the 

cyclopentannulation with chalcones previously described by Nair’s group in the racemic 

series,36 and by Bode’s group in the enantioselective version,37 afforded cyclopentene 

37 in modest yields and moderate ee (Scheme 16). 
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Scheme 16. Enantioselective cyclopentannulation of enals with chalcone organocatalyzed by chiral N-

heterocyclic carbenes 34-36.  

 

3. 2-(Aminoalkyl)benzimidazoles 

 Benzimidazole-pyrrolidines 38 (BIP) have been used as bifunctional chiral 

organocatalysts in aldol and amination reactions. This type of catalysts can be prepared 

by heating of  (S)-proline and the corresponding substituted 1,2-diaminobenzene under 

acidic conditions.38  Compound 38a crystallized incorporating a water molecule, which 

bonded two molecules of BIP through four hydrogen bonds, the distance between the 

two NH group being 2.71Å, larger than in the 2-aminobenzimidazole derivatives 9. The 

presence of TFA increased notably the catalytic efficiency in direct aldol processes 

allowing the use of equimolecular amounts of ketone donor and aldehyde acceptor 

(Scheme 17). For the intramolecular HPWES reaction the corresponding bicyclic 

diketones were obtained in 86% (n = 0) and in 68% ee (n = 1) for the Wieland-Miescher 

ketone. In the case of the amination of cycloalkenones with dibenzyl- 

diazodicarboxylate (DBAB) the corresponding α-hydrazino products were obtained in 

65-92% yields and in 66-71% ee (Scheme 17).38  
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Scheme 17. Asymmetric aldol and amination reactions of ketones organocatalyzed by 38a. 

 

 Related chiral benzimidazole-pyrrolidine derivatives 38b-d have been used in the 

aldol reaction of acetone with aromatic aldehydes in N-methylpyrrolidone (NMP) at 

room temperature giving in the case of 38d (15 mol%) the aldol products in modest 27-

49% ee.39 For the conjugate addition of cyclohexanone to different β-nitroalkenes in 

methanol the corresponding adducts were isolated in 11-49% ee.39  

 Several chiral prolinamides with tetrazole 39-41 and benzimidazole units 42-43 have 

been evaluated as organocatalysts in the direct intermolecular aldol reactions under 

neutral conditions (Figure 10).40 For the reaction of acetone with aromatic aldehydes in 

DMF at room temperature, the best results were obtained with the catalyst  40 (10 

mol%) (up to 96% ee) and 43 (5-10 mol%) in neat acetone (up to 96% ee).  

 



  

23 
 

 

N
H O

H
N

N
H

N

NN

39

N
H O

H
N

N
H

N

NN

40

Me
N
H O

H
N

N
H

N

NN

41

Bn

N
H O

H
N

N
H

N

42

N
H O

H
N

N
H

N

43

Me

 
Figure 10. Chiral prolinamides with tetrazole 39-41 and benzimidazole units 42-43 used as 

organocatalysts in aldol reactions. 

 

 Recently, benzimidazole functionalized chiral thioureas 44 have been evaluated 

biologically giving high antibacterial and anticancer activity (Figure 11).40 Thioureas 

(S)-44 showed antibacterial activity towards various Gram-positive and Gram-negative 

bacterial strains, whereas its enantiomers were inactive. Moreover, both showed 

promising activity against cell lines A549, DU145, and HeLa. 

 

 
Figure 11. Benzimidazole-derived  thioureas 44 with antibacterial and anticancer activity. 

 

 
 

Conclusions 

We have shown that 2-aminobenzimidazoles anchored to a chiral skeleton are 

excellent organocatalysts able to work as hydrogen donors with different substrates like 

thioureas and squaramides. They can be prepared easily just by reaction of a chiral 

amine with 2-chlorobenzimidazole. They can be considered as rigid guanidines and are 

able to catalyze enantioselective Michael-type reactions, direct nucleophilic substitution 

of alcohols, amination reactions, and aldol reactions. The homologous 2-

(aminoalkyl)benzimidazoles have been used as chiral organocatalysts only in aldol and 

amination reactions of carbonyl compounds. We think that the benzimidazole unit has a 

promising potential as hydrogen donor in asymmetric organocatalysis. 
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