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ABSTRACT 

Koninckinids are a suitable group to shed light on the biotic crisis suffered by brachiopod fauna 

in the Early Jurassic. Koninckinid fauna recorded in the late Pliensbachian–early Toarcian from the 

easternmost Subbetic basin is analyzed and identified as a precursor signal for one of the most 

conspicuous mass extinction events of the Phylum Brachiopoda, a multi-phased interval with 

episodes of changing environmental conditions, whose onset can be detected from the Elisa–

Mirabile subzones up to the early Toarcian extinction boundary in the lowermost Serpentinum Zone 

(T-OAE). The koninckinid fauna had a previously well-established migration pattern from the intra-

Tethyan to the NW-European basins but a first phase with a progressive warming episode in the 

Pliensbachian–Toarcian transition triggered a koninckinid fauna exodus from the eastern/central 

Tethys toward the westernmost Mediterranean margins. A second stage shows an adaptive response 

to more adverse conditions in the westernmost Tethyan margins and finally, an escape and 
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extinction phase is detected in the Atlantic areas from the mid-Polymorphum Zone onwards up to 

their global extinction in the lowermost Serpentinum Zone. This migration pattern is independent 

from the palaeogeographic bioprovinciality and is unrelated to a facies-controlled pattern. The 

anoxic/suboxic environmental conditions should only be considered as a minor factor of partial 

control since well-oxygenated habitats are noted in the intra-Tethyan basins and this factor is only 

noticeable in the second westward migratory stage (with dwarf taxa and oligotypical assemblages). 

The analysis of cold-seep proxies in the Subbetic deposits suggests a radiation that is independent 

of methane releases in the Subbetic basin. 

 

Keywords: Early Jurassic, mass extinction, Koninckinids, Western Tethys. 

 

1. Introduction 

The well-known Early Toarcian Oceanic Anoxic Event (T-OAE) involved one of the most 

dramatic Mesozoic crises for the whole marine biota. Necto-planktonic communities and especially 

benthic ones were severely affected (e.g. Hallam, 1986, 1987; Little and Benton, 1995; Aberhan 

and Fürsich, 1997; Harries and Little, 1999; Vörös, 2002; Macchioni and Cecca, 2002; Wignall et 

al., 2005; Wignall and Bond, 2008; Caruthers et al., 2013; Arias, 2013; Reolid et al., 2014a). 

Brachiopods, in particular, revealed a very marked loss of diversity during this event (Vörös, 1993, 

2002; Ruban, 2004, 2009; Vörös and Dulai, 2007; Baeza-Carratalá, 2013), actually disappearing 

from most of the basins for a long period. This event caused an entire faunal turnover (García Joral 

and Goy, 2000; Gahr, 2005; García Joral et al., 2011) and even marked post-event changes in the 

palaeobiogeographic pattern (Baeza-Carratalá et al., 2011; Baeza-Carratalá, 2013). 

The orders Spiriferinida and Athyridida became extinct as effect of this event (Vörös, 2002; 

Comas-Rengifo et al., 2006). Koninckinids (Order Athyridida, Family Koninckinidae) are an 

unusual group among the Early Jurassic brachiopods and they are also very different from the 

remaining Mesozoic brachiopods, because of their minute size and peculiar shape that is very 
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similar to the Palaeozoic strophomenids. This group underwent an enigmatic and immediate 

radiation in the late Pliensbachian and then quickly became extinct in the early Toarcian (Vörös, 

2002). 

Koninckinid fauna has been widely recorded in the Western Tethys during the Pliensbachian–

Toarcian transition, prior to the T-OAE (Gemmellaro, 1886; Steinmann, 1886; Rau, 1905; 

Manceñido, 1978; Alméras et al., 1988; Alméras and Elmi, 1993; Manceñido, 1993; Elmi et al., 

1997, 2006; Sulser, 1999; Pozza and Bagaglia, 2001; Vörös, 2002, 2003; Comas-Rengifo et al., 

2013). Mass-occurrences of koninckinids are well-known in the classical Leptaena beds and 

Koninckella faunas from England, Normandy, Portugal and Morocco, where they are often 

associated with typically dwarf or micromorphic assemblages. They have never been documented 

in the Betic Range, except for scarce citations in the works of Jiménez de Cisneros (1923, 1927). 

Nowadays, copious specimens of koninckinids and of the usually associated fauna have been 

recorded and taxonomically analysed in several localities from the easternmost Subbetic area 

(Baeza-Carratalá, 2013). This finding enables correlations to be made and apparent relationships 

with the T-OAE to be inferred, as the first occurrence, radiation and sudden extinction of this fauna 

in this area took place in a short interval prior to the globally recorded definitive T-OAE. 

Several probable causes of the early Toarcian mass extinction (global oceanic anoxic event vs. 

important warming episodes) and its possible diachroneity in the Western Tethyan basins are 

widely discussed (e.g. Jenkyns, 1985, 1988, 2003; Jenkyns and Clayton, 1986; Bassoullet and 

Baudin, 1994; Jenkyns et al., 1994; Jiménez et al., 1996; Harries and Little, 1999; Pálfy and Smith, 

2000; Wignall et al., 2005; Mailliot et al., 2006; Zakharov et al., 2006; Gómez et al., 2008; Dera et 

al., 2010; Suan et al., 2010). Some previous authors have suggested that the mass extinction was 

really a multi-phased event (cf. Macchioni and Cecca, 2002; Wignall and Bond, 2008; Dera et al., 

2010; Caruthers et al., 2013; cf. Arias, 2013) whose onset is detected early in the late 

Pliensbachian–earliest Toarcian times, with the main phase coinciding with the T-OAE as a result 

of a period of changes in long-term environmental conditions prior to this event (Dera et al., 2010; 
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Suan et al., 2010; García Joral et al., 2011). This major phase has been established, at least in the 

westernmost Tethys, within the Serpentinum Zone (Sandoval et al., 2012). 

The easternmost Subbetic record of the koninckinid fauna allows the inference of a possible 

connection between the koninckinid records and these intervals prior to the extinction boundary. 

Therefore, their occurrence can be used as a precursor signal of the main crisis event within the 

possible multi-phased interval. In addition, the analysis of this fauna and related lithofacies attempts 

to provide new data on their relationship with episodes of anoxic and/or changing environmental 

conditions. In this sense, Subbetic faunas can be compared with analogous assemblages from well-

oxygenated basins and also with those where they derived from black shales. The latter correspond 

to the classical Leptaena beds from the NW-European platforms and would represent 

anoxic/suboxic bottoms. 

This approach is intended to provide new data not only on their relationship with the anoxia, but 

also about whether their radiation responds to a facies-controlled pattern. The palaeogeographical 

analysis also tests whether koninckinid occurrences in the Subbetic area fits in the distribution 

pattern detected by Vörös (2002) in the remaining western Tethyan basins, which shows E–W route 

dispersion from deeper intra-Tethyan basins to the relatively shallower NW-European areas. 

Finally, Vörös (2002) linked koninckinid occurrences with hydrocarbon-seeps and a 

chemosynthesis-based way of life due to the remarkable correlation between koninckinid blooms 

and feasible cold-seep events. A tentative analysis of the Subbetic koninckinid-bearing deposits 

focused on cold-seeps proxies has been carried out, as the tectono-sedimentary framework of the 

Subbetic basin could be a priori propitious to lodging such cold-seeps (sensu Vörös, 2002; cf. 

Campbell et al., 2002; cf. Peckmann and Thiel, 2004) and an event of destabilization of marine gas 

hydrates just occurred during the Pliensbachian-Toarcian transition (Hesselbo et al., 2000, 2007; 

Vörös, 2002; among others). This analysis put forward a first overview for testing the methane-

dependence hypothesis in this area, therefore contributing to a better understanding of the 

distribution pattern of this group. 
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2. Materials and Methods 

Amidst the profuse Early Jurassic brachiopod fauna recorded in the Subbetic basin (Baeza-

Carratalá, 2008, 2013), around 450 specimens belong to koninckinids and 54 to the usually 

associated Nannirhynchia. Specimens were collected from three localities (Fig. 1) together with the 

associate fauna determined and summarized in Fig. 2. They were complemented, after a systematic 

revision (Baeza-Carratalá, 2008), by taxa held in the Jiménez de Cisneros historical collection (JdC) 

deposited at the Palaeontological Museum of Murcia. Collected specimens are housed in the 

repository of the Earth and Environmental Sciences Department (DCTMA) at the University of 

Alicante (Spain). 

The taxonomical assignments mainly follow recent works on systematic data in the Subbetic area 

and neighbouring Western Tethyan basins (e.g. García Joral and Goy, 2000; Baeza-Carratalá, 2008, 

2011, 2013; Vörös, 2003, 2009; García Joral et al., 2011). The ammonite zonal/subzonal standard 

scheme used is according to Cariou and Hantzpergue (1997) and Aurell et al. (2002) for the Lower 

Jurassic of the Mediterranean Domain. Specific chronostratigraphical data for the Subbetic area 

(mainly from Braga, 1983; Iñesta, 1988; Caracuel et al., 2004; Sandoval et al., 2012) are also used. 

In order to determine the possible presence of pyrite framboids and some other elemental proxies 

and, in turn, better characterize the koninckinid beds, microfacies and petrographical analyses of the 

most representative levels were undertaken using twelve selected thin sections and washed samples. 

Mineralogical composition of koninckinid-bearing levels was established by X-RD using a Bruker 

D8-Advance diffractometer (3000 W, 60 kV, 80 mA) in the Applied Petrology Laboratory of the 

University of Alicante through powdered samples. Thin section analyses also were performed under 

scanning electron microscopy (SEM; Hitachi S-300N) with energy dispersive X-ray spectrometry 

(EDS), obtaining an EDX Mapping, which provides element distribution and its relative proportion. 

Elemental geochemical analyses were also applied to bulk rock samples. 

Outline curves enclosing isotopic data referred to the δC
13 

fluctuations from the Subbetic and 

Northern-Central Iberian margins are based on data from García Joral et al. (2011) and Sandoval et 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
6 

al. (2012) and have been redrawn after the latter. These enveloping curves with the main values and 

deviations were correlated with brachiopod fauna bioevents and relative palaeotemperature 

variations from the central and northern marginal Iberian platforms (cf. García Joral et al., 2011). 

 

3. Geological setting 

Koninckinid faunas of the easternmost Subbetic area were collected from three outcrops located 

in the province of Alicante (SE Spain), forming part of the easternmost External Zone of the Betic 

Cordillera (Fig. 1). This region was situated in the South Iberian Palaeomargin (westernmost Tethys 

Ocean) in the Early Jurassic and was characterized by the predominance of shallow carbonate 

platforms, followed by more pelagic facies and epioceanic swells and semi-grabens during most of 

the Jurassic and Early Cretaceous (Vera et al., 2004). 

Koninckinid-bearing levels derive from the upper member of the Gavilán Formation (Van Veen, 

1969) and the basal part of the Zegrí Formation (Molina, 1987). The first one mainly consists of 

crinoidal red glauconitic limestone beds with grainstone texture, and occasionally more calcarenite 

levels interspersed (Fig. 2). Apart from the crinoids, benthic foraminifers, abundant brachiopods, 

peloids and intraclasts are present. In the upper part, the strata show irregular tops with condensed 

pavements interpreted as hardgrounds with ammonoids, belemnites and brachiopods. Lenticular 

deposits of glauconitic sandy limestone with a dark greyish matrix containing brachiopods, 

ammonoids and gastropods are found overlying these pavements. In other cases, limestone with 

wackestone texture and phosphatized crusts can be found, revealing a stratigraphical unconformity 

formed before the onset of the marly sedimentation in the basin represented by the Zegrí Formation. 

The Zegrí Formation starts at the base with alternating yellowish and greenish marls and marly 

limestone beds where mudstone texture predominates. These levels are set out in thin beds with 

irregular top and bottom surfaces. Levels of calcarenites and yellowish sandy marlstones containing 

koninckinids alternate sporadically. The marly sedimentation dominates upwards throughout the 

lower–middle Toarcian, indicating a pelagic depositional environment (Fig. 2). 
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4. Koninckinid-beds from the Eastern Subbetic 

4.1. Koninckinid fauna 

Koninckinid-bearing levels in the easternmost Subbetic are characterized by the mass occurrence 

of Koninckella and Koninckodonta genera (Fig. 3), which have been determined as six different 

species: Koninckella bolivari (Jiménez de Cisneros, 1927), Koninckella gibbosula (Gemmellaro, 

1874), Koninckodonta fornicata (Canavari, 1883), Koninckodonta cf. fornicata, Koninckodonta 

davidsoni (Deslongchamps, 1853), and Koninckodonta waehneri (Bittner, 1894). 

Both representatives of the Koninckella share most of their external features, such as smooth, 

small-sized shells with a narrow ventral sulcus, thus showing a slight anterior sinus, and straight 

cardinal edges. However, K. gibbosula has a subpentagonal dorsal outline, wider-expanded cardinal 

margin occasionally showing small postero-lateral wing-like extensions, the ventral valve is thinner 

and the beak is weaker. In contrast, K. bolivari is usually triangular in outline, with a highly 

incurved beak and sharp beak ridges; it has a very convex and thick ventral valve giving the shell a 

gryphaeoid appearance. K. bolivari was described and erected by Jiménez de Cisneros (1927) and 

can be considered as senior synonym of Koninckella tiburtina recorded from Tivoli by Vörös 

(2003). 

The most profuse species among those assigned to the Koninckodonta is K. fornicata, thus 

distinguishing a subcircular large-sized Koninckodonta stock, wider than long, with straight 

posterior edges. K. fornicata shows a straight and large cardinal margin occupying more than half 

of the total width and a thin beak with a relatively large foramen, showing sharp beak ridges and 

wide and long interareas. The intraspecific variability of K. fornicata ranges from specimens with a 

stronger beak, shorter cardinal margin and nearly isometric shells to individuals showing shells 

wider than long, thinner beaks, and with the cardinal margin occupying 2/3 of the total width. 

Furthermore, K. cf. fornicata is herein suggested to point out those longer than wide shells with 

pronounced straight margins, developing a subpentagonal dorsal outline. K. cf. fornicata presents a 
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notable resemblance to Koninckodonta styriaca as figured by Bittner (1888) and Vörös (2003), but 

the intraspecific variability of this latter species remains to date unknown, hence the Subbetic 

material is prudentially regarded as a relative of K. fornicata. 

In terms of abundance, the next Koninckodonta species recorded is K. waehneri (Bittner, 1894) 

quite similar to K. fornicata, but K. waehneri shows a pentagonal dorsal outline with rounded 

anterior margins, a flatter lateral view and straight postero-marginal flanks progressing until the 

mid-length, which are joined in the cardinal area developing an obtuse angle; the beak is less strong 

as well. Finally, K. davidsoni (Deslongchamps, 1853) is easily identifiable as being a large-sized 

and widening-expanded shell, commonly wing-shaped, with a subtrapezoidal to semicircular dorsal 

outline; the cardinal margin is straight and long, occupying nearly the total width of the shell. 

 

4.2. Associated assemblage in the koninckinid beds 

The koninckinid fauna represents the most distinctive taxa of a wider assemblage from the latest 

Pliensbachian–earliest Toarcian (Assemblage 3 in Baeza-Carratalá, 2013) which typifies not only 

the first occurrence, bloom and sudden extinction of Koninckinidae, but also the acme of the 

Nannirhynchia and the Orthotoma unique finding in the easternmost Subbetic basin (Figs. 2, 4). In 

this way, species defined as being representative of the assemblage recorded in the koninckinid-

bearing levels from the Subbetic area are Nannirhynchia pillula, N. aff. gemmellaroi, N. aff. 

reynesi, Orthotoma sp., Liospiriferina? undulata, Lobothyris arcta, Pseudogibbirhynchia? moorei, 

Quadratirhynchia crassimedia, Gibbirhynchia orsinii, Phymatothyris rheumatica, and 

Eplenyithyris cerasulum. 

These distinctive taxa co-occur with species recurrently recorded in the Domerian, which are 

particularly abundant in these levels, such as Securina oxygonia, Cirpa briseis, Salgirella alberti, 

Antiptychina? rothpletzi, Cisnerospira adscendens, and Lobothyris punctata. Finally, an important 

stock of wider-range distribution taxa is recorded in these beds, mainly belonging to 

Prionorhynchia, Viallithyris, Linguithyris, Liospiriferina, and Zeilleria. The whole assemblage 
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shows a duality with regard to its palaeobiogeographical affinity (Iberian vs. Mediterranean). This 

coexistence of faunas in the Pliensbachian–Toarcian transition has also been noted in nearby basins 

such as the Iberian Range (García Joral and Goy, 2000). 

Subbetic assemblages include the typical faunal components, at supraspecific level, recurrently 

recorded as constituents of koninckinid faunas from the Mediterranean areas from the Apennines 

and Bakony (Pozza and Bagaglia, 2001; Vörös, 2002, 2003) as well as from the classical British, 

German and Normandian Leptaena beds (Deslongchamps, 1853; Davidson, 1876; Rau, 1905; Ager, 

1990), and Koninckella faunas recorded in France, Portugal and Morocco (Alméras et al., 1988; 

Alméras and Fauré, 1990; Alméras and Elmi, 1993; Elmi et al., 2006; Comas-Rengifo et al., 2013). 

However, at species level the Subbetic assemblages are quite different from the NW-European 

ones. 

 

4.3. Morphological pattern and taphonomical remarks in the Subbetic koninckinid beds 

The Subbetic koninckinid beds include the distinctive minute koninckinid fauna associated with 

standard-sized taxa, therefore showing high taxonomic diversity (Fig. 2) without any prevailing 

morphological pattern. Together with the koninckinid fauna, large-sized, ribbed, and rectimarginate 

or uniplicate rhynchonellids (e.g. Prionorhynchia, Cirpa, Salgirella), which usually proliferate in 

habitats such as epioceanic swells, coexist with sulcate and smooth terebratulids (Linguithyris, 

Viallithyris, Rhapidothyris), sulcate zeillerids (Bakonyithyris) and axiniform morphotypes 

(Securina), a priori developed in deeper environments. Spiriferinids do not show a specific pattern 

either: a smooth subcircular Liospiriferina-type abounds, but many subpyramidal shapes 

(Cisnerospira) are also present, as well as strongly-ribbed forms (Spiriferina muensteri). 

Conventionally minute forms as Nannirhynchia, Orthotoma and the koninckinid group itself are 

commonly regarded as inhabitants of oxygen-depleted or at least deeper habitats. However, the 

Subbetic individuals are far from representing a micromorphic assemblage. On the contrary, this 

fauna is made up of large-sized shells, since koninckinids reach the length of about 13 mm in some 
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Koninckodonta specimens and 7.2 mm in Koninckella individuals; moreover, Nannirhynchia 

specimens show a mean size of 9.7 mm in length and 10.1 mm in width, reaching up to 11.3 mm 

and 11.5 mm, respectively. Similar size patterns are recorded in Tivoli (Vörös, 2003), Bakony 

(Vörös, 2009) and Monte Serrone (Pozza and Bagaglia, 2001) and these latter authors emphasized 

the implications of such data. The opposite occurs in presumptive oxygen-depleted areas, such as 

Portugal, or North-African faunas where similar assemblages are recurrently dwarf or miniaturized. 

Thus, specimens of Portuguese Koninckella fauna from Rabaçal-Condeixa and Peniche have been 

directly examined for a comparison, with Nannirhynchia and koninckinids always being around 6 

mm in length (Comas-Rengifo et al., 2013, 2015), and therefore a great deal smaller than the taxa in 

the Subbetic area. 

Moreover, all the collected koninckinid specimens underwent taphonomic analysis, revealing 

that the fragile and minute shells are well-preserved. Shells are usually complete; tiny 

ornamentation as weak tubercles and growth lines are visible, pointing to minimal corrasion (Kolbe 

et al., 2011; Baeza-Carratalá et al., 2014). Articulated shells are dominant (nearly 99%), with a low 

degree of fragmentation and no perceptible blunt edges. The delicate features of the beak and 

cardinal area, such as minute foramen, beak ridges, hinge lines and wing-like expansions are often 

well-preserved. There are neither signs of bioerosion, encrustation, preferred orientation nor sorting. 

The shells commonly have their internal structure recrystallized and the shell infilling is usually the 

same as the host rock. All of these criteria probably point to moderate to negligible transport. 

 

4.4. Petrography of the Subbetic koninckinid-bearing levels 

Koninckinid fauna derived from the red crinoidal limestone of the Gavilán Formation as well as 

from the calcareous sandy marlstone levels located in the basal parts of the Zegrí Formation. The 

red crinoidal limestone reveals a crinoidal packstone/grainstone microfacies with very rare benthic 

foraminifers and pellets (Fig. 5A–C). Both packing and sorting of bioclasts are very high; 

preferential orientation, micritization and bioerosion are absent. Porosity is extremely low and in 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
11 

the scarce examples observed it is related to intergranular porosity. In those cases, a first rim of dog 

tooth calcitic cement is present all around the void, while the filling is represented by calcite blocky 

cement (Fig. 5A); no banded cement has been observed. In the very rare micritic patches, micrite is 

homogeneous and no sign of clotted microfabrics has been observed. 

The microfacies of the calcareous sandy marlstone beds of the Zegrí Formation are represented 

by very fine-grained packstone/densely packed wackestone (Fig. 5D–F). Brachiopod shells, 

crinoids, thin-shelled bivalves and echinoids spines are recognizable. The matrix is scarce and 

homogeneous and no clotted distribution has been observed. Cements are completely absent. 

Although not observed at macroscopic scale, horizons with aligned bioclasts are visible in thin 

section. It is remarkable that these horizons are not iso-oriented to each other. Bioclasts are not 

micritized; abrasion and bioerosion have not been observed, but it could also be due to the very 

small size of the shells. Spots of oxides with diagenetic halo are present (Fig. 5D–F). SEM analysis 

confirmed their nature as iron oxides and excluded their derivation from the oxidation of previous 

sulphides (Fig. 5, 6). 

The mineralogical composition of both facies is nearly equivalent. The peaks of X-RD analysis 

(Fig. 6) reveal that crinoidal red grainstone and calcareous sandy marlstone consist almost 

exclusively of carbonate represented by the calcite phase and only a minor amount of quartz is 

present in the samples of the Zegrí Formation (fig. 6A). Pyrite is totally absent. Elemental 

geochemical analysis reveals a high content in O, Ca, Si, Fe, Al, and Cl in all the samples, being Ba, 

Mg and K secondary elements; finally, elements such as S, Sr or Ti are represented with very low 

values (Table 1). 

 

5. Biostratigraphical record of the koninckinid beds 

5.1. Age of the koninckinid-bearing beds in the easternmost Subbetic area 

Biostratigraphical markers like ammonoids are very scarce in the koninckinid-bearing beds and 

equivalent levels from the easternmost Subbetic area. The records of Hildoceras sp. and 
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Harpoceras sp., in the basal levels of the Zegrí Formation, were attributed to the lower Toarcian by 

Geyer in Azéma (1977). Likewise Tent-Manclús (2006) attributed to the lower Toarcian 

comparable levels from neighboring outcrops (El Cantón; Fig. 1) with Hildaites sp. 

The koninckinid beds unequivocally overlie a ferruginous level in the Cerro de la Cruz section 

with Calliphylloceras bicicolae, Lytoceras villae, Protogrammoceras celebratum, Fuciniceras 

isseli, and Meneghiniceras lariense, attributed to the upper Pliensbachian (Lavinianum Zone, 

Cornacaldense Subzone) and underlie a hardground with Dactylioceras sp., Protogrammoceras 

bassanii, Nodicoeloceras, Catacoeloceras, Osperleioceras, Phymatoceras, Pseudolillia, 

Hildoceras, Catulloceras, and Graphoceras gr. concavum, therefore including chronorecords from 

the lower Toarcian to the Aalenian (Iñesta, 1988; Caracuel et al., 2004). 

In the Tarabillo and Sierra de Orts sections (Fig. 2), condensed levels with Fuciniceras portisi, 

F. lavinianum and F. isseli underlie the koninckinid beds. These levels were attributed to the basal 

upper Pliensbachian (Lavinianum Zone, Portisi Subzone) by Braga (1983) and Baeza-Carratalá 

(2013). In addition, koninckinids in these outcrops are recorded together with some constituents of a 

brachiopod assemblage (e.g. Liospiriferina? undulata and Lobothyris arcta) whose 

biostratigraphical range is mostly restricted to the Tenuicostatum Zone in the nearby Iberian basin 

(Goy et al., 1997; García Joral and Goy, 2000; Comas-Rengifo et al., 2006; García Joral et al., 

2011). 

Calcareous nannoplankton analysis shows that koninckinid fauna is recorded in the Sierra de 

Orts section together with Lotharingius hauffii; in the Cerro de La Cruz section just below a level 

with Orthogonoides hamiltoniae, Lotharingius sp., and Parhabdolitus sp. Likewise, some 

constituents of the koninckinid beds have been recorded in La Algueda section (Fig. 1) together 

with Lotharingius sp. (C. Lancis, 2008, pers. comm.). 

First occurrence (FO) of L. hauffii is used for the definition of the NJT5 CNZ established by 

Mattioli and Erba (1999). In the Iberian platforms, this species shows the FO in the Basque-

Cantabrian and Asturian basins in the lowermost Margaritatus Zone (Perilli et al., 2010; Fraguas 
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and Young, 2011). However, Mattioli et al. (2013) recently settled the FO of L. hauffii in the NJ5a 

within the Emaciatum Zone from the Lusitanian basin. These authors explained that the FO of L. 

hauffii is located within the Margaritatus Zone in NW Europe, but in Italy and the Lusitanian basin 

it took place within the Spinatum Zone. On the other hand this event occurrs within the Emaciatum 

Zone in the Tethyan Domain (Mattioli and Erba, 1999). Reggianni et al. (2010) also placed this 

event in the Solare Subzone in Peniche. Sandoval et al. (2012) recorded the joint occurrence of L. 

hauffi together with Orthogonoides hamiltonae in the NJT5b CNZ, in the Solare–Mirabile subzones 

interval in the Subbetic area. 

All these biostratigraphical data led to dating the koninckinid beds in the uppermost 

Pliensbachian–lowermost Toarcian (Spinatum–Polymorphum zones), just prior to the faunal crisis 

related to the T-OAE, which took place in the lower part of the Serpentinum Zone (Levisoni 

Subzone) in the Median Subbetic (Sandoval et al., 2012), just as in Portugal, where Comas-Rengifo 

et al. (2013) set the extinction level in the Elegantulum Subzone (Serpentinum Zone). 

 

5.2. Comparison with koninckinid records from Mediterranean areas 

The record of index bioevents generally identified in the koninckinid beds (e.g. koninckinid and 

Nannirhynchia acmes) are not usually associated either to the oxygen-depleted environments or 

black shale deposits in the more intra-Tethyan Mediterranean basins. Correlating the Subbetic 

assemblage with those recorded in Mediterranean areas, the best relationship seems to be found in 

the koninckinid levels reported in the Apennines, both in Tivoli (Vörös, 2003) and Monte Serrone 

(Pozza and Bagaglia, 2001). 

Koninckinid faunas from Tivoli are recorded within nodular crinoidal limestone with marly 

matrix beds, outcropping between the Corniola Formation and the overlying marly Monte Serrone 

Formation. The Tivoli assemblage shares very close related taxa with the Subbetic one (Koninckella 

bolivari, K. gibbosula, Koninckodonta fornicata, K. waehneri, K. davidsoni, K. styriaca (?), 

Nannirhynchia reynesi, N. gemmellaroi, Gibbirhynchia cf. orsinii, Cirpa briseis, Linguithyris 
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aspasia, Antiptychina? rothpletzi, and Liospiriferina alpina). This assemblage was tentatively 

assigned to the earliest Toarcian by Vörös (2003), pointing out a possible Pliensbachian–Toarcian 

mixing either due to the major persistence of the Corniola Formation in Tivoli rather than in other 

areas of the basin, or arguing a redeposition of Pliensbachian sediments into the lower Toarcian. In 

any case, Vörös (2002) considered the latest Pliensbachian–earliest Toarcian as a remarkable 

interval when a koninckinid diversity flourishment took place in Apennines and Sicilia that then 

abruptly became extinct due to the T-OAE. A comparable situation occurs in our studied outcrops, 

and therefore some connecting links can be inferred. 

Other comparable Koninckella fauna unconnected to black shales was recorded in Umbria by 

Pozza and Bagaglia (2001). These authors described an assemblage from Monte Serrone that is 

slightly different from that studied here, but with quite similar morphotypes, sizes and depositional 

conditions. The most significant species defined in these levels are, among others, K. gibbosula, K. 

liasiana, N. pygmaea, Phymatothyris rheumatica, Eplenyithyris cerasulum, Linguithyris aspasia, 

and Ortothoma apenninica. This assemblage is assigned to the lower Toarcian (Polymorphum 

Zone). Subsequent studies (Bilotta et al., 2010) specified the age of this Koninckella fauna levels in 

the lower part of the Semicelatum Subzone = mid-Polymorphum Zone on the standard Tethyan 

ammonite zonation. The similarity with the Subbetic assemblage is heightened if we consider that 

N. pygmaea and K. liasiana depicted by Pozza and Bagaglia (2001) are far from being the typical 

forms of these taxa as they are known in the western basins, with N. pygmaea being very close to 

the Subbetic N. aff. reynesi. A similar situation can be argued for the Swabian specimens of K. 

liasiana figured by Rau (1905) from the Spinatum Zone, with a subcircular outline, very close to 

the K. gibbosula-type. Possibly this specimens, as well as the recorded by Steinmann (1886) in 

Thuringia, are different of the typical K. liasiana from the Western basins. 

Principi (1910) also reported a diverse fauna from Umbria assigned to the “middle Liassic” in 

which several species attributable to K. fornicata, N. reynesi, Cirpa briseis, Lobothyris punctata, 
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Linguithyris aspasia, Salgirella alberti, Eplenyithyris cerasulum, Phymatothyris rheumatica, and 

Securina oxygonia can be found. All of these taxa are also present in the Subbetic assemblages. 

Concerning the possible equivalence with the Hungarian koninckinid faunas, the resemblance 

between Transdanubian Early Jurassic brachiopod assemblages and the Subbetic ones is well-

known (see e.g. Vörös, 1993, 2009; Baeza-Carratalá, 2013). This similarity, plainly evident in the 

associated taxa, is also extensive to the record of Nannirhynchia + koninckinids bloom (Vörös, 

2002), with the Subbetic Nannirhynchia forms being close to the Hungarian N. gemmellaroi and N. 

reynesi, and also sharing very closely related forms to the Hungarian Koninckodonta cf. waehneri, 

although the Hungarian records are assigned to the Margaritatus Zone (Vörös, 2002). 

Other representative faunas in the Pliensbachian–Toarcian transition were recorded from Sicily 

(Gemmellaro, 1886) with several “Leptaena” species as L. davidsoni or L. gibbosula, and from 

Western Greece (Renz, 1932; Manceñido, 1993), but they only share K. fornicata with the Subbetic 

material (specimens formerly attributed by Renz to R. aff. reynesi were tentatively updated as 

belonging to Cuneirhynchia and Cirpa by Manceñido, 1993). 

 

5.3. Comparison with koninckinid records from NW-European platforms 

In his exhaustive analysis of the koninckinid distribution pattern, Vörös (2002) draws attention 

to the dating of the classical Koninckella fauna from Normandy, Portugal and Morocco, setting 

them in the upper Tenuicostatum Zone (Semicelatum Subzone) and to the typical British Leptaena 

beds, most of which are usually linked to black shale deposits. On the contrary, the a priori older 

Subbetic koninckinid fauna is recorded in red crinoidal limestone and in sandy marlstone beds 

denoting the onset of marly sedimentation. 

The classical British localities where the Leptaena beds (e.g. Davidson, 1876; Ager, 1990) and 

their equivalent French Koninckella fauna (e.g. Deslongchamps, 1853; Alméras et al., 1988; 

Alméras and Elmi, 1993; Elmi et al., 1997) were recorded are mainly attributed round the 

Tenuicostatum–Falciferum zonal boundary, some British records even reaching the lower part of 
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the Serpentinum Zone (Vörös, 2002). These beds are distinguished by the occurrence, among 

others, of Nannirhynchia (mainly N. pygmaea), koninckinids (Koninckodonta davidsoni, 

Koninckella bouchardii), and Orthothoma globulina. Similarly, Alméras et al. (1991) considered 

the co-occurrence of N. pygmaea + K. bouchardii as subzonal biostratigraphical markers equivalent 

to the Semicelatum Subzone. 

Likewise, Alméras et al. (1988) reported an early Toarcian Koninckella fauna in Portugal and the 

North-African platforms (within the basal Polymorphum Zone), comprising among others 

Koninckella liasiana, N. pygmaea, Pseudokingena deslongchampsi, and Pseudogibbirhynchia 

moorei, coeval with Domerian foraminifera. Elmi et al. (2006) and Alméras et al. (2007) recorded a 

Koninckella fauna made up of N. pygmaea, K. liasiana and Cadomella cf. moorei from the 

uppermost Pliensbachian (Emaciatum Zone, Elisa–Solare subzones) to the lowermost Toarcian 

(Polymorphum Zone, Mirabile Subzone) in NW-Algeria. Together with these representative taxa, 

specimens of P. kerkyraea, Lobothyris punctata and Quadratirhynchia quadrata were also recorded 

in the Elisa–Solare subzones and Liospiriferina subquadrata and Lobothyris sp. in the Mirabile 

Subzone. All of them can be regarded as similar morphotypes to those recorded in the Subbetic 

assemblages (e.g. P. rheumatica, Lobothyris arcta, L. punctata, Liospiriferina? undulata). 

Recently, equivalent records and morphotypes were also reported by Comas-Rengifo et al. 

(2013, 2015) in the Lusitanian basin with a Koninckella fauna composed of N. pygmaea, K. 

liasiana, Pseudokingena deslongchampsi together with Liospiriferina? aff. undulata, L. 

subquadrata, and representatives of Cisnerospira, Zeilleria, Cirpa, and Gibbirhynchia recorded in 

the Polymorphum Zone and in the basal beds of the Levisoni Zone (levels with Eleganticeras 

elegantulum). 

This comparative analysis of Subbetic vs. NW-European faunal content shows some similarities 

at supraspecific level both in the koninckinid fauna sensu stricto and morphotypes, and in the 

usually associated taxa. In spite of this, substantial differences at species level have been evidenced 

between the classical Koninckella faunas from the North-African/Atlantic platforms and the 
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Subbetic assemblages, with the dwarf taxa being the prevailing fauna in the koninckinid beds 

commonly associated to oxygen-depleted areas. As for their age, the Subbetic assemblages are close 

to the North-African ones, being somewhat younger (exclusively Toarcian) in Portugal, England 

and France. 

 

6. Discussion 

6.1. Depositional environment of the Subbetic koninckinid beds 

The palaeoenvironmental evolution of the easternmost Subbetic area in the Early Jurassic is 

comparable to the majority of the perimediterranean Tethyan palaeomargins. It took place in an 

extensional tectonic framework related to the Tethyan rifting that evolved from shallow carbonate 

platforms to an epioceanic swell/trough system. The platform drowning led by listric faults 

alternated deepening-infilling episodes in this system during the Pliensbachian and originated some 

extensional fractures and crevices in the epioceanic escarpments (Tent-Manclús, 2006). In a 

posterior phase, the lack of activity of the listric faults facilitated generalized infilling of the 

irregularities of the sea bottom. 

This depositional scenario fits with the evolutionary model proposed for koninckinids (Vörös, 

1986, 2002). According to this model, in the Pliensbachian, koninckinids preferred inhabiting the 

crevices developed in the escarpments of the epioceanic swells and only later colonized soft muddy 

bottoms. In the Subbetic basin the context was made more favorable by the fact that the extensional 

fractures offered empty niches to be colonized by koninckinids and Nannirhynchia, among others, 

in their E–W Tethyan migration route. 

The high taxonomical diversity and abundance of specimens found in the koninckinid beds 

would suggest a hypothetical mixing of taxa, with transport affecting species from different niches. 

It could be also supported by the pseudolobular disposition in the prograding crinoidal grainstone 

beds and the significant lateral changes in thickness and bedding (Fig. 2). This setting suitably fits a 

depositional scenario associated with minor grainflow deposits (cf. Vörös, 1986, 1994; Jach, 2005; 
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Baeza-Carratalá, 2013) that accumulated sediments in a transitional seamount-depression 

environment. However, the coexistence of minute and standard-sized taxa cannot be considered as 

an indication of important remobilisation, since it is a common feature not exclusive to the Subbetic 

area. In fact, this coexistence was also previously noted in some other intra-Tethyan basins with 

potentially correlatable assemblages (e.g. Vörös, 2003) and also in the younger typical NW-

European Koninckella faunas. These are conventionally characterized by dwarf assemblages where 

dominant micromorphic Koninckella and Nannirhynchia are usually recorded together with 

standard-sized spiriferinids and rhynchonellids regarded as of Domerian condition (Alméras et al., 

1988; Alméras and Elmi, 1993), as found in the Subbetic beds.  

In addition, taphonomic evidences point to negligible transport, so that the associations may be 

considered as local parautochthonous assemblages, with both source and depositional areas being in 

close proximity. It is even feasible that the koninckinid fauna may have remained in its original 

habitat. 

 

6.2. Facies and anoxia control in the Subbetic koninckinids 

The rapid and enigmatic radiation of the latest Pliensbachian–early Toarcian koninckinids and its 

peculiar morphological pattern was explained by Vörös (2002, 2003) partly as an adaptation to 

inhabit soft bottoms or muddy substrates, giving rise to the well-known gryphaeoid and flat-lying 

morphotypes, both being functional for this purpose. In most of the Mediterranean and European 

localities, koninckinids are related to soft, muddy substrates and even to black shales. However, in 

the Subbetic occurrences, both aforesaid morphotypes coexisted together with the more subelliptical 

ones (e.g. K. bolivari, K. fornicata and K. davidsoni coexisting together) in the sand-grained 

substrates represented by the red crinoidal limestone of the Gavilán Formation and the sandy 

marlstone of the Zegrí Formation. Therefore substrate consistency cannot be considered a limiting 

factor for koninckinids distribution and the same morphological adaptations to muddy bottoms were 

retained in the colonization of sandy substrates. Thus, the morphological adaptive response 
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observed in the easternmost Tethyan areas (Vörös, 2002) could be functional in generally 

unconsolidated sediments rather than only in muddy bottoms, at least in the eastern Subbetic area. 

On the other hand, easternmost Subbetic occurrences are not linked to a potential anoxia-

controlled distribution of the koninckinids, as could be inferred from their profusion in several NW-

European localities where koninckinids and Nannirhynchia are associated to anoxic/dysoxic 

environments. In all the sections herein studied (Fig. 2), koninckinid faunas were recorded in 

sediments without any sign of reductive conditions. Both crinoidal limestone and calcareous sandy 

marlstone beds represent environments with a well-developed benthic community, productive in 

suspension- and filter-feeder biota. The crinoidal limestone clearly represents a sandy bioclastic 

winnowed substrate, characterized by a quite low sedimentation rate, most probably related to the 

presence of steady currents. In both facies, the absence of pyrite and organic-rich horizons as well 

as the abundance of remains of benthic organisms indicate normal oxygen supply conditions of the 

seafloor. This can be also corroborated by the main biometric indices analyzed in the Subbetic 

koninckinid fauna, which can be regarded as mature communities with large-sized shells (even 

larger than the mean size found in other Mediterranean basins). 

Close similarities have been observed in terms of both fauna and depositional environment with 

the type section of the Monte Serrone Marls Formation (lower Toarcian), represented by yellowish 

marls without any trace of pyrite and interbedded silt levels (Pozza and Bagaglia, 2001), these 

authors emphasizing the normal environmental conditions recorded in the section. The same 

comparable size pattern is seen in other epioceanic areas like Tivoli (Vörös, 2003) or Bakony 

(Vörös, 2009). 

Conversely, in several NW-European localities, koninckinids and Nannirhynchia are recurrently 

represented by dwarf assemblages associated with anoxic/dysoxic environments and even black 

shales (e.g. Portugal, England, and Normandy). In fact, the very small size is clear evidence of 

adverse ecological conditions, preventing organisms from reaching a standard size. In these oxygen-

depleted platforms, koninckinid faunas are usually recorded together with remains of pyrite (e.g. 
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Alméras et al., 1988; cf. Wignall and Bond, 2008), usually present as framboidal growth. An 

attempt to detect pyrite and framboidal growths has been made in the Subbetic levels (Figs. 5G–H, 

6; Table 1), but pyrite resulted absolutely absent. 

Hence, association with black shale or oxygen-depleted environments is not a rule for the 

occurrence of the koninckinid fauna, but should only be considered as a factor of partial influence. 

It is noteworthy that where oxygen-supply conditions appear to have been around normal values, 

koninckinids are larger than the miniaturized fauna described for the NW-European localities 

(except for K. davidsoni, which keeps indiscriminately its large size). 

 

6.3. Implications of the Subbetic assemblages in koninckinid fauna distribution 

In the Western Tethys, Vörös (2002) ascertained that the palaeogeographical dispersion route of 

the koninckinids evidences a marked E–W migration from the intra-Tethyan areas to the 

epicontinental relatively shallow muddy platforms. The taxonomical content, biostratigraphical 

data, and depositional conditions analyzed in the Subbetic koninckinid fauna allow its inclusion in 

this migration route (Fig. 7), highly influenced by the prevalent oceanic current pattern. In this 

route, the perimarginal areas of Iberia, including the Subbetic basin, played a significant role 

linking the epioceanic-epicontinental habitats either via the Lusitanian Basin or via the Laurasian 

Seaway (sensu Bjerrum et al., 2001; Vörös, 2002).  

In this sense, the easternmost Subbetic basin was the westernmost Tethyan area where the 

koninckinid fauna is recorded in a clearly oxygen-rich epioceanic environment from the latest 

Pliensbachian–earliest Toarcian (Fig. 7). The following westward koninckinid fauna in this 

longitudinal pathway is recorded in the North-African basins (Elmi et al., 2006; Alméras et al., 

2007), also in the upper Pliensbachian–lower Toarcian (Elisa–Mirabile zones) but with different 

species associated with organic-rich facies. Then, the following step in this route towards the 

Atlantic areas is the Lusitanian basin, clearly early Toarcian in age, with the koninckinid fauna 

being recorded in organic-rich facies and muddy bottoms. 
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The Subbetic koninckinid fauna consequently completes the pattern turning around Iberia, 

linking the upper Pliensbachian-lowermost Toarcian records from the Apennines and other 

easternmost Tethyan regions with the NW-European Toarcian records. It is also predictable that this 

dispersal route led through the westernmost areas of the Subbetic basin, as the Median Subbetic 

hemipelagic trough is a sea-arm connected with the Hispanic Corridor (Sandoval et al., 2012; cf. 

Rodríguez-Tovar and Reolid, 2013), probably also promoting migration through the Atlantic 

seaway. 

This intra-Tethyan/Atlantic transition is conducted by conventional-sized vs. dwarf faunas, 

giving rise to a taxonomical replacement. Thus, e.g. the stock of Nannirhynchia reynesi, N. 

gemmellaroi, N. pilulla and related forms recorded in epioceanic environments is replaced in the 

NW-European areas by miniaturized assemblages, where Nannyrhynchia become monospecific (N. 

pygmaea) and a turnover in the koninckinid species is noticed (dominance of K. liasiana and 

Koninckodonta davidsoni in the Atlantic basins). In addition, the supraspecific taxonomical 

attributions recorded in the koninckinid fauna (Nannirhynchia, Koninckella, Koninckodonta, 

Orthotoma) seems to be consistent in the Western Tethys as a whole, better fulfilling a mere species 

renewal in the Atlantic basins. Accordingly, a radiation independent from the 

palaeobiogeographical provinciality can be deduced. 

 

6.4. Latest koninckinid evolution as precursor signals of the T-OAE 

Among the several topics related with the T-OAE, it remains unsolved whether this mass 

extinction better responds to a single and restricted phase or is a consequence of continuous changes 

in a wider interval. It is widely suggested that the early Toarcian mass extinction was really a multi-

phased event (cf. Macchioni and Cecca, 2002; Kemp et al., 2005; Wignall and Bond, 2008; Dera et 

al., 2010; Caruthers et al., 2013; cf. Arias, 2013) whose onset is detected in the late Pliensbachian–

earliest Toarcian times, with the main extinction phase coinciding with the T-OAE as a result of 

long-term changes in environmental conditions prior to this event (e.g. Dera et al., 2010; Suan et al., 
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2010; cf. García Joral et al., 2011). The extinction boundary has been established, at least in the 

westernmost Tethys, within the Serpentinum Zone (Sandoval et al., 2012; Comas-Rengifo et al., 

2013, among others). 

A current research trend justifies the alteration of environmental conditions in the pre-T-OAE 

interval in terms of oscillation of seawater temperatures, mainly deduced from isotopic data referred 

to the δC
13 

and δO
18

 fluctuations, often correlated with manifest bioevents. Palaeotemperatures from 

Western Tethys in the late Pliensbachian indicate a remarkable cooling interval (Bailey et al., 2003; 

Rosales et al., 2004; Gómez et al., 2008; Suan et al., 2010; García Joral et al., 2011; Harazim et al., 

2013; Metodiev et al., 2014) followed by the onset of a progressively warmer episode coinciding 

with the early Toarcian. This lasted up to the uppermost Tenuicostatum–lower part of the 

Serpentinum zones, when a notable sudden increase in temperature occurred, holding the foremost 

extinction boundary (Gómez and Goy, 2011; García Joral et al., 2011; Harazim et al., 2013). 

Early research on the T-OAE in the Subbetic basin (Jiménez et al., 1996; Jiménez and Rivas, 

2007) indicated several excursion pulses in the δC
13

 and δO
18 

values connected with biotic events in 

the Polymorphum–Serpentinum interval. Such studies also deduced significant palaeotemperature 

variations, mainly referred to a sudden increase in the Serpentinum Zone related to the extinction 

boundary, but also detecting previous episodes of Mediterranean/Boreal faunal temperature-

controlled exchanges, in a similar way to other basins (Cecca and Macchioni, 2004). 

Recently, Sandoval et al. (2012) revealed several δC
13 

and δO
18

 fluctuations correlated with 

ammonite and nannoplankton turnovers in this area, from the latest Pliensbachian up to the 

definitive peak related to the main Serpentinum Zone (Levisoni Subzone) event. Prior to this peak, 

Sandoval et al. (2012) recorded bioevents coinciding with isotopic variations within the Elisa, 

Mirabile and Semicelatum (several peaks/bioevents) zones. These authors performed a very 

comprehensive comparative analysis of geochemical fluctuations/turnovers in most of the Western 

Tethyan basins, recognizing a similar pattern (with slight variations, as expected) in Northern and 
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Central Spain, Portugal, Southern Alps, Apennines, Hungary, Greece, and the French and British 

basins. 

The easternmost Subbetic koninckinid fauna is recorded in correspondence with the onset of 

these environmental changes in the latest Pliensbachian–early Toarcian. This allowed the 

connection of the koninckinid records with the intervals preceding the extinction acme in the 

Serpentinum event (Fig. 8), so that their occurrences can be used as precursor signal of this main 

crisis event within this possible multi-phased interval. 

Bearing in mind the predominant current pattern estimated by Bjerrum et al. (2001) and the 

latitudinal control on the brachiopod distribution put forward by García Joral et al. (2011), a first 

cooling episode or, at least, favorable lower temperature conditions can be deduced through the 

brachiopod fauna in the Subbetic area. Thus, prolific brachiopod assemblages are widely recorded 

up to the latest Pliensbachian (Baeza-Carratalá, 2013). In the succeeding episode, a progressive 

warming leads to the coexistence of distinct assemblages in the late Pliensbachian–earliest 

Toarcian, evidencing the progressive replacement by species better adapted to warmer 

environments like Lobothyris arcta or Liospiriferina undulata (sensu García Joral et al., 2011; 

Baeza-Carratalá, 2013). Koninckinid faunas are also recorded in these levels revealing the stage of 

their westward migration route, from the East-Mid Mediterranean areas (Greece, Apennines, 

Bakony; cf. Manceñido, 1993; Vörös, 2003, 2009) towards the Western Tethys regions (Vörös, 

2002). They found a suitable habitat to colonize in the easternmost Subbetic (sensu Vörös, 2002), 

dominated by epioceanic platforms with extensional fractures and crevices. 

Afterwards, koninckinids adapted to new environmental conditions. The last occurrence of 

Mediterranean-type koninckinid fauna in the Subbetic hence typifies the onset of the progressive 

warming episode prior to the T-OAE, being indicative of these changing conditions in the 

westernmost Mediterranean areas in the Elisa–Mirabile? subzones, corresponding to the isotopic 

anomalies detected by Sandoval et al. (2012) (Fig. 8). 
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The next stage in the westward koninckinid migratory route reaches the North-African and NW-

European platforms (Vörös, 2002, Elmi et al., 2006). This migratory event is linked to a notable 

reduction in size and diversity, affecting not only konninckinids, but also associated genera such as 

Nannirhynchia, representing a replacement conducted by conventional-size vs. dwarfism. As 

previously mentioned, the stock of Nannirhynchia reynesi, N. gemmellaroi, N. pilulla and related 

forms recorded in Mediterranean and well-oxygenated environments is replaced by miniaturized 

and oligospecific assemblages with N. pygmaea due to more adverse environmental conditions 

(adaptive turnover in Atlantic basins in Fig. 8). A similar turnover (with reduction in size and 

diversity) is noticed in the koninckinid species (dominance of the minute Koninckella liasiana with 

only scarce large-sized Koninckodonta davidsoni). Contrary to the long-established schema which 

typically related koninckinid fauna with low oxygen-supply, the large koninckinids adapted their 

morphology to these conditions evolving to miniaturized species only from this phase onwards, as 

several other groups did (cf. García Joral et al., 2011). 

While this evolutionary turnover was taking place in the westernmost margins, some intra-

Tethyan zones like Umbria played a role as a relict area where the former diverse and numerous 

koninckinid fauna persisted up to the mid-Polymorphum Zone (Pozza and Bagaglia, 2001). In this 

sense, N. pygmaea depicted by these authors can be regarded as a synonym of N. aff. reynesi (Fig. 

4) and the Umbrian K. liasiana are far from their typical forms as they are known in the classical 

western localities. In the same way, the Swabian K. liasiana (Rau, 1905) from the Spinatum Zone 

are similar to the K. gibbosula-type due to their subcircular outline. In this sense, although the 

morphological differences in the Koninckella species are subtle, which leads to some uncertainty, it 

seems more plausible that the distribution of both N. pygmaea and K. liasiana was restricted to the 

westernmost Tethyan basins. 

The last episode linking the evolution of koninckinids with the T-OAE is recorded within the 

Serpentinum Zone in the epicontinental areas, coinciding with the mass extinction boundary. This 

event is considered as the most conspicuous Mesozoic and Cenozoic extinction for the Phylum 
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Brachiopoda, as two orders and five superfamilies became extinct in the T-OAE (Vörös, 2002; 

Comas-Rengifo et al., 2006; García Joral et al., 2011). As is widely recognized, except for the 

unusual record of koninckinids above the typical isotopic excursions (Reolid et al. 2014b, p. 84), 

koninckinids became extinct in this event (Vörös, 2002; Comas-Rengifo et al., 2006; García Joral et 

al., 2011; Comas-Rengifo et al., 2013, 2015). The sudden high sea-bottom warming can be regarded 

as the most plausible cause of their extinction, as part of a complex scenario contributing to 

environmental changes (e.g. Karoo-Ferrar igneous eruptions, greenhouse effect, global anoxia, local 

euxinic conditions). 

 

6.5. Testing the koninckinid cold-seep dependence in the Subbetic koninckinid beds 

Recent hypotheses link koninckinid occurrences to the possible existence of hydrocarbon-seeps 

and a chemosynthesis-based way of life due to an apparent correlation between koninckinid blooms 

and feasible cold-seep events favored by extensional tectonic phases (Vörös, 2002). As the tectono-

sedimentary framework of the Subbetic basin could be a priori propitious to lodging such cold-

seeps (sensu Vörös, 2002; cf. Campbell et al., 2002; cf. Peckmann and Thiel, 2004; Sandy et al., 

2012; Peckmann et al., 2013) and given that one of the main destabilization events of marine gas 

hydrates took place during the Pliensbachian–Toarcian transition (e.g. Hesselbo et al., 2000, 2007; 

Beerling et al., 2002; Vörös, 2002; Cohen et al., 2007; Suan et al., 2010), a tentative analysis of the 

Subbetic koninckinid-bearing deposits has been carried out, focused on various criteria that can play 

a role as cold-seep proxies. The disposition of the outcrops, where a continuous bed by bed analysis 

is nearly unworkable, make it unfeasible to perform some customary analyses such as isotopic data 

or biomarkers, but additional signals can help to test methane-dependence in this area: 

6.5.1. Tectono-sedimentary framework.- The continuous Early Jurassic rifting stage that led to 

the drowning of the Subbetic platform by the activity of listric faults in turn generated extensional 

fractures and crevices in the epioceanic escarpments, and could be a propitious framework to 

facilitate the cold-seep events (e.g. Vörös, 2002; Sandy et al., 2012; Peckmann et al., 2013) and the 
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typical environments inhabited by koninckinids (Vörös, 2002). In this sense, Gaillard et al. (2011) 

also found cold-seep communities linked to active syn-sedimentary faults, and the Lower 

Cretaceous Carpathian Peregrinella deposits, which were established as methane-seep 

environments (Sandy et al., 2012), show similar depositional scenarios to the Subbetic one. Seep 

deposits and faunas related to epioceanic seamounts are also confirmed by Gischler et al. (2003) or 

Little et al. (2004). 

6.5.2. Palaeontological proxies.- Gregarious behaviour can be included among the key features 

of the faunal assemblages linked to both recent and ancient cold seeps. They commonly form 

cluster accumulations as an adaptive response to these very restricted confined habitats. Cold-seep 

deposits are often characterized by mass occurrences and dense populations of packed individuals 

(Callender and Powell, 1999; Peckmann et al., 2001, 2007, 2011, 2013; Kiel and Peckmann, 2008; 

Sandy et al., 2012). In addition to the exceptional profusion of specimens, these habitats show 

monospecific or oligotypical communities (Callender and Powell, 1999; Gischler et al., 2003; Kaim 

et al., 2010; Peckmann et al., 2013). Individuals are highly numerous in the Subbetic koninckinid 

fauna and these beds have very restricted outcrops and stratigraphical distribution; nevertheless 

neither densely packing nor cluster accumulations are perceived. Furthermore, the faunal diversity 

is far from being considered as oligotypical, as six different koninckinid species are recorded 

together with three species of Nannirhynchia and several other representative taxa of the typical 

koninckinid beds (Figs. 2–4). What is more, the remaining standard-sized fauna usually recorded in 

several Tethyan basins in normal environmental conditions was observed too. 

It is also remarkable that koninckinids are recorded in diverse facies (crinoidal grainstone and 

sandy marlstone) where benthic biota communities abound as this is shown in washed samples and 

microfacies (Fig. 5). The same occurs with the late Pliensbachian koninckinids of the Bakony 

(Vörös, 2002, 2009) which are also associated to a very diverse brachiopod assemblage. These data 

point to an unspecialized polyspecific brachiopod community. 
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6.5.3. Sedimentological proxies.- It is commonly suggested that environmental changes that 

occurred in the Pliensbachian–Toarcian transition involved destabilization of marine gas hydrates. 

Potentially, methane can seep from carbonate sediments buried with large amounts of organic 

matter (cf. Hesselbo et al., 2000; Vörös, 2002, Joseph et al., 2013, among others), frequently 

contained in black shale deposits. In the Subbetic basin there is no clear evidence of true black shale 

deposits. Even in the westernmost Subbetic areas, where the lower Toarcian deposits are recorded 

in more subsident and deeper areas with an expanded and continuous sedimentation, the record of 

organic-rich facies does not reach sufficiently high TOC values to be regarded as true black shales 

(Rodríguez-Tovar and Reolid, 2013). 

Nevertheless, it should be considered that the physiography of the sea bottom in the Subbetic 

basin was complex during this timespan, with epioceanic swells and semi-grabens generated by the 

activity of listric faults. As a result of this topographic differentiation and of the consequent feasible 

local water stratification, oxygen-supplied/-depleted habitats could potentially alternate (Tent-

Manclús, 2006; cf. Reolid et al., 2013; cf. Rodríguez-Tovar and Reolid, 2013). In this sense, there is 

no evidence of black shale deposits or anoxic habitats in the koninckinid-bearing levels herein 

studied, which does not substantiate their relationship with cold-seep facies and faunas.  

Tent-Manclús (2006) described several dark greenish marl levels within the Zegrí Formation, in 

the same outcrops herein studied but in younger deposits. These levels are barren of benthic 

infaunal assemblages and were interpreted as representative of slightly reductive conditions near the 

sediment-water interface during deposition and early diagenetic phases. These conditions are 

consistent with those documented in the westernmost Tethyan sea bottoms, where organic matter 

did not reach adequate values to be regarded as black shales (García Joral et al., 2011; Reolid et al., 

2012; Rodríguez-Tovar and Reolid, 2013). Overlying these dark levels described by Tent-Manclús 

(2006), Baeza-Carratalá (2013) recorded Soaresirhynchia bouchardi, assigned to the lower–middle 

part of the Serpentinum Zone, widely regarded as an opportunistic taxon that colonized the Western 
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Tethys after the mass extinction (García Joral and Goy, 2000; Gahr, 2005, García Joral et al., 2011; 

Baeza-Carratalá et al., 2011; Baeza-Carratalá, 2013). 

Summing up, in this Subbetic area, sediments potentially assignable to the black shale deposition 

event widely recorded in the Western Tethys and related to the T-OAE are stratigraphically younger 

than the koninckinid-bearing beds, and they are not typified by any brachiopod fauna or black 

shales. Koninckinid beds recorded in older levels are therefore unlinked to any stratigraphical or 

sedimentological features that indicate a possible cold-seep event. 

6.5.4. Petrographical proxies.- Fossil cold-seep deposits recurrently show distinctive 

petrographical attributes and microfabrics. Characteristics such as clotted micrite, fibrous, banded 

and bothryoidal cement or framboidal pyrite, even in the form of aggregations or laminae, are 

typically found in the methane-seep carbonates (Campbell et al., 2002; Peckmanm and Thiel, 2004; 

Peckmann et al., 2007, 2011; Hammer et al., 2011; Kuechler et al., 2012; Sandy et al., 2012; Kiel et 

al., 2013; Kaim et al., 2013). These features are completely absent in the lithologies herein studied 

and petrographic evidences (Fig. 5) reveal that Subbetic koninckinid beds could not be interpreted 

as seep deposits. 

6.5.5. Geochemical proxies.- Koninckinid blooms coinciding with isotopical δC
13 

excursions in 

the late Pliensbachian–early Toarcian (Vörös, 2002 and Fig. 8) might link koninckinid faunas to 

methane based communities. These fluctuations can be correlated with gas hydrate releases 

(Hesselbo et al., 2000) and also coincide with the well-documented increase of the bottom-water 

palaeotemperatures previously exposed as a conditioning factor of the koninckinid distribution 

pattern. In the same way, reductive conditions and/or anoxia usually prevail in the koninckinid 

occurrences linked to black shales as was discussed in the sedimentological proxies. Nevertheless, 

elemental geochemical analysis (Table 1, Fig. 6) reveals that no signs of reductive or anoxic 

conditions can be inferred for the koninckinid-bearing deposits of the easternmost Subbetic. 

Similarly, in the analogous koninckinid occurrences of the Bakony (Vörös, 2002, 2009) the 

geochemical analyses did not support the cold-seep hypothesis either. 
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7. Conclusions. 

The koninckinid fauna recorded in the late Pliensbachian–early Toarcian from the easternmost 

Subbetic basin is palaeobiogeographically consistent with the course of the previously well-

established clockwise migration route towards the higher latitude Atlantic basins, supporting the 

strategy of dispersion put forward by Vörös (2002). 

Koninckinids are a suitable group to shed light on the biotic crisis suffered by the brachiopod 

fauna during one of the most conspicuous mass extinction events in the evolutionary history of the 

Phylum Brachiopoda. The analysis of their latter occurrences and evolution can be used as a 

precursor signal of a multi-phased interval with episodes of changing environmental conditions 

whose onset can be detected from the Elisa–Mirabile? subzones lasting up to the early Toarcian 

extinction boundary in the lowermost Serpentinum Zone.  

In the koninckinid migration pattern from the intra-Tethyan basins to the NW-European 

platforms, several stages that influenced the evolution of the group are proposed: 

a) The onset of the progressive warming episode in the Pliensbachian–Toarcian transition 

(Elisa–Mirabile? subzones) triggered a koninckinid fauna exodus stage from the eastern and 

central Tethys areas toward the westernmost Mediterranean margins (e.g. the Subbetic 

epioceanic platforms), where they found a suitable habitat to colonize. This migratory episode 

did not involve changes in the oxygen-supply conditions of the seafloor. 

b) In a second stage, koninckinids show an adaptive response to more adverse environmental 

conditions in the westernmost Tethyan margin (North-African basins). This turnover represented 

a replacement of species involving a general decrease in size and diversity loss. 

c) An escape and extinction phase is detected in the Atlantic areas from the mid-Polymorphum 

Zone onwards, when mostly miniaturized and oligotypical koninckinid faunas spread widely 

over the Atlantic NW-European basins (Portugal, Normandy and South England) withdrawing 

from the more intra-Tethyan basins.  
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d) In the extinction boundary (lowermost Serpentinum Zone), koninckinids became extinct 

together with many other brachiopod groups, probably as a result of  high sea-bottom warming 

helped by a complex environmental scenario. 

The koninckinid migration in its last stages is independent not only of palaeogeographic 

bioprovinciality, but it is also unrelated to a facies-controlled pattern. The anoxic/suboxic 

environmental conditions should only be considered as a minor factor of partial control since well-

oxygenated conditions are noted in the intra-Tethyan basins and this factor is only noticeable in a 

second westward migratory stage (with dwarf taxa and oligotypical assemblages).  

A first overview analyzing the likelihood of Subbetic koninckinids cold seep-dependence 

suggests a radiation independent of methane releases in the Subbetic basin. 
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Figure captions: 

Fig. 1. Geological sketch showing (A) the situation of the outcrops within the context of the Betic 

Cordillera in the Alicante Province, and (B) in the geological map of the broad region studied. 1. 

Sierra de Orts section; 2. Cerro de la Cruz section; 3.Tarabillo section; 4. El Cantón section; 5. La 

Algueda section. 

 

Fig. 2. Lower Jurassic lithostratigraphical sections from the easternmost Subbetic including 

koninckinid-bearing levels, also showing the distribution of the remaining brachiopod taxa 

associated. A. Cerro de la Cruz section. B. Sierra de Orts section. C. Tarabillo section. 

 

Fig. 3. Some representative species of koninckinids from the easternmost Subbetic area. Images of 

each specimen are ordered consecutively in dorsal, ventral, lateral, and anterior views. 1, 2. 

Koninckella gibbosula (Gemmellaro) from the Cerro de La Cruz section: 1. Specimen CCB.2.Kgi.1; 

2. specimen CCB.2.Kgi.2. 3–6. Koninckella bolivari (Jiménez de Cisneros): 3. specimen 

CCB.3.Kti.1; 4. specimen CCB.3.Kti.2; 5. CCB.3.Kti.3 specimen, from the Cerro de La Cruz 

section; 6. specimen O.V.TS.6.1, from JdC collection. 7–10. Koninckodonta fornicata (Canavari): 

all specimens from the Cerro de La Cruz section except for 8 (JdC collection). 7. Specimen 

CCB.2.Kfo.II.1; 8. Specimen O.X.18.T2.1; 9. Specimen CCB.2.Kfo.I.1; 10. Specimen 

CCB.2.Kfo.I.2. 11. Koninckodonta cf. fornicata (Canavari): specimen CCB.2.Kst.1 from the Cerro 

de La Cruz section. 12–14. Koninckodonta waehneri (Bittner) from the Cerro de La Cruz section: 

12. Specimen CCB.2.Kwa.1; 13. Specimen CCB.2.Kwa.2; 14. Specimen CCB.2.Kwa.3. 15, 16. 

Koninckodonta davidsoni (Deslongchamps) from JdC collection: 15. Specimen O.X.17.1; 16. 

Specimen O.II.17.T3.8. 
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Fig. 4. Some representative taxa associated to the koninckinid fauna from the easternmost Subbetic 

area (a: dorsal, b: anterior, and c: lateral views). All specimens were coated with magnesium oxide. 

1–3. Nannirhynchia pilulla (Schlosser in Böse and Schlosser) from JdC collection. 1. Specimen 

O.VIII.23.5; 2. Specimen O.IV.1.T2.3; 3. Specimen O.IV.1.T2.4. 4. Nannirhynchia aff. 

gemmellaroi (Parona), specimen O.IV.9.T4.1. 5, 6. Nannirhynchia aff. reynesi (Gemmellaro). 5. 

Specimen O.VIII.23.T1.2; 6. Specimen O.VIII.23.T1.1. 7. Orthotoma sp., specimen CCB.Or.1 

severely damaged, from the Cerro de La Cruz section. 

 

Fig. 5. Microfacies photographs and SEM EDX-mapping aimed at the analysis of the oxide 

composition. A–C. Crinoidal packstone microfacies. A. Polished slab; B. Microfacies photograph, 

C. Detail of spiriferinid-section (ventral valve in the upper part). D–F. Marly limestone microfacies. 

Note the presence of oxides and diagenetic halos. D. Polished slab; E. Microfacies photograph; F. 

Detail of the calcitic cements: note the complete absence of banded cement. G. SEM EDX-mapping 

providing the element distribution in and around the oxides revealing the exclusive presence of iron, 

calcium and aluminum. H. SEM image showing the structure of the oxides and the complete 

absence of framboids of pyrite. I. SEM microphotograph of the ventral valve of the spiriferinid 

specimen showed in C, noting details of the shell microstructure and calcite layers. 

 

Fig. 6. A. Mineralogical composition of different koninckinid-bearing levels peformed on both 

crinoidal grainstone (Ta.Z2.Pi) and calcareous sandy marlstone (CC.2.2.pi) powdered samples by 

X-RD. B–C. Geochemical microanalysis performed under SEM with energy dispersive X-ray 

spectrometry (EDS) on (B) calcareous sandy marlstone (CC.2.2.pi) and (C) crinoidal grainstone 

(Ta.Z2.Pi) samples. 

 

Fig. 7. Palaeogeographical map of the late Pliensbachian–earliest Toarcian (slightly modified after 

Bassoullet et al., 1993), showing representative westernmost Tethyan localities with koninckinid 
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fauna records (sources cited in the text) and the main evolution phases suggested. Records from 

Mediterranean well-oxygenated habitats and those from the epicontinental NW-European areas 

have been distinguished. Tentative connections or unreliable data are marked with a (?). 

 

Fig. 8. Correlation sketch showing the relationship between koninckinid fauna events inferred, 

isotopic δC
13

 fluctuations and relative palaeotemperature variations around the Subbetic and 

Northern-Central Iberian marginal platforms. Outline enveloping curves enclosing the main δC
13 

values and deviations and palaeotemperature data are based on García Joral et al. (2011) and 

Sandoval et al. (2012) and have been redrawn (slightly modified) after Sandoval et al. (2012). All 

data are plotted against the zonal/ subzonal ammonite zonation. 

 

Table 1. Elemental geochemical analyses of selected koninckinid-bearing levels (bulk rock). 

CC.2.2.pi: sample of red crinoidal grainstone from Cerro de La Cruz section; Ta.Z2.pi: sample of 

calcareous sandy marlstone from Tarabillo section. LOI: Loss on ignition. 
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Table 1 

 

Elements (%) Oxides (%) 

 CC-2-2-pi Ta-Z2-pi  CC-2-2-pi Ta-Z2-pi 

Ca 40,2 33,1 MgO 0,534 0,627 

O 18,7 23,5 Al2O3 0,951 1,912 

Si 1,38 6,67 SiO2 2,947 14,262 

Fe 0,583 2,82 P2O5 0,122 0,205 

Al 0,503 1,01 SO3 0,063 0,089 

Cl 0,38 0,5 K2O 0,179 0,54 

Ba 0,349  - CaO 56,182 46,317 

Mg 0,322 0,378 Fe2O3 0,834 4,028 

K 0,149 0,448 BaO 0,39  - 

P 0,0532 0,0896 SrO  0,022 

S 0,0253 0,0357 TiO2  0,141 

Sr << 0,0189 Cl 0,38 0,5 

Cu  - << 
LOI 37,42 31,36 

Ti  - 0,0843 
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Highlights: 

- Koninckinid fauna is a suitable group to illuminate the biotic crisis of Brachiopoda.  

- Their final evolution is a precursor signal of the Early Toarcian mass extinction.  

- An E-W exodus stage is followed by adaptive response and final extinction phases. 

- The migration is independent of provinciality, facies and partly of oxygen supply. 

- The radiation in the Subbetic basin seems to be independent of methane releases. 


