# XVI Congreso Nacional de Tecnologías de la Información Geográfica 25, 26 y 27 de Junio de 2014. Alicante.

# GIS-based assessment of the European potential for pumped hydropower energy storage

Marcos Gimeno-Gutiérrez<sup>\*a</sup>, Roberto Lacal-Arántegui<sup>b</sup>

<sup>a</sup>Fundacion Aragonesa para el Desarrollo de la Observación de la Tierra, Parque Tecnológico Walqa, Cuarte <sup>b</sup>Institute for Energy and Transport, Joint Research Centre,Westerduinweg

#### Resumen

Este artículo presenta los resultados de la evaluación del potencial almacenamiento de energía hidráulica por bombeo en Europa bajo determinadas topologías y escenarios. Los resultados muestran que el potencial teórico en Europa es significativo. Se estudiaron dos topologías diferentes. Bajo la topología 1, la energía potencial teórica almacenado alcanza 54 TWh para una distancia de 20 km entre dos embalses existentes; de este potencial de aproximadamente 11 TWh corresponden a la UE y 37 TWh a otros países europeos. Bajo topología 2, el potencial teórico europeo alcanza 123 TWh cuando la distancia entre el embalse existente y la nueva localización propuesta es de hasta 20 km. A diferencia de la topología 1, en la topología 2 la mitad este potencial se establece dentro de la UE. El potencial realizable tiene en cuenta centros de población, espacios naturales protegidos e infraestructuras de transporte para la eliminación de nuevos embalses situados demasiado cerca. Para la Topología 1 y escenario 20 kilómetros el potencial realizable se reduce a la mitad, 29 TWh; mientras que la topología 2 está ligeramente menos afectada y finalmente alcanza 80 TWh de los que 33 TWh pertenecen a la UE.

Palabras clave: SIG; planificación estratégica; hidráulica de bombeo

\* E-mail : marcosgimeno@gmail.com

## 1. Introduction

The contribution of renewable energies to the world's total energy demand has increased particularly during the last two decades, and they will continue gaining market share. Because the natural resources that fuel those renewables (e.g. insolation, wind or precipitation) follow their own pattern of availability, the renewable energy produced from them may not be forced to follow energy demand. Therefore, a mismatch occurs between generation (in particular of electricity) from renewables and consumer demand.

The European energy and climate policies have as one of their targets 20% of final energy from renewable origin by 2020. This target entails an even higher penetration of renewable energy in the electricity mix, possibly between 35 and 40%, and a high component of this will be made of non-dispatchable renewables such as wind and solar. Moreover, the EU's 2050 decarbonisation objectives, with a target of 80 -95 % reduction in greenhouse gas emissions (European Commission, 2009; 2012), will require even higher share of renewables in the electricity mix.

Different studies suggest that energy demand in Europe could double by 2025 and still increase afterwards, and a storage capacity of 40 TWh will be necessary by 2040 for periods from days to weeks, and sometimes months in the EU (Auer & Keil, 2012).

The objective of this work is to assess the potential for energy storage in pumped hydropower schemes in Europe focusing on two topologies: T1 when two reservoirs exist already with the adequate difference in elevation and close enough so that they can be connected, and T2 based on one existing reservoir, when there is a suitable site close enough for a second reservoir.

#### 2. Application of the methodology and issues

The methodology is based on a GIS model, built in *ArcGIS Model Builder*, mainly fed with a digital elevation model and with data of existing reservoirs including their water storage capacity. Other data was fed at later stages including transport and grid infrastructure and land use including inhabited areas and nature-and culture-protected areas.

| Data                            | Description                                            |
|---------------------------------|--------------------------------------------------------|
| Digital Elevation Model (DEM)   | SRTM 90 m (GMTED2010 250 m for Scandinavian countries) |
| Reservoirs                      | ECRINS database (EEA, 2012)                            |
| Political borders               | DIVA GIS shapefile (www.diva-gis.org)                  |
| Corine Land Cover               | For extracting inhabited areas and rivers              |
| Nature protected areas          | Natura 2000                                            |
| Culture protected areas         | UNESCO georreferenced dots                             |
| Transport infrastructure        | DIVA GIS shapefile (www.diva-gis.org)                  |
| Electricity grid infrastructure | PLATTS (2012)                                          |

Table 1: List of data needed to run the model

For both T1 and T2 the model was run to identify and assess the potential new storage under different scenarios which are basically varying distances between the two reservoirs, i.e. from 1 to 20 km. The resulting bottom-up energy storage potential of the prospective PHS schemes was added to provide a country potential for each topology (Fitzgerald et al., 2012; Lacal-Arántegui et al, 2011).

There are different potentials depending on the depth of the analysis and the constraints included in each analysis. The two energy storage potentials described in this modelling exercise are the theoretical and realisable ones.

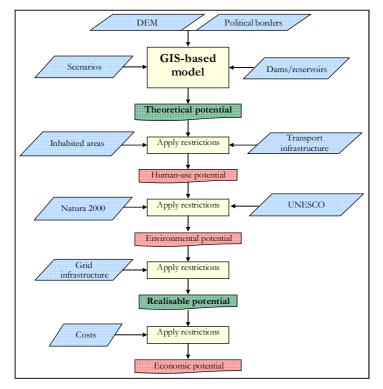



Figure 1: Methodological flowchart with the inclusion of mid-stage potentials (red colour)

Theoretical potential is the result of feeding the GIS model with topographical information, the database of reservoirs with a minimum capacity of 100 000 m<sup>3</sup> of water, and scenarios for the parameters head and maximum distance between reservoirs. Realisable potential is the result of applying to the theoretical potential a series of social, infrastructure and environmental constraints.

Prospective second-reservoir sites under T2 are defined as flat or non-sloping areas (slope lower than 5%) in the vicinity of an existing reservoir, that have a minimum surface of 7 000 m<sup>2</sup> where it is assumed that the new reservoir could reach 20 m deep and a part of the 7 000 m<sup>2</sup> will cover the rims and ancillary areas, leaving a minimum of 5 000 m<sup>2</sup> x 20 m (100 000 m3) of useful storage. For T2 when more than one suitable site is found, the prospective site offering the largest energy storage potential is selected. The two main parameters considered for energy storage assessment are head and water storage capacity.

Table 2: Constraints and values applied in T1 and T2.

| Description                                                                            | Topology 1             | Topology 2                 |
|----------------------------------------------------------------------------------------|------------------------|----------------------------|
| Maximum distance between two existing (T1) or existing and prospective (T2) reservoirs | 1, 2, 3, 5, 10 & 20 km | 1, 2, 3, 5, 10 & 20 km     |
| Minimum head                                                                           | 150 m                  | 50 m (only 5-km) and 150 m |
| Assumed minimum new reservoir capacity                                                 | 100 000 m3             | 100 000 m3                 |
| Minimum distance to inhabited sites                                                    | 500 m                  | 500 m                      |
| Minimum distance to existing transportation infrastructure                             | 200 m                  | 200 m                      |
| Minimum distance to UNESCO site                                                        | 500 m                  | 500 m                      |
| Maximum distance to electricity transmission network                                   | 20 km                  | 20 km                      |
| Minimum distance to a Natura 2000 conservation area                                    | should not be within   | should not be within       |

It could make sense to calculate a "human-use" potential, the result of applying to the theoretical potential constraints on inhabited areas and on transport infrastructure; or an environmental potential which removes Natura 2000 and UNESCO World Heritage sites from the available land for research. Finally, based on the realisable potential, the cost of building the PHS, e.g. cost of penstock, of the grid connection, of the second dam, etc., could be taken into account (but are currently not) so that the model would provide an economic potential.

#### 2.1. Validation and comparison with existing PHS capacity

The results obtained after running the model reflect the maximum potential capacity which can be stored in the upper reservoir for both topologies 1 and 2. By assumption, the energy storage capacity in the model is limited by the water storage capacity of the upper reservoir proposed, which was assumed to always have less or equal capacity than the lower reservoir. The reasoning behind was that the existing reservoir is likely to lie in a river and thus it has a contributing flow and more flexibility for releasing or accumulating water.

We explored how the energy storage calculated by the model compares to data from external sources.

Table 3: comparison between external and JRC storage data. Sources: (1) Wänn (2013); (2) DENA (2008); (3) Martínez Campillo (2010); (4) Ursat et al. (2011); (5) Sallaberger (2010); (6) Hartmann et al., (2012). \*DENA (2008) does not contain head information, Hartmann et al., (2012) does. \*\*Storage hours calculated from storage capacity and installed electrical capacity.

| Country | PHS          | Capacity<br>upper<br>reservoir m3 | Head* | Generation<br>capacity<br>(MW) | Storage from<br>source<br>(MWh) | JRC model<br>storage<br>(MWh) | Storage<br>hours** | Source |
|---------|--------------|-----------------------------------|-------|--------------------------------|---------------------------------|-------------------------------|--------------------|--------|
| DE      | Bleiloch     | 5 600 000                         | 46    | 80                             | 640                             | 572                           | 7                  | 1,2    |
| DE      | Erzhausen    | 1 618 000                         | 287   | 220                            | 1 032                           | 1 030                         | 5                  | 6      |
| DE      | Geesthacht   | 3 600 000                         | 80    | 120                            | 600                             | 640                           | 5                  | 2      |
| DE      | Glems        | 900 000                           | 283   | 90                             | 560                             | 566                           | 6                  | 2,6    |
| DE      | Goldisthal   | 12 000 000                        | 302   | 1 060                          | 8 480                           | 8 050                         | 8                  | 2      |
| DE      | Hohenwarte I | 3 280 000                         | 56    | 63                             | 504                             | 408                           | 7                  | 2      |

| DE | Hohenwarte II   | 3 002 000  | 304 | 320   | 2 087  | 2 027  | 6  | 2   |
|----|-----------------|------------|-----|-------|--------|--------|----|-----|
| DE | Koepchenwerk    | 1 533 000  | 155 | 153   | 590    | 529    | 3  | 2,6 |
| DE | Langenprozelten | 1 500 000  | 297 | 168   | 950    | 990    | 6  | 2,6 |
| DE | Makersbach      | 6 300 000  | 285 | 1 050 | 4 018  | 3 989  | 4  | 2   |
| DE | Niederwartha    | 1 981 000  | 143 | 120   | 591    | 629    | 5  | 2,6 |
| DE | Rönkhausen      | 1 000 000  | 265 | 140   | 690    | 590    | 4  | 6   |
| DE | Säckingen       | 2 100 000  | 400 | 353   | 2 064  | 1 866  | 5  | 2   |
| DE | Waldeck I       | 700 000    | 296 | 140   | 487    | 461    | 3  | 6   |
| DE | Waldeck II      | 4 400 000  | 324 | 440   | 3 428  | 3 167  | 7  | 2   |
| DE | Waldshut        | 1 350 000  | 160 | 176   | 476    | 480    | 3  | 6   |
| DE | Wendefurth      | 1 970 000  | 126 | 80    | 523    | 551    | 7  | 2   |
| DE | Witznau         | 1 300 000  | 250 | 220   | 642    | 722    | 3  | 6   |
| ES | Guillena        | 2 330 000  | 217 | 210   | 1 300  | 1 123  | 5  | 3   |
| ES | La Muela II     | 20 000 000 | 450 | 628   | 24 500 | 19 993 | 32 | 3   |
| FR | Montezic        | 33 600 000 | 423 | 910   | 36 400 | 31 573 | 35 | 4   |
| FR | Revin           | 8 700 000  | 233 | 720   | 3 600  | 4 503  | 6  | 4   |
| LU | Vianden M11     | 7 200 000  | 280 | 1 100 | 4 675  | 4 478  | 4  | 5   |
|    |                 |            |     |       |        |        |    |     |

Energy storage capacity data differ very little between the two sources; the most outstanding cases are Revin and Hohenwarte I PHS with a 20% difference.

Figure 2 plots the results from external sources of data and calculated figures. The strength of the relationship between external sources and data from the JRC model turns out to be highly consistent: Pearson correlation coefficient between the two data sources is 0.998.

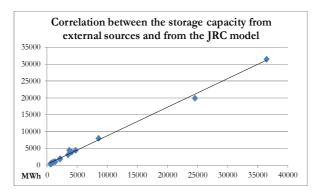



Figure 2: correlation on PHS storage capacity data from external sources and from the JRC model.

## 3. Results: The European PHS potential

#### 3.1. Potential under topology 1

The overall European theoretical potential under topology 1 and a maximum distance of 20 km between the two reservoirs is 54.3 TWh. This figure is reduced to a realisable potential of 28.7 TWh when the constraints described in previous sections are taken into account.

Table 4 shows the theoretical potential for new energy storage capacity under topology 1. The table also illustrates the extent to which the potential depends on the maximum distance assumed between the two reservoirs that make up a PHS facility.

Table 4: number of potential sites found and stored energy associated.

| T1 theoretical potential       |       |       |      |      |      |       |  |  |
|--------------------------------|-------|-------|------|------|------|-------|--|--|
| Scenario                       | 20 km | 10 km | 5 km | 3 km | 2 km | 1 km  |  |  |
| No. of sites                   | 8 268 | 1 779 | 387  | 141  | 52   | 5     |  |  |
| Potential energy storage (TWh) | 54.31 | 8.00  | 0.83 | 0.31 | 0.10 | 0.004 |  |  |

The variations in the potential energy storage capacity are consistent with the increases seen on the total amount of sites in the different scenarios. Potential energy storage increases from almost zero in the 1-km scenario, explained by the difficulty to find two existing reservoirs so close to each other, to 0.83 TWh for the 5-km scenario and reaches more than 50 TWh in the 20-km scenario.

The number of theoretical potential sites decrease when the constraints are applied, eventually resulting in a realisable potential of 28.63 TWh of storage capacity.

Table 5 shows the potential sites which fulfil the restrictions proposed in the methodology for PHS assessment. The number of schemes where existing reservoirs could be connected to form new PHS decreased noticeably in all scenarios.

Table 5: number of potential sites found and stored energy associated.

| T1 realisable potential                  |       |      |      |      |      |       |  |  |
|------------------------------------------|-------|------|------|------|------|-------|--|--|
| Scenario 20 km 10 km 5 km 3 km 2 km 1 km |       |      |      |      |      |       |  |  |
| No. of sites                             | 3 229 | 538  | 99   | 32   | 8    | 1     |  |  |
| Potential energy storage (TWh)           | 28.63 | 1.32 | 0.20 | 0.07 | 0.03 | 0.003 |  |  |

Linked with the strong reduction in the number of prospective sites are the very low capacities found in scenarios 1- to 10-km. For example, the maximum potential reached in the 5-km scenario is 0.20 TWh, 0.63 TWh less than its theoretical potential. The relative reduction reaches its maximum at the 10-km scenario, where only 16% of the theoretical potential, i.e. 1.32 TWh passes the restrictions. The largest scenario show a significant reductions in absolute terms as it loses more than 25 TWh. Overall, the realisable potential is still significant at a 20-km distance.

## 3.2. Potential under topology 2

Topology 2 presents significantly higher potential than topology 1, both theoretical and realisable, and a more balanced spread among scenarios. The overall European theoretical potential under topology 2 and a maximum of 20 km between the existing and the best site for a prospective reservoir is 123 TWh. This figure is reduced to realisable potential of 80 TWh when constraints are taken into account.

In general, increasing the distance of search (following the scenarios) for any given existing reservoir resulted in a "best site" with increasing potential and thus the best site found for one given scenario was superseded by that one found in the next scenario.

The theoretical potential energy storage under topology 2 is more than double the figures for topology 1: 123 TWh here versus 54 TWh in the latter case.

| T2 theoretical potential       |        |       |         |       |      |      |  |  |
|--------------------------------|--------|-------|---------|-------|------|------|--|--|
| Scenario                       | 20 km  | 10 km | 5 km    | 3 km  | 2 km | 1 km |  |  |
| No. of sites                   | 4 883  | 4 067 | 2 7 3 7 | 1 595 | 776  | 82   |  |  |
| Potential energy storage (TWh) | 122.87 | 51.09 | 15.31   | 7.98  | 3.11 | 0.37 |  |  |

Table 6: number of theoretical potential sites found under T2 and stored energy associated.

The maximum European T2 realisable potential reaches 80 TWh, from 4 600 available sites, as shown in table below.

Table 7: number of potential sites found and stored energy associated under T2 (realisable).

| T2 realisable potential                  |       |       |       |       |      |      |  |  |  |
|------------------------------------------|-------|-------|-------|-------|------|------|--|--|--|
| Scenario 20 km 10 km 5 km 3 km 2 km 1 km |       |       |       |       |      |      |  |  |  |
| No. of sites                             | 4 603 | 3 428 | 2 025 | 1 071 | 485  | 45   |  |  |  |
| Potential energy storage (TWh)           | 79.76 | 33.32 | 10.21 | 4.72  | 1.89 | 0.18 |  |  |  |

The reduction in potential as a result of applying constraints is significantly lower under T2 than under T1: around 65% of the theoretical potential made it into realisable under the 20-, 10- and 5-km scenarios, 60% under the 3- and 2-km scenarios and 50% under the 1-km scenario. For T1 those figures were 53%, 16%, 24%, 21%, 26% and 83% respectively.

### 4. Conclusions

This assessment estimates the potential for pumped storage capacity in Europe under the assumptions and topologies considered.

There are no official figures reported to Eurostat for the existing pumped storage capacity in Europe, nor in the EU. A comparison for some countries (Spain, France, the UK, Austria, Switzerland, Greece, Bulgaria, Germany, Portugal, the Czech Republic, Poland, Belgium, Slovakia and Ireland) suggests that the T1 theoretical potential is 3.5 times the existing capacity whereas the T2 realisable potential is 10 times as much the existing capacity (see Annex A for further details on each country studied).

In the cases where a PHS can be built based on linking two existing reservoirs (topology 1), the European theoretical potential is 54 TWh (11.4 TWh in the EU) when a maximum distance of 20 km between reservoirs is considered. This potential is drastically reduced for lower distances: 0.83 TWh for 5 km, of which 0.71 in the EU, and 4 GWh for 1 km, mostly in Italy. When restrictions on the use of land are applied the theoretical potential is reduced to a realisable potential of 29 TWh in Europe of which 4 TWh in the EU.

When a PHS is built based on one existing reservoir and on a nearby, appropriately *non-sloping* site for a second existing reservoir, the theoretical potential at a maximum of 20 km reaches 123 TWh in Europe of which 60 TWh in the EU. The corresponding realisable potential is 80 TWh in Europe of which 33 TWh in the EU. For shorter distances between the existing dam and the best potential site the realisable potential is reduced to 10 TWh (5 km, Europe) of which 4 TWh in the EU, and 180 GWh (1 km, Europe), most of which in the EU (155 GWh).

This study has taken due considerations of environmental as well as energy issues. This was one of the reasons why only topologies 1 and 2 were analysed: in neither case there is a need, for example, to close a valley with a dam and thus cause a possible significant disruption to the ecology of the river.

In the choice between theoretical and realisable potentials, it was considered more realistic to take the theoretical potential as best representative for topology 1 and the realisable potential for topology 2. This is because for topology 1 the environmental impact of building a new penstock and powerhouse (the latter is nowadays built underground) can be very small whereas for topology 2 a new dam has to be built and thus the impact of environmental restrictions can be considerable. In addition, the "realisable potential" is based on a set of assumptions about what is somehow politically possible and what is not. The assumptions that building new reservoirs is not possible may for instance not always be the case. Adding new tunnels "under" protected areas may also not be possible in some cases or countries.

This work and its related model could prove useful to the agencies in charge of planning future electricity system development, to authorities in charge of spatial planning and to developers of hydropower schemes.

# References

- Auer, J. and Keil, J., 2012. State of the art electricity storage systems. Indispensable elements of the energy revolution. Deutsche Bank AG DB Research, Frankfurt am Main.
- DENA, 2008. Untersuchung der elektrizitätswirtschaftlichen und energiepolitischen Auswirkungen der Erhebung von Netznutzungsentgelten für den Speicherstrombezug von Pumpspeicherwerken. Deutsche Energie-Agentur GMBH, Bereich Regenerative Energien, Berlin.

European Commission, 2009. Presidency conclusions to the European Council of 29/30 October 2009. European Council, Brussels.

- European Commission, 2012. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Renewable Energy: a major player in the European energy market (COM/2012/0271 final). European Commission, Brussels.
- EEA, 2012. European Catchments and RIvers Network System (ECRINS) —. (Online) European Environmental Agency, Copenhagen. Available at: http://www.eea.europa.eu/data-and-maps/data/european-catchments-and-rivers-network.
- Fitzgerald, N., Lacal-Arántegui, R., McKeogh, E., Leahy, P., 2012. A GIS-based model to calculate the potential for transforming conventional hydropower schemes and non-hydro reservoirs to pumped hydropower schemes, Energy, Volume 41, Issue 1, May 2012, Pages 483-490.
- Hartmann, N., Eltrop, L., Bauer, N., Salzer, J., Schwarz, S., and Schmidt, M., 2012. Stromspeicherpotenziale für Deutschland., Zentrum für Energieforschung Stuttgart (ZfES). Stuttgart, Germany.
- Lacal-Arántegui, R., Fitzgerald, N., and Leahy, P., 2011. *Pumped-hydro energy storage: Potential for transformation from single dams.* Joint Research Centre – Institute for Energy and Transport; Petten, The Netherlands.

Martínez Campillo, R., 2010. El almacenamiento de energía en sistemas eléctricos de potencia: centrales hidroeléctricas reversibles. Presentation at the Universidad Pontificia de Comillas, 18/05/2010.

PLATTS, 2006. European Transmission Lines. Vector digital data. Boulder, CO. Available at: http://www.gisdata.platts.com Sallaberger, M, 2010. Recent Developments in Pump Turbines. Andritz Hydro presentation at HydroVision 2010.

Ursat, X., Jacques-Francillon, H., Faraï, I., 2011. Experience of EDF in the field of pumped-storage power plants. Electricité de France. Presented at the conference Pumped storage Power plants, Lyon, 23-24 November 2011.

Wänn, A., 2012. Database of European PHS plants used in the stoRE project, personal communication.

# Appendix A.

Potential PHS energy storage capacity per country under the two topologies, in GWh for 1, 5 and 20-km scenarios.

| Topology and     | Т    | 1 theoret | ical   | 1    | Г1 realisa | ıble   | 1    | 2 theoret | ical    | ,    | T2 Realis | able   |
|------------------|------|-----------|--------|------|------------|--------|------|-----------|---------|------|-----------|--------|
| scenario/country | 1 km | 5 km      | 20 km  | 1 km | 5 km       | 20 km  | 1 km | 5 km      | 20 km   | 1 km | 5 km      | 20 km  |
| AT               | 0    | 105       | 443    | 0    | 4          | 283    | 1    | 335       | 2 915   | 1    | 120       | 1 747  |
| BE               | 0    | 5         | 12     | 0    | 0          | 0      | 0    | 9         | 21      | 0    | 4         | 12     |
| BG               | 0    | 0         | 119    | 0    | 0          | 11     | 0    | 215       | 1 849   | 0    | 76        | 696    |
| CY               | 0    | 0         | 31     | 0    | 0          | 9      | 0    | 33        | 130     | 0    | 18        | 86     |
| CZ               | 0    | 5         | 39     | 0    | 0          | 6      | 1    | 169       | 644     | 0    | 79        | 450    |
| FI               | 0    | 0         | 12     | 0    | 0          | 12     | 0    | 0         | 33      | 0    | 0         | 2      |
| FR               | 0    | 54        | 1 184  | 0    | 5          | 506    | 9    | 811       | 6 118   | 4    | 631       | 4 090  |
| DE               | 0    | 0         | 89     | 0    | 0          | 14     | 2    | 232       | 1 291   | 1    | 139       | 804    |
| GR               | 0    | 0         | 168    | 0    | 0          | 0      | 1    | 171       | 1 920   | 1    | 110       | 1 062  |
| HU               | 0    | 0         | 4      | 0    | 0          | 0      | 0    | 9         | 59      | 0    | 3         | 23     |
| IE               | 0    | 0         | 0      | 0    | 0          | 0      | 0    | 10        | 355     | 0    | 9         | 94     |
| IT               | 3    | 218       | 1 867  | 3    | 35         | 670    | 9    | 1 183     | 6 846   | 6    | 633       | 4 034  |
| PL               | 0    | 0         | 0      | 0    | 0          | 0      | 0    | 19        | 350     | 0    | 15        | 73     |
| РТ               | 0    | 7         | 542    | 0    | 0          | 60     | 0    | 151       | 1 472   | 0    | 99        | 1 209  |
| RO               | 0    | 0         | 44     | 0    | 0          | 0      | 0    | 165       | 1 429   | 0    | 83        | 719    |
| SK               | 0    | 0         | 0      | 0    | 0          | 0      | 0    | 6         | 46      | 0    | 3         | 39     |
| SI               | 0    | 0         | 0      | 0    | 0          | 0      | 0    | 12        | 77      | 0    | 11        | 45     |
| ES               | 0    | 292       | 5 788  | 0    | 93         | 1 894  | 28   | 2 096     | 17 596  | 10   | 915       | 9 363  |
| SE               | 0    | 0         | 51     | 0    | 0          | 0      | 278  | 661       | 10 160  | 128  | 283       | 3 081  |
| UK               | 0    | 23        | 994    | 0    | 4          | 501    | 7    | 1 144     | 6 120   | 3    | 750       | 5 292  |
| EU               | 4    | 709       | 11 387 | 3    | 141        | 3 967  | 336  | 7 430     | 59 431  | 155  | 3 982     | 32 922 |
| HR               | 0    | 0         | 2      | 0    | 0          | 0      | 6    | 64        | 719     | 6    | 47        | 408    |
| NO               | 0    | 33        | 991    | 0    | 17         | 747    | 18   | 3 218     | 16 597  | 13   | 2 356     | 13 315 |
| СН               | 0    | 42        | 1 656  | 0    | 28         | 1 437  | 0    | 226       | 1 645   | 0    | 197       | 1 583  |
| AL               | 0    | 11        | 3 152  | 0    | 8          | 2 580  | 0    | 72        | 651     | 0    | 71        | 481    |
| BA               | 0    | 0         | 1      | 0    | 0          | 0      | 0    | 36        | 430     | 0    | 36        | 424    |
| XK               | 0    | 0         | 0      | 0    | 0          | 0      | 0    | 6         | 159     | 0    | 5         | 158    |
| IS               | 0    | 0         | 0      | 0    | 0          | 0      | 2    | 4         | 218     | 2    | 4         | 183    |
| ME               | 0    | 0         | 0      | 0    | 0          | 0      | 0    | 190       | 966     | 0    | 69        | 377    |
| MK               | 0    | 0         | 0      | 0    | 0          | 0      | 0    | 0         | 10      | 0    | 0         | 10     |
| RS               | 0    | 0         | 327    | 0    | 0          | 265    | 1    | 131       | 638     | 1    | 109       | 577    |
| TR               | 0    | 36        | 36 793 | 0    | 4          | 19 631 | 3    | 3 936     | 41 412  | 3    | 3 338     | 29 319 |
| Europe           | 4    | 831       | 54 309 | 3    | 198        | 28 627 | 366  | 15 313    | 122 874 | 180  | 10 214    | 79 758 |