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Abstract

Karni and Vierø (2013) propose a model of belief revision under growing awareness–
reverse Bayesianism– which posits that as a person becomes aware of new acts, conse-
quences, or act-consequence links, she revises her beliefs over an expanded state space
in a way that preserves the relative likelihoods of events in the original state space. A
key limitation of the model is that reverse Bayesianism alone does not fully determine
the revised probability distribution. We provide an assumption– act independence–
that imposes additional restrictions on reverse Bayesian belief revision. We show that
under act independence, knowledge of the probabilities of new events in the expanded
state space is suffi cient to fully determine the revised probability distribution in each
case of growing awareness. We thereby operationalize the reverse Bayesian model for
applications. To illustrate how act independence operationalizes reverse Bayesianism,
we consider the law and economics problem of optimal safety regulation.
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1 Introduction

Overview. Economists traditionally model choice under uncertainty according to Sav-

age’s theory of subjective expected utility (Savage, 1954). Savage’s theory posits a space of

mutually exclusive and collectively exhaustive states of the world, representing all possible

resolutions of uncertainty. It assumes that when a person chooses an act, although she is

uncertain about the true state of the world and therefore about the consequences of her

chosen act, she nevertheless has complete knowledge of the state space– she knows all the

possible acts and all the possible consequences of each and every act.

In reality, however, a person often does not have complete knowledge of the state space.

This is known as unawareness. A person may be unaware of some acts, some consequences,

or that a known act can cause a known consequence. An extreme example of the latter

is that no one was aware that supporting anti-Soviet fighters in Afghanistan in the 1980s

could lead to the destruction of the World Trade Center in 2001. Unawareness creates the

possibility of growing awareness– the expansion of the state space when a person discovers

a new act, consequence, or act-consequence link. Examples include the discovery of a new

product or technology (new act), the discovery of a new disease or injury (new consequence),

or the discovery that a known product can cause a known injury (new act-consequence link).

"Unawareness refers to the lack of conception rather than the lack of information" (Schip-

per, 2014a,b). There is a fundamental difference between not knowing the state of the world

(lack of information) and not knowing that a state of the world is possible (lack of concep-

tion). The Savage model allows the state space to contract with the arrival of information

and is consistent with Bayesian updating of beliefs. It however does not admit unawareness

and cannot accommodate growing awareness (Dekel et al., 1998a,b).

In a pioneering article, Karni and Vierø (2013) propose a model of belief revision under

growing awareness called reverse Bayesianism. Reverse Bayesianism posits that as a person

becomes aware of a new act, consequence, or act-consequence link, she revises her beliefs

in a way that preserves the relative likelihoods of events in the original state space. More
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specifically, the model postulates that (i) in the case of a new act or consequence, probability

mass shifts proportionally away from the events in the original state space to the new events

in the expanded state space, and (ii) in the case of a new act-consequence link, null events

in the original state space become non-null, and probability mass shifts proportionally away

from the original non-null events to the original null events that become non-null.

The reverse Bayesian model has (at least) two features that make it attractive to econo-

mists who wish to incorporate unawareness and growing awareness into applications. The

first is transparency. Karni and Vierø (2013) provide an axiomatic foundation for the model,

so one can judge the theory by the axioms.1 The second attractive feature of the model is

its accessibility. The model is built upon a choice-theoretic framework that is well known

to economists (subjective expected utility theory), and the upshot is a belief revision theory

that mirrors the familiar process of Bayesian updating.2

A key limitation of the reverse Bayesian model, however, is that reverse Bayesianism

alone does not fully determine the revised probability distribution over the expanded state

space. This is because reverse Bayesianism implies restrictions on the revised probabilities

of non-null events in the original state space, but not on the probabilities of new events

in the expanded state space. To borrow a term from the econometrics literature, reverse

Bayesianism only partially identifies the revised probability distribution.3

In this paper, we provide an assumption– act independence– that implies additional

restrictions on the revised probability distribution in the reverse Bayesian model. Essentially,

act independence requires that acts are independent experiments. We show that under act

independence, knowledge of the probabilities of new events in the expanded state space is

1The key axioms of the model are the “consistency” axioms, which essentially require that preferences
conditional on the original state of awareness are not altered by growing awareness.

2This feature prompts Dominiak and Tserenjigmid (2018, p. 3) to describe Karni and Vierø’s (2013)
reverse Bayesian model as “elegant.”

3Karni and Vierø (2013, p. 2805) highlight this feature of reverse Bayesianism in their concluding remarks:
“The model presented in this article predicts that, as awareness grows and the state space expands, the
relative likelihoods of events in the original state space remain unchanged. The model is silent about the
absolute levels of these probabilities. In other words, our theory does not predict the probability of the new
events in the expanded state space.”
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suffi cient to fully determine the revised probability distribution over the expanded state

space in each case of growing awareness (a new act, consequence, or act-consequence link).

In this way, act independence makes the reverse Bayesian model operational for economic

applications. This is our main contribution.

After introducing act independence into the reverse Bayesian model, we illustrate how it

operationalizes reverse Bayesianism with an application in the field of law and economics.

In our application, we study the problem faced by a safety regulator who is tasked with

regulating the risky activities of a company. For instance, the regulator could be an environ-

mental agency (such as the U.S. Environmental Protection Agency or the U.K. Environment

Agency) or a health agency (such as the U.S. Centers for Disease Control and Prevention

or Public Health England). We analyze how the regulator revises her beliefs about the risk

of each activity, and in turn the safety standards for each activity, in the wake of growing

awareness. We consider each case of growing awareness and then discuss the importance of

the act independence assumption for the analysis of each case.

Related literature. The unawareness literature was pioneered by Fagin and Halpern

(1988). Other early contributions include Modica and Rustichini (1994, 1999), Dekel et al.

(1998b), Halpern (2001), Heifetz et al. (2006), and Halpern and Rêgo (2008). The early

papers in the literature generally pursued an epistemic approach or a game-theoretic ap-

proach. Surveys of these papers are provided by Schipper (2014b) (which offers a “gentle

introduction”to the literature) and Schipper (2015) (which provides an extended review).

Karni and Vierø (2013) are among the pioneers of the choice-theoretic approach (i.e., the

state-space approach) to modeling unawareness. Subsequent papers build on their approach.

For instance, Grant et al. (2019) invoke their approach to model learning by experimentation

in a world with unawareness; Karni and Vierø (2015, 2017) extend their model to the cases

where the decision maker is probabilistically sophisticated (but does not necessarily abide

by expected utility theory) and where she anticipates her growing awareness; and Dominiak

and Tserenjigmid (2018) generalize their model such that the decision maker perceives am-
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biguity in the wake of growing awareness.4 Karni and Vierø (2013, 2017) and Dominiak and

Tserenjigmid (2018) survey the papers that take a choice-theoretic approach.

A handful of papers apply unawareness models to study legal topics. The bulk of these

focus on contracts. For example, Board and Chung (2011) argue that asymmetric unaware-

ness provides a justification for the contra proferentem doctrine of contract interpretation,

which provides that ambiguous terms in a contract should be construed against the drafter;

Zhao (2011) argues that unawareness may explain the existence of force majeure clauses

in contracts; Grant et al. (2012) study aspects of differential awareness that give rise to

contractual disputes; Filiz-Ozbay (2012) posits asymmetric awareness as a reason for the

incompleteness of contracts; von Thadden and Zhao (2012, 2014) study the properties of

optimal contracts under moral hazard when the agent may be partially unaware of her ac-

tion space; and Auster (2013) introduces asymmetric unawareness into the canonical moral

hazard model and analyzes the properties of the optimal contract.

Structure of the paper. Section 2 presents the reverse Bayesian model. Section 3 in-

troduces the act independence assumption into the model and derives our main results.

Section 4 contains our safety regulation application. Section 5 offers concluding remarks.

The Appendix collects the proofs of all theorems.

2 Reverse Bayesian Model

The primitives of the reverse Bayesian model are a finite, non-empty set F of feasible acts

and a finite, non-empty set Z of feasible consequences. States are functions from the set of

acts to the set of consequences. A state assigns a consequence to each act. The set of all

4More specifically, Dominiak and Tserenjigmid (2018) provide a theory of choice under growing aware-
ness in which subjective expected utility preferences (with unawareness) extend to maxmin expected utility
preferences (without unawareness). They however leave unexplained how beliefs revise with further informa-
tion. In our paper the decision maker has subjective expected utility preferences with possible unawareness
before and after discovering a new act, consequence, or link and revising her beliefs. This framework could
potentially be extended to multiple rounds of discovery and belief revision, if required.
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possible states, ZF , defines the conceivable state space. With m acts and n consequences,

there are nm conceivable states.

The decision maker originally conceives the set of acts to be F = {f1, . . . , fm} and the set

of consequences to be Z = {z1, . . . , zn}. The conceivable state space is ZF = {s1, . . . , snm},

where each state s ∈ ZF is a vector of length m, the ith element of which, si, is the

consequence zj ∈ Z produced by act fi ∈ F in that state of the world.

An act-consequence link, or link, is a causal relationship between an act and a conse-

quence. The conceivable state space admits all conceivable links. However, the decision

maker may perceive one or more links as infeasible, which brings her to nullify the states

that admit such link. We refer to these as null states and denote them by N ⊂ ZF . Taking

only the non-null states defines the feasible state space, S ≡ ZF\N . There are
∏m

i=1(n− νi)

feasible states, where νi denotes the number of nullified links involving act fi.

The decision maker’s beliefs are represented by a probability measure p on the conceivable

state space, ZF . The support of p is the feasible state space, S. That is, p(s) > 0 for all

s ∈ S and p(s) = 0 for all s ∈ N .

The decision maker may initially fail to conceive one or more acts or consequences or to

perceive as feasible one or more conceivable links. We refer to such failures of conception

or perception as unawareness. However, the decision maker may later discover a new act or

consequence, which expands both the feasible state space and the conceivable state space,

or a new link, which expands the feasible state space but not the conceivable state space.5

We refer to such discoveries and expansions as growing awareness.

To illustrate, suppose S = ZF and the decision maker discovers a new consequence, zn+1.

Then the set of consequences becomes Ẑ = Z ∪ {zn+1} and the feasible and conceivable

state spaces both expand to Ŝ = ẐF = {s1, . . . , s(n+1)m}, where each state remains a vector

of length m. Alternatively, suppose the decision maker discovers a new act, fm+1. Then

the set of acts becomes F̂ = F ∪ {fm+1} and the feasible and conceivable state spaces both
5To be clear, by “new”we mean “not previously conceived” in the case of acts and consequences, and

“previously conceived but perceived as infeasible”in the case of links.
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expand to Ŝ = Z F̂ = {s1, . . . , sn(m+1)}, where each state now is a vector of length m + 1.

Lastly, suppose S ⊂ ZF because (and only because) the decision maker initially perceives

as infeasible the link from f1 to zn. Discovery of the link from f1 to zn does not alter the

conceivable state space, but the feasible state space expands to coincide with the conceivable

state space: Ŝ = ZF . Section 4 contains illustrative depictions of conceivable and feasible

state spaces and their expansion due to the discovery of new acts, consequences, and links.

In the wake of growing awareness, the decision maker revises her beliefs in a way that

preserves the relative likelihoods of the events in the original feasible state space (the non-null

events in the original conceivable state space). In each case of growing awareness, probability

mass shifts proportionally away from the events in the original feasible state space to the

new events in the expanded feasible state space. In the case of a new act or consequence,

the new events in the expanded feasible state space are also new events in the expanded

conceivable state space. In the case of a new link, the new events in the expanded feasible

state space are the null events in the original conceivable state space that become non-null.

Karni and Vierø (2013) refer to this belief revision process as reverse Bayesianism. Let p̂

denote the decision maker’s revised beliefs on the expanded feasible state space, Ŝ. Formally,

reverse Bayesianism implies two restrictions on p̂: (i) in the case of a new consequence or

link, p(s)/p(t) = p̂(s)/p̂(t) for all s, t ∈ S; and (ii) in the case of a new act, p(s)/p(t) =

p̂(E(s))/p̂(E(t)) for all s, t ∈ S, where E(s) denotes the event in Ŝ that corresponds to state

s ∈ S; that is, given a new act fm+1, E(s) ≡ {t ∈ Ŝ : ti = si for all i 6= m+ 1}.

3 Act Independence

We add an assumption to the reverse Bayesian model– act independence. Let Ai(zj) ⊂ Ŝ

denote the event that fi yields zj; that is, Ai(zj) ≡ {t ∈ Ŝ : ti = zj}. We refer to events of

this type as act events. We assume that act events are statistically independent.

Act independence. Ai(zj) ⊥ Ai′(zj′) for all i and i′ where i 6= i′ and all j and j′.
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Act independence implies additional restrictions on the decision maker’s revised beliefs, p̂.

Take any event E ⊆ Ŝ. We can express each state s = (s1, . . . , sm) ∈ E as the intersection

of a unique collection of act events in Ŝ: s =
⋂
iAi(s

i). Act independence implies that

p̂(s) =
∏

i p̂ (Ai(s
i)) for all s ∈ E.

Growing awareness– whether it entails a new act, consequence, or link– gives rise to one

or more new act events in Ŝ. In the remainder of this section we show that, under act

independence, knowledge of the probabilities of the new act events in Ŝ is suffi cient to fully

determine p̂ in each case of growing awareness. We start with the case of a new link.

3.1 New Link

Suppose S ⊂ ZF and the decision maker discovers a new link from fl to zk for some l ∈

{1, . . . ,m} and k ∈ {1, . . . , n}. Let Ŝ denote the expanded feasible state space and p̂ denote

the decision maker’s revised beliefs on Ŝ. Observe that Ŝ = S ∪∆, where ∆ = Al(zk) is the

newly discovered event that fl yields zk. Intuitively, ∆ is a copy of any one of the act events

Al(zj) in S, except that fl yields zk (instead of zj) in every state in ∆. We assume that, by

virtue of the discovery, the decision maker learns that fl yields zk with probability δ > 0.

By defintion, δ = p̂(∆).

For each state s ∈ ∆, let L(s) ≡ {t ∈ S : ti = si, ∀ i 6= l} denote the event in S that

corresponds to the state s ∈ ∆. In other words, L(s) comprises the states in S in which

every act (other than fl) yields the same consequence that it yields in state s ∈ ∆.

By reverse Bayesianism, the relative likelihoods of the states in S are preserved: p(s)/p(t) =

p̂(s)/p̂(t) for all s, t ∈ S. By act independence, the probability of each state in ∆ equals

the product of the probabilities of the act events in Ŝ whose intersection defines such state:

p̂(s) =
∏m

i=1 p̂ (Ai(s
i)) for all s = (s1, . . . , sm) ∈ ∆. It follows that:

Theorem 1. In the case of a new link involving fl:

(i) p̂(s) = (1− δ)p(s) for all s ∈ S; and

(ii) p̂(s) = δp (L(s)) for all s ∈ ∆.
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Theorem 1 says that (i) the fraction δ of the probability mass of each state in S is taken

away, and that (ii) the total probability mass δ taken away from the states in S is distributed

among the states in ∆ in proportion to the probability masses of their corresponding events

in S. Reverse Bayesianism dictates the first result (how probability mass is shifted away

from the states in S), while act independence dictates the second result (how the shifted

probability mass is apportioned among the states in ∆). Together, reverse Bayesianism and

act independence fully determine the revised probability distribution p̂ on Ŝ.6

3.2 New Act

Next, suppose S ⊆ ZF and the decision maker discovers a new act, fm+1. Again, let Ŝ

denote the expanded feasible state space and p̂ denote the decision maker’s revised beliefs

on Ŝ. Observe that Ŝ =
⋃n
j=1 ∆j, where ∆j = Am+1(zj) is the newly discovered event that

fm+1 yields zj. Intuitively, each ∆j is an augmented copy of S in which fm+1 yields zj in

every state. We assume that, by virtue of the discovery, the decision maker learns that fm+1

yields zj with probability δj > 0 for all j = 1, . . . , n.7 Note that δj = p̂(∆j) and
∑n

j=1 δj = 1.

For each state s ∈ S, let E(s) ≡ {t ∈ Ŝ : ti = si, ∀ i 6= m + 1} denote the event in

Ŝ that corresponds to the state s ∈ S. In other words, E(s) comprises the states in Ŝ in

which every act (other than fm+1) yields the same consequence that it yields in state s ∈ S.

Observe that Ŝ =
⋃
s∈S E(s), where E(s) comprises n states, one in which fm+1 yields z1,

one in which fm+1 yields z2, and so forth. Index the states in each E(s) by j = 1, . . . , n,

such that sj ∈ E(s) is the state in E(s) in which fm+1 yields zj. The connection between

the sets of events {E(s) : s ∈ S} and {∆j : j = 1, . . . , n}, both of which partition Ŝ, is that

∆j collects the jth state from each E(s).

By reverse Bayesianism, p(s)/p(t) = p̂(E(s))/p̂(E(t)) for all s, t ∈ S. By act indepen-

dence, p̂(s) =
∏m+1

i=1 p̂ (Ai(s
i)) for all s = (s1, . . . , sm+1) ∈ Ŝ. It follows that:

6Note that p is the Bayesian update of p̂ conditional on the event S; hence the term reverse Bayesianism.
7Assuming δj > 0 for all j = 1, . . . , n is without loss of generality. We can deal with the case where δj = 0

for some j by assuming δj > 0 for the first k < n and changing n to k as necessary in the statements below.
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Theorem 2. In the case of a new act fm+1, for all s ∈ S and corresponding E(s) ⊂ Ŝ,

p̂(sj) = δjp(s) for all sj ∈ E(s), j = 1, . . . , n.

Here is the intuition behind Theorem 2. After the discovery of fm+1, each state s ∈ S

is split into n states sj ∈ Ŝ, one for each consequence zj, j = 1, . . . , n. (In state sj, fm+1

yields zj.) These n states comprise the event E(s) ⊂ Ŝ that corresponds to the state s ∈ S.

For each state s ∈ S, reverse Bayesianism dictates that its probability mass is shifted to the

corresponding event E(s) ⊂ Ŝ, while act independence dictates that the fraction δj of the

shifted probability mass is apportioned to state sj ∈ E(s) for all j = 1, . . . , n.

3.3 New Consequence

Last, suppose S ⊆ ZF and the decision maker discovers a new consequence, zn+1. Once

again, let Ŝ denote the expanded feasible state space and p̂ denote the decision maker’s

revised beliefs on Ŝ. Observe that Ŝ = S ∪∆, where ∆ =
⋃m
i=1Ai(zn+1) is the union of the

newly discovered events that fi yields zn+1 for all i = 1, . . . ,m. We assume that, by virtue

of the discovery, the decision maker learns that fi yields zn+1 with probability αi > 0 for all

i = 1, . . . ,m.8 That is, αi = p̂(Ai(zn+1)). Let δ = p̂(∆) and note that 1− δ =
∏m

i=1(1− αi).

For each state s ∈ ∆, let I(s) ≡ {i ∈ {1, . . . ,m} : si = zn+1} denote the indices of the

acts that yield zn+1 in that state of the world, and let I(s) ≡ {i ∈ {1, . . . ,m} : si 6= zn+1}

denote the indices of the acts that do not yield zn+1 in that state of the world.9 In addition,

for each s ∈ ∆, let C(s) ≡ {t ∈ S : ti = si, ∀ i ∈ I(s)} denote the event in S that corresponds

to s ∈ ∆ on I(s). In other words, C(s) comprises the states in S in which every act (other

than the acts that yield zn+1) yields the same consequence that it yields in state s ∈ ∆.

By reverse Bayesianism, p(s)/p(t) = p̂(s)/p̂(t) for all s, t ∈ S. By act independence,

p̂(s) =
∏m

i=1 p̂ (Ai(s
i)) for all s = (s1, . . . , sm) ∈ ∆. It follows that:

8Assuming αi > 0 for all i is without loss of generality. We can deal with the case where αi = 0 for some
i by assuming αi > 0 for the first l < m and changing m to l as necessary in the statements below.

9Section 4.4 contains examples of the sets I(s) and I(s).
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Theorem 3. In the case of a new consequence zn+1:

(i) p̂(s) = (
∏m

i=1(1− αi)) p(s) for all s ∈ S;

(ii) p̂(s) =
(∏

i∈I(s) αi

)(∏
i∈I(s)(1− αi)

)
p (C(s)) for all s ∈ ∆ such that I(s) ⊂ {1, . . . ,m};

(iii) p̂(s) =
∏m

i=1 αi for the s ∈ ∆ such that I(s) = {1, . . . ,m}.

Theorem 3 is similar to Theorem 1. The first result says that the fraction δ of the

probability mass of each state in S is taken away. (Recall that 1 − δ =
∏m

i=1(1 − αi).)

This result is dictated by reverse Bayesianism. The second and third results say how the

total probability mass δ taken away from the states in S is distributed among the states

in ∆. These results are dictated by act independence. Specifically, the third results says

that probability mass
∏m

i=1 αi is apportioned to the one state in which every act results

in zn+1 (this is a clear implication of act independence), while the second result says that

the remaining probability mass, δ −
∏m

i=1 αi, is distributed among the other states in ∆ in

proportion to the probability masses of their corresponding events in S.

4 Application: Safety Regulation

In this section, we illustrate how act independence operationalizes reverse Bayesianism with

an application in the field of law and economics. Unawareness plays an important role in

many legal contexts. A prime example is that parties may write incomplete contracts due to

unforeseen contingencies.10 In our application, we study the implications of unawareness and

growing awareness for the problem of setting legal standards of conduct in safety regulation.11

Examples of growing awareness that are relevant to safety regulation include, just to

name a few, the development of modern day hydraulic fracturing, or “fracking,”in the late

1990s (Gold, 2014) (new act); the discovery of HIV/AIDS in the early 1980s (U.S. Centers for

Disease Control and Prevention, 2011) and bovine spongiform encephalopathy, or “mad cow

10See, e.g., Filiz-Ozbay (2012).
11Although we focus on the context of safety regulation, we note that the problem of setting legal standards

of conduct arises in numerous other legal contexts, such as criminal law and tort law, and that our analysis
in this section can be adapted to such contexts.
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disease,”in the late 1980s (Collee and Bradley, 1997) (new consequences); and the discovery

of links between Agent Orange and cancer after the Vietnam War (National Academies

of Sciences, Engineering, and Medicine, 2018) and between American football and chronic

traumatic encephalopathy in the late 2000s (Lindsley, 2017) (new links).

4.1 Model of Safety Regulation

Consider the problem faced by a safety regulator who is tasked with regulating the activities

of a company. For instance, the regulator could be an environmental agency regulating

the fracking operations of an energy company or a health agency regulating the screening

practices of a blood bank. Suppose that, as far as the regulator is aware, the situation is

as follows.12 The company can engage in two activities, f1 and f2. Each activity has the

potential to cause harm to others, though the outcomes of the activities are independent.

This is the act independence assumption.13 There are two potential degrees of harm, z1 = 0

and z2 > 0. Activity fi yields harm zj with probability πij, where πi1 + πi2 = 1 for i = 1, 2.

Thus, activity fi’s expected harm is πi1z1 + πi2z2 = πi2z2.

Given that F = {f1, f2} and Z = {0, z2}, the conceivable state space, ZF , comprises four

states: s1 = (0, 0), s2 = (0, z2), s3 = (z2, 0), and s4 = (z2, z2). Suppose, for the moment, that

the regulator perceives both activities as risky (i.e., πij > 0 for all i, j). Then the feasible

state space is S = ZF . Let pk ≡ p(sk), k = 1, . . . , 4, denote the regulator’s beliefs on S. We

can depict S and p as follows:

p p1 p2 p3 p4

F\S s1 s2 s3 s4

f1 0 0 z2 z2

f2 0 z2 0 z2 .

12Throughout the application, we consider the perspective of the regulator. We assume that the company’s
awareness and beliefs always coincide with those of the regulator’s.
13While act independence is a reasonable assumption in many settings, there undoubtedly are settings in

which it is not. We explore the implications of relaxing the act indpendence assumption in Section 4.5.
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Observe that π11 = p1 + p2, π12 = p3 + p4, π21 = p1 + p3, and π22 = p2 + p4. We assume that

(i) when the regulator is fully aware, she has correct beliefs about each harm probability, πij,

and (ii) when the regulator is unaware of an act, consequence, or link, her beliefs, although

incorrect with respect to the absolute likelihoods of events, are nevertheless correct with

respect to the relative likelihoods of non-null events.14

For each activity fi, the company can take safety precautions, or care, to reduce the

activity’s expected harm. The cost to the company of taking level of care xi ∈ [0, 1] is

c(xi) = (xi)
2. Taking care reduces the activity’s expected harm at a constant rate: hi(xi) =

πi2z2τ(xi), where τ(xi) = (1− xi). We assume that c(·) and τ(·) are known to the regulator

and are the same for all activities.15

The regulator’s problem is to set a standard of care, x = (x1, x2) that minimizes the

social costs of the company’s activities (the costs of care plus the expected harms):16

minimize
x1,x2

[c(x1) + h1(x1)] + [c(x2) + h2(x2)]

such that x1 ∈ [0, 1] and x2 ∈ [0, 1].

The solution x̃ = (x̃1, x̃2) is given implicitly by the first order conditions

c′(x̃i) = −h′i(x̃i), i = 1, 2,

and is given explicitly by

x̃i =
πi2z2

2
, i = 1, 2.

We refer to x̃i as the effi cient level of care for activity fi. It is the level of care at which the

marginal cost of care equals the marginal benefit (the marginal reduction in expected harm).

14Without the second assumption, the regulator could not have correct beliefs when she becomes fully
aware, which would violate the first assumption.
15We make the latter assumption for simplicity; it is without loss of generality given the former.
16We leave aside the problem of optimal enforcement (Becker, 1968) and assume that the company always

complies with the standard of care set by the regulator.
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4.2 New Link

We start with the case of a new link. To illustrate this case, we assume that the regulator

initially perceives activity f1 as safe and activity f2 as risky. That is, we assume the regulator

initially perceives the event ∆ = {s3, s4} as infeasible (null). This implies p3 = p4 = 0. We

can depict the original feasible state space, S ⊂ ZF , as follows:

p p1 p2

F\S s1 s2

f1 0 0

f2 0 z2 .

Given S and p, the effi cient levels of care are

x̃1 = 0 and x̃2 =
p2z2

2
,

and the regulator sets x1 = x̃1 and x2 = x̃2 as the standards of care for f1 and f2, respectively.

Suppose the regulator discovers that activity f1 is risky. For instance, suppose the com-

pany engages in f1 and it result in harm z2. The feasible state space expands to Ŝ = S ∪∆

and the regulator revises her beliefs from p to p̂:

p̂ p̂1 p̂2 p̂3 p̂4

F\Ŝ s1 s2 s3 s4

f1 0 0 z2 z2

f2 0 z2 0 z2 .

Observe that for each state s in ∆ there is an event L(s) in S that corresponds with s on

activity f2. Specifically, L(s3) = {s1} and L(s4) = {s2}.

13



We assume that, by virtue of the discovery, the regulator learns that f1 yields harm z2

with probability δ > 0. By definition, δ = p̂(∆) = p̂3 + p̂4. It follows from Theorem 1 that

the revised probability distribution p̂ is given by:

Proposition 1. p̂1 = (1− δ)p1, p̂2 = (1− δ)p2, p̂3 = δp1, and p̂4 = δp2.

Given Ŝ and p̂, the effi cient levels of care are

̂̃x1 =
(p̂3 + p̂4) z2

2
=
δz2
2

and ̂̃x2 =
(p̂2 + p̂4)z2

2
=
p2z2

2
.

Note that ̂̃x1 > x̃1 but ̂̃x2 = x̃2. Thus, the discovery that f1 is risky necessitates the

stipulation of a new standard of care for f1 but not for f2.

4.3 New Act

We next consider the case of a new act. We assume that S = ZF :

p p1 p2 p3 p4

F\S s1 s2 s3 s4

f1 0 0 z2 z2

f2 0 z2 0 z2 .

Given S and p, the effi cient levels of care are

x̃1 =
(p3 + p4)z2

2
and x̃2 =

(p2 + p4)z2
2

,

and the regulator sets x1 = x̃1 and x2 = x̃2 as the standards of care for f1 and f2, respectively.

Suppose the regulator discovers a new activity, f3, which can cause harm. For instance,

suppose the company invents and engages in f3 and it results in harm z2. The expanded
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feasible state space is Ŝ = ∆1 ∪∆2, where ∆1 = {s1, s2, s3, s4} and ∆2 = {s5, s6, s7, s8}:

p̂ p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

F\Ŝ s1 s2 s3 s4 s5 s6 s7 s8

f1 0 0 z2 z2 0 0 z2 z2

f2 0 z2 0 z2 0 z2 0 z2

f3 0 0 0 0 z2 z2 z2 z2 .

Observe that ∆1 is an augmented copy of S in which f3 yields no harm in every state,

and that ∆2 is an augmented copy of S in which f3 yields harm z2 in every state. Stated

differently, each state in S is split into two depending on whether f3 yields no harm or

harm z2. Thus, for each state s in S there is a corresponding event E(s) in Ŝ. Specifically,

E(s1) = {s1, s5}, E(s2) = {s2, s6}, E(s3) = {s3, s7}, and E(s4) = {s4, s8}.

We assume that, by virtue of the discovery, the regulator learns that f3 yields harm z2

with probability δ > 0. Thus, 1−δ = p̂(∆1) = p̂1+p̂2+p̂3+p̂4 and δ = p̂(∆2) = p̂5+p̂6+p̂7+p̂8.

It follows from Theorem 2 that the revised probability distribution p̂ is given by:

Proposition 2. p̂1 = (1− δ)p1, p̂2 = (1− δ)p2, p̂3 = (1− δ)p3, p̂4 = (1− δ)p4,

p̂5 = δp1, p̂6 = δp2, p̂7 = δp3, and p̂8 = δp4.

Given Ŝ and p̂, the effi cient levels of care are

̂̃x1 =
(p̂3 + p̂4 + p̂7 + p̂8) z2

2
=

(p3 + p4)z2
2

,

̂̃x2 =
(p̂2 + p̂4 + p̂6 + p̂8) z2

2
=

(p2 + p4)z2
2

,

and ̂̃x3 =
(p̂5 + p̂6 + p̂7 + p̂8) z2

2
=
δz2
2
.

Thus, the discovery of f3 necessitates the stipulation of a new standard of care, x̂3, but it

does not necessitate the stipulation of a new standards of care for f1 or f2.
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4.4 New Consequence

We last consider the case of a new consequence. As above, we assume that S = ZF :

p p1 p2 p3 p4

F\S s1 s2 s3 s4

f1 0 0 z2 z2

f2 0 z2 0 z2 .

Given S and p, the effi cient levels of care are

x̃1 =
(p3 + p4)z2

2
and x̃2 =

(p2 + p4)z2
2

,

and the regulator sets x1 = x̃1 and x2 = x̃2 as the standards of care for f1 and f2, respectively.

Suppose the regulator discovers a new consequence, z3 > z2, which she links to f1 and

f2. For instance, suppose the company engages in f1 and f2 and each results in harm z3.

The expanded feasible state space is Ŝ = S ∪∆, where ∆ = {s5, s6, s7, s8, s9}:

p̂ p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9

F\Ŝ s1 s2 s3 s4 s5 s6 s7 s8 s9

f1 0 0 z2 z2 z3 z3 0 z2 z3

f2 0 z2 0 z2 0 z2 z3 z3 z3 .

Observe that for each state s in ∆ there is an event C(s) in S that corresponds with s on

the activity that does not yield harm z3. Specifically, C(s5) = {s1, s3}, C(s6) = {s2, s4},

C(s7) = {s1, s2}, C(s8) = {s3, s4}, and C(s8) = {∅}.17

We assume that, by virtue of the discovery, the regulator learns that activity f1 yields

harm z3 with probability α > 0 and that activity f2 yields harm z3 with probability β > 0.

17In this example, I(s5) = I(s6) = {1}, I(s7) = I(s8) = {2}, and I(s9) = {1, 2}. Accordingly, I(s5) =
I(s6) = {2}, I(s7) = I(s8) = {1}, and I(s9) = {∅}.
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By defnition, α = p̂5 + p̂6 + p̂9 and β = p̂7 + p̂8 + p̂9. It follows from Theorem 3 that the

revised probability distribution p̂ is given by:

Proposition 3. p̂1 = (1−α)(1−β)p1, p̂2 = (1−α)(1−β)p2, p̂3 = (1−α)(1−β)p3,

p̂4 = (1− α)(1− β)p4, p̂5 = α(1− β)(p1 + p3), p̂6 = α(1− β)(p2 + p4),

p̂7 = β(1− α)(p1 + p2), p̂8 = β(1− α)(p3 + p4), and p̂9 = αβ.

Let δ = p̂(∆) = p̂5+ p̂6+ p̂7+ p̂8+ p̂9. Note that δ = α+β−αβ and 1−δ = (1−α)(1−β).

We can rewrite p̂ in terms of δ as follows:

Corollary 1. p̂1 = (1− δ)p1, p̂2 = (1− δ)p2, p̂3 = (1− δ)p3, p̂4 = (1− δ)p4,

p̂5 = α
1−α(1− δ)(p1 + p3) = (δ − β)(p1 + p3), p̂6 = α

1−α(1− δ)(p2 + p4) = (δ − β)(p2 + p4),

p̂7 = β
1−β (1− δ)(p1 + p2) = (δ − α)(p1 + p2), p̂8 = β

1−β (1− δ)(p3 + p4) = (δ − α)(p3 + p4),

and p̂9 = α + β − δ.

Given Ŝ and p̂, the effi cient levels of care are

̂̃x1 =
(p̂3 + p̂4 + p̂8)z2 + (p̂5 + p̂6 + p̂9)z3

2
=

(1− α)(p3 + p4)z2 + αz3
2

and ̂̃x2 =
(p̂2 + p̂4 + p̂6)z2 + (p̂7 + p̂8 + p̂9)z3

2
=

(1− β)(p2 + p4)z2 + βz3
2

.

Note that ̂̃x1 > x̃1 and ̂̃x2 > x̃2. Thus, the discovery of z3 necessitates the stipulation of new

standards of care for both f1 and f2.

4.5 Act Independence

We conclude our application with a few remarks about the importance of act independence.

As previously noted, reverse Bayesianism alone is not suffi cient to fully identify the revised

probability distribution p̂. The reason is that reverse Bayesianism implies restrictions on the

revised probabilities of non-null states in the original state space (or, in the case of a new

act, their corresponding events in the expanded state space), but not on the probabilities

of new states in the expanded state space. In other words, reverse Bayesianism prescribes
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how probability mass shifts away from non-null states in the original state space to the

corresponding states or events in the expanded state space, but it does not dictate how the

shifted probability mass is distributed among the new states in the expanded state space.

This is where act independence comes in. It determines how the shifted probability mass

is apportioned among the new states. Together, reverse Bayesianism and act independence

fully identify the revised probability distribution p̂.

How realistic is act independence? The answer depends on the nature of the specific

activities in question. For instance, the risk that fracking for natural gas results in ground-

water contamination is likely to be independent of the risk that importing liquefied natural

gas results in a fire or explosion. By contrast, the risk of contracting HIV from sharing

drug injection needles is likely to be correlated with the risk of contracting HIV from having

unprotected sex, since both depend on the prevalence of HIV in the population.

Because there exist activities whose outcomes are not independent, it is useful to inves-

tigate the importance of the act independence assumption for our results.

New link. In the case of a new link, reverse Bayesianism alone implies p̂1 = (1 − δ)p1,

p̂2 = (1− δ)p2, and p̂3 + p̂4 = δ. Importantly, reverse Bayesianism alone is not suffi cient to

separately identify p̂3 and p̂4. This leaves a set of posteriors p̂. Effectively, unawareness has

been turned into ambiguity.18

As it turns out, this does not create an issue with respect to activity f1. Recall that, by

assumption, the regulator learns δ (the probability that f1 yields z2). Because the effi cient

level of care for f1 is a function of the sum p̂3+ p̂4, the regulator can stipulate a new standard

of care for f1 in terms of δ.

Relaxing act independence, however, creates ambiguity with respect to the revised risk

of activity f2. Because the effi cient level of care for f2 is a function of the sum p̂2 + p̂4,

without act independence (or another assumption that separately identifies p̂3 and p̂4), the

18Dominiak and Tserenjigmid (2018) have a similar result. In their model, growing awareness extends
subjective expected utility preferences to maxmin expected utility preferences, and newly discovered events
can be ambiguous. Thus, reverse Bayesian belief revision can result in a set of posteriors.
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regulator cannot stipulate a precise new standard of care for f2. The best the regulator can

do is specify lower and upper bounds, using the knowledge that p̂4 ∈ (0, δ).

Of course, the ambiguity can be resolved if, by virtue of the discovery, the regulator

learns more about p̂. For instance, if the regulator learns not only δ but also either p̂2 + p̂4

(the revised probability that f2 yields z2) or p̂4 (the joint probability that f1 and f2 yield

z2), this is suffi cient to separately identify p̂3 and p̂4. With this, the regulator can stipulate

a precise new standard of care for f2.19

New act. In the case of a new act, reverse Bayesianism alone implies p̂1 + p̂5 = p1,

p̂2 + p̂6 = p2, p̂3 + p̂7 = p3, p̂4 + p̂8 = p4, and p̂5 + p̂6 + p̂7 + p̂8 = δ. Again, this leaves

a set of posteriors p̂. Recall that the effi cient level of care for f1 is a function of the sum

p̂3+ p̂4+ p̂7+ p̂8, which equals p3+p4; the effi cient level of care for f2 is a function of the sum

p̂2+ p̂4+ p̂6+ p̂8, which equals p2+p4; and the effi cient level of care for f3 is a function of the

sum p̂5+ p̂6+ p̂7+ p̂8, which equals δ. Hence, even without act independence, the regulator’s

information is suffi ciently precise (i) to know that she need not stipulate new standards of

care for activities f1 and f2 and (ii) to stipulate a standard of care for the new activity f3.

New consequence. In the case of a new consequence, reverse Bayesianism alone implies

p̂1 = (1−δ)p1, p̂2 = (1−δ)p2, p̂3 = (1−δ)p3, p̂4 = (1−δ)p4, and p̂5+p̂6+p̂7+p̂8+p̂9 = δ. Once

again, this leaves a set of posteriors p̂. By assumption, the regulator learns p̂5 + p̂6 + p̂9 = α

(the probability that f1 yields z3) and p̂7 + p̂8 + p̂9 = β (the probability that f2 yields z3).

Assume the regulator also learns p̂9 (the joint probability that f1 and f2 yield z3), and let

p̂9 = γ. Note that δ = α + β − γ.

Recall that the effi cient level of care for activity f1 is a function of α and the sum

p̂3 + p̂4 + p̂8 (the revised probability that f1 yields z2), and the effi cient level of care for

activity f2 is a function of β and the sum p̂2 + p̂4 + p̂6 (the revised probability that f2 yields

19We note that, in the case of a new link, reverse Bayesianism fully identifies p̂ without act independence
if the probability that activity f2 yields harm z2 is unchanged by the discovery of the new link between f1
and z2 (i.e., π22 = p2 + p4 = p̂2 + p̂4 + p̂4 = π̂22).

19



z2). Without act independence, the sums p̂3 + p̂4 + p̂8 and p̂2 + p̂4 + p̂6 are only partially

identified (because p̂6 and p̂8 are not separately identified), creating ambiguity with respect

to the revised risks of both activities. As a result, the regulator cannot stipulate precise new

standards of care for activities f1 and f2. The best the regulator can do is specify bounds:

x̂1 ∈
(

(1− δ)(p3 + p4)z2 + αz3
2

,
((1− δ)(p3 + p4) + δ) z2 + αz3

2

)
and x̂2 ∈

(
(1− δ)(p2 + p4)z2 + βz3

2
,
((1− δ)(p2 + p4) + δ) z2 + βz3

2

)
.

As before, the ambiguity can be resolved if, by virtue of the discovery, the regulator

learns more about p̂. For instance, if the regulator learns not only δ and γ but also either

p̂3 + p̂4 + p̂8 or p̂2 + p̂4 + p̂6, this is suffi cient to separately identify p̂5, p̂6, p̂7, and p̂8. With

this, the regulator can stipulate precise new standards of care for f1 and f2.

In summary, without act independence, reverse Bayesianism only partially identifies p̂.

This does not create an issue in the case of a new act– the regulator’s information is suffi -

ciently precise to stipulate a standard of care with respect to each activity. In the case of a

new link or consequence, by contrast, the partial identification of p̂ creates ambiguity with

respect to the revised risk of one or both activities, leading to imprecise standards. This

ambiguity, however, can be resolved if the regulator learns more about p̂. In other words,

the more the regulator learns about the new probability of harm, the less important is the

act independence assumption.

5 Conclusion

For economists who wish to incorporate unawareness and growing awareness into appli-

cations, reverse Bayesianism offers an elegant choice-theoretic belief revision theory that

mirrors the familiar process of Bayesian updating. An important limitation of Karni and

Vierø’s (2013) model, however, is that reverse Bayesianism alone does not fully determine the
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revised probability distribution over the expanded state space. We overcome this limitation

in a relatively simple way, by assuming that acts are statistically independent. We show

that with act independence, and knowledge of the probabilities of new act events in the ex-

panded state space, reverse Bayesianism fully determines the revised probability distribution

over the expanded state space in each case of growing awareness. In this way, we make a

contribution to the reverse Bayesian model and operationalize it for economic applications.20

To illustrate how act independence operationalizes reverse Bayesianism, we consider the

law and economics problem of safety regulation. We analyze how a safety regulator, in

the wake of growing awareness about the risky activities within her purview, revises her

beliefs about the risk of each activity and resets the safety standards for each activity. Of

course, unawareness and growing awareness– via technological progress, scientific discovery,

or otherwise– play an important role in many legal contexts. Accordingly, we believe that the

reverse Bayesian model could be fruitfully applied to study the implications of unawareness

and growing awareness for the economic analysis of numerous other legal subjects, including

contract remedies, criminal law, litigation and settlement, and tort law.

20At the same time, the model has other limitations that we do not address. For instance, Chambers and
Hayashi (2018) criticize its empirical content from a revealed preference perspective. They show that, in
the case of a new consequence, the model does not make singular predictions about observable choices over
feasible acts. Another limitation of the model is that it assumes a naive or myopic unawareness– people
are unaware that they are unaware. A sophisticated unawareness, where people are aware that they are
unaware, may be more realistic. Aware of this limitation, Karni and Vierø (2017) extend their model to the
case of sophisticated unawareness. The end result is a generalization that maintains the flavor of reverse
Bayesianism and nests the naive model as a special case.
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Appendix

Proof of Theorem 1

(i) Take any s ∈ S. By reverse Bayesianism, we have |S| − 1 linearly independent equations:

p̂(t) =
p(t)

p(s)
p̂(s), ∀ t ∈ S, t 6= s. (1.1)

By the definition of δ and
∑

t∈Ŝ p̂(t) = 1, we have

∑
t∈S p̂(t) = 1− δ. (1.2)

Substituting (1.1) into (1.2), we have

p̂(s) +
∑

t∈S:t6=s

p(t)

p(s)
p̂(s) = 1− δ,

which implies

p̂(s) =
(1− δ)p(s)∑

t∈S p(t)
= (1− δ)p(s), (1.3)

where the last equality follows from
∑

t∈S p(t) = 1.

(ii) Take any s ∈ ∆. By act independence,

p̂(s) =
∏m

i=1 p̂
(
Ai(s

i)
)
.

Observe that p̂
(
Al(s

l)
)

= p̂ (Al(zk)) = δ and
⋂
i 6=lAi(s

i) = L(s) ∪ {s}. It follows that

p̂(s) = δ
∏

i 6=l p̂
(
Ai(s

i)
)

= δp̂
(⋂

i 6=lAi(s
i)
)

= δp̂ (L(s) ∪ {s}) = δ [p̂ (L(s)) + p̂(s)] ,

which implies

p̂(s) =
δ

1− δ p̂(L(s)). (1.4)

Observe that L(s) is the union of all t ∈ S such that ti = si for all i 6= l. It follows that

p̂(L(s)) =
∑

t∈L(s) p̂(t) =
∑

t∈L(s)(1− δ)p(t) = (1− δ)p(L(s)), (1.5)

where the second equality follows from (1.3). Substituting (1.5) back into (1.4), we have

p̂(s) = δp(L(s)).
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Proof of Theorem 2

Take any s ∈ S. By reverse Bayesianism, we have |S| − 1 linearly independent equations:

p(t)p̂(E(s)) = p(s)p̂(E(t)), ∀ t ∈ S, t 6= s.

Summing the left- and right-hand sides, and adding p(s)p̂(E(s)) to each side, yields

p̂(E(s))
∑

t∈S p(t) = p(s)
∑

t∈S p̂(E(t)).

Because
∑

t∈S p(t) = 1 and
∑

t∈S p̂(E(t)) = 1, we have

p̂(E(s)) = p(s). (2.1)

Take any sj ∈ E(s), j ∈ {1, . . . , n}. By act independence,

p̂(sj) =
∏m+1

i=1 p̂
(
Ai(s

i
j)
)
.

Observe that p̂
(
Am+1(s

m+1
j )

)
= p̂ (Am+1(zj)) = δj and

⋂m
i=1Ai(s

i
j) = E(s). It follows that

p̂(sj) = δj
∏m

i=1 p̂
(
Ai(s

i
j)
)

= δj p̂
(⋂m

i=1Ai(s
i
j)
)

= δj p̂ (E(s)) . (2.2)

Substituting (2.1) into (2.2), we have p̂(sj) = δjp(s).

Proof of Theorem 3

(i) Take any s ∈ S. By reverse Bayesianism, we have |S| − 1 linearly independent equations:

p(t)p̂(s) = p(s)p̂(t), ∀ t ∈ S, t 6= s.

Summing the left- and right-hand sides, and adding p(s)p̂(s) to each side, yields

p̂(s)
∑

t∈S p(t) = p(s)
∑

t∈S p̂(t).

Observe that
∑

t∈S p(t) = 1 and
∑

t∈S p̂(t) = 1− δ =
∏m

i=1(1− αi). Thus,

p̂(s) = (1− δ)p(s) = (
∏m

i=1(1− αi)) p(s). (3.1)
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(ii) Take any s ∈ ∆ such that I(s) = {k} for any k ∈ {1, . . . ,m}. By act independence,

p̂(s) =
∏m

i=1 p̂
(
Ai(s

i)
)
.

Observe that p̂
(
Ak(s

k)
)

= p̂ (Ak(zn+1)) = αk. Thus,

p̂(s) = αk
∏

i∈I(s) p̂
(
Ai(s

i)
)
.

Observe that I(s) = {k} implies
⋂
i∈I(s)Ai(s

i) = C(s) ∪ {s}. Hence,

p̂(s) = αk
∏

i∈I(s) p̂
(
Ai(s

i)
)

= αkp̂
(⋂

i∈I(s)Ai(s
i)
)

= αkp̂ (C(s) ∪ {s}) = αk (p̂ (C(s)) + p̂ (s)) ,

which implies

p̂(s) =
αk

1− αk
p̂ (C(s)) . (3.2)

Observe that C(s) is the union of all t ∈ S such that ti = si for all i ∈ I(s). It follows that

p̂(C(s)) =
∑

t∈C(s) p̂(t) =
∑

t∈C(s)(1− δ)p(t) = (1− δ)p(C(s)), (3.3)

where the second equality follows from (3.1). Substituting (3.3) back into (3.2), we have

p̂(s) =
αk

1− αk
(1− δ)p(C(s)) = αk

∏
i∈I(s)(1− αi)p(C(s)),

where the last equality follows from 1− δ =
∏m

i=1(1− αi).
Next take any s ∈ ∆ such that I(s) = {k, l} for any {k, l} ⊂ {1, . . . ,m}. By act

independence,

p̂(s) =
∏m

i=1 p̂
(
Ai(s

i)
)
.

Observe that p̂
(
Ak(s

k)
)

= p̂ (Ak(zn+1)) = αk. Thus,

p̂(s) = αk
∏

i∈{I(s)∪{l}} p̂
(
Ai(s

i)
)
.

Observe that I(s) = {k, l} implies
⋂
i∈{I(s)∪{l}}Ai(s

i) = D(s) ∪ {s}, where D(s) ≡ {r ∈ ∆ :

ri = si, ∀ i ∈ {I(s) ∪ {l}}. Hence,

p̂(s) = αk
∏

i∈{I(s)∪{l}} p̂
(
Ai(s

i)
)

= αkp̂
(⋂

i∈{I(s)∪{l}Ai(s
i)
)

= αkp̂ (D(s) ∪ {s}) = αk (p̂ (D(s)) + p̂ (s)) ,
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which implies

p̂(s) =
αk

1− αk
p̂ (D(s)) . (3.4)

Observe further that I(r) = {l} for all r ∈ D(s). It follows that

p̂ (D(s)) =
∑

t∈D(s) p̂(t)

=
∑

t∈D(s)
αl

1− αl
(1− δ)p(C(t))

=
αl

1− αl
(1− δ)p(C(s)). (3.5)

Substituting (3.5) back into (3.4), we have

p̂(s) =
αk

1− αk
αl

1− αl
(1− δ)p(C(s)).

= αkαl
∏

i∈I(s)(1− αi)p(C(s)).

Proceeding in this fashion to consider s ∈ ∆ such that I(s) is an ι-element subset of

{1, . . . ,m} for all ι = 3, . . . ,m− 1, we establish that

p̂(s) =
(∏

i∈I(s) αi

)(∏
i∈I(s)(1− αi)

)
p (C(s))

for all s ∈ ∆ such that I(s) ⊂ {1, . . . ,m}.
(iii) Take the s ∈ ∆ such that I(s) = {1, . . . ,m}. By act independence, p̂(s) =∏m

i=1 p̂ (Ai(s
i)). Observe that p̂ (Ai(s

i)) = p̂ (Ai(zn+1)) = αi for all i ∈ I(s). Because

I(s) = {1, . . . ,m}, we have p̂(s) =
∏m

i=1 αi.
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