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ABSTRACT 

PHOTOPHYSICAL PROPERTIES AND EXCITED STATE DYNAMICS OF 

POROUS ORGANIC MATERIALS 

 

Korlan Duisenova 

 

Marquette University, 2020 

 

Charge transfer complexes are charge separated states that are formed at donor - acceptor 

interfaces and play significant role in charge photogeneration. One of the main criteria for 

efficient charge transfer is suppression of charge recombination process. Previous 

experiments show that one of the most effective ways to inhibit recombination is an 

introduction of bridge molecules between donor and acceptor or increase the number of 

electron donating and withdrawing groups. These solutions are inspired by photosynthetic 

reaction centers where charge transfer occurs over long distances. Covalent Organic 

Frameworks (COFs) are advanced porous crystalline materials that can be constructed of 

multiple donor and acceptor building blocks. This approach improves efficiency of charge 

transfer by suppressing dissociation of polaron pairs. In the present work, photophysical 

and charge dynamics processes of various donor-acceptor systems, namely star-shaped 

carbazole-π-triazine organic chromophores, BTPA-cased donor-acceptor COFs, and 

metallophthalocyanine COFs, were investigated using the combination of steady-state 

spectroscopic techniques and time-resolved femtosecond transient absorption (TA) 

spectroscopy.  

The study on star-shaped carbazole-π-triazine organic chromophores showed that 

formation of charge transfer can be facilitated by positioning a bridging phenyl ring by 

creation of conjugated system. Nevertheless, the introduction of two phenyl bridge units 

can distort the coupling leading to weak charge migration from carbazole.  

Combination of BTPA (5,5',5''-(1,3,5-Benzenetriyl)tris[2-pyridinecarboxaldehyde]) and a 

series of three different organic precursors: 1,3,5-Tris(4-aminophenyl)benzene (TPB), 

4,4',4''-Triaminotriphenylamine (TPA), and 1,3,5-Tris(4-aminophenyl)triazine (TPT) for 

the synthesis of COF showed that efficient charge transfer and slower recombination 

process can be achieved by incorporating stronger electron donating group, such as TPA, 

to enhance excited state dipole moment.  

Finally, the investigation of charge dynamics in COFs constructed using copper and nickel 

metallophthalocyanine linked to electron withdrawing 2,3,5,6-tetrafluoroterephthalonitrile 

(TFTPN) revealed the delocalization of charge between neighboring donor-acceptor units 

formed within 1.464 – 1.750 ps, which is further transferred between COF layers and 

dissociates between 0.662 – 3.383 ns.
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CHAPTER I: INTRODUCTION 

1.1. Introduction to Charge Transfer between electron-rich and electron-poor units  

The ever-rising energy consumption and the detrimental effect of the use of fossil 

fuels on the environment are serious global issues. According to the International Energy 

Agency report, in 2019 the global energy consumption increased by 2.3%. About 70% of 

this energy demand was fulfilled by the burning of fossil fuels. Fossil fuel combustion 

emitted 33.1 gigatons of carbon dioxide into the atmosphere along with carbon monoxide, 

nitrogen dioxide, hydrogen sulfide and other volatile organic compounds. The impact of 

such emissions on the environment is dramatic: greenhouse effect, increasing acidity of 

water, ozone layer depletion etc.  

Finding alternate ways of generating energy is a challenge that calls for immediate 

attention. Thus, solar cells, wind turbines, hydrogen fuel cells, geothermal methods and 

other alternative energy sources are being sought after. One of the biggest shortcomings of 

the solar cells that are currently used is the high cost and the use of metals that limit the 

bulk production and use. Therefore, it is important to explore new materials that can be 

effective for this purpose. The investigation of these materials is often inspired by nature, 

where solar energy is efficiently harvested by plants using chlorophyll a and its auxiliary 

pigments, such as carotenoids. These pigments constitute an ‘antenna’ array, where 

irradiation of UV light causes a series of energy transfer (EnT) reactions (Figure 1.1).  
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Figure 1.1. Photosynthesis mechanism involving EnT and charge transfer 

 

An efficient light harvesting system is characterized by high absorption cross section 

(covering the UV and visible region), high charge carrier mobility and long-lived excited 

states. For example, chlorophyll largely absorbs light in the visible region of the 

electromagnetic spectrum. Upon photoexcitation, it relaxes back to the ground state and 

emits light, nearly 97% of which is absorbed by neighboring pigment in the ‘antenna’ 

centers. The chain reaction continues until the irradiated energy reaches reaction centers 

where electrons are transferred from water splitting in Photosystem II (PSII) to 

Photosystem I (PSI) resulting in the reduction of NADP to NADPH.1–4 Photosynthesis is, 

therefore, a complex process that involves EnT and Charge Transfer (CT). Hence, 

developing an understanding of the electron transfer mechanism can help to mimic similar 

process for practical applications that can be scaled. Each elementary step in 

photosynthesis is a source of inspiration for designing materials that harvest solar energy 

for other applications, such as photocatalytic water splitting,5,6 catalysis or capture CO2 

emissions.7  

All light harvesting processes start with the formation to locally excited (LE) state 

(Figure 1.2a) formation followed by charge separation and transfer before recombination 
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can take place. Thus, CT is one of the key reactions that determine the efficiency of light 

harvesting.  

 

Figure 1.2. (a) Jablonski Diagram of ICT formation, (b) Electronic configuration of LE 

and CT state 

 

Charge transfer refers to the transfer of electrons from an electron-rich (donor) to 

electron-poor part (acceptor) located within the same molecule (intramolecular CT, ICT) 

or between different molecules (intermolecular).8 Thus, excitation of electron-rich part of 

molecule is the first step (Figure 1.2b). As shown in the Jablonski diagram (Figure 1.2a), 

the charge separated state have a narrower band gap between highest occupied molecular 

orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). This means that 

excitation to and relaxation from CT requires less energy as compared to the LE state, 

which may fall in the visible region of the electromagnetic radiation. This makes these 

molecules excellent candidates for visible light photocatalysis or visible light emitters. The 

oxidation of donor and the reduction of acceptor units result in the formation of electron-
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hole pair, i.e. charge transfer process, which is a crucial step in solar energy conversion 

such as photocatalysis, photovoltaic devices and photoelectronics.  

A fundamental understanding of the interaction between the D and A and the factors 

affecting this process is essential for further developing devices for solar energy 

conversion. A donor is a molecule or a part of a molecule which contains a free electron 

site, whereas an acceptor has a stronger electron affinity and attracts this electron. To 

explain the rate of CT in donor-acceptor systems, Rudolph A. Marcus developed a theory 

of electron transfer in 1956. According to Marcus’s theory, ET rate (kET) follows Gaussian 

type dependence with respect to the Gibbs Free Energy of ET (ΔGET)9 and can be expressed 

in an Arrhenius-type equation:  

𝑘𝐸𝑇 = √
4𝜋3

ℏ2𝜆𝑘𝐵𝑇
𝐻𝐷𝐴

2 𝑒𝑥𝑝 {−
(Δ𝐺𝐸𝑇+𝜆

4𝜆𝑘𝐵𝑇
}  (1) 

where, kB is a Boltzman constant and T is the absolute temperature at which charge 

transfer occurs.10–13 Equation (1) shows that in order to achieve efficient CT, strong 

electron coupling between D and A (HDA), solvent reorganization energy (λ) and ionization 

potential of D and electron affinity of A, which dictates ΔGET, must be controlled.  

Gibbs Free Energy of Charge Transfer can be expressed according to Equation (2): 

Δ𝐺𝐸𝑇
° = 𝑒[𝐸𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟

° − 𝐸𝑑𝑜𝑛𝑜𝑟
° ] −

𝑒2

4𝜋𝜀0𝜀𝑠𝑑
 (2) 

where 𝐸𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟
°  and 𝐸𝑑𝑜𝑛𝑜𝑟

°  are standard reduction and oxidation potentials 

respectively, 𝜀0 is vacuum permittivity, 𝜀𝑠 is dielectric constant of solvent and 𝑑 the 

distance (d) between donor and acceptor. 
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HDA can be rearranged in terms of the structure of the donor and acceptor. It decays 

exponentially as the distance (d) between donor and acceptor increases:  

𝐻𝐷𝐴 = 𝐴𝑒−𝛽𝑑  (3) 

where 𝛽 is pre-exponential factor called distance decay function. According to the 

work done by Oliver S. Wenger, 𝛽 depends on the mechanism of CT. 

CT follows two major paths: (a) hopping mechanism or (b) tunneling 

mechanism.12,14,15 Wenger showed that when reduction of bridge units connecting donor 

and acceptor is thermodynamically favorable and the energies of donor and bridges are 

equivalent to each other, CT is activated through hopping or sequential mechanism 

(Figure 1.3a). In this case, the rate of CT is weakly related to distance (𝛽 is negligible).12,16 

CT dynamics strongly depends on the distance when tunneling or superexchange 

mechanism occurs (Figure 1.3b). Distance decay function (𝛽) is significant and the 

reduction of bridge is thermodynamically unfavorable.13,14,16  

 

Figure 1.3. (a) Hopping mechanism, (b) tunneling mechanism 

 

1.2. Experimental Techniques that Characterize Charge Transfer Process  

Steady-state or linear electronic spectroscopy is one of the primary techniques to detect 

CT state. Electron coupling between a donor and acceptor, which leads to charge transfer 

under photoexcitation and sufficient redox potentials, narrows energy gap compared to 
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discrete excitation of donor or acceptor (Figure 1.4a). As a result, the absorption peak 

caused by CT appears bathochromic relative to LE states (Figure 1.4b). Electronically, the 

structure of CT state is composed of oppositely charged radical pairs of donor (D+) and 

acceptor (A- ) (Equation 4): 

𝜓𝐶𝑇 = 𝜓𝐷+𝜓𝐴−  (4) 

 

Figure 1.4. (a) Energy level representation of CT complex formation, (b) Example 

of steady-state absorption spectra showing red-shift in absorption due to CT 

 

If the radiative relaxation of excitons to the ground state takes place from CT state, 

it is possible to locate it with the help of steady-state photoluminescence spectroscopy. As 

indicated, the electronic structure of CT complex is made of oppositely charged donor and 

acceptor radical pair with non-zero dipole moment. As a result, the stability of CT depends 

on the polarity of solvent (Figure 1.5a). In toluene, CT state is energetically less stable 

than LE state and therefore, the internal conversion of LE state to CT state is 

thermodynamically unfavorable. Hence, the excitons mostly relax from the LE state. When 

the molecules are dissolved in more polar solvent, such as THF, the potential energy of CT 

state gets lower and therefore, the energy barrier for internal conversion decreases allowing 
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transition from LE to CT state. The potential energy of CT state becomes lower than LE 

state as the polarity is further increased. This results in reduced band gap between ground 

and CT state in acetonitrile (ACN). As a result, the emission shifts towards longer 

wavelength with the increase in polarity of the solvent (Figure 1.5b).  

 

Figure 1.5. (a) Potential Energy Diagram of donor-acceptor system in solvents with 

different polarity (toluene, THF, acetonitrile), (b) steady-state absorbance and emission 

of donor-acceptor molecule in solvents with different polarity 

 

While steady-state spectroscopy provides information on the energetics and relative 

dipole moment, ultrafast transient absorption (TA) Spectroscopy elucidates the dynamics 

of the excited state. The photophysical kinetics of the samples studied in this work is done 

by using TA spectroscopy, where molecules are promoted to the excited state using pump 

pulse at the required wavelength. This is followed by probe pulse with a delay time 𝜏 for 

probing the absorbance of molecules at excited state (Aexc). Measuring the absorbance in 
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the same manner without irradiation with pump laser (Anon-exc) results in the change in the 

population of the excited states within the delay time. TA spectroscopy measures these 

changes in the population by computing the difference in absorbances of the sample under 

irradiation of pump laser and the non-irradiated one: 

∆𝐴(𝜆, 𝜏) = 𝐴𝑒𝑥𝑐(𝜆, 𝜏) − 𝐴𝑛𝑜𝑛−𝑒𝑥𝑐(𝜆, 𝜏) (5) 

As the transient signal is the function of wavelength and time and it follows 

Beer - Lambert’s Law. Equation (5) can be further expanded to:  

∆𝐴(𝜆, 𝜏) = ∑ [𝜀𝑖(𝜆)−𝜀0(𝜆)]𝑐𝑖(𝜏)𝑖    (6) 

Where, i is the number of excited state species, 𝜀𝑖(𝜆) is extinction coefficient of ith 

excited state, 𝜀0(𝜆) is molar extinction coefficient of the ground state species and 𝑐𝑖(𝜏) is 

the population of excitons after delay time 𝜏. Therefore, using kinetic traces generated from 

transient signals, it is possible to derive extinction coefficients of excitons, the time 

constants associated with the transitions, and decay of these species. This provides 

information on the photophysical excited state transformation of the sample.  

1.3. Construction of donor-acceptor systems  

Donor-acceptor junctions are important in natural processes, like photosynthesis and 

respiration, as well as in photocatalysis and charge transfer photovoltaics devices such as 

OLEDs and solar cells. 

Identification of molecules that carry potential to work as important candidates for 

efficient CT is the key to design such systems. Figure 1.6 provides the structure of some 

of the commonly used donor and acceptor molecules employed in CT studies.17 
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Figure 1.6. Structures of donor (red) and acceptor (blue) molecules17 

 

The efficiency of CT is determined by the ability of the system to impede backward 

charge recombination. Learning from the structure of PSII in chloroplasts, this can be 

achieved by constructing CT systems that are separated by a long-distance. For example, 

Park et al. in 2012 investigated the effect of phenothiazine spacer group (PTZ) between 

donor and acceptor on charge recombination time constant of organic dyes in dye-

sensitized solar cells. Figure 7 provides time constants for three DA systems as a function 

of photocurrent density where the synthesized dyes were coated on TiO2 film. As can be 

seen in Figure 1.7b, the charge transfer rate is relatively similar for D-PTZ-A, D-PTZ1-

PTZ2-A and conventional ruthenium based N719. However, charge recombination process 

for donor-acceptor system with two phenothiazine spacer groups is slower and the time 

constant follows the following trend: 

τCR(D-PTZ1-PTZ2-A)  >  τCR(D-PTZ-A)  >  τCR (N719). 
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The delay in charge recombination with an increase in the number of spacer 

molecules can be explained by the increased distance, the bent structure and steric 

hindrance, which is induced by the introduction of PTZ group between donor and 

acceptor.18 

 

Figure 1.7. (a) structure of D-PTZ-A, D-PTZ1-PTZ2-A, and N719, (b) time constants 

for charge transfer (left) and charge recombination (right) as a function of short-circuit 

photocurrent18 

 

Another way to inhibit charge recombination is to construct CT systems with 

multiple donor and acceptor units. This can be rationalized by the increased number of 

accessible energy levels introduced by the presence of multiple electron-rich and poor units 

that allow an efficient charge separation before recombination can take place (Figure 1.8). 

It is also associated with the migration of electron over longer distances as well.  
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Figure 1.8. CT process in donor-acceptor and donor-acceptor 1-acceptor 2 system 

 

Based on the features used to increase the efficiency of CT, donor-acceptor systems 

can be constructed either by synthesizing small molecular systems or polymers. In both 

cases, the electron donating and withdrawing units can be separated through π-bridge 

extending the conjugation of orbitals promoting delocalization of electron. The advantages 

of designing small molecules include the purity of material and their ability to crystalize 

into long-range order.19 However, the CT in molecular systems is restricted within small 

distance, as they tend to form non-homogeneous aggregations.19 On the other hand, 

polymeric conjugated systems show a tendency to arrange themselves in stacked 

position.20–23 As a result, upon ordered and periodic arrangement of 2D layers, π-

conjugation throughout 3D network is formed as well. This allows delocalization of 

electrons  along conjugated backbone and π-stacking resulting in migration of charge 

across longer distances and a lower recombination rate.23,24 Moreover, polymers can be 

prepared in bulk as compared to molecular systems where synthesis cannot easily be 

scaled.25 The drawbacks of polymeric donor-acceptor systems include less defined 

structure of the polymer and in solubility in most solvents.19,25 
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1.4.Covalent Organic Frameworks  

Covalent Organic Frameworks (COFs) are a class of porous organic 

macromolecules constructed from organic building blocks that contain light elements (C, 

H, N, O, B, etc.) that are connected through strong covalent bonds.22,26,27 COFs are 

characterized by long-range ordered structure and crystallinity. The first COF was 

synthesized by Yaghi et.al. in 2005 through condensation reaction between phenyl 

diboronic acid C6H4[B(OH)2]2 and hexahydroxytriphenylene [C18H6(OH)6].
28 Since then, 

COFs are extensively investigated as photocatalysts,29–33 semiconductors,34–37 luminescent 

sensors;27, 38–41 materials for energy storage,42–45 proton conduction,46–49 adsorption50–55 

and gas separation,56 antibacterial activity57 and drug delivery.58  

The reversible covalent bond formation in COFs allows periodic and ordered 

arrangement of the building blocks resulting in overall long-range crystallinity of COFs. 

Moreover, reversible bond formation of COFs allows control of chain growth, tunable 

morphology and structural diversity. The building units used in COF formation usually 

contain multiple reactive sites. A certain geometry is required for polygon 2D structure and 

extension of network.59,60 As can be seen in Figure 1.9a, it is possible to design well-

defined 2D COF by following geometry matching of precursor units located at knots and 

as linkers.59 Correspondingly, incorporation of tetrahedral-shaped or cross-linked building 

blocks results in the formation of 3D COFs (Figure 1.9b).22 The additional characteristics 

of these materials include light weight, low density, large surface area, and prolific 

porosity.22,26,61,62 
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Figure 1.9. Structural diagrams of (a) 2D and (b) 3D COFs 

 

Jiang et.al. synthesized a variety of COFs containing donor-acceptor systems. In one 

of these studies, they synthesized COF with multicomponent donor-acceptor system 

latticed into π-array, where 2,3,6,7,10,11-triphenylenehexol (TP) and bis(pinacol ester) 

(E3) are incorporated as electron-donating groups, whereas benzo[c][1,2,5]thiadiazole-4,7-

diyldiboronic acid (E2) is used as electron-accepting group (Figure 1.10a). The charge 

transferring ability of COF was analyzed using UV-visible absorbance spectra 

(Figure 1.10b), which show near-IR CT band peaking at ~800 nm. Moreover, the current-

voltage characteristics of this COF demonstrates 180% increased conductivity compared 

to other COF samples described in this work (Figure 1.10c, red line).59 Therefore, 

formation of COF containing multiple donor and acceptor precursor units can lead to 

increased electron mobility resulting in conductivity, offer enhanced structural diversity 

and complexity.  
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Another example of a donor-acceptor COF was published in 2015 for a COF formed 

by the polycondensation reaction between nickel, copper, zinc metallophthalocyanines 

(donor) and diimides (acceptor).63 The results of X-ray diffraction pattern demonstrated 

well-defined structure consisting of donor-acceptor heterojunctions stacked in donor-to-

donor and acceptor-to-acceptor manner (Figure 1.11). More specifically 

metallophthalocyanine and diimide units are covalently linked through boronate ester 

bonds extending its structure to tetragonal polygon. The high-order structure of the given 

COFs involves crystallization of tetragonal planes resulting in π-columnar arrays.63 

The steady-state absorbance spectra of (DCuPc-APyrDI-COF, Figure 1.12a) showed 

Soret band between 250 – 448 nm, corresponding to excitation from ground state (S0) to 

second singlet excited state (S2) (Figure 1.12b). The Q band (S0 → S1 excitation) appears 

at around 687 nm. The absorption profile resemble absorption spectrum of copper 

phthalocyanine with a blue-shift of 30 nm in Soret band and 9 nm red-shift in Q band. The 

absence of other peaks in near IR (> 1500 cm-1) region shows no indication of CT process 

between neighboring phthalocyanine and diimide group located in the same plane. 

However, TA spectrum shows the possibility of photoinduced CT when the 

metallophtalocyanine unit is excited. The results demonstrate that when the donor is 

excited, electron can migrate to four proximate and eight remote acceptor units in the 

framework (Figure 11a). The possibility of CT to a distant building block has a very low 

probability. Moreover, charge separated state resulting in oxidized donor radical and 

reduced acceptor radical can trigger electron-hole delocalization along the π-columns 

either in the same or opposite directions. The migration of electron into opposite directions 

leads to long-lived charge separation. It was found that the time constant for photoinduced 
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CT and formation of CS state is 1.6 ps, whereas the lifetime of this CS is 33 μs (Figure 

1.12c).63 Such slow charge recombination process can be very useful for its further 

application such as photoenergy conversion and OLEDs.23,24,64 

 
Figure 1.10. (a) structure of MC-COF-TP-E2

2-E3, TP, E3 (donors), and E2 (acceptor), 

(b) UV-visible absorbance spectrum of  MC-COF-TP-E2
2-E3, (c) I-V curve of 

multiple component COF samples (MC-COF-TP-E2
2-E3 is given as red line) 

 

 

Figure 1.11. Schematic representation of periodic arrangement of donor-acceptor in 

metallophthalocyanine-diimide COFs 
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Figure 1.12. (a) Structure of DCuPc-APyrDI-COF, (b)UV-visible absorbance spectra of  
DCuPc-APyrDI-COF (green line) and CuPc[OMe]8 (dotted line), and (c) TA spectra at 

355 nm laser excitation and decay profile of DCuPc-APyrDI-COF 

 

1.5.Summary of the Research  

These examples show that incorporation of donor-acceptor units into periodically 

arranged crystalline structures can help to develop new class of organic semiconductors. 

The advantages of such materials include affordability, wide optical range, structural 

diversity and flexibility. The investigation of photophysical processes plays important role 

in qualitative design of COF materials and other organic molecular systems that are able 

to generate long-lived charge separated state and be used in photovoltaics. The purpose of 

this work is to explore the excited state processes taking place in multiple donor containing 

star-shaped molecular systems and donor-acceptor COFs.  

In the second chapter of this work, a series of triazine-phenylene-carbazole star-

shaped donor-bridge-acceptor (D-B-A) molecules with 0, 1 and 2 bridging phenylene units 

are studied by steady-state spectral methods and TA spectroscopy. The bridge length is 



 17 

 

 
 

varied to introduce structural and electronic differences across the series and impact on 

charge carrier dynamics is observed. The positioning of the three donor branches all meta- 

to one another also played a large role in the charge transfer process by directing electron 

donation to a specific site on the acceptor triazine unit. The spectroscopic data suggests 

that the distance between donor and acceptor, electron coupling between them and 

phenylene rings can significantly affect CT processes.  

Further the photophysical properties of three COF samples synthesized through 

condensation reaction between BTPA (5,5',5''-(1,3,5-Benzenetriyl)tris[2-

pyridinecarboxaldehyde]) with three different precursors: 1,3,5-Tris(4-

aminophenyl)benzene (TPB), 4,4',4''-Triaminotriphenylamine (TPA), and 1,3,5-Tris(4-

aminophenyl)triazine (TPT). The solid state absorption analysis shows bathochromic shift 

of COF samples compared to the building block molecules. The delamination of COF 

layers in ethanol contributed to better solubility and more resolved UV-visible steady-state 

absorption results. Moreover, we were able to achieve photoluminescence data of 

exfoliated COF samples in ethanol, which indicated analogous emission wavelength 

compared to counter-BTPA units (TPB, TPA and TPT). TA profiles revealed CT processes 

for three COF samples.  

In Chapter IV the charge dynamics of donor-acceptor COFs constructed using 

copper and nickel phthalocyanine as electron-donor and 

2,3,5,6 - tetrafluoroterephthalonitrile as electron-acceptor were investigated. The TA 

spectra shows the formation CT complex between neighboring donor-acceptor units as well 

as electron migration processes between COF layers due to their π-interactions. The ability 

of COFs to delocalize electron through π-columnar arrays suppresses rapid charge 
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recombination and therefore, this property of metallophthalocyanine COFs can find 

practical use in photoltaics and optoelectronics.  
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CHAPTER II: THE IMPACT OF π-CONJUGATION LENGTH ON EXCITED 

STATE DYNAMICS OF STAR-SHAPED CARBAZOLE-Π-TRIAZINE 

ORGANIC CHROMOPHORES 

2.1 Introduction. 

Conjugated donor-bridge-acceptor (D-B-A) organic molecules have attracted 

increasing research attention owing to their potential application in photocatalysis65,66, 

photovoltaics67,68, organic light-emitting diodes (OLEDs)69,70, and thin-film transistors71. 

A particular interesting class of these D-B-A organic molecules are those possessing star-

shaped structure, which typically consist of an aromatic, heteroaromatic or triphenyl core 

to which electron-donating groups are radially attached as arms or arms containing 

electron-accepting units are attached to electron-donating core72–74. Due to these unique 

structures, star-shaped D-B-A organic molecules often display photophysical properties 

that are distinct from their linear analogues including improved processability in solution, 

facilitated electrical transport property, as well as the capability to organize into a 

supramolecular assembly.75–77 

It has been shown that the key property that dictates the function of D-B-A star-

shaped molecules in photocatalysis78 and optoelectronics79,80 is the intramolecular charge 

transfer (ICT) states. Previous studies demonstrated that the structural characteristics in 

donor-acceptor (D-A) and D-B-A molecules play an important role in the mechanism of 

ICT, such as π-conjugated linker distance81,82, and the torsion between donor, bridge and 

acceptor83,84. For example, it has been found that the electron transfer mechanism through 

the bridge plays an important role on charge carrier kinetics of ICT.10,12 If the electron 

travels through the virtual state of the bridge, which is energetically higher than the highest 

occupied molecular orbital (HOMO) of the donor, the ICT rate is sensitive to the distance 
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of the bridge. In contrast, when the HOMO of the linker is energetically close to or lower 

than the HOMO of the donor, the mechanism of ICT was believed to be “electron hopping” 

from donor to acceptor. Torsional angles between electron transferring groups is another 

factor that determines the pathway of ICT. Studies have shown that a perpendicular 

configurations of donor and acceptor orbitals can facilitate spin-flip upon electron transfer 

due to significant change in orbital angular momentum85 when light absorption involves 

reverse intersystem crossing (RISC). Other studies have shown that planar conformations 

in ICT compounds can promote charge carrier mobility.86  

As these studies strongly demonstrate the importance of the structure of D-B-A 

molecules to ICT, it is essential to develop a fundamental understanding of the correlation 

of the structure of the D-B-A star-shaped molecules with their ICT properties.  In this work, 

we report a systematic photophysical study on a series of D-B-A star-shaped organic 

molecules using  2,4,6-triphenyl-1,3,5-triazine core as the electron-withdrawing acceptor 

and 3,6-di-tert-butyl-9-phenyl-9H-carbazole as the electron-donating arm which are 

connected via a series of 0, 1 and 2 phenyl rings as bridge (Scheme 2.1). Using the 

combination of steady-state and time-resolved absorption spectroscopy, we show that 

tuning the distance between D and A in D-B-A molecules via the number of phenylene 

ring bridge can dramatically impact the degree of ICT characteristics and the extent of 

conjugation. The spectroscopic results were supported by theory, where the results from 

time dependent density functional theory (TD-DFT) calculation suggest that ICT through 

conjugated π-orbitals, ground state torsional angles, and conformational relaxation from 

excited state are regulated by the presence of phenylene bridges between D and A.  
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Scheme 2.1. Chemical structure of TCT series molecules 

2.2. Experimental. 

Standard Characterization. For steady-state absorption and luminescence 

measurements, 500 μM 2,4,6-triphenyl-1,3,5-triazine (acceptor), pTCT, pTCT-P, pTCT-

2P and 1500 μM solution of 3,6-di-tert-butyl-9-phenyl-9H-carbazole (donor) in toluene 

were used. Samples were placed in 10 mm quartz cuvettes (Starna). UV-visible absorption 

measurements were carried out using Agilent Cary 300 UV-vis spectrometer. Steady state 

luminescence data were obtained on a PTI QM40 Spectrophotometer implemented with 75 

W Xenon Lamp as excitation source and controlled by Felix GX Software. The emission 

lifetime of pTCT, pTCT-P, and pTCT-2P (100 μM) in toluene were collected using PTI 

TCSPC Spectrometer Felix GX Software at given emission wavelength. The solutions 
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were purged with N2 for 15 minutes in 10 mm quartz cuvettes (Starna) before each 

measurement.   

Transient Absorption Spectroscopy. Femtosecond Transient Absorption 

experiments were performed on a Helios Spectrometer (Ultrafast Systems LLC). The pump 

and probe pulses were generated using Ti-Sapphire laser system (Solstice, 800nm, 3.5 

mJ/pulse, 1 KHz repetition rate). Pump is delivered from TOPAS using 75% yield of 

Ti:Sapphire laser chopped at 500 Hz. The generation of white light continuum (probe) 

takes place using 25% output of the amplifier and sapphire crystal.  

500 μM solutions of 2,4,6-triphenyl-1,3,5-triazine, pTCT, pTCT-P, pTCT-2P and 

1500 μM solution of 3,6-di-tert-butyl-9-phenyl-9H-carbazole in toluene were transferred 

into 2 mm quartz cuvette with a septum and purged in N2 atmosphere. A PTFE-coated stir 

bar allowed continuous stirring during the measurements. pTCT, pTCT-P, pTCT-2P and 

donor samples were measured at 340 nm pump pulse with 0.3 mW power, while 300 nm 

pump pulse with 0.3 mW power was used for acceptor solution. 

2.3. Results and Discussion 

Figure 2.1 shows the steady state absorption spectra of pTCT, pTCT-P, and pTCT-2P, 

as well as 1,3,5-triphenyltriazine (acceptor) and 3,6-bis(tert-butyl)carbazole (donor). A 

common absorption peak at ~280 nm was observed for pTCT, pTCT-P and pTCT-2P 

(Figure 2.1a-2.1c). This peak is also observed in the spectrum of the acceptor (Figure 

2.1d) and donor (Figure 2.1e) and thus can be assigned to the local excitation (LE) band 

of either/both of these moieties. Compared to the spectra of donor and acceptor, an 

additional band was observed at 340 nm (pTCT), 395 nm (pTCT-P), and 370 nm (pTCT-
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2P), which can be attributed to the intramolecular charge transfer (ICT) from carbazole 

donor to triazine acceptor. The ICT band is more blue-shifted for pTCT (340 nm) and red-

shifted for pTCT-P (395 nm), which can be explained by extended conjugation due to 

phenylene bridge between donor and acceptor in pTCT-P.87 The absorption peak of pTCT-

2P appears at lower wavelength (370 nm) compared to that of pTCT-P although the donor 

and acceptor in pTCT-2P are connected through two phenylene rings, which may result 

from the disrupted conjugation by non-planar orientation of the bridge molecules to each 

other and is further supported by our computational results discussed later. Moreover, it 

should be noted that the absorption intensity of ICT band is comparable with LE band in 

pTCT and pTCT-P, whereas the intensity of ICT in pTCT-2P is significantly decreased at 

 

Figure 2.1. Normalized absorption spectra (solid lines) and steady-state 

emission spectra (dotted lines, 340 nm excitation) of a) pTCT, b) pTCT-P, 

c) pTCT-2P, d) acceptor, and e) donor and (f) Excitation spectrum of 

pTCT series molecules at indicated emission 
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370 nm compared to LE peak. This can be attributed to that the increased distance between 

donor and acceptor may obstruct the charge transfer process.  

The emission spectra of these molecules are also presented in Figure 2.1a-2.1c 

(dotted lines). Similar to their absorption spectra, the emission wavelength increases from 

pTCT to pTCT-P and then blue-shifts slightly in pTCT-2P under excitation at both 280 and 

340 nm. Because the emissions from pTCT, pTCT-P and pTCT-2P show red-shift with 

respect to that of donor suggesting that emissions of these three samples come from ICT 

state rather that LE state. The excitation spectra provide further evidence for the origin of 

emission in pTCT series. As shown in Figure 2.1d, the predominant emission at 450 nm 

in pTCT-P occurs from the 395 nm ICT state rather than the 300 nm LE state. The similar 

results were observed in pTCT, where the ICT state contribute more to the 410 nm emission 

than the LE state. 
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Figure 2.2 Kinetic decay profiles of (a) TPB-COF, (b) TPT-COF, (c) TPA-COF. 

(a) and (b) Femtosecond TA-spectrum of 3,6-bis(tert-butyl)carbazole at 340 nm 

excitation. (c) Fitted Kinetic Traces of TA spectra at given wavelength; (d) 

Species-associated difference spectra derived from Global Fitting Analysis 

In order to gain further insight on the impact of bridge distance on the photophysical 

properties of pTCT, pTCT-P and pTCT-2P, we compared the excited state (ES) dynamics 

of these molecules using transient absorption (TA) spectroscopy. The TA spectra of 

acceptor and donor were also collected and used as control to account for the ES dynamics 

upon local excitation of these molecules (Figure 2.2 and 2.3). As shown in Figure 2.3, 

immediately following the excitation at 340 nm, a broad absorption feature centered at 625 

nm is observed in the TA spectra of donor molecules. This feature gradually grows at 25 

ps and then decays until 5 ns, which reaches the limit of our TA time window.  

More complicated spectral evolution was observed in the spectra of acceptor. As 

shown in Figure 2.3, three main regions can be highlighted in the TA spectra of the 

acceptor. At very early time (<500 fs), we observed the formation of an absorption peak at 

475 nm, which quickly decays and evolves (~5 ps) to form an absorption feature with 

double-lumps at 600 and 650 nm. The double-lump absorption feature then decays, which 

is accompanied by the formation of a peak at 525 nm. The 525 nm peak is super-long lived 

as negligible decay was observed within the 5 ns time window of the TA spectroscopy. 

The computational calculations suggest that the double-lump absorption peaks appearing 

at 600 and 650 nm correspond to charge transfer (CT) from phenyl rings to triazine center. 

Therefore, excitation of acceptor molecule at 300 nm first generates locally excited (LE) 

state at 475 nm at phenyl moiety, which then rapidly donates charge to triazine part 

undergoing intersystem crossing (ISC) to CT state (600 and 650 nm). Multiple small-
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energy absorption features at >700 nm can be assigned to Frack-Condon relaxation in the 

excited state of triazine center.  

 

Figure 2.3. (a) and (b) Femtosecond TA-spectrum of 1,3,5-triazine (acceptor) at 

300 nm excitation. (c) Fitted Kinetic Traces of TA spectra at given wavelength; (d) 

Species-associated difference spectra derived from Global Fitting Analysis 

 

In the TA spectra of pTCT, we observed rapid rising of broad band centered at 550 

nm following 340 nm excitation at early time (<1 ps, Figure 2.4a). After that (~1 ps-5ps), 

this band decays and evolves to form another absorption band centered at 725 nm, 750 and 

775 nm, which decays afterwards (Figure 2.4b). These triple ESA peaks at > 700 nm were 

also observed in the TA spectra of acceptor, suggesting that this feature is a CT state from 

the donor to the acceptor (Figure 2.3). On the other hand, the broad peak centered at ~525 

nm is observed neither in the TA of donor nor acceptor.  However, slowly decaying 525 

nm absorption has a shoulder around ~625 nm that is prominent in the TA spectrum of 
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donor, suggesting that the exciton has more characteristics of a donor localized hole. 

Additionally, it can be reasoned that transient spectral shape of the donor LE state would 

differ from its monomer due to electron donation into the triazine acceptor. 

 

Figure 2.4. (a) and (b) Femtosecond TA-spectrum of pTCT at 340 nm 

excitation. (c) Fitted Kinetic Traces of TA spectra at given wavelengths; (d) 

Species-associated difference spectra derived from Global Fitting Analysis 
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~525 nm can be assigned to LE state, whereas positive feature at >700 nm is attributed to 

exciton resulting from CT process (Figure 2.4d). The kinetic trace shows that decay of 525 

nm band does not lead to increase in the population of 725 and 775 nm bands. Therefore, 

the transition LE → CT can be excluded from the possible mechanism. In fact, they all   

undergo decay at later time: LE state (525 nm) decays fast, which validates its relatively 

short lifetime (τ1=15.67 ps), while CT state is longer lived and quenches slowly with decay 

time of  τ2 = 1778 ps. Overall, the species-associated difference spectra (SADS) (Figure 

2.4d)  is consistent with the TA spectrum of pTCT, which confirms the validity of lifetimes 

and extinction coefficients of excited states.  

 

Figure 2.5. (a) and (b) Femtosecond TA-spectrum of pTCT-P at 340 nm 

excitation. (c) Fitted Kinetic Traces of TA spectra at given wavelength; (d) 

Species-associated difference spectra derived from Global Fitting Analysis 
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The addition of one phenylene ring between donor and acceptor significantly 

changes the spectral feature. In the TA spectra of pTCT-P, we observe the immediate 

formation of ESA centered at 475 nm at early time (<1 ps) following 340 nm excitation 

(Figure 2.5a). After that, the ESA decays, which is accompanied by the formation of a 

negative feature at the same region and a broad positive feature at > 650 nm (~1 – 100 ps, 

Figure 2.5b). The 475 nm negative feature resembles the steady-state emission of pTCT-

P and can thus be attributed to SE due to population inversion after excitation. The positive 

feature > 650 nm is similar to that observed in the TA spectra of pTCT and can be assigned 

to the CT state. The difference of CT state between pTCT and pTCT-P mainly result from 

the intensity, where positive feature > 650 nm in the latter has much higher intensity than 

the immediately formed ESA at shorter wavelength. Global fitting analysis of the kinetics 

at different wavelength (Figure 2.5c) confirms the presence of two species involved in the 

ES processes (Figure 2.5d). First exciton shows maximum molar absorptivity peaking at 

550 nm with decay lifetime of 4.509 ps. The second exciton, which was characterized as 

CT state decays slower with a lifetime of 3797 ps, which is longer compared to CT state 

of pTCT.  

As donor and acceptor are separated further apart by two phenylene rings in pTCT-

2P, the ES dynamics and CT process change significantly. The TA spectra of pTCT-2P 

(Figure 2.6a and 2.6b) shows a sharp peak centered at ~500 nm that grows until ~1ps and 

almost completely decays within ~5 ns. This peak differs significantly from the shape of 

the donor peak and resembles the known acceptor signal at ~475 nm (Figure 2.3). The red 

shift of this feature to 500 nm in pTCT-2P from 475 nm in the acceptor might be attributed 
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to the presence of biphenyl bridge in pTCT-2P, which extends the π-conjugation than 

monomer.  

 
Figure 2.6: (a) and (b) Femtosecond TA-spectrum of pTCT-2P at 340 nm excitation. (c) 

Fitted Kinetic Traces of TA spectra at given wavelength; (d) Species-associated 

difference spectra derived from Global Fitting Analysis 
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spatial separation between the donor and acceptor by biphenyl rings leads to weak 

electronic coupling of donor HOMO orbital (carbazole) and acceptor LUMO orbital 

(triazine), where the CT state characteristic of 650 nm absorption corresponds to CT 

localized in the biphenyl bridge or from phenylene bridge to triazine acceptor. The 

molecular dynamics of pTCT-2P is fitted into bi-exponential decay function. The 500 nm 

band increases within ~1 ps followed by rapid decay with the overall lifetime of 8.885 ps. 

The quenching of 650 nm band seems to decay slowly after photoexcitation. This is also 

supported by its decay time of 1999 ps. Based on the dynamics, no transition between the 

states is observed.  

 Based on the analysis of TA spectra for pTCT, pTCT-P and pTCT-2P the rates 

associated with exciton dynamics can be expressed using the following Kinetic model:  

 

 

𝑑[𝐿𝐸]

𝑑𝑡
= −𝑘1[𝐿𝐸] − 𝑘2[𝐿𝐸] = −(𝑘1 + 𝑘2)[𝐿𝐸] 

[𝐿𝐸] = 𝑁0𝑒−(𝑘1+𝑘2)𝑡 

𝑑[𝐶𝑇]

𝑑𝑡
= 𝑘2[𝐿𝐸] − 𝑘3[𝐶𝑇] 

𝑑[𝐶𝑇]

𝑑𝑡
+ 𝑘3[𝐶𝑇] = 𝑘2[𝐿𝐸] 

1CT

k1

1LE

k2

k3
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[𝐶𝑇] = 𝑒−𝑘3𝑡 ∫ 𝑘2𝑁0𝑒−(𝑘1+𝑘2)𝑡𝑒𝑘3𝑡 𝑑𝑡

𝑡

0

= 𝑒−𝑘3𝑡 ∫ 𝑘2𝑁0𝑒−(𝑘1+𝑘2−𝑘3)𝑡 𝑑𝑡

𝑡

0

= −
𝑘2

𝑘1 + 𝑘2 − 𝑘3
𝑁0𝑒−𝑘3𝑡𝑒−(𝑘1+𝑘2−𝑘3)𝑡|

0

1

= −
𝑘2

𝑘1 + 𝑘2 − 𝑘3
𝑁0𝑒−𝑘3𝑡(𝑒−(𝑘1+𝑘2−𝑘3)𝑡 − 1)

= −
𝑘2

𝑘1 + 𝑘2 − 𝑘3
𝑁0(𝑒−(𝑘1+𝑘2)𝑡 − 𝑒−𝑘3𝑡) = 𝑘′𝑁0(𝑒−(𝑘1+𝑘2)𝑡 − 𝑒−𝑘3𝑡) 

[𝑳𝑬] = 𝑵𝟎ⅇ−(𝒌𝟏+𝒌𝟐)𝒕 

[𝑪𝑻] = 𝒌′𝑵𝟎(ⅇ−(𝒌𝟏+𝒌𝟐)𝒕 − ⅇ−𝒌𝟑𝒕) 

 

𝛥𝐴(𝜆, 𝑡) = 𝜀𝐿𝐸[𝐿𝐸] + 𝜀𝐶𝑇[𝐶𝑇] − 𝜀0([𝐿𝐸] + [𝐶𝑇]) = (𝜀𝐿𝐸 − 𝜀0)[𝐿𝐸] + (𝜀𝐶𝑇 − 𝜀0)[𝐶𝑇]

= (𝜀𝐿𝐸 − 𝜀0)𝑁0𝑒−(𝑘1+𝑘2)𝑡 + (𝜀𝐶𝑇 − 𝜀0)𝑘′𝑁0(𝑒−(𝑘1+𝑘2)𝑡 + 𝑒−𝑘3𝑡) 

𝛥𝐴(𝜆, 𝑡)

𝑁0
= (𝜀𝐿𝐸 − 𝜀0)𝑒−(𝑘1+𝑘2)𝑡 + (𝜀𝐶𝑇 − 𝜀0)𝑘′(𝑒−(𝑘1+𝑘2)𝑡 + 𝑒−𝑘3𝑡) 

𝛥𝐴(𝜆, 𝑡)

𝑁0
= [(𝜀𝐿𝐸 − 𝜀0) + (𝜀𝐶𝑇 − 𝜀0)𝑘′]𝑒−(𝑘1+𝑘2)𝑡 + (𝜀𝐶𝑇 − 𝜀0)𝑒−𝑘3𝑡 

 This supports that kinetic traces follow bi-exponential decay function.  

While CT state between the donor and acceptor was observed in the TA spectra of 

both pTCT and pTCT-P, there are distinct difference between these two samples including 

the intensity and lifetime. The intensity which reflects the concentration of CT state is 

larger in pTCT-P than pTCT. Moreover, the formation time of CT state (4.509 ps) is faster 

while the lifetime of CT state is longer for pTCT-P molecule (3797 ps) than that for pTCT 

(1778 ps). In contrast, the CT state for pTCT-2P is much weaker than in pTCT. This was 
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further supported by excitation spectrum, which showed that for pTCT-P the major 

contribution for emission came from the CT state, while for pTCT and pTCT-2P both LE 

and CT states are responsible for radiative relaxation with relatively equal amount (Figure 

2.8). The possible reason for faster formation of more stable CT state in pTCT-P can be 

attributed to its D-B-A geometry. Table 1 summarizes intrinsic time constants obtained 

from fitting procedure. The lifetime of LE carbazole moiety is shown as τ1 for pTCT and 

PTCT-P, while for pTCT-2P it represents LE of biphenyl bridge between D and A. τ2 

represents decay time of CT state from carbazole to triazine for pTCT and from phenylene 

ring to triazine for pTCT-2P.  

Table 2.1. Decay time of excited states in TCT series molecules 

Time Constant pTCT pTCT-P pTCT-2P 

τ1 (LE) 15.67 ± 1.11 ps 4.509 ± 0.8776 ps 8.885 ± 1.596 ps 

τ2 (CT) 1778 ± 461 ps 3797 ± 828.2ps 1999 ± 277.7ps 

 

 

Scheme 2.2. The mechanism of the excited states in pTCT series molecules 

1CT

k1

1LE

4.509 – 15.67 ps

1778 – 3797 ps

hν

hν
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These LE and CT states are likely the singlet states (1LE and 1CT) as the presence 

of oxygen has negligible impact on the emission lifetimes of these samples measured by 

time correlated single photon counting technique (TCSPC) (Figure 2.8). The overall ES 

dynamics of these star-shaped pTCT series is summarized in Scheme 2.2. The 

photoexcitation of these molecules results in the simultaneous formation of 1LE and 1CT 

states, which is then followed by a rapid non-radiative decay of 1LE to 1CT. The molecules 

eventually return back to the ground state and start decaying at different rate, where the 

decay of the 1CT state is slower than decay of the 1LE state (Table 2.1, Scheme 2.2). 

 

Figure 2.7. Time-resolved luminescence traces of TCT pTCT series molecules 

in toluene at room temperature under different atmospheres. N2 (red) and air 

purging (black) for 15 min. 

 

2.4. Conclusion. 

Star-shaped donor-bridge-acceptor molecules have recently begun to attract interest 

due to an ability to undergo two-photon absorption, their potential to deliver better 

performance in OLED devices and significant promise as photocatalysts. Developing a full 

understanding of their photophysical behavior is necessary in order to incorporate rational 

design elements to this class of molecules. In this work, we report a systematic 

photophysical study on a series of triazine-phenylene-carbazole star-shaped D-B-A 
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molecules with 0, 1 and 2 bridging phenylene units using the combination of steady-state 

and time-resolved spectroscopy and time dependent density functional theory (TD-DFT) 

calculation. We show that the excited state relaxation pathways of these molecules are 

significantly dependent on the length of the bridge unit which governs the ground state 

torsional angles, excited state conformational relaxation, transition participation from the 

conjugated π-orbitals, along with electron/hole localization and effective electron/hole 

separation. Particularly, we were able to uncover and explain stimulated emission in a one 

phenylene bridged star-shaped D-B-A molecule resulting from a small conformational 

relaxation in the excited state due to effective electron/hole separation. Furthermore, we 

were able to uncover that longer bridging units are non-innocent which prevents effective 

electron-hole separation and is unable to prevent fast electron-hole recombination.  
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CHAPTER III: PHOTOPHYSICAL PROPERTIES OF BTPA-BASED IMINE-

LINKED COVALENT ORGANIC FRAMEWORKS (COFs) 

3.1. Introduction 

Over last five decades, porous materials, such as zeolites, activated carbon and  silica 

have shown great application in industry as catalysts and catalyst supports due to their large 

surface area and pore sizes allowing permeability of liquids and gases. 88–90 However, these 

porous compounds are lacking chemoselectivity, which is required for most catalytic 

processes.91 In order to achieve such selectivity, a new class of porous materials with 

controlled functionality and structure have been developed. These include microporous (< 

2 nm pore diameter) and mesoporous (2-50 nm pore diameter) materials, such as metal-

organic frameworks (MOFs) 92–94 or porous coordination polymers (PCPs), covalent 

organic frameworks (COFs)22,26,95 and porous organic frameworks (POFs)25,96. The 

thermodynamically controlled polymerization leads to periodically ordered crystalline  

networks with nonuniform pores.91 

The advantages of COFs include low cost, light weight, stability, structural diversity 

and tunability.92 This means that the properties and implementation of COFs can be easily 

modified by altering the building block molecules or their functional groups. Moreover, 

structural modifications allow tunability of pore sizes of COFs in order to capture toxic 

chemicals, gases and solvents.96 These properties of porous materials make them practical 

for storage of carbon dioxide,97,98 methane,99 hydrogen,100 adsorption and encapsulation of 

dyes or organic solvents. 101,102 Besides, donor-acceptor (D-A) based architecture of some 

COFs can adopt charge transfer (CT) state leading to electron-hole pair formation and 
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absorption of visible light allowing them to be useful in photocatalysis for oxidation of 

sulfides103 and amines104, generation of hydrogen,6,105 etc.  

As COF samples possess crystalline structure, the individual sheets of COF samples 

can create stacks, which facilitate coupling of π-orbitals.29,106–108 The formation of such π-

conjugated system of COF layers leads to electron delocalization under 

photoexcitation.23,106 As has been previously reported in the literature, the electron transfer 

(ET) between D and A units can proceed further by delocalization of this charge between 

D-A blocks arranged perpendicular to each other.23,24,63 Hence, the efficient interlayer CT 

process in organic frameworks can result in long-lived CS state and allow the use of these 

materials as transistors, light emitting diodes and photodiodes.63,106,109 Since the further 

application of COFs can be associated with its ability to generate delocalized electron 

throughout the expanse of its framework, it is crucial to build a basic understanding of how 

this process happens.  

Currently a plenty of research was accomplished on the synthesis110,111 and pore size 

control112,113, application of COFs for gas storage, 97–100   adsorbents96 and 

photocatalysts.6,103–105 However, the optical and photophysical properties of D-A COFs 

were not elucidated in great extent. In this work, the optical properties were investigated 

using steady-state spectra as well as femtosecond transient absorption (TA) Spectroscopy. 

This provides information on the excited state dynamics of COF samples, which elucidates 

the mobility of charge along the structure and possibly between successive sheets. Here, 

we show the photophysical properties of three synthesized COFs (TPB-COF, TPA-COF 

and TPT-COF, Scheme 3.1), which were synthesized using a repeat units of BTPA 

(5,5',5''-(1,3,5-Benzenetriyl)tris[2-pyridinecarboxaldehyde]) and a series of three different 
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organic precursors: 1,3,5-Tris(4-aminophenyl)benzene (TPB), 4,4',4''-

Triaminotriphenylamine (TPA), and 1,3,5-Tris(4-aminophenyl)triazine (TPT). These 

precursors differ in the electron affinity and therefore, synthesized COFs are expected to 

have lowered energy band gap and generate the CT state upon photoexcitation.24,114,115 Our 

studies show the formation of polariz star-shaped carbazole-π-triazine organic 

chromophores ed state in the time scale between 1.06 to 1.86 ps and  that CS between D 

and A can live up to 588.8 ps. Moreover, it indicated that the role of BTPA as electron 

accepting group changes when it is coupled with TPB and TPT, as the TA spectra show 

charge density in the excited state is directed and fixed in these (TPB and TPT) units, when 

CT state is formed.  

3.2. Experimental 

Film preparation. 1-2 mg of TPB-COF, TPA-COF and TPT-COF was dispersed in 

5 ml ehtnaol and 100 μL of NafionTM. The mixture was sonicated for 3 hours to create 

homogeneous distribution of COF crystals. The suspension was then coated on a quartz 

substrate and left to allow solvent to evaporate for 24 hours.  

Standard characterization. UV-visible absorption measurements were carried out 

using Agilent Cary 5000 UV-vis-NIR spectrometer using as prepared PcCu and PcNi COF 

samples on quartz substrate.  
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Scheme 3.1. Chemical structure of precursors and TPB-COF, TPA-COF and TPT-COF 
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For steady-state absorption and luminescence measurements, the suspension of TPB-

COF, TPA-COF and TPT-COF in ethanol was used. The suspension was prepared my 

dispersing ~2 mg of TPB-COF, TPA-COF and TPT-COF in 25 ml anhydrous ethanol and 

sonicating it for 24 hours. Samples were placed in 10 mm quartz cuvettes (Starna). UV-

visible absorption measurements were carried out using Agilent Cary 5000 UV-vis 

spectrometer. Steady state luminescence data were obtained on a PTI QM40 

Spectrophotometer implemented with 75 W Xenon Lamp as excitation source and 

controlled by Felix GX Software.  

Transient Absorption Spectroscopy. As discussed in Chapter II, Femtosecond 

Transient Absorption experiments were performed on a Helios Spectrometer (Ultrafast 

Systems LLC). The pump and probe pulses were generated using Ti:Sapphire laser system 

(Solstice, 800nm, 3.5 mJ/pulse, 1 KHz repetition rate). Pump is delivered from TOPAS 

using 75% yield of Ti:Sapphire laser chopped at 500 Hz. The generation of white light 

continuum (probe) takes place using 25% output of the amplifier and sapphire crystal.  

TPB-COF, TPA-COF and TPT-COF film on quartz substrates were placed to 

sample holder and continuously translated in order to prevent heating and thermal 

degradation. The measurements were collected at 400 nm pump pulse with 350 μW pump 

power.  

3.3. Results and Discussion 

Standard Characterization  

Solid-state absorption spectra of TPB-COF, TPA-COF and TPT-COF were 

measured using diffuse reflectance spectroscopy. As shown in Figure 3.1, TPB-COF,  
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TPA-COF, and TPT-COF show broad absorption in the visible region (extends to > 600 

nm) with maximum at 425 nm, 580 nm, and 415 nm, respectively. The reflectance is 

bathochromic with respect to absorption spectra of precursors for TPB-COF and TPT-

COF, suggesting the formation of charge transfer (CT) state due to increasing degree of 

conjugation between BTPA with TPB and TPT. To gain insight on the contribution of 

interlayer interaction to the broad absorption spectrum, the COF samples were exfoliated 

to create separate 2D sheets. The normalized absorption and luminescence spectra of COF 

samples in ethanol were also shown in Figure 1b. It is interesting to note that the maximum 

absorption for TPB-COF (410 nm) and TPA-COF (515 nm) in ethanol retained while the 

maximum absorption of TPT-COF at 405 nm which was present in solid sample 

(Figure 3.1) is suppressed in ethanol suspension (Figure 3.2a). This may suggest that the 

absorption at 405 nm in solid state TPT-COF results from the interlayer CT. The possible 

explanation for the observed interlayer CT in TPT-COF can result from that its relatively 

planar geometry allows greater stacking of successive layers, which leads to higher charge 

delocalization between TPT-COF layers. Higher energy peak located in UV region agree 

well with the absorption spectrum of the corresponding linkers and thus can be attributed 

to the local absorption from the linkers.  
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Figure 3.1. Diffuse reflectance spectra of TPB-COF, TPA-COF and TPT-COF recorded 

in the solid state 

 

Based on the photoluminescence spectra collected at 310 nm excitation, the COF 

samples are not strong emitters. The intensities of TPB-COF and TPA-COF reach ~5.5·105 

counts, while for TPT-COF it is ~1.55·105 counts. The reason for such low 

photoluminescence intensity can be extremely low concentration of COF samples in 

ethanol, as the majority of the amount dissolved precipitates. Weak emission can be also 

seen from the image of COF samples under UV-lamp on the Figure 3b. The emission 

maximum is Stokes-shifted with respect to absorption maximum in UV region, but 

overlaps with absorption in visible region. The photoluminescence of TPB-COF appears 

at 435 nm, which is 10 nm red-shifted compared to emission from TPB and for TPT-COF 

emission stretches between 350 and 450 nm corresponding to 375 nm fluorescence in TPT. 
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On the other hand, for TPA-COF the emission is 55 nm blue-shifted compared to TPA and 

appears at 380 nm. Therefore, photoluminescence is produced due to radiative relaxation 

from LE state. The excitation of these molecules at 400 and 500 nm does not result in an 

emission.  

 

Figure 3.2. (a) Normalized steady-state absorption of TPB-COF, TPA-COF, and 

TPT-COF with the constituting precursor molecules, (b) Comparison of 

photoluminescence emission spectra of COF samples with the precursors 

 

Transient Absorption Spectroscopy  

    The excited state dynamics of these COFs was examined by transient absorption (TA) 

spectroscopy following 400 nm excitation. As shown in Figure 3.3a, the TA spectra of 

TPB-COF were featured by a negative feature centered at 490 nm and a broad excited state 

absorption (ESA) at > 550 nm. The former agrees well with the absorption edge observed 

at the diffuse reflectance spectrum and can thus be assigned to the ground state bleach 

(GSB) of TPB-COF. The broad ESA is also observed in the TA spectra of TPB (Figure 

3.3b), suggesting that it originates from singlet excitons of the TPB cores in the TPB-COF. 
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The GSB and ESA have an isosbestic point at 549 nm and decay in the same manner 

(Figure 3.4a) suggesting that they represent the same relaxation pathway, i.e. returning to 

GS from ES. Similar spectral signatures are observed in the TA spectra of TPT-COF 

measured under 400 nm laser irradiation (Figure 3.3c), which displays negative band at 

460 nm due to GSB and broad ESA at > 520 with isosbestic point at 515 nm. The same 

kinetics trace for GSB and ESA (Figure 3.4b) suggesting a simple relaxation dynamics 

from ES to GS.  

The TA spectra of TPA-COF upon 400 nm photoexcitation (Figure 3.3e) exhibit 

an ESA centered at ~475 nm and a negative band centered at 675 nm. The absorption 

profile at  ~475 nm yields similar feature with the ESA at around 500 nm of BTPA spectra 

(Figure 3.3f),  suggesting local excitation of BTPA moiety in the framework. The negative 

feature can generally either be attributed to the GSB or stimulated emission (SE). Because 

the diffuse reflectance spectrum of TPA-COF shows absorption edge of ~700 nm while 

negligible emission was observed in the emission spectrum of TPA-COF suspension in 

ethanol, we conclude that this negative feature can be attributed to the GSB of TPA-COF. 

Interestingly, the diffuse reflectance of TPA generates broad absorption feature centered at 

600 nm, which may suggest that this bleach signal is associated with the hole formation in 

electron donating TPA core. It is more interesting to note that the negative feature at 675 

nm decays more slowly compared to the positive ESA at ~475 nm (Figure 3.4c). This may 

be explained as the relaxation from the local excited BTPA to the formation of exciton with 

electron in BTPA core and hole in the TPA.  
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Figure 3.3. Transient absorption spectra of COF samples at 400 nm excitation and 

precursors at 320 nm excitation: (a) TPB-COF, (b) TPB, (c) TPT-COF, (d) TPT, 

(e) TPA-COF, and (f) TPA 
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Figure 3.4.  Kinetic decay profiles of (a) TPB-COF, (b) TPT-COF, (c) TPA-COF 

 

The kinetic traces of COF samples were normalized to the maximum intensities 

and analyzed using Global Fitting. The best fit of the transient signals at representative 

wavelengths (Figure 3.4a-c) was obtained using three exponential decay dynamics with 

the lifetimes reported in Table 3.1. Shortest lifetime (τ1) corresponds to the CT from D to 

A, whereas the lifetimes in hundreds picosecond range (τ3) can be assigned to charge 

recombination and relaxation from CT state to ground state (Scheme 3.2). TA spectra 

showed that for TPB- and TPT-POFs the CT process takes place in the direction towards 

TPB and TPT correspondingly (Scheme 3.2a).  In case of TPA-COF, TPA unit is electron-

rich and therefore acts as a donor. Moreover, the electron affinity difference between TPA 

and BTPA appears to be the largest, as the charge recombination requires more time (2622 

ps) compared to the other two samples (Scheme 3.2b).  

Table 3.1. Exciton lifetimes of TPB-COF, TPA-COF and TPT-COF 

Time Constant τ1 τ2 τ3 

TPB-COF 1.86 ps 30.79 ps 588.8 ps 

TPA-COF 8. 26 ps 51.48 ps 2622 ps 
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TPT-COF 1.29 ps 16.84 ps 407.5 ps 

 

Scheme 3.2. Excited state dynamics in (a) TPB-COF and TPT-COF, (b) TPA-COF 

 

 

3.4. Conclusion  

In summary, the photophysical properties of three donor-acceptor COFs were 

investigated using time-resolved TA spectroscopy. The results show in the TPB-COF and 

TPT-COF the relative electron affinity of BTPA compared to TPB and TPT is higher and 

therefore, it acts as an electron donating unit. The electron migration from BTPA to π-

conjugated TPB, TPT units was detected as broad excited state absorption for TPB-COF 

and TPT-COF. The opposite was observed in the TA spectra of TPA-COF, which showed 
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charge separation between oxidized TPA and reduced BTPA units. In the TA spectra of 

TPA-COF a characteristic BTPA ESA was observed along with GSB from TPA unit, 

featuring charge separated state TPA+• - BTPA─•. Kinetic traces indicated that strongest 

electron affinity difference between TPA and BTPA also resulted in the most long lived 

charge-separation state that can be determined within the time window of our instrument. 

The charge recombination process is almost five times longer (2622 ps) for TPA-COF 

compared to TPB- and TPT-COFs (407.6 – 588.8 ps) due to larger difference in electron 

affinities and ionization potentials. The For better support, the voltammetry experiment can 

be conducted in order to determine electron donating and withdrawing potentials of the 

precursors. 
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CHAPTER IV: CHARGE DYNAMICS IN DONOR-ACCEPTOR 

METALLOPHTHALOCYANINE COVALENT ORGANIC FRAMEWORKS 

(COFs) 

4.1. Introduction  

Covalent organic frameworks (COFs) consisting of the assembly of periodically 

arranged donor-acceptor heterojunctions demonstrates practical application as organic 

semiconducting materials,  light-emitting diodes and transistors.27,34–41 Structural 

modification of COFs allows the tunability of optical bandgaps between frontier molecular 

orbitals, which is useful in the design of organic semiconductors.116 Moreover, the low cost 

of organic electronic material promises the development of economically viable solar 

cells.117 A number of existing studies in the literature have examined semiconducting and 

photoconductive properties of arene, porphyrin and phthalocyanine COFs due to their 

ability to create π-columnar array during thermodynamically controlled 

polymerization.36,37,118–125  

Jiang et.al. synthesized a series of COFs consisting of various 

methallophthalocyanine donor and diimide acceptor units.23,34,63 It was shown that the 

control of periodic arrangement of building blocks into two-dimensional (2D) structure 

along with the ordered stacking of COF layers induces the delocalization of free charge 

along the π-columns, inhibits rapid charge recombination and retains long-lived polarized 

state of COF.  

The choice of methallophthalocyanine as an electron donating units in these COF 

samples can be explained by their high ionization potential due to 18π-electron aromatic 

molecular orbital system. In 1986 Tang used copper phthalocyanine and perylene 

tetracarboxylic dianhydride bisbenzimadizole to create the first two-layer organic 

photovoltaic cell.127 Since then metallophthalocyanines were widely tested mostly in 
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conjunction with fullerene for the development of new class of organic photovoltaic 

devices.128–131  

Herein, the charge dynamics in thin films of 2D COFs (PcCu COF and PcNi COF) 

constructed using ester-linked copper and nickel phthalocyanine and 2,3,5,6-

tetrafluoroterephthalonitrile (TFTPN) is examined using time resoled spectroscopy 

(Scheme 1).  UV-visible absorption measurements yielded characteristic absorption 

features of phthalocyanines at Soret and Q bands. As a result, Transient absorption (TA) 

spectrum was collected under photoexcitation at both 300 nm (Soret band) and 650 nm (Q 

band). The analysis of kinetic traces showed that the charge dynamics involves the electron 

density localization in phthalocyanine unit followed by the charge migration to proximate 

TFTPN. Within maximum 72.68 ps, the electron is transferred between COF layers and 

the charge recombination takes place after nearly 3 ns.  

 

Scheme 4.1. The synthetic scheme for the formation of Metallophthalocyanine COF  

 

4. 2. Experimental  
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Standard Characterization. UV-visible absorption measurements were carried 

out using Agilent Cary 5000 UV-vis-NIR spectrometer using as prepared PcCu and PcNi 

COF samples on quartz substrate.  

Transient Absorption Spectroscopy. As discussed in Chapter II, Femtosecond 

Transient Absorption experiments were performed on a Helios Spectrometer (Ultrafast 

Systems LLC). The pump and probe pulses were generated using Ti-Sapphire laser system 

(Solstice, 800nm, 3.5 mJ/pulse, 1 KHz repetition rate). Pump is delivered from TOPAS 

using 75% yield of Ti:Sapphire laser chopped at 500 Hz. The generation of white light 

continuum (probe) takes place using 25% output of the amplifier and sapphire crystal.  

PcCu and PcNi COF film on quartz substrate were placed to sample holder and 

continuously translated in order to prevent heating and thermal degradation. The 

measurements were collected at 300 nm and 600 nm pump pulse with 270 and 450 μW 

power respectively.  

 The kinetics data were fitted using Surface Xplorer Software by Ultrafast 

Systems LLC. Kinetic trace at a certain wavelength is expressed as fitting function which 

represents convolution of instrument response function (IRF) with exponential decay:  

𝑆(𝑡) =  𝑒
−(

𝑡−𝑡0
𝑡𝑝

)
2

∗ ∑ 𝐴𝑖𝑒
−

𝑡−𝑡0
𝑡𝑖

𝑖

 

𝑡𝑝 =
𝐼𝑅𝐹

2𝑙𝑛2
 

where t0 is time zero, IRF is the half maximum width of instrument response function, 

Ai and ti are the amplitude and decay constants respectively.  
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4. 3. Results and Discussion  

 Standard Characterization  

Copper and nickel phthalocyanine groups absorb light in the visible region and have 

deep green color. Distinctive UV-visible absorption spectral image is observed for the COF 

sample arising from 18π-electron aromatic molecular orbital system overlapping with d-

orbitals in the metal center. The steady-state UV-visible absorption spectra indicated 

typical Soret band (B band) attributed to the π→ π* transition. For PcNi COF the B zone 

appears as a sharp peak at 295 nm with a shoulder peak around 400 nm. The absorption 

feature of PcCu COF in the UV region is splitted to 285 and 345 nm bands.  

Q band corresponds to excitation from ground state to the first singlet excited state 

stretching between 550 and 900 nm. The Q zone undergoes characteristic Davydov 

splitting for PcNi COF present in most phthalocyanine derivatives.132,133 It appears at 

635 and 697 nm for PcNi COF, while for PcCu the splitting is negligible and emerges at 

645 and 700 nm. The broad absorption peak of PcCu COF can be the indication of 

symmetry reduction.134 The slight red-shift of Q band compared to absorption of CuPc, 

which appears as double-lump at ~620 nm and 695 nm,134 and NiPc (615 and 685 nm)135 

can be caused by linkage with TFTPN with higher electron affinity than CuPc and 

differences in aggregation patterns with the monomer.116  
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Figure 4.1. Steady-state absorbance spectra for PcCu and PcNi COFs 

 

Photoluminescence measurements demonstrated no emission of solid PcCu and Pc 

Ni COFs under irradiation over visible region. This observation is consistent with the 

photoluminescence spectra of previously synthesized metallophthalocyanine COFs, which 

similarly displayed non-emissive properties.  This can be characterized in term of 

formation of phthalocyanine cofacial H-aggregates that act as trapping sites.116,136 

 

Transient Absorption Spectroscopy  

Toward understanding the excited state processes of metallophthalocyanine organic 

framework, femtosecond TA spectroscopy was employed. Thin films of PcCu and PcNi 

COFs were irradiated first at 300 nm pulse to excite second singlet exciton (S2). The 

positive transient signal centered at 550 nm along with negative ground state bleach 

stretching between 610 and 800 nm is observed  in the TA spectra of PcCu COF. The 

bleaching signal is assigned to depopulation of ground state due to absence of any 
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stimulated emission in this region as was above-mentioned. The  negative feature does not 

coincide with the shape of Q band absorption, which can signify an overlap with the excited 

state absorption in the region between 610 and 800 nm.1,134 The decay profiles of the 

550 and 650 nm features indicate similar decay rate with slow quenching starting from 

1 ps. It is interesting to note that, the intensity of negative peak is almost 1.5 higher than 

the intensity of ESA under excitation at 300 nm.  

 
Figure 4.2. Transient absorption spectra of PcCu COF at (a) 300 nm (b) 650 nm laser 

irradiation  

 

Similar optical signatures are observed for the TA spectra of PcNi COF excited using 

300 nm pulse.  The ESA signal appears at 560 nm and the bleaching signal is centered at 

685 nm. Analogously, the overlapping of ground state bleach with ESA can be observed. 

Both signals gradually decay after 1 ps. Although the overall spectral image looks similar, 
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it must be pointed out that GSB for PcNi COF is almost twice more intense compared to 

positive absorption feature.  

 
Figure 4.3. Transient absorption spectra of PcNi COF at (a) 300 nm (b) 650 nm laser 

irradiation 

 

According to Kasha’s rule, excitation of Soret band must be followed by internal 

conversion to lower electronic state.137 In order to mimic this process, the TA data was 

obtained using 650 nm laser resulting in the excitation of Q band.  A similar pattern of 

results was obtained displaying 550 nm ESA with significantly broadened negative 

absorption band for PcCu COF. The TA spectra of PcNi COF yields 560 nm induced 

absorption peak and broad bleaching signal analogously to copper version. The positive 

feature around 550 nm in both PcCu and PcNi COFs suggests that it can be assigned to 

ESA of S1 state due to its presence upon 650 nm excitation. In contrast with excitation to 

B band, the TA spectra are dominated by threefold enhanced ESA due to direct pumping 

of molecules to the first singlet excited electronic state (S1). Besides, relative intensity of 
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signals, the bands do not show any obvious shift upon Q band irradiation and overall, the 

TA spectra recorded at 300 and 650 nm wavelengths have almost similar optical profile. 

This implies that S2 → S1 transition is not detected in the TA spectra of PcCu and PcNi 

COFs upon 300 nm excitation due to (a) absence of bleaching signal in the B band region 

and (b) no indication ESA corresponding to population of S2 state (Figure 4.4). 

 

Figure 4.4. Potential energy diagram of electronic states of metallophthalocyanine 

units   

There can be two possible explanations for the absence of both GSB and ESA. First, 

as can be seen from TA spectra at 300 nm excitation the positive induced absorption feature 

is apparent at 200 fs time delay. This may imply that the S2 → S1 transition is ultrafast and 

can occur between 5 and 200 fs. It is also possible that the time constant for this transition 

is shorter than instrument response function (IRF) resulting in insensitivity of TA 

instrument to internal conversion between singlet excited states. Another possible 

explanation arises from the fact the GSB signal overlaps with positive absorption feature 

in longer wavelength region, which can suggest that this positive band is the characteristic 
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S2 induced absorption. As the GSB dominates in this region as S1 gets populated, as a result 

of internal conversion, the induced absorption smears through overlap with negative 

feature.  

Overall, the TA spectra of PcCu COF is consistent with the previously reported TA 

spectra of copper phthtalocyanine vapor deposited film with nearly 40 nm bathochromic 

shift.134 This observation is predictable due to the excitation of metallophthalocyanine unit 

and therefore, the photoinduced absorption and negative bleaching signal corresponds to 

local excitation of electron-donating part of the COF.  The majority of the time-resolved 

TA spectroscopy on the metallophthalocyanine molecules and their derivatives indicated 

the formation of long-lived triplet state. The triplet state is formed within a picosecond and 

depending on the sample had a lifetime ranging from 8 ns to several 

microseconds.63,134,138,139 In PcCu COF sample the excitons almost completely decays by 

5 ns suggesting absence of triplet state. Therefore, such rapid quenching of locally excited 

copper phthalocyanine species can be introduced by electron withdrawing nature of 

TFTPN. The assembly of metallophthalocyanine-donor and TFTPN-acceptor in COFs 

results in the formation charge separated state (PcCu+•-TFTPN─•) preceded by locally 

excited copper phthalocyanine unit (PcCu*).  

In the previous study by Jiang et. al. in 2015 related to metallophthalocyanine-

diimide COFs they studied TA spectra of the samples dispersed in DMF in order to 

delaminate COF layers. Using atomic force microscopy, it was found that delamination in 

DMF generated COF samples with the thickness ranging between hundreds nanometers 

and 1 μm. Femtosecond TA spectra of this sample yielded that charge separated state is 

formed within 1.8 ps and its lifetime expands to 217 ps. The lifetime of charge separated 
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state showed dependence with the thickness of COF layers, which decreases as fewer 

sheets form π-columnar array.23  

Our study on the solid film revealed that the excited state dynamics of COF is 

expressed as three-exponential decay function. The positive absorption at 550 nm for PcCu 

COF and 560 nm for PcNi COF decays relatively at the same rate independently from 

excitation wavelength (Figure 4.5a and 4.5b). This suggests that the formation of locally 

excited (LE) state of electron-rich PcCu and PcNi unit is nearly equivalent under 300 nm 

and 650 nm laser irradiation. As LE state relaxes down electron transfer from 

metallophthalocyanine unit to the proximate TFTPN takes place. The excited state 

dynamics is then followed by delocalization of electron along donor-acceptor π-columns. 

Interlayer electron transfer of this type in J-aggregates23,63 of COF is believed to suppress 

charge recombination process contributing to longer lifetime of PcCu+•-TFTPN─• state. 

Hence, the donor-acceptor configuration of COF involves formation of charge-separated 

state, whereas the development of π-stacks of COF layers results in long-range migration 

of electron inhibiting charge recombination. It was reported in prior research that 

delocalization of charge along bicontinuous π-columnar array of zinc phthalocyanine and 

naphthalene diimide COF can be expressed as transient signal, which has a shape of 

negative mirror image relative to ground state absorption.23,63  
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Figure 4.5. Kinetic decay profiles of (a) 550 nm band of PcCu COF, (b) 560 nm 

band of PcNi COF, (c) 700 nm band of PcCu COF, and (d) 685 nm band of PcNi COF 

 

 

The kinetic trace of negative bleaching signal, however, varies depending on the 

photoexcitation wavelength (Figure 4.5c and 4.5d). The change in decay rate is especially 

prominent for PcCu COF suggesting longer lived charge separated state. The best fit of 

signals yielded 3.382 ns lifetime of interlayer CT for PcCu COF and 1.228 ns for PcNi 

COF. These numbers are not in line with previously reported lifetimes of charge-separated 

states, which were shown to lie within tens of microseconds.23,63  A major source of 

limitation in our work appears due to measurement of transient signals with the help of 

femtosecond TA spectroscopy, which limits the time window to 5 ns. In order to get 

evidence on the long-lived charge-separated state and their nature, we need to implement 

nanosecond TA spectroscopy. Besides, the decrease in the lifetime of interlayer charge 

transfer can be explained by poor π-stacking interaction. Lone pair from oxygen atoms 
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linking donor and acceptor units may prevent the formation donor-to-donor and acceptor-

to-acceptor π-columns. Based on obtainable data the excited state dynamics can be 

summarized according to the mechanism provided in Scheme 4.2.  

 

Scheme 4.2. Schematic representation of donor-acceptor interactions in 

metallophthalocyanine COFs 

 

Another important finding of this study was the difference in the lifetime of charge 

separated state between PcCu and PcNi COFs, which are summarized in Table 4.1 The 

time constant for charge recombination at 300 nm excitation is ns and ns for PcCu and 

PcNi COFs respectively. The results were directly compared with the previously reported 

findings on the lifetimes of electron migration in the columns of metallophthalocyanine 

COFs. Jiang et.al. in 2015 showed that copper phthalocyanine-naphthalene diamide COF 



 61 

 

 
 

had realatively longer lifetime (33 us) compared to nickel version (26 - 29 us). These results 

agree well with our observations and can be explained by stronger ionization potential of 

copper phthalocyanine. Interestingly, the research of Jiang et.al. showed that the time 

constant for charge recombination is not significantly dependent on the nature of acceptor 

(naphthalene diimide and pyrommellitic diimide) that they incorporated into the COF. This 

suggests future directions of assembly metallophthalocyanine donor with acceptors 

varying in electron affinity.  

Table 4.1. Exciton lifetimes of PcCu and PcNi COFs 

Time Constant τ1 τ2 τ3 

300 nm excitation    

PcCu-COF  1.750 ps 72.68 ps 3.382 ns 

PcNi-COF 1.927 ps 29.15 ps 1.228 ps 

650 nm excitation     

PcCu-COF 1.525 ps 65.19 ps 1.438 ns 

PcNi-COF 1.464 ps 19.58 ps 0.662 ns 

 

4.4. Conclusion.  

 In summary, electron transfer and charge dynamics processes were investigated for 

thin films of donor-acceptor metallophthalocyanine COFs using time-resolved TA 

spectroscopic technique. Upon photoexcitation of electron-rich metallophthalocyanine unit 

electron is transferred to proximate TFTPN units triggering intramolecular charge transfer 

process. High-order arrangement of COF layers to form π-columns can facilitate 

delocalization of free electron inhibiting rapid charge recombination between adjacent 

donor-acceptor units. The analysis of charge dynamics for metallophthalocyanine COFs 

builds a fundamental understanding and assists for further practical application in 
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photovoltaics and optoelectronics. Further adjustments in the structure of the COFs can 

offer promising efficient organic semiconducting material.  
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