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Abstract 

The electroassisted encapsulation of Single-Walled Carbon Nanotubes was performed 

into silica matrices (SWCNT@SiO2). This material was used as the host for the 

potentiostatic growth of polyaniline (PANI) to yield a hybrid nanocomposite electrode, 

which was then characterized by both electrochemical and imaging techniques. The 

electrochemical properties of the SWCNT@SiO2-PANI composite material were tested 

against inorganic (Fe3+/Fe2+) and organic (dopamine) redox probes. It was observed that 

the electron transfer constants for the electrochemical reactions increased significantly 

when a dispersion of either SWCNT or PANI was carried out inside of the SiO2 matrix. 

However, the best results were obtained when polyaniline was grown through the pores 

of the SWCNT@SiO2 material. The enhanced reversibility of the redox reactions was 

ascribed to the synergy between the two electrocatalytic components (SWCNTs and 

PANI) of the composite material. 
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1. Introduction 

The use of sol-gel chemistry to prepare inorganic and organic-inorganic composite 

materials has become a matter of interest [1, 2]. From the analytical point of view, the 

sol-gel process provides a relatively simple way to encapsulate chemical species in a 

stable host matrix like silica [3]. Besides, the versatility of the sol-gel chemistry offers 

many advantages for designing electrode devices and microscopic electrochemical 

reactors. Several synthetic routes for the production of sol-gel modified electrodes have 

been reported, including ways to produce surface and bulk modified electrodes, redox or 

electron conducting polymers, and their possible use in electrochemical sensing [2]. 

The sol-gel methodology applied to electrode surface modification is typically 

performed by coating the electrode with thin films obtained from a sol, which is 

obtained by the hydrolysis of metal alkoxyde precursors in water/alcohol solutions [4]. 

The production of sol-gel modified electrodes is usually performed by either spin 

coating or dip coating of the precursor solution on adequate supports. 

An alternative method, which has been the focus of several studies, is the 

electrochemical or electro-assisted deposition method [5-9]. In particular, Shacham et 

al. applied the electrochemically assisted method for the deposition of titania thin films 

[10]. Electro-encapsulation within silica networks of several species, including 

conventional redox probes has been reported by Deepa et. al [11],  who entrapped 

molecules such as basic blue 41, methylene-blue, Fe(bpy)3
2+ and Ru(bpy)3

2. More 

recently Walcarius et. al [12] succeeded in the immobilization of redox active 

biomolecules such as glucose oxidase and hemoglobin. 

However, from an electrochemical point of view, the use of silica networks in 

electrodes comes up against some difficulties, such as the lack of intrinsic electron 
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conductivity. In order to overcome this problem, some chemical modifiers (namely, 

carbon nanomaterials, metal nanoparticles and conducting polymers) have been 

included in the inorganic matrix giving rise to hybrid silica materials [13-18]. The 

presence of this kind of modifiers yields enhanced electrocatalytic activity in addition to 

the improvement in electron conductivity.  

Our research group has been recently interested in the use of electrochemistry to 

produce hybrid silica materials with no chemical gelification steps [19, 20]. In 

particular, the electrocatalytic activity of Single-Walled Carbon Nanotubes dispersed 

within a SiO2 matrix was examined against several redox probes in a recent contribution 

[20]. It was reported in this study that the electroencapsulation of SWCNT gives rise to 

a well-dispersed SWCNT load within the silica film. The electrochemical performance 

of glassy carbon electrodes modified by SWCNT@SiO2 was tested against inorganic 

(Fe3+/Fe2+) and organic (dopamine) redox probes. Both redox couples were chosen due 

to their different kinetic sensitivity to specific surface sites on carbon electrodes [21]. 

The iron redox couple is an oxide-sensitive probe, whose electrochemical behavior 

allows the quantification of the electroactive area related with the graphitic edges of 

SWCNT i.e., the nanotube tips [20, 22]. On the other hand, the dopamine organic probe 

reacts preferentially at the basal planes of the graphitic domains favored by π-π 

interactions. In this way, the electron transfer takes place through the walls of the 

carbon nanotubes [22]. 

In our previous studies, the SWCNT@SiO2 hybrid material showed a good 

electrochemical performance that improved the heterogeneous rate transfer for several 

redox probes [20]. However, this was followed by a minor increase in the electroactive 

area (the electrode area transferring the charge effectively). It was concluded that most 

SWCNTs remain isolated into the silica network and had not direct electrical connection 
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with the supporting electrode. The goal of the present work is to improve the electrical 

contact of the dispersed carbon nanotubes by creating a conducting molecular wire 

between the SWCNT and the supporting electrode. For this purpose, we have grown 

polyaniline through the silica pores by reactive insertion [19, 23]. The electrochemical 

performance of the new nanocomposite electrode, SWCNT@SiO2-PANI, was tested 

against either inorganic (Fe3+/Fe2+) or organic (dopamine) redox probes and the 

morphology of the nanocomposite electrodes was characterized by electron microscopy. 

 

2. Experimental Part 

SWCNTs were purchased from Cheap Tubes Inc. (Brattleboro, VT, USA) with a purity 

of 95% and 1-2nm of diameter. SWCNTs were used without further purification. 

Tetraethyl orthosilicate (TEOS) (Sigma-Aldrich), iron(II) sulfate heptahydrate (Merck, 

PA), iron(III) sulfate hydrate (Panreac, PA), potassium chloride (Merck, PA), dopamine 

(Sigma-Aldrich, PA), poly(4-styrenesulfonic acid) 18wt% (PSS, Sigma-Aldrich), 

hydrochloric acid (Merck, PA), and sulfuric acid (Merck, PA) were also used as 

received. All solutions were prepared with purified water obtained from an ELGA 

LabWater Purelab system (18.2MΩcm). 

Electrochemical experiments were performed in conventional electrochemical glass 

cells. The working electrode was a glassy carbon bar (GC, V-25 model, Carbone 

Lorraine). The GC electrode was carefully polished with fine emery paper and alumina 

(Buehler, 1 and 0.5μm) over cloth and then ultrasonically cleaned in distilled water. A 

platinum wire was employed as counter electrode, and a reversible hydrogen electrode 

introduced in the same electrolyte solution placed in a Luggin capillary was used as 

reference electrode. 
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Cyclic voltammograms were performed with a potentiostat (eDAQ EA161) and a digital 

recorder (eDAQ, ED401) with eDAQ EChart data acquisition software. The current 

density was calculated from the geometric area of the electrode (0.07cm2). The surface 

morphology of the electrodes was studied by scanning electron microscopy (SEM, 

JEOL JSM-840) and transmission electron microscopy (TEM, JEOL model JEM-2010). 

The scanning electron microscopy was performed directly on the glassy carbon working 

electrode. For transmission electron microscopy studies, the electrodeposited silica 

samples were carefully scratched from the surface of the glassy carbon electrode. This 

silica powder was dried by vacuum heating at 40°C, subsequently dispersed with 

ethanol and dosed over the sample holder. Thermogravimetric analyses were carried out 

for the estimation of the amount of carbon nanotubes incorporated within the silica 

matrices. The silica samples were subjected to thermal treatment at 10 °C/min up to 900 

°C in 100 mL/min of nitrogen/oxygen flow (ratio 4:1). 

2.1. Preparation of SWCNT@SiO2 modified electrodes 

Carbon nanotubes were encapsulated into the SiO2 matrix simultaneously to its 

electrodeposition on glassy carbon electrodes. Initially, two solutions were prepared 

according to the following procedure: 

Solution 1: Stable SWCNT aqueous suspensions were obtained as follows, 20 mg of 

SWCNT were poured into a vial containing 20 ml of 1% poly(4-styrenesulfonic acid) 

aqueous solution. The carbon nanotubes were dispersed and suspended by the 

applications of ultrasonic field by a VIRTIS probe (Virsonic 475, 475W maximum 

output power) at 1 minute intervals for 1h. To avoid overheating, samples were air-

cooled between sonication intervals. This suspension is stable for several months, due to 

the formation of SWCNT-PSS assemblies [24]. 



6 
 

Solution 2: Silica solution was prepared through the alcohol-free sol-gel route [20, 25-

27]. 1.00 mL of TEOS was mixed under vigorous stirring with 2.52 mL of a 0.46M 

KCl+0.01M HCl solution in a closed vessel. After 2 hours, the resulting sol was 

submitted to evaporation by vacuum heating until the complete removal of the released 

ethanol coming from alkoxyde hydrolysis. 

For the modification of the electrodes 2.52 mL of solution 1 –SWCNT suspension– was 

poured into solution 2 –alcohol-free silica precursor–. The complete removal of ethanol 

from solution 2 is a key point, since the dispersion of SWCNT-PSS assemblies are 

unstable in the presence of alcohol. 

This mixture containing SWCNT and the hydrolyzed silica precursor was placed in an 

electrochemical glass cell which contained a platinum wire counter electrode and a 

reversible hydrogen reference electrode. 

The deposition of silica was performed potentiostatically by the immersion of a 

polished GC electrode in the precursor solution, pre-conditioned at a constant potential 

of 0.0 V and then stepped down to -1.2V for 60 seconds to trigger the deposition of the 

silica film. Hydrogen evolution upon electrochemical reduction of water at this potential 

leads to a pH rise in the electrode surroundings. This induces the collapse of silica 

colloids near the electrode surface and favors their deposition [19, 28]. During the 

collapse of silica colloids near the electrode surface, the suspended SWCNT are trapped 

to form SWCNT@SiO2. Further details of the deposition method are given elsewhere 

[19, 20]. The amount of carbon nanotubes incorporated into the electrodeposited silica 

matrices were determined to be around 4% by thermogravimetric analysis (see Fig. S1 

in the Supporting Information). 
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3. Results and discussion 

3.1. Electrochemical insertion of PANI into SWCNT@SiO2 modified electrodes 

A glassy carbon electrode modified with SWCNT@SiO2 was removed from the 

electrochemical cell and rinsed carefully with ultrapure water. Then, it was transferred 

to another cell containing a 0.5M H2SO4 + 0.1M aniline solution for the polymerization 

of PANI. 

In order to facilitate the diffusion of aniline monomers within the silica pores, a 

potential of 0.0 V was applied for 60s. Then, it was applied a potential step up to +1.05 

V to trigger the oxidation of aniline monomers. Fig. 1 shows the recorded 

chronoamperometric curve, where an initial sharp current can be observed due to the 

charge of the electrical double-layer. 

 

 

Figure 1. Potentiostatic growth of polyaniline within a SWCNT@SiO2 modified 

electrode. Polymerization solution: 0.5M H2SO4+ 0.1M aniline hydrochloride. Initial 

potential: +0.0V vs RHE, final potential: +1.05V vs RHE. 
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After that process, the recorded current is due to the oxidation of aniline monomers to 

yield polyaniline. Two well-defined current regimes can be distinguished in the 

chronoamperogram. The first one is characterized by a curve with concave shape and 

comprises the time period between the start of the experiment and the inflection point at 

148 s. After that time the chronoamperometric curve changes to a convex shape and the 

current follows an exponential dependence. 

 

The shape of this curve resembles the chronoamperograms obtained in some of our 

previous papers [19, 23]. The current recorded at times lower than the inflection point is 

related with the growth of PANI confined within the silica pores. On the contrary, the 

exponential region observed above 148 s is characteristic of the autocatalytic PANI 

growth. It is known that chronoamperometric curves showing exponential shape are 

recorded during aniline electropolymerization on bare electrode surfaces. Consequently, 

in Fig.1 the characteristic shape reveals that the polymeric chain has eventually filled up 

the silica pores and is spreading out of this material [19, 23]. The amount of polymer 

deposited in the composite material can be controlled by monitoring the oxidation 

charge and assuming 2 electrons per deposited monomer unit [29]. 

Scanning electron microscopy has been used to examine and compare the surface of 

SWCNT@SiO2-PANI composite electrodes loaded with different amounts of 

polyaniline. Firstly, Fig. 2a shows a glassy carbon electrode modified with a deposit of 

SiO2 without nanotubes. It can be observed a very rough SiO2 layer which covers all the 

glassy carbon substrate and shows silica particles approaching the micrometer scale. 
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Figure 2. SEM micrographs acquired at the same magnification for glassy carbon 

substrates modified with (a) deposit of SiO2 and (b-d) SWCNT@SiO2 composite filled 

with polyaniline: (b) 0.472g, (c) 0.944g, (d) 4.72g. 

 

 

On the other hand, Figs. 2b to 2d show different stages of polyaniline growth on the 

SWCNT@SiO2 electrode. These stages correspond to polyaniline loads of 0.472 g 

(deposition time=106 s), 0.944 g (deposition time=165 s) and 4.72 g (deposition 

time=370s) along the chronoamperometric curve shown in Fig. 1. The surface structure 

of the SWCNT@SiO2-PANI composite material loaded with 0.472 g polyaniline 

(a) (b) 

(c) (d) 
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shows only some dispersed SWCNT bundles, since polyaniline growth is limited to the 

inner surface of the material and, therefore, is not visible in the outer zone of this 

electrode. 

However, for a higher PANI load of 0.944 g (immediately after the inflection point in 

the chronoamperogram) some polymer chains have reached the outer surface of the 

silica layer. They appear in Fig. 2c as dispersed particles with diameters ranging from 

50 to 100 nm. These aggregates are similar in size to those obtained on a ITO-SiO2 

electrode modified with an electrochemically synthesized PANI layer [23]. 

Finally, when PANI was loaded at higher amounts (Fig. 2d), the formation of polymer 

aggregates surfacing from the silica pores can be more clearly observed. The carbon 

nanotube bundles on the surface appear thicker, indicating that PANI grew around them. 

It should be noted that PANI spreads over a space that already contained SWCNT and, 

consequently, an improvement of the connection between the carbon nanostructures is 

expected to occur. 

TEM microscopy has been used to access the inner structure of the synthesized 

materials. Fig 3 shows TEM images obtained from a SWCNT@SiO2 composite without 

PANI (Fig. 3a) and after the deposition of 4.72 g PANI (Fig. 3b-3d). The composite 

materials were scratched from the electrode surface and then deposited on the sample 

holder to acquire the TEM images. 
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Figure 3. TEM micrographs obtained for (a) SWCNT@SiO2 composite and (b-d) 

SWCNT@SiO2 composite filled with 4.72g of polyaniline at different magnifications. 

 

 

The SWCNT@SiO2 deposits in Fig. 3a present a globular and uniform aspect related to 

silica collapsed colloids. Some isolated carbon nanotubes appear in the borders of the 

silica island [20]. In addition to the globular silica deposits, Fig. 3b shows regions were 

electrogenerated PANI has grown. These regions can be observed in more detail in Fig. 

a 
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3c, where also several carbon nanotubes threads crossing the silica-PANI composite can 

be observed. A detailed view of one of these threads is shown in Fig. 3d, where the 

nanotube structures, of around 3 nm width, appear covered with PANI. 

 

3.2. Electrochemical characterization of SWCNT@SiO2-PANI composite electrodes 

SWCNT@SiO2-PANI modified electrode loaded with 0.944 μg PANI was prepared to 

check its electrochemical performance. That PANI load was chosen because it 

corresponds to the complete filling up of the SWCNT@SiO2 film. Fig. 4 shows the 

steady-state cyclic voltammogram recorded for this material in 0.5M H2SO4. 
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Figure 4. Steady-state cyclic voltammogram for a SWCNT@SiO2-PANI modified 

glassy carbon electrode in 0.5M H2SO4 supporting electrolyte. Scan rate: 50 mV s-1. 
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During the forward potential scan, a sharp peak centered at 0.44V appears in the CV. 

This peak is related with the first redox transition of PANI from the leucoemeraldine 

(insulating) state to emeraldine (electronically conducting) state.  On the other hand, the 

broad peak that can be hardly perceived at around 0.75V has been usually ascribed to 

the presence of quinone-like defects in the structure of the conducting polymer [23, 30]. 

Finally, the current arising from +0.9 V is due to the onset of the second redox 

transition of polyaniline from emeraldine to pernigraniline state. During the reverse 

scan, the corresponding reduction of emeraldine to leucoemeraldine occurs under the 

cathodic peak at 0.31V. In essence, the voltammetric profile described here is very 

similar to that obtained for conventional polyaniline layers deposited over smooth 

surfaces. 

The modified electrode was tested against Fe(II)/Fe(III) and dopamine (DA) redox 

probes. It has been reported that the iron redox couple is a surface probe sensitive to the 

SWCNT tips whereas the dopamine redox couple is more sensitive to the nanotube 

walls. Accordingly, the use of these probes allows the characterization of both types of 

surface sites at the composite electrode. 

The electrochemical response of the iron probe at different electrodes is exposed in Fig. 

5. The dotted line shows the behavior of Fe2+/Fe3+ couple over the bare glassy carbon 

electrode. The broad anodic peak centered at 1.03V appearing during the forward 

potential sweep is related with the iron(II) oxidation. During the reverse scan, the 

faradaic counter-process takes place and a reduction peak is recorded at 0.42V. These 

values yield a peak separation, Ep= 610 mV, which shows the poor electrochemical 

performance of this electrode towards the iron redox couple. 
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Figure 5. Electrochemical response of a bare glassy carbon electrode (dotted line); 

electrode modified with SWCNT@SiO2 (dashed line) and SWCNT@SiO2-PANI 

composite electrodes loaded with 0.944 µg PANI (solid line) in 0.5M H2SO4 + 10mM 

FeSO4/Fe2(SO4)3. Scan rate: 50mV s-1. 

 

 

When the electrode surface is modified with carbon nanotubes dispersed within the 

silica network (dashed line), the electrochemical reversibility of the Fe2+/Fe3+ redox 

couple improves considerably. The oxidation peak for iron (II) falls down to 0.82V and 

the reduction peak for iron (III) shifts oppositely up to 0.52V. As a result, the peak to 

peak separation narrows to 300 mV [20]. 

Finally, the response of SWCNT@SiO2-PANI modified electrode appears as a solid line 

in the voltammograms. In this case, two anodic peaks appear during the forward scan. 

The first one, at 0.45V, is related with the leucoemeraldine-emeraldine transition of the 

inserted polyaniline and the second oxidation peak at around 0.75V is related with the 

iron(II) oxidation. During the reverse scan, the reduction of iron (III) species appears at 

around 0.66V. So, the peak potential separation for this latter pair of peaks drops down 
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to 107 mV. Table 1 summarizes these results for the Fe2+/Fe3+ redox reaction at the 

electrodes studied. 

 

 

Table 1. Values for the voltammetric peak separation (ΔEp) at 50 mV s-1, heterogeneous 

transfer rate constant (k°) and Electroactive Surface Area (ESA) obtained in either 

10mM FeSO4/Fe2(SO4)3 or 1mM DA solutions for different electrodes. 

Electrode 

ΔEp 

(mV) 

kº 

(cm s-1) 

ESA 

(cm2) 

Fe3+/Fe2+ DA Fe3+/Fe2+ DA Fe3+/Fe2+ DA 

GC 610 350 1.06 x10-5 4.95 x10-6 0.0887 0.0429 

SWCNT@SiO2 300 125 2.86×10-4 3.61×10-4 0.0964 0.0431 

SWCNT@SiO2-

PANI 

107 60 3.50×10-3 2.04×10-3 0.153 0.233 

SiO2-PANI 141 79 1.81×10-3 1.08×10-3 0.154 0.164 

 

 

 

At this point, it is worth considering the possibility that inserted polyaniline could 

contribute to the improvement of the electrochemical reversibility of the iron redox 

reaction. To check this, a new experiment was performed in which polyaniline was 

grown through the pores of a SiO2 layer without SWCNT. When this material was used 
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as electrode for the Fe2+/Fe3+ reaction, it was found a peak to peak separation close to 

141 mV (the voltammogram is shown in the Supporting Information, Fig. S2). Such a 

value falls between those for SWCNT@SiO2 and SWCNT@SiO2-PANI. So, the 

electrode containing both carbon nanotubes and polyaniline shows better 

electrochemical reversibility. It seems that there exists a synergistic effect of SWCNT 

and polyaniline on the redox behavior of Fe2+/Fe3+. 

The electrochemical response of these electrodes was also tested against the dopamine 

redox probe as shown in Fig. 6. 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-40

-20

0

20

40

 

I/



E/V
 

Figure 6. Electrochemical response of a bare glassy carbon electrode (dotted line); 

electrode modified with SWCNT@SiO2 (dashed line) and SWCNT@SiO2-PANI 

composite electrodes loaded with 0.944 µg PANI (solid line) in 0.5M H2SO4 + 1mM 

dopamine. Scan rate: 50mV s-1. 
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Steady-state cyclic voltammograms were recorded for GC (dotted line) SWCNT@SiO2 

(dashed line) and SWCNT@SiO2–PANI (solid line) in 0.5M H2SO4 + 1mM dopamine 

solution. It is clearly derived from these voltammetric curves that the improvement in 

electrochemical reversibility for DA redox reaction follows a similar pattern to that of 

Fe2+/Fe3+. Table 1 shows the peak to peak separation for the glassy carbon electrode, 

350 mV. Such a value decreases to 125 mV when the electrodes are modified with 

carbon nanotubes dispersed within the silica matrix. The best electrochemical response 

is found for the silica deposit modified with both PANI and SWCNT. In that case the 

measured ΔEp is as low as 60 mV. 

The contribution of polyaniline to the improvement of the electrochemical reversibility 

of this redox reaction was determined by checking the response of an electrode 

modified with hollow SiO2 (with no nanotubes inserted) and polyaniline grown through 

its pores. In this case, the peak separation is 79 mV (the voltammogram is shown in the 

Supporting Information, Fig. S3). All these results confirm a clear synergistic effect 

between carbon nanotubes and PANI. 

From ΔEp data shown in Table 1, standard rate constants for the electron transfer, kº, 

have been calculated according to the Nicholson method [31]. The obtained parameters 

for each redox reaction and modified electrode are summarized in Table 1. Regarding 

the standard rate constants (kº) it can be observed that the GC electrodes show the 

lowest figures for both redox probes. An improvement of this parameter was achieved 

after the modification with carbon nanotubes-silica matrices. However, the best result is 

attained for the silica network that contains SWCNT connected by conducting 

polyaniline, with an improvement of the rate constant higher than 2 orders of magnitude 

for each redox probe. The kº values obtained for SWCNT@SiO2–PANI modified 

electrodes are in the order of 10-3 cm s-1 for both redox probes. These values are similar 
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to those obtained after the modification of GC electrodes with SWCNT prepared by 

drop-casting [22]. The major advantage of the method presented in this work is the 

lower amount of electrocatalytic material (SWCNT) used, which is 20 times lower than 

in that previous work.  

Also the Electroactive Surface Area (ESA) of the electrode materials, i.e. the real area 

transferring charge to redox probes, has been evaluated. This has been done from 

Randles-Sevcik plots of peak current vs the square root of the scan rate (see Fig. S4 and 

S5 in the Supporting Information). The linear trends show that the electron transfer 

takes place from the modified electrode surface to dissolved species in all cases. 

Significant differences in the electroactive area can be found in Table 1 between the two 

redox probes studied. For the GC electrode the Fe2+/Fe3+ reaction occurs at an effective 

electrode area close to 0.09 cm2. This value slightly increases when the transfer takes 

place at SiO2 filled with SWCNT, but almost doubles when polyaniline is added to the 

composite electrode. The presence of carbon nanotubes has little effect in this parameter 

and the ESA measured is similar for SWCNT@SiO2-PANI or SiO2-PANI modified 

electrodes (0.15 cm2). To interpret correctly this result, it should be noted that the 

surface sites for the electron transfer from iron ions are located at both the oxidized tips 

of SWCNT and the inserted PANI chains. Since the active area of the SWCNT tips is as 

low as 0.4% of their geometric area for this particular probe [19], the addition of 

polyaniline to the electrode material will dominate the final number of active sites. As a 

result, those electrodes filled with PANI show almost the same electroactive area for the 

Fe2+/Fe3+ redox reaction. The effect of SWCNT is then restricted to an improvement of 

the electrode kinetics by means of ko. 
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More important effects, in terms of changes in ESA, are due to carbon nanotubes are 

expected for dopamine redox probe, since it is known that the electron transfer for this 

organic compound occurs at the walls of SWCNT [19]. From the Randles-Sevcik slope, 

the electroactive surface area was calculated for this redox probe and the values are 

shown in the last column in Table 1. For the dopamine reaction taking place on either 

bare glassy carbon or SWCNT@SiO2 modified electrodes, the area remains as low as 

0.04 cm2. A significant improvement of this figure is obtained after electrode 

modification with PANI but the best result in terms of ESA is obtained in the presence 

of carbon nanotubes. The electrode modified only with PANI shows an area of 0.16 

cm2, which is similar to that for the iron redox probe. However the electrode modified 

with carbon nanotubes and PANI shows an area of 0.23 cm2, a value five times higher 

for the same reaction than the area of a SWCNT@SiO2 modified electrode. This result 

strongly suggests that PANI serves as a conducting connector for the carbon nanotubes 

dispersed in the silica matrix. 

 

4. Conclusions 

The present contribution shows the electrochemical synthesis of porous composite 

electrodes prepared on glassy carbon substrates and made of silica, single walled carbon 

nanotubes and polyaniline. The imaging techniques reveal a good dispersion of 

SWCNT within the porous layer of SiO2 and the successful coating of these structures 

by the potentiostatically inserted polyaniline. 

The electrochemical properties of the SWCNT@SiO2-PANI composite material were 

tested against either inorganic (Fe3+/Fe2+) or organic (dopamine) redox probes. Thanks 

to its porous structure, the silica layer allows the permeation of the redox probes to the 



20 
 

inner material. Consequently, the electron transfer takes place inside of the 

nanocomposite electrode to species in solution, a point that is confirmed by the kinetic 

analysis.  

The electrochemical reversibility of these redox probes at a glassy carbon electrode is 

rather poor. The electron transfer constants for the electrochemical reactions increased 

significantly when a dispersion of either SWCNT or PANI was carried out inside of the 

SiO2 matrix. However, the best results were obtained when polyaniline was grown 

through the pores of the SWCNT@SiO2 material. It was concluded that the improved 

electrochemical reversibility was due to synergistic effects between the electrocatalytic 

components of the composite. 
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