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Abstract 

This article describes the research carried out regarding the application of cathodic protection 

(CP) and cathodic prevention (CPrev), in some cases with a pre-treatment of electrochemical 

chloride extraction (ECE), on representative specimens of reinforced concrete structures, using 

an anodic system consisting of a graphite-cement paste applied as a coating on the surface. The 

aim of this research is to find out the competence of this anode for the aforementioned 

electrochemical treatments. The efficiency of this anode has been clearly demonstrated, as well 

as its capability to apply a combined process of ECE and after CP. 

 

Keywords: A. Steel reinforced concrete; Graphite-cement paste; B. Galvanostatic; 

Electrochemical chloride extraction; C. Cathodic protection. 

 

1. Introduction 

 

The main enemy of the durability of concrete structures is the corrosion of steel 

reinforcement, and this effect is chiefly caused by penetration of chlorides (Cl-) in the concrete 

mass. Since the last quarter of the past century researchers have been developing 

electrochemical treatments aimed at preventing the penetration of chlorides in concrete and to 

remedy its effects. Some patents have been registered and its techniques have been applied to 

many infrastructure works with good results, as a rule. Therefore, it is generally accepted that 

both cathodic protection (CP) and electrochemical chloride extraction (ECE) are appropriate 

and efficient methods to improve the durability of reinforced concrete structures [1-5]. 

The mechanism of CP in order to restore the lost protection condition to the corroded steel 

is known. It consists essentially in the transformation of the environment around the rebars, 

removing Cl- and generating OH- at its surface as was shown by Glass and Chadwick [6]. This 

can be long-lasting effect as was demonstrated by Christodoulou et al. [7]. 
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Following Pedeferri and coworkers [8-9], two different sorts of applications can be 

distinguished for CP by impressed current. In one hand, cathodic prevention (CPrev), which 

aims to protect non corroding reinforced concrete structures against the onset of corrosion by 

chlorides, by using low cathodic current densities in the range of 0.5-2 mA/m2, which increase 

the critical chloride content for pitting corrosion of steel. On the other hand, cathodic protection 

(CP) strictly speaking, which is known to aim to stop corrosion in constructions where the 

process caused by the action of chloride is already happening. These latter CP applications 

usually are run with higher cathodic current densities of up to 15 mA/m2 or 20 mA/m2.  

With this research the behavior of a cement-based anode system for the application of both 

electrochemical techniques (ECE and CP) is discussed. A new generation of modified materials 

are allowing this kind of applications. This type of materials, able to simultaneously offer 

different properties in the systems where they are used, are known as "multi-functional" [10-

15]. Among them, conductive pastes and mortars have recently opened a new field to design 

anode systems for electrochemical techniques. The first steps on this path were the development 

of anodic systems for CP, as reflected in researches of Fu and Chung [16], Hou and Chung [17], 

DePeuter and Lazzari [18] and Bertolini et al. [19]. As for ECE, also new coatings as mortars 

and pastes have been developed to form anodic systems using carbonaceous conductive 

materials. Following this line, the purpose of this paper is to focus on the graphite-cement 

pastes, as a continuity of previous researches of Pérez et al. [20] and Cañón et al. [21]. The new 

contribution of this research consists in the use of an anode to apply CP and CPrev, as well as to 

combine treatments ECE-CP or ECE-CPrev. The solution of using a paste instead of a mortar 

provides, a priori, several advantages. Its thickness (2 mm) is about ten times thinner than a 

mortar, avoiding the addition of dead load to treated structures. Furthermore, both 

manufacturing and application processes are price competitive. Besides, its ability to retain 

moisture facilitates the maintenance of the electrolyte on the surface [21]. But above all, the best 

of its powers is to make the implementation of ECE and CP successively feasible. This capacity 

is essential to apply ECE before CP treatment in structures with a large Cl- contamination, and 

exposed to an aggressive environment that makes likely a new increase of the Cl- content of 

concrete after the ECE treatment. It must be recalled that the current density needed for a 

successful CP treatment is higher the higher is the Cl- content of concrete [8].  Up to our 

knowledge, there is no previous publication testing an anodic system in regard to this dual 

efficiency, for ECE and subsequent CP. 

 

In short, the objectives of this research can be classified into three groups: 

1. Obtaining complementary data about the efficiency and results of an anode system 

composed of a paste of graphite-cement overlay for ECE application on reinforced 

concrete. 
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2. Checking the efficiency and feasibility of an anode system composed of a paste of 

graphite-cement overlay for CP and CPrev applications on reinforced concrete. 

3. Verifying the possibility of using the same anodic system for a combined treatment 

of ECE+CP on reinforced concrete.  

 

2. Experimental procedure 

2.1. Materials used 

Samples are designed to be treated with ECE, CP and CPrev. For ECE and CP, samples of 

concrete were manufactured with 2% Cl- related to mass of cement, by adding NaCl in the 

mixing water. The intention is to assure a content of Cl- that clearly exceeds the critical chloride 

threshold in order to depassivate the steel, as was stated by Angst et al. [22-23]. The rest of the 

concrete dosage was 250 kg/m³ of Portland cement CEM I 42.5 R, water-to-cement ratio of 

0.65, 2.50 kg/m³ of superplasticizer, and 1,890 kg/m³ of aggregate with maximum size 12 mm. 

Thus, a concrete of compressive strength 37.8 N/mm², porosity 11.1% and bulk density 2,380 

kg/m³ was obtained. For CPrev application, the concrete had the same dosage but without Cl-. 

The dimension of the specimens was 18 x 18 x 8 cm³, which were reinforced by a grid 16 x 16 

cm² composed of six steel bars soldered symmetrically forming squares of 5 cm side, and placed 

2 cm under the anode. 

Two copper connectors isolated by plastic were screwed to the rebar, to connect them with 

the negative pole of the electric source, composing the cathode system, Fig.1. Design criteria for 

the reinforcement arrangement were inspired by experiences of Garcés et al. [24-25]. 

Once the formwork was removed, specimens were moist-cured at 95-98% relative humidity 

(RH) for 28 days. To form the anode system, a graphite-cement paste was prepared by mixing 

graphite powder and Portland cement at 50%-50% in mass. Water to solid mix ratio was 0.8. 

Secondly, a 2 mm thick layer of this paste was applied on the surface of each specimen, and 

then all of them were moist-cured for 10 days. After that, two grooves were performed 

lengthwise onto the anodic overlay, without reaching the concrete surface, in order to receive 

both graphite rods to connect to the positive pole of the electric source. To finish up, these rods 

were overlaid with graphite-cement paste in order to join with the anode system perfectly, but 

avoiding any contact between graphite rods and concrete. A PVC receptacle was assembled on 

the top of the samples to retain both ECE electrolyte (distilled water) and/or the dissolution used 

during CP or CPrev applications to simulate a continued chloride contamination (65 ml NaCl 

0.5 M applied weekly), Fig. 2. The ratio between the surface of concrete covered by the anodic 

overlay and the surface of the primary anodes (graphite rods) was 9.6; the ratio between the 

surface of concrete covered by the anodic overlay and the total surface of the steel bars was 1.7, 

Fig. 2. All current density and electric charge density values reported in this work are relative to 

surface of concrete, (equal to the anode surface), except otherwise stated. 
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The resistivity of the graphite-cement paste was measured through the four-probe method. 

To this end paste specimens were cast in 4 x 4 x 16 cm3 molds, and moist-cured at 95-98% RH 

during 14 days. The experimental details of the measurements can be found elsewhere [26]. The 

average obtained resistivity was 1.5 Ω m. 

The measurements of steel corrosion potential (Ecorr) and all the single electrode potentials, 

were performed using Ag-AgCl reference electrodes. These electrodes were housed in 

respective holes drilled from the exposed surface of the concrete specimen (that bearing the 

graphite-cement anode) to the vicinity of the rebar. For this purpose, the holes were sheathed 

with a plastic tube, and filled with a KOH 0.2 M dissolution, Fig. 2. 

In this way nine specimens were prepared, seven of them with salt in the mixing water and 

two without it. Two of the salted specimens were used only for determining the efficiency of the 

ECE process (section 2.2.1), i.e. concrete cores were extracted from them, and their chloride 

content profiles were determined, in one case before and in the other case after ECE. These two 

specimens were discarded after coring. The seven remaining specimens were intended for the 

tests corresponding to CP, Cprev, and the combined treatments (ECE+CP) and (ECE+CPrev), 

see section 2.2.2. 

 

2.2. Case studies carried out 

2.2.1. Case study 1: Application of ECE 

Initially four of the specimens made with saline mixing water were subjected to ECE. For 

this purpose, the specimens were electrically connected in series by pairs to a direct current 

source. The relevant parameters of the ECE treatments are shown in Table 1. A low charge 

density was applied, only 1.5 MC/m² relative to concrete surface (2.6 MC/m² relative to steel 

surface). The current source feeding voltage (∆Efeed) was controlled at a level below 40 V 

during the processes, for safety reasons. It was necessary in this respect to interrupt the current 

passage two times (pauses 1 and 2 of 24 h) along the treatment. As an example, the evolution of 

∆Efeed during the second half of an ECE process is shown in Fig. 3, for two of the ECE treated 

specimens.  

The whole processes were performed inside a fume hood to eliminate the chlorine, Cl2(g), 

produced by electrochemical oxidation of the Cl- ions extracted from the concrete. 

When the ECE processes were finished, pH values of the electrolytes were measured in 

order to check the acidifying effect caused by the electrochemical anodic reactions. 

The next step was to obtain the Cl- content profiles of concrete cover on steel, both before 

and after ECE. For that purpose a concrete core was extracted from one of the specimens with 

salt in the mixing water but not subjected to ECE; and another core from one of the ECE treated 

specimens, using a 7 cm diameter drill. The extracted cores were subjected to a grinding 

process, [27], to get concrete dust samples corresponding to thin (2 mm thick) successive 
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parallel layers to the exposed surface. Thus, 10 dust samples were extracted from the 2 cm 

concrete cover. The measurement of the samples acid-soluble Cl- contents was carried out by 

potentiometric titration as stated by Climent et al. [28-29]. These values are always expressed as 

percentage relative to mass of cement in concrete. The local and overall efficiencies of the ECE 

treatments were calculated with the Cl- contents before and after ECE [30-31]. 

The three remaining ECE treated specimens were kept for the further combined treatments 

ECE+CP and ECE+Cprev. 

 

2.2.2. Case study 2: Application of CP, CPrev and the combined treatments ECE+CP and 

ECE+CPrev 

The purpose of this study was to investigate the possibility of using the graphite-cement 

overlay anode for applying protective treatments of CP, CPrev, ECE+CP and ECE+CPrev, to 

laboratory model reinforced concrete specimens [32]. Table 2 establishes the adopted 

nomenclature of the specimens and the electrochemical treatments applied to each one. It must 

be stressed that all specimens included in Table 2, even those that were not given any of the 

electrochemical treatments (R and P), were subjected to the same salting regime during the 24 

weeks period that lasted the CP or CPrev treatments: 65 ml NaCl 0.5 M weekly sprayed onto 

the concrete or anodic overlay surface, in order to simulate continued chloride contamination.  

The CP treatments were applied with 15 mA/m² of current density (relative to concrete or 

anode surface) to two specimens, one of those previously treated with ECE (EA in Table 2) and 

the other one without previous treatment (A in Table 2). On the other hand the application of 

CPrev with 2 mA/m² of current density (relative to concrete surface) to a sample previously 

ECE treated (EB in Table 2) and to another manufactured without salt and not ECE treated (B in 

Table 2). The values of the current densities relative to the steel bars surface are 25.5 mA/m2 

and 3.4 mA/m2 for the CP and Cprev treatments, respectively. Each application has its reference 

sample without treatment of CP or CPrev to compare the results. The reference sample for the 

specimens subjected to combined treatments (EA for ECE+CP, and EB for ECE+CPrev) is ER. 

R is the reference for A, and P is the reference for B. 

The application of CP and CPrev consisted of two phases. 

Phase 1. First 24 weeks. The aforementioned treatments CP and CPrev were continuously 

applied during the first 13 weeks. Then, the current was switched off for 4 weeks and after that 

treatments were resumed to the end. Chloride contamination was continuously applied, even 

during the switch off periods. 

While applying the CP and CPrev treatments some parameters representative of the 

corrosion state of steel were measured in open-circuit conditions. During the two first weeks, 

the steel corrosion potential (Ecorr) was daily measured by means of an Ag-AgCl reference 

electrode. Since the third week both the corrosion potential and the steel corrosion rate icorr 
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(µA/cm²) were determined weekly. The icorr measurements were taken with a Gecor6 device 

(Geocisa, Madrid, Spain). Gecor6 is a portable measurement unit based on the linear 

polarization resistance method. The equipment uses a modulation confinement technique, 

allowing the quantitative determination of the corrosion rate [33]. During the current passing 

periods the feeding voltage of each specimen, ∆Efeed, was obtained as the potential difference 

between cathode and anode; and the individual anodic and cathodic potentials, Ea and Ec, 

respectively, were measured against the reference electrode Ag-AgCl. Finally, in order to check 

the efficiency of CP and CPrev as maintainers of protection conditions of steel, the "100 mV 

decay" criterion was used, as is specified in ISO 12696:2012 [34]. This criterion has been also 

extensively employed for this purpose by several researchers as Bertolini et al. [19] and Glass et 

al. [35]. The method consists in obtaining the 4 hour potential decay (∆Edecay), that is the 

difference between Ec
4h (the value of Ec 4 hours after the current switch off), and the instant-off 

cathodic potential Ec
io, which in this case was measured 1 s after the current switch off. The 

minimum value of the 4 hour depolarization must be 100 mV for an adequate corrosion 

protection of steel [34]. The values of Ec
io were monitored with an automatic data logger able to 

obtain and record 500 measurements in 6 seconds, after the current switch off. 

Once the 24 weeks processes were fulfilled, cores were extracted from all specimens of 

Table 2, and their respective Cl- content profiles were obtained. 

Phase 2. At the end of Phase 1 it was observed that all the specimens had lost the steel 

protection condition, evidenced by ∆Edecay values lower than 100 mV. Then, it was decided to 

start this second phase with the objective of recovering the protection conditions of steel by 

adjusting the current density of the CP treatments. The procedure was to increase progressively 

the current density during 4 weeks, starting with a value of 20 mA/m², until obtaining the 

protection conditions. 

 

3. Results and discussion 

3.1. Application of ECE 

Fig. 3 shows the evolution of the ∆Efeed values during the final part of the ECE treatment 

applied to two of the reinforced concrete specimens. It is appreciable a progressive increase of 

∆Efeed with time. The origin of this evolution can be due to an increase of the electric resistivity 

of concrete, which in turn can be brought by modifications of the composition of the inner 

concrete electrolyte and the microstructure of the concrete porous network during the 

application of electric fields. These modifications have been observed during ECE [36] or ionic 

migration [37] experiments. The voltage increase can be also partially due to electrode 

polarization effects. 

Once finished the ECE process with the settled parameters, Cl- content profiles were 

obtained, corresponding to the states before and after the ECE treatment, see section 2.2.1. The 



  

7 
 

local ECE efficiencies, understood as percentage of Cl- content removed, are plotted in Fig. 4. 

The average of removed Cl- was 51% of the initial content. This indicates a good performance 

of the ECE process applied on a conventional ordinary Portland cement concrete with the 

anodic conductive overlay system, for a relatively low charge density of 1.5 x106 C/m² relative 

to concrete surface. This result can be compared to the 41% efficiency obtained for a very 

similar reinforced concrete element, with the same initial amount of Cl-, subject to an ECE 

treatment, using a Ti–RuO2 mesh anode, and passing a total charge density of 1 MC/m² relative 

to concrete surface [20]. 

The pH values determined for the electrolytes, after the ECE experiments, were in the range 

5-5.5. This means that the acidity of the electrolytes has increased slightly, (the initial 

electrolyte was distilled water). This acidifying effect may be due to several of the 

electrochemical anodic reactions, namely the oxidation of hydroxide ions or water to O2(g) and 

the oxidation of carbon to CO2(g). It is possible that the alkaline character of the graphite-

cement paste anode may have reduced the acidity produced by those electrochemical processes. 

Another interesting feature, which is evidenced by the research, is the higher resistance to 

further Cl- penetration of the elements treated with ECE, for a given level of external Cl- load. 

Table 3 shows the evolution of local Cl- contents for the specimens R (not treated with ECE) 

and ER (ECE treated), during the posterior Cl- contamination. It is recalled that Cl- 

contamination consists of 24, once per week, spray applications of 65 ml of NaCl 0.5 M, see 

Section 2.1. The sample treated with ECE experienced a reduction of the capacity of Cl- 

absorption, during the 24 weeks of contamination, 17.4% lower, in average, than the not treated 

one, see Table 3.  This may be due to the modification of the pore network of concrete caused 

by the action of the ECE treatment [36]. 

 

3.2 Application of CP, CPrev and the combined treatments ECE+CP and ECE+CPrev 

Figs. 5 and 6 show the evolutions of the open-circuit Ecorr values for the specimens of Table 

2 during the duration of the first phase of the CP or CPrev experiments (24 weeks). In a similar 

manner Figs. 7 and 8 show the evolutions of the icorr values for the same specimens. It must be 

recalled that, during the 24 weeks treatments, all specimens were subjected to an intense 

chloride loading regime, see Section 2.2.2. 

For the three specimens previously treated with ECE, Fig. 5 shows that the initial Ecorr 

values were equal or higher than -100 mV, typical values of steel corrosion potentials after ECE 

[2]. The Ecorr values of EB (ECE+Cprev) quickly fell to values below -400 mV; the EA 

specimen (ECE+CP) kept during 6 weeks values about -100 mV, finally falling below -400 mV 

after 10 weeks; and the reference specimen ER (only treated with ECE) showed an intermediate 

behavior with an initial falling to values of about -200 mV, finally reaching values below -400 

mV after 11 weeks. It seems that a CP treatment with current density of 15 mA/m2 (EA) was 
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able to maintain protective conditions for steel during about 10 weeks despite the high chloride 

loading. On the other hand the CPrev treatment of 2 mA/m2 (EB) was not able to provide 

protective conditions. This latter fact can be considered as expected since such low current 

density values are only effective for preventative treatments of reinforced concrete non 

previously contaminated with chlorides [8-9], while the three specimens of Fig. 5 started the 24 

weeks trials with an initial Cl- content of about 1% (relative to cement mass), see Fig. 4.  

The evolution of the Ecorr values of the specimens non previously treated with ECE, Fig. 6, 

shows that in this case the CP treatment with 15 mA/m2 current density (A) was not able to 

protect steel from corrosion, since the corrosion potential of steel in A reached values below -

400 mV in two weeks, and its values was only slightly higher than those of the reference 

specimen non CP treated (R). This different behavior, when compared to the observations of the 

precedent paragraph, can be explained taking into account that the A and R specimens started 

the 24 weeks experiments with an initial Cl- content of 2% (relative to cement mass). To this we 

have to add the large progressive Cl- contamination due to the weekly salting regime. On the 

other hand the CPrev treatment with 2 mA/m2 current density, given to the initially Cl- free 

specimen (B) allowed to maintain values of Ecorr higher than -400 mV, and clearly higher than 

those corresponding to the reference specimen non CPrev treated (P), up to the interruption of 

the Cprev at 13th week. This is a further confirmation of the increase of the tolerance to 

chloride-induced corrosion for CPrev treated steel (current densities in the range 0.5 – 2 mA/m2 

of concrete surface). These low cathodic currents, applied from the beginning of the service life 

of a reinforced concrete structure, decrease the steel potential, so leading to important increases 

of the critical chloride content for pitting corrosion of steel [8-9].   

From the observation of the evolutions of the steel corrosion rates during the 24 weeks 

treatments, Figs. 7 and 8, little difference appears between the behavior of the treated specimens 

(EA, EB, A, B) and their corresponding reference specimens (ER, R, P). Furthermore, in all 

cases icorr values higher than 0.1-0.2 μA/cm2 were obtained, which means that in no case a 

repassivation of steel was obtained in open-circuit conditions. A correct interpretation of these 

observations needs to consider that most of the tested specimens had experienced corrosion 

before starting the treatments, since the concrete was admixed with 2% Cl- relative to cement 

mass; and all the specimens were subject to a severe chloride load during the 24 weeks 

treatments. In these conditions it is practically impossible to obtain a permanent repassivation of 

steel with temporary electrochemical rehabilitation methods [38-39]; and even CP or CPrev 

treatments need to be continuously applied for maintaining the protective conditions for steel. 

To verify the effectiveness of CP and CPrev treatments for protecting steel from corrosion, 

the “100 mV decay” criterion [34] was used, as stated in Section 2.2.2. Fig. 9 shows the 

evolution of the ∆Edecay values for all the specimens in Table 2, during the 24 weeks 

experiments. Regarding the EA specimen (ECE+CP), the protection conditions of steel were 
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kept during 11 weeks because of cathodic current circulation, despite external Cl- loading. On 

the other hand the ∆Edecay values of the A specimen (CP only) practically never reached the 

threshold value of 100 mV. These observations are in good agreement with the observed 

evolutions of the Ecorr values, Figs. 5 and 6, and put in evidence that cathodic protection of 15 

mA/m2 current density (relative to concrete surface) is able to keep protective conditions for the 

steel reinforcement if the initial Cl- content of the specimen is about 1% (EA). In the case of the 

specimen with initial Cl- content of about 2% (A), a higher current density would be needed for 

reaching the protection conditions [8-9]. Regarding the CPrev treated specimens (cathodic 

current density 2 mA/m2 relative to concrete surface), specimen B showed ∆Edecay values higher 

than 100 mV up to the current switch off at 13th week, confirming the capacity of continuously 

applied CPrev treatments to keep steel protection conditions for an initially Cl- free reinforced 

concrete, despite extensive external Cl- load [8-9]. On the other hand such a low current density 

is unable to protect steel if concrete is previously contaminated at a level of about 1% relative to 

cement mass, as shown for specimen EB (ECE+CPrev) in Fig. 9. 

One of the limitations of surface applied anodes for ECE and CP is the acidification of the 

concrete in contact with the anode [19]. In this study, after finishing all the electrochemical 

treatments, the state of the anodic overlay and that of the primary anodes (the graphite rods) was 

observed visually, and no damage was apparent. The pH values of the electrolytes after ECE 

were in the range 5-5.5, indicating that the acidity of the electrolytes had increased only slightly, 

see Section 3.1. Another indication of absence of damage can be obtained by looking at the 

feeding voltage (∆Efeed) values needed to maintain the current density values during the CP 

experiments, Fig. 10. Bertolini et al. [19] demonstrated that during CP treatments, if the 

conductive cement-based overlay was damaged due to acidity, the values of ∆Efeed showed a 

sharp important increase, with typical increases of about 3 V (for instance from values of 1-2 V 

to values of 4-5 V). Fig. 10 shows the evolution of ∆Efeed values for the EA specimen (treated 

by ECE+CP) and A specimen (treated only by CP). It is appreciable that the ∆Efeed values of EA 

are only about 0.2 V higher than those corresponding to A. If some damage or malfunction of 

the anode would be derived from the acidity produced during the ECE treatment, we should had 

observed a range of ∆Efeed values 2-3 V higher for the EA specimen than those corresponding to 

the A specimen. It is likely that the alkalinity of the anode, provided by the cementitious 

addition, may have avoided the possible damage due to acidity. 

Pedeferri [8] stated that one of the beneficial secondary effects of CP was the “chloride 

barrier effect”. The current circulation results in a reduction of the Cl- on the rebar surface or in 

a reduction of the ingress of Cl- into concrete. Tables 4 to 6 provide a further confirmation of 

this statement. These Tables show the local Cl- contents and their variations during the 24 weeks 

treatments for the CP (Table 4), CPrev (Table 5), and the combined treatments ECE+CP and 

ECE+CPrev (Table 6). The last column of Table 4 contains the reductions of the chloride 
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ingress due to CP action (specimen A), in comparison with the non CP treated specimen (R). 

The average reduction is 15.5%, reaching much greater values (39%-62%) in the vicinity of 

steel. CPrev also reduces the penetration of Cl-. Indeed, the sample subjected to CPrev (B) 

increased its Cl- content 21.5% less than the corresponding not treated (reference sample P). See 

Table 5. 

As regard the combined treatments, when CP and CPrev were applied after ECE, the partial 

barrier of Cl- penetration operated as well, as is gathered in Table 6. Cl- content in the ECE+CP 

treated specimen (EA) was in average 19.9% lower than in the specimen only subjected to ECE 

(ER). Practically the same difference occurred between EB (ECE + CPrev treated) and ER, 20.1 

%, see Table 6. 

Cl- profiles after 24 weeks of treatment revealed other significant effects. The difference of 

the Cl- profiles corresponding to EA and EB was negligible, Fig. 11. Therefore, it might be 

thought that the effects of corrosion protection could be similar. Nothing, however, could be 

further from the truth. Taking into account electrochemical controls (Fig. 9), it is clear that CP 

was able to achieve and keep the protection of steel for 11 weeks (specimen EA), whilst CPrev 

did neither for even one week (specimen EB). It seems that the effect of partial barrier against 

Cl- penetration starts to operate at current densities of the order of CPrev, which is 2 mA/m² 

relative to concrete or anode surface. However, it does not imply that the cathodic protection 

effect is reached. As is known, this effect depends critically on the ionic Cl-/OH- ratio reached, 

as stated by Pedeferri and Bertolini [4] and by Siegwart et al. [36]. For reinforced concrete 

contaminated with 1% Cl- relative to cement mass, the CP effect is obtained for current densities 

of at least 15-20 mA/m² [4]. 

Given that after 24 weeks of treatments, including rest periods between the 13th and 17th 

weeks, the reinforcements had completely lost their protection conditions, and a CP of 15 

mA/m² was unable to restore the protective conditions (Fig. 9), the second phase was started. 

The external Cl- load was discontinued since all the specimens had reached very high Cl- 

contents, see Tables 4-6. In these conditions CP was applied with higher current densities. The 

question was if it would be possible to recover the protection conditions of steel by increasing 

the current density to the appropriate value. 

In the beginning of this last phase, current density was set at 20 mA/m². After 4 weeks in 

operation 100 mV of ∆Edecay was not reached, i.e. the protection conditions were not obtained, 

Fig. 12. Neither success was obtained in a second attempt with 25 mA/m2 (data not shown in 

Fig. 12). Finally, a third step of 40 mA/m² was set. In this case, after 4 weeks, the rule of 100 

mV of ∆Edecay was achieved for EA, A and B specimens. Moreover, protection conditions were 

verified with the measurement of depolarization potential difference values 7 days after switch 

off [34]. In fact, more than 150 mV of ∆Edecay was reached after 7 days (209 mV for EA, 211 

mV for A and 153 mV for B). This efficiency of CP is similar to that obtained by Christodoulou 
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et al. [7]. However, this was not the case for EB. After 4 weeks with the highest cathodic current 

density, the protection conditions were not recovered for this latter specimen.  

To summarize, data of the most significant studies of the processes of CP and CPrev, with 

or without previous ECE, are collected in Table 7. 

 

4. Conclusions. 

An anodic system composed of a graphite-cement paste 50%-50% in mass with low 

thickness (2 mm) has shown comparable performances to other anodes more commonly 

used for the application of electrochemical treatments to reinforced concrete. In the light of 

the results of this research, the following aspects can be emphasized, namely: 

1. Regarding the application of ECE, a substantial part of Cl- was removed with a low 

applied charge density. Moreover, ECE applied in this way makes concrete more 

resistant to Cl- penetration for a certain external load. 

2. According to the results of CP, this electrochemical technique is able to provide 

protection conditions to steel, despite a severe internal and external chloride 

contamination, as long as the proper current density value is set, according to the Cl- 

content present. Also, its capability to recover the lost protection conditions with the 

increase of current density was demonstrated. 

3. Continuously applied CPrev with current density of 2 mA/m² is able to maintain a 

conventional concrete initially Cl- free in protection conditions despite being exposed 

to a severe Cl- load. However, it is unable to recover protection conditions if the initial 

Cl- content is equal or higher than 1% relative to cement mass, subjected to the same 

experimental external chloride load. 

4. CP and CPrev treatments are able to reduce the chloride ingress into reinforced 

concrete, in comparison with reference non treated specimens, thus providing further 

confirmation to the so called “chloride barrier effect”. 

5. The graphite-cement paste anode system makes possible to apply a combined 

treatment of ECE and then CP, only changing the current density in the electric 

source. No damage was observed in the anode after the whole combined process. This 

combination has shown to be capable of maintaing or recovering protection conditions 

if the cathodic current density is set to the appropriate value according to the Cl- 

content present. This combined treatment also supposes a strong barrier to Cl- 

penetration. Nevertheless, more research is needed to test these anodic systems in 

different conditions to fully ascertain their reliability for practical applications. 
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Figure captions 

 

Figure 1. Sketch of reinforcement of samples and connection of cathodic system. 

 

Figure 2. Sketch of specimen assembly. 

 

Figure 3. Evolution of ∆Efeed during the final half of the ECE treatment (current density 2 A/m2 

of concrete exposed surface) for two of the specimens subject to ECE (named here as specimens 

2 and 3). The specimens were electrically connected in series to the current source. Two pauses 

(interruptions of current passage during 24 h) were introduced to keep the maximum ∆Efeed 

values below 40 V for safety reasons. 

 

Figure 4. Chloride concentration profiles before ECE (initial) and after ECE (final), and local 

efficiencies of the extraction process. ECE details: current density: 2 A/m2, charge density: 1.5 

MC/m2, both related to exposed concrete surface. 

 

Figure 5. Evolution of Ecorr during the treatments post ECE. EA: ECE+CP; EB: ECE+CPrev; 

ER: treated only with ECE. All of them subjected to Cl- contamination during the 24 weeks. 

Current density values: CP: 15 mA/m2, CPrev: 2 mA/m2, both related to exposed concrete 

surface. 
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Figure 6. Evolution of Ecorr during the CP and Cprev treatments, without previous ECE. A: CP; 

B: CPrev; R (2% Cl- in the mix, not CP treated): reference specimen for A; P (no Cl- in the mix, 

not CPrev treated): reference specimen for B. All of them subjected to Cl- contamination during 

the 24 weeks. Current density values: CP: 15 mA/m2, CPrev: 2 mA/m2, both related to exposed 

concrete surface. 

 

Figure 7. Evolution of icorr during the treatments post ECE. EA: ECE+CP; EB: ECE+CPrev; 

ER: treated only with ECE. All of them subjected to Cl- contamination during the 24 weeks. 

Current density values: CP: 15 mA/m2, CPrev: 2 mA/m2, both related to exposed concrete 

surface. 

 

Figure 8. Evolution of icorr during the CP and Cprev treatments, without previous ECE. A: CP; 

B: CPrev; R (2% Cl- in the mix, not CP treated): reference specimen for A; P (no Cl- in the mix, 

not CPrev treated): reference specimen for B. All of them subjected to Cl- contamination during 

the 24 weeks. Current density values: CP: 15 mA/m2, CPrev: 2 mA/m2, both related to exposed 

concrete surface. 

 

Figure 9. Evolution of ∆Edecay during the CP or CPrev treatments. A: CP; B: CPrev; EA: 

ECE+CP; EB: ECE+CPrev. All of them subjected to Cl- contamination during the 24 weeks. 

The electrochemical treatments were interrupted between 13th and 17th weeks. 

 

Figure 10. Evolution of ∆Efeed during the CP or CPrev treatments. A: CP; B: CPrev; EA: 

ECE+CP; EB: ECE+CPrev. All of them subjected to Cl- contamination during the 24 weeks. 

The electrochemical treatments were interrupted between 13th and 17th weeks. 

 

Figure 11. Profiles of Cl- content in specimens treated previously with ECE and after with CP 

(EA), with ECE and after CPrev (EB), and in the reference sample only treated with ECE (ER), 

all of them subjected to Cl- contamination process, after ECE and first phase of CP or CPrev (24 

weeks). 

 

Figure 12. Evolution of ∆Edecay during phase 2 of CP. First step of 4 weeks with 20 mA/m2 of 

current density, and third step with 40 mA/m². Specimens A, B, EA and EB. 
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Tables 

 

 

ECE. Specimens with graphite-cement paste as anode. 

Electrolyte: dammed distilled water 

Initial %Cl- 2 % relative to cement mass 

Current density 
2 A/m2 of concrete exposed surface 

(3.4 A/m2 of steel surface) 

Initial ∆Efeed 16-24 V Final ∆Efeed 23-22 V 

Electric charge density 
1.5 MC/m2 of concrete exposed surface 

(2.6 MC/m2 of steel surface) 

Table1. Summary of ECE data 

 

 

 

Studied 

techniques 
CP 

 

CPrev ECE+CP 

 

ECE+CPrev 

 

Initial % Cl- 

in concrete 
2 

 

0 2 2 

Reference 

sample 

R  

(no 

electrochemical 

treatment) 

P  

(no 

electrochemical 

treatment) 

ER 

(treated only with ECE) 

Treated 

samples 

A 

(CP treated) 

B 

(CPrev treated) 

EA 

(ECE+CP 

treated) 

EB 

(ECE+CPrev 

treated) 

Table 2. Nomenclature of specimens for Case Study 2. 
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Depth 

(mm) 

Content 

of Cl- in R 

before Cl- 

contamina

tion (24 

weeks) 

(%Cl-) 

Content 

of Cl- in R

after Cl-

contamina

tion (24 

weeks) 

(%Cl-) 

Increase 

of Cl- in R 

caused by 

Cl- 

contamina

tion 

 ΔR 

(%Cl-) 

 

Content 

of Cl- in 

ER 

after 

ECE, 

before Cl- 

contamina

tion (24 

weeks) 

(%Cl-) 

Content 

of Cl- in 

ER 

after 

ECE and 

Cl- 

contamina

tion (24 

weeks) 

(%Cl-) 

Increase 

of Cl- in 

ER 

caused by 

Cl- 

contamina

tion  

ΔER 

(%Cl-) 

Reduction of 

the capacity of 

Cl- absorption 

due to the 

previous 

application of 

ECE  

(ΔR-ΔER)/ΔR

(%) 

 

0 - 2 0.295   

2 - 4 1.956 8.690 6.733 0.776 5.339 4.563 32.2%

4 - 6 1.934 7.966 6.032 0.924 5.612 4.688 22.3%

6 -8 1.816 6.851 5.035 0.821 5.286 4.465 11.3%

8 - 10 1.773 7.061 5.288 0.755 4.511 3.756 29.0%

10 - 12 1.899 5.006 3.107 0.981 3.722 2.741 11.8%

12 - 14 2.010 5.004 2.995 0.708 3.450 2.742 8.5%

14 - 16 1.953 4.827 2.875 1.264 3.753 2.489 13.4%

16 - 18 2.135 4.989 2.854 1.303 3.715 2.412 15.5%

18 - 20 2.298 4.345 2.047 1.204 2.989 1.785 12.8%

Average 1.975 6.082 4.107 0.971 4.264 3.293 17.4%

Table 3. Local Cl- contents (expressed in % Cl- relative to cement mass) and their 

variations during 24 weeks of Cl- contamination. Last column shows the reductions of 

the capacity of Cl- absorption due to previous ECE treatment. 
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Depth 

(mm) 

 

Content 

of Cl- in A 

after CP 

and 

contamina

tion (24 

weeks) 

(%Cl-) 

Content 

of Cl- 

in R after 

contamina

tion (24 

weeks) 

(%Cl-) 

Initial 

content of 

Cl- in 

specimens 

R and A 

(%Cl-) 

Increase 

of Cl- in A 

after CP 

and 

contamina

tion  

ΔA 

 (%Cl-) 

 

Increase 

of Cl- in R 

after 

contamina

tion 

ΔR 

 (%Cl-) 

Reduction of 

the increase 

of Cl- content 

due to CP 

action 

(ΔR-ΔA)/ΔR 

(%) 

0 - 2 0.295  

2 - 4 6.695 8.690 1.956 4.738 6.733 29.6%

4 - 6 5.659 7.966 1.934 3.724 6.032 38.3%

6 -8 6.246 6.851 1.816 4.430 5.035 12.0%

8 - 10 6.429 7.061 1.773 4.656 5.288 12.0%

10 - 12 6.260 5.006 1.899 4.361 3.107 -40.4%

12 - 14 5.511 5.004 2.010 3.501 2.995 -16.9%

14 - 16 4.722 4.827 1.953 2.769 2.875 3.7%

16 - 18 3.880 4.989 2.135 1.745 2.854 38.9%

18 - 20 3.067 4.345 2.298 0.769 2.047 62.4%

Average 5.385 6.082 1.975 3.410 4.107 15.5% 

Table 4. Local Cl- contents (% Cl- relative to cement mass) and their variations during 

24 weeks of Cl- contamination. Last column shows the reductions of the increase of 

Cl- due to CP action. 
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Depth 

(mm) 

 

Content 

of Cl- in B 

after 

CPrev 

and 

contamina

tion (24 

weeks) 

(%Cl-) 

Content 

of Cl- 

in P after 

contamina

tion (24 

weeks) 

(%Cl-) 

Initial 

content of 

Cl- in P and 

B 

specimens 

(without 

salt added 

in the mix) 

(%Cl-) 

Increase 

of Cl- in B 

after 

CPrev 

and 

contamina

tion 

ΔB 

(%Cl-) 

 

Increase 

of Cl- in P 

after 

contamina

tion 

ΔP 

(%Cl-) 

Reduction of 

the increase 

of Cl- 

content due 

to CPrev 

action 

 (ΔP-ΔB)/ΔP

(%) 

 

0 - 2  

2 - 4 4.963 6.273 0.190 4.773 6.083 21.5%

4 - 6 4.733 5.746 0.229 4.504 5.517 18.4%

6 -8 4.799 5.372 0.240 4.559 5.132 11.2%

8 - 10 4.343 4.716 0.227 4.116 4.489 8.3%

10 - 12 4.002 4.656 0.212 3.790 4.444 14.7%

12 - 14 3.786 4.492 0.205 3.581 4.287 16.5%

14 - 16 3.273 4.753 0.199 3.074 4.554 32.5%

16 - 18 2.953 4.419 0.221 2.732 4.198 34.9%

18 - 20 2.615 3.933 0.227 2.388 3.706 35.6%

Average 3.941 4.929 0.217 3.724 4.712 21.5% 

Table 5. Local Cl- contents (expressed in % Cl- relative to cement mass) and their 

variations during 24 weeks of Cl- contamination. Last column shows the reductions of 

the increase of Cl- content due to CPrev action. 
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Table 6. Local Cl- contents (expressed in % Cl- relative to cement mass) after 24 

weeks of Cl- contamination for the ECE+CP treated specimen (EA), the ECE+CPrev 

treated specimen (EB) and the only ECE treated specimen (ER). Last two columns 

show the reductions of the increase of Cl- content due to CP or CPrev actions, 

respectively. 

 

 

 

 

 

Depth 

(mm) 

Content of 

Cl- in EA 

after ECE, 

CP and 

contamina

tion 

(%Cl-) 

Content of 

Cl- in EB 

after ECE, 

CPrev and 

contamina

tion 

(%Cl-) 

Content of 

Cl- in ER 

after ECE 

and 

contamina

tion 

(%Cl-) 

Difference of 

increase of Cl-

(ER-EA)/ER  

(%) 

Difference of 

increase of Cl- 

(ER-EB)/ER  

(%) 

0 - 2 

2 - 4 4.352 4.866 5.339 18.5% 8.9% 

4 - 6 4.194 3.999 5.612 25.3% 28.7% 

6 - 8 3.830 4.070 5.286 27.5% 23.0% 

8 - 10 3.858 3.877 4.511 14.5% 14.1% 

10 - 12 3.300 3.367 3.722 11.3% 9.5% 

12 - 14 3.100 3.150 3.450 10.2% 8.7% 

14 - 16 3.500 3.033 3.753 6.8% 19.2% 

16 - 18 2.578 2.498 3.715 30.6% 32.8% 

18 - 20 1.959 1.913 2.989 34.5% 36.0% 

Averages 3.408 3.419 4.264 19.9% 20.1% 
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Specimens 

Weeks till  

Ecorr < 

-400 mV 

Ag-AgCl 

Weeks in 

passivation 

(∆Edecay > 

100 mV) 

Reaction 

to 

current 

switch 

off 

Final Cl-

content 

(% 

relative 

to 

cement 

mass) 

Increase of 

Cl- content 

(% relative 

to cement 

mass) 

Protection 

is achieved 

at 40 

mA/m² 

EA 10 11 
icorrEcorr 

3.408 2.437 YES 

EB 6 0 
icorr Ecorr 

3.419 2.520 NO 

ER 11 - - 4.264 3.293 - 

A 2 2 
 

icorrEcorr 
5.385 3.410 YES 

R 6 - - 6.082 4.107 - 

B 16 13 
icorrEcorr 

3.941 3.724 YES 

P 7 - - 4.929 4.712 - 

Table 7. Summary of results obtained from EA, EB, ER, A, R, B and P reinforced 

concrete specimens. 
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Figures 

 

Figure 1. Sketch of reinforcement of samples and connection of cathodic 

system. 

 

 

 

  

Figure 2. Sketch of specimen assembly. 
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Figure 3. Evolution of the feeding voltage during the final half of the ECE treatment 

(current density 2 A/m2 of concrete exposed surface) for two of the specimens subject 

to ECE (named here as specimens 2 and 3). The specimens were electrically 

connected in series to the current source. Two pauses (interruptions of current passage 

during 24 h) were introduced to keep the maximum total feeding voltage below 40 V 

for safety reasons.  

 

Figure 4. Chloride concentration profiles before ECE (initial) and after ECE (final), and 

local efficiencies of the extraction process. ECE details: current density: 2 A/m2, charge 

density: 1.5 MC/m2, both related to exposed concrete surface. 
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Figure 5. Evolution of Ecorr during the treatments post ECE. EA: ECE+CP; EB: 

ECE+CPrev; ER: treated only with ECE. All of them subjected to Cl- contamination during 

the 24 weeks. Current density values: CP: 15 mA/m2, CPrev: 2 mA/m2, both related to 

exposed concrete surface. 

 

 

 

Figure 6. Evolution of Ecorr during the CP and Cprev treatments, without previous ECE. A: 

CP; B: CPrev; R (2% Cl- in the mix, not CP treated): reference specimen for A; P (no Cl- in 

the mix, not CPrev treated): reference specimen for B. All of them subjected to Cl- 

contamination during the 24 weeks. Current density values: CP: 15 mA/m2, CPrev: 2 

mA/m2, both related to exposed concrete surface. 
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Figure 7. Evolution of icorr during the treatments post ECE. EA: ECE+CP; EB: 

ECE+CPrev; ER: treated only with ECE. All of them subjected to Cl- 

contamination during the 24 weeks. Current density values: CP: 15 mA/m2, 

CPrev: 2 mA/m2, both related to exposed concrete surface. 

 

 

 

Figure 8. Evolution of icorr during the CP and Cprev treatments, without previous ECE. A: 

CP; B: CPrev; R (2% Cl- in the mix, not CP treated): reference specimen for A; P (no Cl- in 

the mix, not CPrev treated): reference specimen for B. All of them subjected to Cl- 

contamination during the 24 weeks. Current density values: CP: 15 mA/m2, CPrev: 2 

mA/m2, both related to exposed concrete surface.  
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Figure 9. Evolution of ∆Edecay during the CP or CPrev treatments. A: CP; B: CPrev; EA: 

ECE+CP; EB: ECE+CPrev. All of them subjected to Cl- contamination during the 24 

weeks. The electrochemical treatments were interrupted between 13th and 17th weeks. 

 

  

 

Figure 10. Evolution of ∆Efeed during the CP or CPrev treatments. A: CP; B: CPrev; EA: 

ECE+CP; EB: ECE+CPrev. All of them subjected to Cl- contamination during the 24 

weeks. The electrochemical treatments were interrupted between 13th and 17th weeks.  
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Highlights 
 
 

• Graphite-cement anode useful for low charge concrete electrochemical Cl- extraction 
 

• Electrochemical Cl- extraction provides partial barrier against later Cl- ingress 
 

• Graphite-cement anode can be used for cathodic protection of reinforced concrete 
 

• Graphite-cement anode useful for combined Cl- extraction plus cathodic protection 
 

• Combined Cl- extraction-cathodic protection provide partial barrier to Cl- ingress 
 
 

 

 

 


