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Abstract 

In this work, PdPt alloy nanocubes with different metal ratios were synthesised in the 

presence of polyvinylpyrrolidone (PVP). The surface morphology of the PdPt samples was 

characterised by transmission electron microscopy (TEM). TEM images showed that PdPt 

nanoparticles were cubic-shaped and the average size of the cubes was about 8-10 nm. Their 

electrocatalytic activity towards the oxygen reduction reaction (ORR) was studied in 0.5 M 

H2SO4 using the rotating disk electrode method. All the alloyed catalysts showed enhanced 

electrocatalytic activity for ORR as compared to the monometallic cubic Pd nanoparticles. 

Half-wave potential values for PdPt catalysts were comparable with that of Pt nanocubes. 

From the alloyed catalysts Pd36Pt64 exhibited the highest specific activity, which was only 

slightly lower than that of cubic Pt nanoparticles. The Koutecky-Levich analysis revealed that 

the reduction of oxygen proceeded via 4-electron pathway on all the electrocatalysts studied. 
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1. Introduction 

Platinum-based catalysts are the best electrocatalysts for oxygen reduction reaction (ORR) in 

fuel cells [1,2]. However, because of the high price and limited supply of Pt, numerous 

researches have focused on finding a way to reduce its amount in the catalysts. One way to 

decrease Pt loading is to replace it partially by other metals. However, the change of metallic 

composition not only decreases the amount of Pt, but also modifies the crystallographic and 

electronic structures of Pt, which can affect the binding energy between Pt and oxygen [3]. 

Palladium is a promising substitute due to the similar properties to the Pt (same group of the 

periodic table, similar atomic size and crystalline structure) [4].  

Catalytic properties of alloy nanostructures are significantly influenced by the shape, size, 

composition and surface structure [5-7]. Controlling the shape and facets of nanocrystals is an 

effective way to enhance the performance in catalytic reactions [5-8]. Recently, several 

researches have been aimed towards the electrocatalytic studies of shape-controlled Pt-Pd 

alloy nanocrystals [3,5-15]. Hong et al. synthesised Pd-Pt alloys with hollow nanostructures 

and studied the electrocatalysis of the ORR on these materials [3]. They found that the 

electrocatalytic activity is highly dependent on the nanoparticle’s morphology and reported 

highest ORR activity with hollow nanocrystals. Lim and co-workers studied oxygen reduction 

on Pd-Pt bimetallic nanodendrites, which were 2.5 times more active than commercial Pt/C 

catalyst [9]. The higher activity was attributed to the favourable adsorption of O2 molecules 

on the stepped surfaces. Gong et al. showed that the ORR activity of Pt monolayer on Pd 

tetrahedral nanocrystals depends on the removal of surfactants from the catalyst surface [10]. 

Zheng and co-workers explored the electroreduction of oxygen on PtPd nanoflowers and 

stated that these catalysts exhibited improved electrocatalytic activity for ORR [11]. Lee et al. 

studied the reduction of O2 on Pt-coated Pd nanocubes in alkaline solution and concluded that 

the core-shell nanocubes showed 2.6 times higher specific activity than Pt nanoparticles [14]. 
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To our knowledge, the literature about oxygen reduction on PdPt alloy nanocubes is scarce. In 

this work, the reduction of oxygen on PdPt alloy nanocubes synthesised in the presence of 

PVP was investigated using a rotating disk electrode. Different Pd-to-Pt ratios were used and 

the electrocatalytic activity of PdPt catalysts for ORR was compared with that of cubic Pd and 

Pt nanoparticles. 

 

2. Experimental 

PdPt alloy nanocubes were synthesised using a similar methodology to that described 

elsewhere [16]. Briefly, 20 mM potassium tetrachloropalladate (>99.99%, Sigma-Aldrich), 20 

mM potassium tetrachloroplatinate (>99.99%, Sigma-Aldrich), 75 mg of sodium iodide 

(≥99.99%, Sigma-Aldrich) and 160 mg of poly(vinylpyrrolidone) (PVP, MW≈55000, Sigma-

Aldrich) were mixed together with 10 mL N,N-dimethylformamide (Sigma-Aldrich) in a 

glass vial and the mixture was sonicated for 2 min. The resulting homogeneous mixture was 

capped, transferred to an oven and heated at 130 °C for 3 h before cooling down to room 

temperature. The colloidal products were collected by centrifugation and washed several 

times with an ethanol-acetone mixture and finally stored in ultrapure water. In order to 

synthesise PdPt alloy nanocubes with different composition, the amount of K2PdCl4 and 

K2PtCl4 was accordingly varied. The nominal PdPt alloy compositions were 34/66, 50/50 and 

66/34. The surface morphology and composition of PdPt alloy nanocubes was characterised 

using a transmission electron microscope (JEOL, JEM-2010 working at 200 kV) equipped 

with an X-ray detector OXFORD INCA Energy TEM 100 for microanalysis (EDX). The 

TEM samples were prepared by placing an aliquot of diluted ethanol/acetone dispersions onto 

a Formvar-covered copper grid and allowing the solvent to evaporate in air. For comparison 

purposes, Pd and Pt nanocubes were also checked. Pd nanocubes were synthesised by CTAB 

method [17,18] and Pt nanocubes by microemulsion method [19]. The average particle size 
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for Pd nanocubes was 20-25 nm and for Pt nanocubes 10 nm. Glassy carbon (GC) electrodes 

with geometric area (A) of 0.071 cm
2
 were used in this work. 

Electrochemical experiments were conducted in a three-electrode cell in 0.5 M H2SO4 

solution (Suprapur, Merck) using an Autolab potentiostat/galvanostat PGSTAT30 (Eco 

Chemie B.V.). The electrolyte was saturated with O2 (99.999%, AGA) or Ar (99.999%, 

AGA). A Pt wire was used as a counter electrode and all the potentials are referred to the 

reversible hydrogen electrode (RHE). Cyclic voltammetry (CV) experiments were performed 

in Ar-saturated solutions at a potential scan rate (ν) of 50 mV s
–1

. CO adsorption-stripping 

was used as a final cleaning step of the catalyst surface. The electrode potential was held at 

0.05 V and CO gas was introduced into the electrochemical cell. After one min. of constant 

bubbling throughout the electrolyte, CO was replaced by Ar for 30 min., still at 0.05 V, to 

remove the dissolved CO from the solution. For CV and CO stripping experiments the current 

densities were calculated per real surface area of the catalysts. The charge corresponding to 

Hupd desorption was used for the calculation of the real area (Ar) of the PdPt alloy, Pd and Pt 

cubes (Hupd(Pt) = 210 µC cm
–2

 [20] and Hupd(Pd) = 212 µC cm
–2

 [21).  

 

3. Results and discussion 

3.1. TEM/EDX characterisation of PdPt catalysts 

Representative TEM images of the PdPt nanocubes are shown in Fig 1. In all cases, a 

preferential cubic particle shape is clearly identified. The average particle size was 8.6 ± 0.9, 

9.4 ± 1.4 and 10.4 ± 1.2 nm corresponding to Pd34Pt66, Pd50Pt50 and Pd66Pt34 samples, 

respectively. The EDX analysis revealed that the atomic composition of the synthesised PdPt 

alloy nanocubes was in good agreement with the nominal ones and Pd:Pt ratios of 36:64, 

54:46 and 72:28 were obtained. 
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3.2. CO stripping and CV experiments 

The CO adsorption and stripping procedure was used to electrochemically clean the surface of 

PdPt alloy nanocubes without changing their nanostructure. Typical CO-stripping behaviour 

of PdPt catalysts is shown in Fig. 2a. Well-defined CO electro-oxidation peaks can be 

observed at 0.83, 0.87 and 0.93 V for Pd36Pt64, Pd54Pt46 and Pd72Pt28 nanocubes, respectively. 

It can be seen that the CO-oxidation peak shifts positive with increasing the amount of Pd. 

This is in good agreement with previous observations [20]. The CO-oxidation peaks for pure 

Pd and Pt nanocubes are centred at 0.94 and 0.77 V, respectively. 

Representative CVs recorded after the CO-stripping experiments are shown in Fig. 2b. The 

CV responses showed improvement in surface cleanness compared with those initially 

measured.  Better defined peaks in the hydrogen adsorption/desorption region are in evidence. 

The real surface areas of the PdPt electrocatalysts were determined by charge integration 

under the hydrogen desorption peaks (see Table 1). 

 

3.3. Oxygen reduction on PdPt catalysts 

The electroreduction of oxygen on PdPt alloy nanocubes was studied in O2-saturated 0.5 M 

H2SO4 solution using the RDE method. The representative ORR polarisation curves for the 

Pd54Pt46-catalyst modified GC electrode are shown in Fig. 3a, the background currents were 

recorded at 10 mV s
–1

 between 0.05 and 1.0 V in Ar-saturated electrolyte and were subtracted 

from these data. Only the positive-going potential scans are presented and further analysed. 

For all the PdPt catalysts the ORR polarisation curves were single-waved and well-defined 

diffusion-limited current plateaus were observed. 

The number of electrons transferred per O2 molecule (n) was calculated from the RDE data 

using the Koutecky-Levich (K-L) equation [22]: 

1/2b

O

6/12/3

O

b

Odk 222
F0.62

1

F

1111

 CDnkCnjjj 
       (1) 
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where j is the measured current density, jk and jd are the kinetic and diffusion-limited current 

densities, respectively, k is the rate constant for ORR, F is the Faraday constant (96,485 C 

mol
−1

), ω is the rotation rate, 
b

O2
C  is the concentration of O2 in the bulk (1.13×10

−6
 mol cm

−3
) 

[23], 
2OD  is the diffusion coefficient of O2 (1.8×10

−5
 cm

2
 s

−1
) [23] and ν is the kinematic 

viscosity of the solution (0.01 cm
2
 s

−1
) [24]. Fig. 3b presents the K-L plots for Pd54Pt46-

catalyst. The value of n was close to four for all the PdPt catalysts studied (inset of Fig. 3b). 

This is in agreement with previous studies of O2 reduction on Pd and Pt catalysts in acid 

media [11,18,25-27].  

For better comparison of the RDE results the j-E curves of ORR recorded at 1900 rpm are 

shown in Fig. 3c. Half-wave potentials (E1/2) of oxygen reduction for all the alloyed catalysts 

were higher than that of Pd nanocubes and were comparable to that of cubic Pt nanoparticles 

(Table 1). The onset potential for Pd36Pt64 was the highest. 

Tafel plots were constructed from the RDE data on O2 reduction at 1900 rpm as shown in Fig. 

3d. Two regions with distinct slope values were observed (Table 1). In the low overpotential 

region the slope was close to -60 mV and the rate-determining step of oxygen reduction on 

oxide-covered PdPt alloys is the first electron transfer. At high overpotentials the Tafel slope 

value was over -130 mV, which is slightly higher than that reported for Pd and Pt electrodes 

in early work [25,28]. Similar slope values have been found for different Pd- and Pt-based 

catalysts [18,26,27,29,30]. 

The reduction of oxygen on Pd and Pt is a structure-sensitive reaction and the ORR activity 

depends on the strength of adsorption of the structure-sensitive electrolyte species on the (hkl) 

facets. It has been demonstrated that the electrocatalytic activity for ORR on Pt(hkl) 

monocrystals in H2SO4 solution decreases in the following order: Pt(110) > Pt(100) > Pt(111) 

[28,31,32]. For Pd monocrystals the ORR activity dependence on the facets in HClO4 solution 

was found to increase as follows: Pd(110) < Pd(111) < Pd(100) [33]. The ORR studies on Pd 
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nanocubes have shown enhanced activity towards O2 reduction in sulphuric acid solution, 

which has been attributed to the predominance of Pd(100) facets on nanocubes [18,29]. 

Availability of very small amount of (110) sites on the PdPt alloy nanocube surface might 

cause a slight change in the catalyst activity in acid electrolyte. The specific activity (SA) of 

O2 reduction at 0.9 V was calculated from the kinetic current (Ik) normalised to the real 

surface area. The SA values are given in Table 1. The specific activity of Pd36Pt64 was higher 

than that of Pd nanocubes, but still lower than that of Pt nanocubes. Hoshi et al. have shown 

that a Pt monolayer on Pd(100) decreases the activity [34]. On the other hand Pd-Pt 

nanodendrites with 85% of Pt had higher activity than that of Pt/C [9]. In this work the largest 

Pt content was 64% and it can be observed that SA starts to increase, but still does not surpass 

that of Pt nanocubes. It has been suggested that with higher Pt content the O2 adsorption is 

more favourable and thus increases the ORR activity [9]. Apparently, the lower activity of 

PdPt nanocubes is related to a decrease in the number of dual Pt-Pt sites as compared to 

monometallic Pt particles. Another reason for lower SA value of PdPt nanocubes might be the 

adsorption of anions on the metal that is competing with O2 adsorption. Further work is 

ongoing to study the ORR kinetics on these PdPt alloy nanocubes in alkaline media. 

 

4. Conclusions 

PdPt alloy nanocubes synthesised in this work showed enhanced electrocatalytic activity 

towards the ORR compared to Pd nanocubes. TEM images showed that PdPt nanoparticles 

were cubic-shaped. From EDX measurements the composition of Pd and Pt metals in the 

alloys was determined. The electroreduction of oxygen proceeded via four-electron pathway 

on all the electrocatalysts studied. The Tafel analysis revealed that the mechanism of O2 

reduction on PdPt alloy nanocubes is similar to that of Pd and Pt cubic nanoparticles. 
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Figure captions 

Figure 1. TEM images of PdPt catalysts: (a) Pd36Pt64, (b) Pd54Pt46 and (c) Pd72Pt28. Size 

distribution of the catalysts is shown in Fig. (d). 

Figure 2. (a) Electro-oxidation of pre-adsorbed CO and (b) cyclic voltammograms after CO-

oxidation on PdPt catalysts in Ar-saturated 0.5 M H2SO4. (a) ν = 20 mV s
–1

 and (b) 50 mV s
–1

. 

Current densities are normalised to the real surface area of electrocatalysts. 

Figure 3. (a) RDE voltammetry curves for oxygen reduction on Pd54Pt46 alloy nanocubes in 

O2-saturated 0.5 M H2SO4 (ν = 10 mV s
–1

), (b) K-L plots for ORR in 0.5 M H2SO4 (inset 

shows the potential dependence of n), (c) comparison of the RDE results for the ORR (ν = 10 

mV s
–1

, ω = 1900 rpm) and (d) Tafel plots for ORR in 0.5 M H2SO4 (ω = 1900 rpm). Current 

densities are normalised to the geometric area of GC. 
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Figure 3 
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Graphical abstract 
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Table 1. Kinetic parameters for oxygen reduction on PdPt nanocubes, cubic Pd and cubic Pt 

in O2-saturated 0.5 M H2SO4, ω = 1900 rpm. 

Electrode 

Ar 

(cm
2
) 

Tafel slope (mV) 

I region* 

Tafel slope (mV) 

II region* 

E1/2 (V) 

SA at 0.9 V 

(mA cm
–2

) 

Pd36Pt64 0.99 -62 -151 0.83 0.089 

Pd54Pt46 0.89 -62 -152 0.81 0.072 

Pd72Pt28 0.55 -66 -136 0.79 0.070 

Pd nanocubes 0.46 -64 -134 0.73 0.078 

Pt nanocubes 0.75 -58 -142 0.84 0.113 

* Region I corresponds to low current densities and Region II to high current densities. 
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Research highlights 

 PdPt alloy nanocubes were synthesised in the presence of polyvinylpyrrolidone (PVP) 

 PVP was removed from PdPt surface by centrifugation and CO adsorption and oxidation 

 PdPt nanocubes were used as catalysts for oxygen reduction reaction in 0.5 M H2SO4  

 The alloyed PdPt catalysts showed an enhanced electrocatalytic activity for ORR  

 The electroreduction of oxygen proceeded via 4-electron pathway on PdPt catalysts 


