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Abstract  

Mathematical morphology addresses the problem of describing shapes in an n-

dimensional space using the concepts of set theory. A series of standardized 

morphological operations are defined, and they are applied to the shapes to transform 
them using another shape called the structuring element.  

In an industrial environment, the process of manufacturing a piece is based on the 

manipulation of a primitive object via contact with a tool that transforms the object 

progressively to obtain the desired design. The analogy with the morphological 

operation of erosion is obvious. Nevertheless, few references about the relation 

between the morphological operations and the process of design and manufacturing 

can be found. The non-deterministic nature of classic mathematical morphology 

makes it very difficult to adapt their basic operations to the dynamics of concepts 

such as the ordered trajectory. 

A new geometric model is presented, inspired by the classic morphological paradigm, 

which can define objects and apply morphological operations that transform these 
objects. The model specializes in classic morphological operations, providing them 

with the determinism inherent in dynamic processes that require an order of 

application, as is the case for designing and manufacturing objects in professional 

computer-aided design and manufacturing (CAD/CAM) environments. The operators 

are boundary-based so that only the points in the frontier are handled. As a 

consequence, the process is more efficient and more suitable for use in CAD/CAM 

systems. 
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1 Introduction 

 

The continuous evolution of industrial technology has led to an increase in the quality 
of manufactured products. Computer-aided design and manufacturing (CAD/CAM) 

systems are now fundamental elements of the industry and are evolving at the same 

time as technology. Nevertheless, some problems still remain partially unsolved. 

Included among such problems is the complex problem of machining a piece using a 

tool. Although it is a problem that has been examined from many points of view with 

good results, it is still a complex problem that requires a very good knowledge of the 

problem and the use of ad-hoc techniques in many cases. A more general and formal 

mathematical model would be desirable. 

The problem of machining a piece can be defined as a process of cutting a piece of 

material using a tool that moves according to a specific trajectory. A straightforward 

analogy can be established between the machining process and the formal concept of 

morphological erosion. The machining process can be interpreted as a morphological 

operation in which the structuring element (the tool) touches the target object (the 

manufactured piece), following a given direction. The process can also be likened to 

the design of an object, establishing a similar analogy when speaking of design tools 

and objects. Overall, we propose a definition of a morphological model to support the 

processes of machining and designing, attempting to establish both a generic formal 

model and a practical set of methods to solve real problems. 

A short dissertation about mathematical morphology is now mandatory. 

Morphology is the study of shape, and mathematical morphology (MM) is mostly 

related to the mathematical theory of describing shapes using sets. It was first stated 

in 1964 when scientists Georges Matheron and Jean Serra applied the fundamental 

ideas of Minkowsky and Hadwiger to their studies on quantification of characteristics 
of minerals (Serra, 1982). Later, Jean Serra made a generalization of mathematical 

morphology in a theoretical framework based on complete lattices (full set of points 

arranged with upper bound, supremum, and lower bound, infimum). This 

generalization brought flexibility to the theory, which meant that it could be applied 

to a larger number of structures and fields of application (Serra, 1988).  

MM is based on set theory, with some elements from topology, geometry and 

discrete mathematics. The sets represent shapes in an n-dimensional space. A series of 

standardized morphological operations are applied to these sets. These operations are 

based on geometric relationships between the points of the sets. The aim of the 

morphological operations is to transform a set of points (the target object) using 

another set of points (the structuring element). The most widespread practical 

examples of this type of process are the morphological image filters based on the 

basic morphological operators of erosion and dilation. Another example is the process 

of designing and manufacturing shapes in CAD/CAM environments as discussed 

before. 

References about mathematical morphology are abundant in various productive 

sectors. A good review of these applications can be found in (ISSM, 2011), where the 

following fields appear: navigation systems, industrial control, medicine and biology, 

physics, aeronautics, geoscience and remote sensing, real-time systems and 

restoration processes. Image processing is one of the main uses of mathematical 
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morphology. In the work of Soille and Pesaresi (2002), Ghosh and Deguchi (2008), 

Salember et al. (2009) and Velasco-Forero and Angulo (2011), recent techniques that 

apply mathematical morphology to image processing in several fields are detailed. 

However, few references about the relation between the morphological operations and 

industrial processes can be found. A model that closely relates the process of design 

and manufacture is the trajectory-based design model, which bases object design on 

defining trajectories that are covered by modeling tools that simulate the material 

removed from the piece (Molina, 2002), although the model does not address the 
problem from a morphological point of view. One of the first examples of 

morphological processing in industry is topological modeling of the manufacturing 

process, which linked industrial machining with the concept of morphological erosion 

(Jimeno et al., 2004). 

Delving into the link between the process of material removal and the 

morphological operation of erosion, we can identify the tool with the structuring 

element and the manufactured piece with the object to be eroded. However, the non-

deterministic nature of classic mathematical morphology makes it impossible to adapt 

their basic operations to the dynamics of concepts such as the ordered trajectory. The 

morphological operation is not based on temporary orders because their original ones 

act on continuous sets of points and produce new continuous sets of points as a result 

without establishing a path order on its elements. This order relationship is necessary 
when the morphological paradigm must deal with dynamic processes such as the 

trajectory process. In addition, the morphological operation always obtains complete 

results without being able to apply partial transformations to objects that are involved 

in the operation. 

The process of machining is, in essence, a process based on the surfaces of the 

shapes because the surface of the tool touches the surface of the piece. This fact leads 

us to propose to only compute the boundaries of the shapes so the calculations will be 

simpler and faster. Our aim is to demonstrate that a boundary-based computation is as 

valid as the traditional morphological methods. Some other authors have proposed 

algorithms that implement boundary-based morphological operations. Ragnemalm 

(1992) and Meijster et al. (2000) present techniques that apply morphological 
operations based on analytical calculations of distance between the boundary points of 

objects. Van Vliet and Verwer present algorithms for the calculation of erosion, 

dilation, skeletonization and propagation of images based on the boundary of shapes 

(Van Vliet and Verwer, 1988), and Wilkinson and Meijer (1995) demonstrate a 

technique to classify images of microbiological organisms through the application of 

morphological operations to the boundary pixels of the images. However, the 

application of these techniques to the field of design and manufacturing is still 

unexplored. 

To explore new possibilities of mathematical morphology in industrial 

environments, we present a formal framework inspired by the classic morphological 

paradigm that formally defines objects from their boundary and applies 
morphological operations that transform these objects. The model provides a 

specialization of the classic morphological operations, giving them the determinism of 

dynamic processes that require an order of application. The proposal is inspired by the 

needs of the field of design and manufacturing in CAD/CAM environments, but the 

results may be applied to other fields. 
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In section 2, the formal model of deterministic boundary-based mathematical 

morphology is presented, along with the definition of the objects, the structuring 

elements and the set of morphological operations. The generic trajectory-based 

operation is also detailed, as it is the basis of the specialization that gives determinism 

to the morphological operations. At the end of this section, the operators of trajectory-

based erosion and dilation are defined, as are some morphological filters and some 

interesting results that support the validity of the boundary-based morphological 

operators. Finally, in section 3, some conclusions and findings are presented. 

2 Deterministic boundary-based morphological model 

The deterministic morphological framework DMM can be defined as a tuple: 

 

DMM =	 〈�,�	, 
�, OP〉 
Expression 2.1 

 

where E represents the space of representation of the sets involved in the model, OB is 

the set of objects to be transformed by the morphological operations, SE represents 

the set of structuring elements through which the morphological operations are to be 

performed, and OP refers to the morphological operations for transforming the set of 
objects in OB using the structuring elements in SE. 

Sets OB and SE are complete lattices that are made up of geometric points of the 

Euclidean space E. In the case of two-dimensional objects, E is R2, and for three-

dimensional objects, E is R
3
. In general, E is R

n
. The proposed morphological 

operation is not restricted to a two-dimensional or three-dimensional space but is 

applicable to any space R
n
. To facilitate the representation, this article uses two-

dimensional and three-dimensional figures, with these always being particular cases 

of the general set. 

The set of structuring elements SE is determined by those objects that are centered 

on the origin of the Euclidean space coordinates, i.e.: 

 


� = {	�: � = �, � ∈ �} 
Expression 2.2 

 

where the set 	� ∈ 
� is an object or shape moved to position x in the Euclidean 

space, hereinafter referred to as the structuring element. SE is a lattice with the 

classical inclusion as order in the lattice. 

The set of objects to be transformed OB shall consist of those objects A whose 

center c has moved with regard to the origin of coordinates: 

 

�	 = {��: � = � + �,� ∈ �	} 
Expression 2.3 

 

where the set �� ∈ �	 is also an object or shape moved to position c in the Euclidean 

space, hereinafter referred to as the target object. OB is also a lattice with the classical 

inclusion as order in the lattice. 

Compared with the solid modeling presented by mathematical morphology, the 

proposed model is a surface model; i.e., it only works with the information in the 
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object surface without any information concerning its interior. Given these 

considerations, the relevant geometric information of the objects is located on its 

frontier or boundary. The model uses this to characterize the objects through its 

boundary but in such a way that this characterization does not result in a loss of 

generality. 

Function In(A) is defined to retrieve the set of points located inside a set � ⊂ E. 

The function obtains the set of positions in which the center of an n-solid ball can be 
placed so that it is positioned inside the object A: 

 

����� = {� ∈ �/	∃ε > 0: 	%&&��, ε� ⊂ �	} 
	%&&��, ε� = {� − ball	with	center	�	and	radius	ε} 

Expression 2.4 

 

The function that associates a set with its boundary or frontier is called Fr(A) and 

shall consist of the set of points belonging to the frontier of the object A. This function 

is only the result of applying the boundary extraction morphological filter (β7) 

(González and Woods, 2008), which is given by the remainder of object A (given that 

A is a closed set) with the set of interior points of the object: 

 

89��� = β7 = � − ����� 
Expression 2.5 

 

The differential morphology is given by the following expression: 

 

� − 	 = {�|� ∈ �, � ∉ 	} = � ∩ 	= 
	= = {complementary	of		} 

Expression 2.6 

 

Once the target objects and the structuring elements that will perform the 

transformations have been defined, the set of operations that will finally transform the 
set of objects OB from the set of objects SE must be formally defined.  

In conventional mathematical morphology, the operations that transform objects 

are defined as a sequence of operations that act on the objects (Serra, 1982). No 

application order is set for these basic elementary operations. 

Because the proposed model defines deterministic morphological processes, the 

morphological paradigm must incorporate a specialization of the morphological 

operations that adapts them to this type of processes. The determinism provided to the 

operation will ensure that the model complies with its functional purpose. 

The morphological operations that transform the set of objects OB from the set of 

objects SE is defined by the following expression: 

 

OP = 〈�CDE , �CE 〉 
Expression 2.7 

 

where OPFG	represents the set of non-deterministic operations of classical nonlinear 

mathematical morphology, and OPG  represents the set of specialized morphological 

operations, equipped with an order of application. 
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Below, the generic trajectory-based operation is defined. The deterministic 

specialization of the basic morphological operations and their associated filters will be 

based on this simple operation. 

2.1 Generic trajectory-based morphological operations 

The generic trajectory-based operation ◊I constitutes the basis of the proposed 

morphological specialization. This morphological operation allows the definition of 

the morphological operators that sequentially obtain ordered sets of points. This type 
of determinism does not exist in the classical morphological paradigm. 

To guide the orderly generation of results, the operation obtains the set of points by 

repeatedly applying another fundamental operation, called instantaneous trajectory-

based operation (◊I�J�). The sequential application of instantaneous trajectory-based 

operations will form the generic trajectory-based operation. In the following sections 

these operations are defined. 

2.1.1 Trajectory function 

As previously stated, the operations are performed on the boundary of the objects 

following an order to address the points. The function that allows orderly access to the 

frontier points is the so-called trajectory function.  

As a previous step, let us define a real parameter function ς. For a k value of a 

normalized space [0,1], function ς returns a pair of values (orientation, position), 

which define the transformations that must be performed on the target object to ensure 

that a particular boundary point of the object is accessible to the structuring element 

as it moves in the direction of the abscissa axis. Formally, this is expressed as follows: 

 

ς ∶ [0,1] → Q�RST�×�RST� ×Q�RST�×�RST� 
ς�V� = �WXY,QXZ�:∃[ ∈ �,WXY ∙ QXZ ∙ [ can be accessed by B 

Expression 2.8 

 

where POS and ROT are two transformation matrices in homogeneous coordinates 

that position and orientate the point p so that it can be touched by moving the 
structuring element B on the abscissa axis. The complete scan of the parametric space 

[0,1] will describe the whole sequence of positions and orientations that must be 

applied to the target object so that the structuring element can come in contact with 

the total set of accessible points of the object boundary. This series of positions and 

orientations is ordered by a neighborhood criterion in the points so that the sequence 

of transformations is obtained in an orderly manner. Figure 1 illustrates a simple 

example, where the target object A is positioned and oriented to allow the structuring 

element B access to every point in the A frontier by just moving B on the abscissa 

axis. 

 

FIGURE 1 

 
At this point, it is important to emphasize that B is moved only along the abscissa 

axis for simplicity reasons, and no real restriction is added to the problem. 

Figure 1. Different points of contact of B with A after changing the position and 

orientation of A 
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Function ς allows the definition of the trajectory function τ. The point trajectory 

function τ	�[, V� is defined for a point p and a parameter k as the function that applies 

the transformations of rotation and translation to ensure that a particular point p of the 

object will be accessible by the structuring element. The formal definition of the 

trajectory function τ	of a point is as follows: 

 

τ ∶ Q^x	Q → Q^ 

τ	�[, V� = [` ∈ QR: [` = WXY ∙ QXZ ∙ [ ∧ ς�V� = �WXY,QXZ� 
Expression 2.9 

 

where POS and ROT are, respectively, the position and rotation matrices generated 

by the function ς for the parametric value k. Notice that POS and ROT are 

transformation matrices in homogeneous coordinates, and they pre-multiply point p to 

obtain the transformed point p’.  

Having specified the trajectory function for a point, defining a new function that 

extends the trajectory definition to the full set of points that form an object is trivial. 

The trajectory function for an object τ��, V� will be given by applying the trajectory 

function for the entire set of points that constitute the object: 

 

τ:�	x	Q → �	 

τ��, V� = {	[ ∈ �/	∀c ∈ �, [ = τ	�c, V�	} 
Expression 2.10 

 
The trajectory function in an object orients and positions the object so that a 

particular point of it is accessible by the structuring element as it moves in the 

direction of the abscissa axis. Because the transformations are only rotations and 

translations, the object will not suffer scaling transformations or deformations. As a 

result, the operation maintains the object shape even though its orientation and 

position are changed with respect to the structuring element in the representation 

space. 

The sequential application of the trajectory function in the normalized parametrical 

space will transform the object in an orderly manner as the parameter takes 

consecutive values. The complete scan of the normalized space will ensure that all of 

the accessible points of the object boundary will come into contact with the 

structuring element as it moves in the direction indicated by the abscissa axis 

(provided that the geometry of the object and the structuring element allow this 

action). 

2.1.2 Instantaneous trajectory-based operation 

The proposed instantaneous trajectory-based operation (◊I�J�) is a basic 

morphological operation that includes a k parameter that indicates its position within 

the total set of elementary operations that will compose the entire generic trajectory-
based operation. The operation is called instantaneous because it obtains a single 

point of the total set of points that would be obtained following the application of a 

conventional morphological operation. 

In descriptive terms, the instantaneous trajectory-based operation obtains the center 

of the structuring element when it is moved a distance Dist following a direction v 
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until it touches a boundary object A to which the trajectory function has been applied. 

This operation represents the approach of the structuring element to the object in a 

morphological transformation process. 

In particular, the instantaneous trajectory-based operation is formulated as follows: 

 

� ◊I�J� 	 = [	 ∈ 	�, [ = τdT�c, V�, c = efghij	, τ��, V�k ∙ i 

τdT = {inverse	of	τ} 
Expression 2.11 

 

Each of the instantaneous operations performs homogeneous transformations of the 

object. They are rigid body transformations defined in the trajectory function, which 

transformed the objects without scaling or distorting them. The inclusion of the 

trajectory function in the instantaneous operation ensures that the distance is always 

calculated between the structuring element and an accessible point of the boundary of 
the target object. 

The function of distance efghi�	, �� describes the distance that one object B has to 

move to come into contact with another object A in a given direction v. This distance 

is given by the minimum distance between the two objects in the direction determined 

by the given vector (Jimeno et al., 2004). In formal terms, this is expressed as follows: 

 

efghi�	,�� = minjmi�n, ��k , ∀n ∈ 	 

Expression 2.12 

 

The function mi describes the distance between a point and an object in the 

direction of vector v. Geometrically, the function mi�n, �� describes the Euclidean 

distance between the point b and the closest point of the object A, obtained as the 

intersection of the object A and the line defined by vector v and point b. Figure 2 

shows an example of the calculation of the efghi  function. 

 

 

FIGURE 2 

 

 

 
 

The application of the trajectory function to an object modifies its position and 

orientation through the application of rotation and translation matrices. Applying the 

inverses of these matrices is enough to undo these changes. 

The inverse trajectory function at a point τdT	applies the inverse transformation 

matrices of rotation and position defined in the trajectory function to a point. 

 

τdT ∶ Q^x	Q → Q^ 

τdT	�c, V� = c` ∈ QR: c` = QXZdT ∙ WXYdT ∙ c ∧ ς�V� = �WXY,QXZ� 
Expression 2.13 

Figure 3 shows the application of the instantaneous trajectory-based operation on 

an object A as a series of four phases: a first phase (a) in which the structuring 

element B appears to be a distance from the object to be transformed A; a second 

Figure 2. Calculation of the distance function between two objects A and B in the 

direction of vector v 
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phase (b) in which the trajectory function is applied to the object A for a determined k 

value; a third phase (c) in which the distance that the center of the structuring element 

has to move to come into contact with the object is calculated; and a final stage (d) in 

which the inverse trajectory function is applied to the tool used to calculate the end 

point p that the morphological operation obtains. 

 

FIGURE 3 

 

 

2.1.3 Generic trajectory-based operation 

Having defined the instantaneous trajectory-based operation ◊I�J�, which yields a 

specific point in the parametrical space in which the complete transformation of the 

object is defined, the repeated application of these instantaneous trajectory-based 

operations throughout the complete parametric space will define the generic operation 

with complete trajectory (�	 ◊I	 	) by itself. 

�	 ◊I	 	 = o �	 ◊I�J� 	
J∈[p,T]

 

Expression 2.14 

Sequentially applying instantaneous operators in all of the parametric k range 

ensures that the morphological operator is fully implemented. The parametric k value 

is normalized, meaning that all of the transformations are ordered according to the 

parameter with an initial value k=0 and a final value k=1. In the generation of results, 

this order is associated with the ordered set that establishes the trajectory function. 

The generic trajectory-based operation links a sequence of morphological operations, 

establishing a determinism that will provide an orderly movement in the space, a 

determinism that does not exist in the classic morphological paradigm. 

Furthermore, it is important to emphasize once more that the objects involved in 

the morphological translations and rotations applied in the generic trajectory-based 

operation do not vary in size and shape; only their position and orientation in space 

are altered. The purpose of the instantaneous trajectory-based operation is not to 

change the shape of objects, but to sequence the results generated by the 

morphological transformation operations, which will be responsible for modifying the 

shape of the objects OB, reproducing the processes of the deterministic systems. 

2.1.4 Generic partial trajectory-based operations  

The trajectory function τ ensures that the instantaneous operator is completely 

applied to the entire set of points that form the accessible boundary of the object 

ordered according to the parametric space V ∈ [0,1]. However, trajectories can be 

defined that do not go through the entire parametric space, forming subsets of the 

complete morphological operation. The partial path of parametric space constitutes 

the partial trajectory-based operation (�	 ◊Iqr,st	 	�: 
 

Figure 2. Geometric description of the instantaneous trajectory-based operation. A is 

the piece, B is the structuring element, p is a point in the surface, q is the center of the 
structuring element and v is the direction of application. 
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�	 ◊Iqr,st	 	 = o �	 ◊I�J� 	, 0 ≤ f < w ≤ 1
J∈[r,s]

 

Expression 2.15 

2.2 Trajectory-based morphological operations: erosion and dilation 

Having defined the generic, partial or complete trajectory-based operation, the next 

step is to integrate this operation into the classic morphological operation, thus 

incorporating a set of morphological operations (�CE) into the model, which are 

provided with the determinism and which transform an object using a structuring 

element. 

There are two fundamental morphological operations in classic mathematical 

morphology: erosion and dilation. Both operations are the basis for the definition of 

morphological filtering operators. They are formally defined below, and the 

specialization that the model performs to provide them with determinism is specified. 

2.2.1 Trajectory-based erosion 

In mathematical morphology, the erosion operation can be defined by the following 

expression: 

 

�⊖	 = yz{ ∈ �, 	| ⊆ �~z 
Expression 2.16 

 

A descriptive interpretation of the operation defines it as the place of the positions 

of the center of the structuring element B when it is included in A. The erosion 

boundary is defined by the centers of the structuring element when it touches the 

inner edge of the target object. 

The morphological erosion acts on the set of points of A, consequently producing a 

new set of points that is transformed without establishing a trajectory order on its 

elements. This ordered set is needed when the morphological paradigm has to perform 

deterministic dynamic processes. 

The model incorporates a specialization of the morphological erosion operation 

based on the use of the instantaneous trajectory-based operation to provide the 

morphological erosion with that necessary determinism. 

The instantaneous trajectory-based erosion ⊖I�J� is defined by integrating the 

instantaneous trajectory-based operation into the erosion operation. The final 

complete erosion set is obtained by repeatedly applying the instantaneous erosion, as 

a step in the morphological erosion. Formally, this is expressed as follows: 

 

�⊖I�J� 		 = [	 ∈ 	�: [ = τdT�c, V�, c = efghi�	, τ��, V�� ∙ i	 ∧ 	� ⊆ τ��, V� 
Expression 2.17 

 

At this point, an explanation about the distance function efghi , which calculates 

the minimum distance between the object and the structuring element, is needed. To 

perform the morphological trajectory-based erosion, the morphological erosion 

definition requires the structuring element B to be completely included in the object 

A. The distance function integrated into the morphological erosion calculates the 

minimum distance from the object A to the element B, thus fulfilling the restriction of 
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placing the structuring element within the object. This situation does not occur for 

morphological operators such as dilation in which the structuring element must touch 

the object from the outside of it. 

Trajectory-based erosion 	⊖I	is defined as the set of points obtained by repeatedly 

applying the instantaneous erosion ⊖I�J� for the real domain [0,1]. 

 

� ⊖I 		 = o ��	⊖I�J� 	�
J∈[p,T]

= yz[ ∈ �: [ = τdT�c, V�, c = efghi�B, τ�A, V�� ∙ i	 ∧ 	� ⊆ τ��, V�~z 

Expression 2.18 
 

The trajectory function τ ensures a path inside object A in the normalized space 

[0,1]. If the real variable k takes its values from the interval, the erosion boundary of 

the complete object is obtained as a result, as it will have obtained all of the centers of 

the structuring element when it touches the object. 
At this point, the difference between classic morphological erosion and trajectory-

based erosion can be observed. Whereas the result for classic morphological erosion 

was a set of continuous points representing the frontier of the eroded object and its 

inside, the trajectory-based erosion only provides the frontier of the eroded object in 

an orderly manner with surface information of the objects obtained in the absence of 

any information about its interior (Figure 4). 

  

FIGURE 4 

 

 
Figure 3. Classic morphological erosion vs. morphological trajectory-based erosion 

 

Although the two operations do not return the same set of points, the 

morphological erosion boundary and trajectory-based erosion do coincide: If A and B 

are two sets included in E, then the trajectory-based erosion is a subset of the erosion, 

and, more precisely, it is equal to the erosion's boundary. These facts can be proven 
by the formal proof method of reduction ad absurdum. 

 

Proposition 1. The trajectory-based erosion is a subset of the classical erosion. 

Formally, this is expressed as follows: 

 

	� ⊖� 	 ⊆ �⊖		
Expression 2.19 

 

Proof. Suppose there exists [ ∈ �⊖� 	 such that [ ∉ �⊖ 	. 

(i) Because of the definition of erosion (expression 2.16), if [ ∉ �⊖ 	, then 

	� ⊈ �. 

(ii) Because of the definition of trajectory-based erosion (expression 2.18), if 

[ ∈ �⊖� 	, then [ ∈ ⋃ ��	 ⊖I�J� 	�J∈[p,T] , and so ∃V ∈ [0,1]: [ ∈
��	 ⊖I�J� 	�. From the definition of j�	 ⊖I�J� 	k (expression 2.17), the 

following result is obtained: 	� ⊆ �, which is a contradiction with the result 

in (i). 

Therefore, the trajectory-based erosion is a subset of the classical erosion	∎. 
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Theorem 1. If A and B are two sets included in E, then the trajectory-based erosion is 

equal to the boundary of the classical morphological erosion. 

 

�⊖I 	 = 89��⊖ 	� 
Expression 2.20 

 

Proof. Let us prove the equality, proving the inclusion in both directions.  

(i) �⊖� 	 ⊆ 89��⊖ 	�. Let p be a point of the trajectory-based erosion 

([ ∈ �⊖� 	). From the definition of �⊖� 	 (expression 2.18), [ ∈
⋃ ��	 ⊖��J� 	�J∈[p,T] , and so ∃V ∈ [0,1]: [ = ��	 ⊖��J� 	�. From the 

definition of trajectory-based erosion (expression 2.17), [ = �dT�c, V�, c =
efgh��	, ���, V�� ∙ �	 ∧ 	� ⊆ ���, V�, that is, the distance in the direction of 

v between p, which is the center of the structuring element, and the boundary 

of the target object once transformed is a given quantity, say d (see Figure 

5). Let us suppose now that [ ∉ 89��⊖ 	). Because of the definition of 

89�� ⊖	� (expression 2.5), if [ ∉ 89��⊖	�, then [ ∉ [��⊖	�−
���� ⊖	�], and because of proposition 1 (expression 2.19) and given 

hypothesis [ ∈ �⊖� 	, it can be determined that [ ∈ ����⊖	). By the 

definition of function ����⊖	) (expression 2.4), if [ ∈ ����⊖ 	), then 

∃� > 0:	%&&�[, �� ⊂ ��⊖ 	). In other words, because p is in the inner part 

of �� ⊖	), there exists a ball of radius	� > 0 around p such that all the 

points in the ball are inside the set �� ⊖ 	�. Because of the definition of 

Ball (expression 2.4), it can be determined that ∀c ∈ 89��⊖ 	), the 

distance between p and q (a point in the boundary of �� ⊖ 	)), is >	� (see 

Figure 6). The distance between q and the boundary of the target object A in 

the direction of v is d, so the distance between p and the boundary of A is 

≥ m + �, which is a contradiction. 

 

FIGURE 5 

 

Figure 5. Morphological erosion with a rectangular structuring element and a detail 
concerning calculating the morphological trajectory-based erosion 

 

FIGURE 6 

Figure 6. Detail of the boundary of the morphological erosion: [ ∈ ����⊖ 	� and 

c ∈ 89��⊖ 	�. 
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(ii) 89�� ⊖	� ⊆ �⊖I 	. Let p be a point on the frontier of the classical 

erosion ([ ∈ 89��⊖ 	�). From the definition of 89�� ⊖	� (expression 

2.5), then [ ∈ [��⊖	�− ���� ⊖	�], and so [ ∉ ����⊖	). By the 

definition of function ����⊖	) (expression 2.4), if [ ∉ ���� ⊖	), then 

∄� > 0: 	%&&�[, �� ⊂ ��⊖	). In other words, there is not a ball of 

radius	� > 0 around p such that all the points in the ball are inside the set 

�� ⊖ 	�. Let us suppose now that p ∉ A⊖I B. From the definition of 

�⊖I 	 (expression 2.18), [ ∉ ⋃ ��	⊖I�J� 	�J∈[p,T] , and so ∄V ∈ [0,1]: [ =
��	 ⊖I�J� 	�, [ = τdT�c, V�, c = efghi�	, τ��, V�� ∙ i	 ∧ 	� ⊆ τ��, V�, that 

is, if the distance in the direction of v between any point c ∈ �⊖I 	, and 

the boundary of the target object, once transformed, is a given quantity d, 

point p is not at a distance d, but at a distance m + ε. Given [ ∈ 89��⊖ 	�, 
[ ∈ ��⊖ 	� too, and so ε > 0. As a consequence, a ball of radius >0 around 

p can be defined, so ∃� > 0: 	%&&�[, �� ⊂ �� ⊖	), which is a contradiction. 

Given that �⊖I 	 ⊆ 89��⊖ 	� and �⊖I 	 ⊆ 89�A ⊖B�	are proven, the 

initial expression �⊖I 	 = 89��⊖ 	�	is proven ∎. 
 

2.2.2 Partial trajectory-based erosion 

Trajectory-based erosion can control the order in which the points are obtained in 

the final set. Having defined the partial ordered set ≤ in E, an orderly series of 

parametric k values on the interval [0,1] will therefore cause the centers of the 

structuring element centers to be obtained in an orderly manner, according to the 

movement defined by the trajectory function τ. 

Although the trajectory-based erosion can define the complete erosion boundary, if 

the transformation does not cover the entire parametric space k, the result of applying 
the trajectory-based erosion is a partial erosion of the object. 

 

�	⊖Iqr,st	 	 = o �	⊖I�J� 	, 0 ≤ f < w ≤ 1
J∈[r…s]

 

Expression 2.21 
 

 

2.2.3 Trajectory-based dilation 

In mathematical morphology, dilation is defined by the following expression: 

 

�	⨁		 = {z�	ϵ	�, 	� ∩ � ≠ ∅}z 
Expression 2.22 

 

In descriptive terms, this operation can be defined as the place of the center 

positions of the structuring element B when it touches the set A. For example, for 

�	 ≡ ��, the dilation of a square by a circular object is a larger square with rounded 

corners. 

We define the instant dilation ⨁I�J� as a morphological dilation step: 
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�	⨁I�J� 		 = [ ∈ �: [ = τdT�c, V�, c = efghi�	, τ��, V�� ∙ i	 ∧ 	� ∩ τ��, V� ≠ ∅ 

Expression 2.23 
 

For instantaneous dilation, the distance function efghi will calculate the minimum 

distance from object A to object B with the condition that the structuring element is 

outside the object. 

Trajectory-based dilation is given by the set of points obtained by repeatedly 

applying the instantaneous dilation ⨁I�J� to the real domain [0,1]. 

 

�	⨁I		 = o j�	⨁I�J� 		k
J∈[p,T]

= 

= yz[ ∈ �:[ = τdT�c, V�, c = efghij	, τ��, V�k ∙ i	 ∧ 	� ∩ τ��, V� ≠ ∅~z 
Expression 2.24 

 

The result of the trajectory-based dilation is an ordered set of points dilated with 

regard to the original object, which will coincide with the boundary of the classic 

morphological dilation. 

As occurred with erosion, the boundary of the classic dilation can be proven to 

coincide with the trajectory-based dilation.  

 

Theorem 2. If A and B are two sets included in E, then the trajectory-based dilation is 

equal to the boundary of the classical morphological dilation. 

 

�⊕I 	 = 89��⊕ 	� 
Expression 2.25 

 

The proof of this theorem is very similar to the proof for theorem 1. It is not 

included here for text simplification reasons. 

2.2.4 Partial trajectory-based dilation 

Again, if the trajectory does not completely cover the parametric space k, the result of 

applying the trajectory-based dilation is a partial dilation of the object.  

 

�	⊕Iqr,st	 	 = o �	⊕I�J� 	, 0 ≤ f < w ≤ 1
J∈[r…s]

 

Expression 2.26 

 

2.2.5 Trajectory-based erosion and dilation, a pair of morphological operators 

The Adjunction Theorem details the conditions under which a pair of operations is an 

erosion/dilation pair (Heijmans and Ronse, 1990). This theorem is based on the 

Galois connections that establish particular correspondences between partially 

ordered sets. It suffices to apply the Adjunction Theorem to formally prove that the 

erosion and dilation operations presented are effectively such. 

The adjunction theorem states that if two operators δ and ε are linked by the 

equivalence � ⊆ ε��� ↔ δ��� ⊆ �, then necessarily ε and δ form an erosion/dilation 
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pair. To extend this result to the trajectory-based erosion and dilation pair, a new 

relation, the inside relation, must be defined: A set X is inside a boundary set Y 

(denoted �	 ⊆∘ �) if and only if X is inside the interior region defined by Y. In formal 

terms, this is expressed as follows: 

 

� = 89���; 	�	 ⊆∘ � ↔ 	� ⊆ � 
Expression 2.27 

 

Now, the Adjunction Theorem can be adapted to trajectory-based operands. 
 

Theorem 3. The trajectory-based erosion (⊖I) and the trajectory-based dilation (⊕I) 

form an erosion/dilation pair that is expressed as follows: 

 

� ⊆∘ �� ⊖I 	� ↔ �� ⊕I 	� ⊆∘ �,∀	 ∈ 
� 
Expression 2.28 

 

Proof. Let us prove the equivalence proving the implication in both directions.  

(i) � ⊆∘ �� ⊖I 	� → ��⊕I 	� ⊆∘ �.	 In descriptive terms, if a set X of points 

is inside the region defined by the result of the trajectory-based erosion of an 

object Y, then the trajectory-based dilation of the set of points X will 

necessarily be inside the region defined by Y. In the following paragraphs, 

the trajectory-based erosion and dilation will be simply referred to as erosion 

and dilation to improve the readability of the proof. 
Let Y be a set of points and X’ the set of points that is the result of eroding 

the object Y by any structuring element B:  

 

�′ = �⊖I 		 = o ��	⊖I�J� 	�
J∈[p,T]

 

= yz[ ∈ �: [ = τdT�c, V�, c = efghi�	, τ��, V�� ∙ i	 ∧ 	� ⊆ τ��, V�~z 
Expression 2.29 

If p is any point of the set X’, p is the minimal translation that the 

structuring element has to perform following the direction vector v for it to 
be placed on the inside of the object Y touching at least one point c of the 

object. The point of contact c will depend on the parametric value k used in 

the instantaneous trajectory-based operation.  

Let us now define Y’ as the set of points that is the result of dilating the 

object X’ by the same structuring element B: 

 

�′ = �′	⊕I 		 = o j�′	 ⊕I�J� 		k
J∈[p…T]

= 

= yz[ ∈ �: [ = τdT�c, V�, c = efgh�j	, τ��′, V�k ∙ �	 ∧ 	� ∩ τ��′, V� ≠ ∅~z 
Expression 2.30 

 

If q is any point of the set Y’, q is the minimum translation that the 

structuring element has to perform following the direction vector w for it to 
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be placed on the outside of the object X’ touching at least one point d of the 

object. 

If the direction vectors v and w have opposite directions, the point p of the 

erosion will necessarily coincide with the contact point d of the dilation, and 

contact point c of the erosion will coincide with the computed point q of the 

dilation (Figure 7). Therefore, any point of Y’ will be inside the set Y, that is 

�′ ⊆∘ �. If X is any set that is inside X’, its dilation will be inside Y’ (which 
is the dilation of X’), and the dilation of X will be inside Y. More formally, 

this is expressed as follows: 

 

� ⊆∘ �′ ∧ �′ ⊆∘ �	 → 	�	⊕I 		 ⊆∘ �` ∧ �	⊕I 		 ⊆∘ � 
Expression 2.31 

 

FIGURE 7 

 

Figure 7. Proof of the Adjunction Theorem in trajectory-based operators 

 

As a consequence, � ⊆∘ �� ⊖I 	� → ��⊕I 	� ⊆∘ � is proven. 

 

(ii) �� ⊕I 	� ⊆∘ � → � ⊆∘ �� ⊖I 	�: The proof is analogous. From a given set 

of points X, its dilation is obtained (Y’). Then, the erosion is applied to Y’ to 
obtain the set X’. If the direction vectors used for the dilation and the erosion 

are opposite, the point calculated for the dilation will necessarily coincide 

with the point of contact of the erosion with the object, and the point of 

contact of the dilation with the object will coincide with the point calculated 

by the erosion. Therefore, any point of X will be inside the set X’, that is 

� ⊆∘ �′. If Y is any set so that Y’ is inside it, X’ (which is the erosion of Y’) 

will be inside the erosion of Y, and X will be inside the erosion of Y. 

Therefore, �� ⊕I 	� ⊆∘ � → � ⊆∘ �� ⊖I 	� is proven. 

 

The general expression is proven by proving the two implications, which states that 
the trajectory-based erosion and dilation operations are effectively a morphological 

dilation and erosion pair ∎. 

 

2.3 Basic morphological trajectory-based filters: opening and closing 

Morphological erosion and dilation form the basic composition of the so-called 

morphological filters that are obtained by combining the two basic operations. The 

following defines the specialization of the two most used filters, although the entire 

extension of the morphological operation is covered by the definition of trajectory-

based erosion and dilation. 

Let us present some previous results that will help to understand the definition of 
the operation. 

 

Proposition 2. The interior of a set obtained as the result of the trajectory-based 

operation is empty. More formally, this is expressed by the following: 
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����	 ◊I	 	� = ∅	
Expression 2.32 

 

Proof. Suppose ∃[ ∈ ����	 ◊I	 	�. By definition of In (expression 2.4), ∃ε >
0: 	%&&�[, ε� ⊂ �	 ◊I	 	; that is, a ball of radius >0 can be traced around p such that 

every point in the ball is inside the set �	 ◊I	 	. From the definition of trajectory-based 

morphological operation (expressions 2.11 to 2.14), the distance between p and the 

target object A is the minimum possible distance such that the structuring element B is 

touching the boundary of A. Let q be one the points in the ball around p, such that q is 

placed in the direction of vector v used to calculate the operation. The distance from q 

to A would be shorter than the distance from p to A, so q would be in �	 ◊I	 	 instead 

of p, which is a contradiction. Therefore, ����	 ◊I	 	� is empty ∎. 

 

Lemma 1.  

89��	 ◊I	 	� = �	 ◊I	 	 
Expression 2.33 

 

Proof. By definition of Fr (expression 2.5), 89��	 ◊I	 	� = ��	 ◊I	 	)−����	 ◊I	 	�. 
As per proposition 2, ����	 ◊I	 	� = ∅, it is trivial that 89��	 ◊I	 	� = �	 ◊I	 	 ∎. 
 

Lemma 1 allows the definition of composed trajectory-based morphological 

operations because Fr is an idempotent operation in this case. 

 

2.3.1 Trajectory-based opening 

The classic morphological opening of A by B is obtained by eroding A by B and 

then dilating the resulting object by B. Formally, this is expressed as follows: 

 

� ∘ 	 = �� ⊝	�	⨁		 
Expression 2.34 

 

In descriptive terms, the opening is the geometric locus of structuring element B 

translations within the object A:  

� ∘ 	 = o 	�
� ⊂¡

 

Expression 2.35 
 

In the opening, there are two trajectory-based operations, an erosion and a dilation, 

that generate different trajectories. The erosion places the structuring element on the 

inside of the object, touching its boundary, while the dilation places it on the outside, 

also touching its boundary (in this case the boundary of the erosion). Morphological 

trajectory-based opening thus includes the definition of two functions of trajectory, τT 

and τ�, that will cover two sets of position-rotation values by describing the erosion 

and dilation trajectories that form the instantaneous morphological opening operation. 

Trajectory-based opening will be achieved by applying the trajectory-based erosion 

operator, followed by a trajectory-based dilation (Figure 8): 
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� ∘I 		 = j�⊝I¢ 	k	⨁I£	 

Expression 2.36  

FIGURE 8 

 

2.3.2 Trajectory-based closing 

The closure of A by B is obtained by the dilation of A by B, followed by the erosion 

of the resulting object by B. Formally, this is expressed as follows: 

 

� • 	 = ��	⨁		�	⊝ 		 
Expression 2.37 

 

The geometrical interpretation of closure is similar to that of the opening operator. 

The difference is that the movement of the structuring element is produced outside the 

object boundary, causing the contours to become smooth and the concavities or small 

holes to close. As happens with the opening, morphological trajectory-based closing 

includes the definition of two functions of trajectory τT and τ�, which define the 

dilation and erosion trajectories that form the closing operation. 

The closing operator is defined as the application of a trajectory-based dilation 

followed by a trajectory-based erosion: 

 

� •I 	 = j�	⨁I¢	k	⊝I£ 	 

Expression 2.38 

 

Figure 9 shows the result of applying the complete trajectory-based closure of an 

object with concavities, as performed using a circular structuring element: 

 

FIGURE 9 

 

 

 

3 Conclusion 

A morphological model has been presented that allows dynamic processes to be 

modeled using the formal framework provided by mathematical morphology. A 

specialization of classic morphological operations has been defined, providing it with 

the determinism inherent in dynamic processes such as designing and manufacturing 

objects by machining. The specialization is based on a trajectory function, which uses 

Figure 8. Trajectory-based opening of a rectangular shape with a 
circular object 

Figure 9. Trajectory-based closing of a concave polygon with a circular 
object 
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translation and rotation transformations of the target objects to facilitate the complete 

and orderly implementation of morphological operations.  

The point-based computations and the use of simple transformations, make the 

model simple and generic. As a result, it has proven to be suitable for any structuring 

element and piece shape, including convex, non-convex and non-star polygons 

(Figure 10). 

FIGURE 10 

 

Figure 10. Erosion of non-convex and non-star pieces, using two different structuring 

elements 

 

The model has been defined to support the needs of CAD/CAM processes. Its 

validity was demonstrated by Sarabia et al. (2010), who presents a computer system 
for designing three-dimensional objects by trajectory, based on the morphological 

model presented (Figure 11). The computer system develops an environment of 

pieces modeled by trajectory using the deterministic morphological framework, 

providing solutions for designing complex objects and arithmetical support to 

generate machining trajectories, one of the most complex problems currently 

occurring in computer-aided design and manufacturing environments. In this context, 

the results have proven to be accurate and efficient.  

 

FIGURE 11 

 

Figure 11. Example of solid modeling from deterministic morphology 

 

Although the morphological framework is applied in object design and 

manufacturing environments, its utility is not restricted to such processes. A clear 
example of an application beyond the object manufacturing process is image analysis. 

As mentioned in the introduction, since its very inception, mathematical morphology 

has been used in the analysis and filtering of images; this is not surprising, as 

morphological filters are often used in numerous scientific disciplines. The model 

presented can contribute to these fields by regularizing morphological operations that 

provide partial filtering and image ordering as results. 
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