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Abstract 
 

In this paper a new technique for partial product 
reduction based on the use of look-up tables for 
efficient processing is presented. We describe how to 
construct counter devices with pre-calculated data and 
their subsequent integration into the whole operation. 
The development of reduction trees organizations for 
this kind of devices uses the inherent integration 
benefits of computer memories and offers an 
alternative implementation to classic operation 
methods. Therefore, in our experiments we compare 
our implementation model with CMOS technology 
model in homogeneous terms. 
 
1. Introduction 
 

The multiplication operation is needed in most of 
the processor arithmetic units and is usually a part of 
the set of primitive functions these units provide [1], 
[2]. Since this operation is commonly utilized in many 
current applications [3], some efforts should be 
considered to improve the multiplication algorithms in 
order to reduce their processing complexity. 

Many practical multiplication techniques employ a 
three-stage calculation method [1], [4], [5]: partial 
product generation, partial product reduction and the 
final addition. The partial product reduction stage 
consists of transforming all the generated products into 
only two. This stage takes a significant amount of time 
in relation to the total delay of the operation [1], [5], 
[13]. As a consequence, improving this part of the 
operation will have a great effect on the performance 
of the complete operator. In this paper, we study the 
suitability of using tables with pre-calculated data 
(LUT ⎯Look-Up Table) for the partial product 
reduction stage in order to improve its latency. 

This work is structured as follows: in section 2, we 
show a survey of the most usual methods for partial 
product reduction. Then, the proposed LUT-based 
method for reducing partial products is described in 
section 3. In section 4, the method is evaluated in terms 
of the time delay and the required area. In section 5, 

the method is compared with other reduction 
techniques. Finally, we conclude with some advantages 
of using our method and some future research. 
 
2. A survey of partial product reduction 
methods 
 

The usual partial product simplification method 
consists of using structures based on combinational 
logic until only two summands are considered. The 
final addition, in the subsequent stage, produces 
the final result of the operation. These schemes 
often make use of some counter and compressor 
components organized into different topological 
configurations. There is a huge list of works that 
deal with improving the performance of these 
organizations [1], [4], [7], [8], [9], [10], [11]. 

The counters and compressors are based on 
Carry Save Adders (CSA). Each CSA receives 
three bits and provide a sum and a carry bit as 
outputs. The resulting carry bit does not propagate 
to the next most significant position but is a part of 
an output carry vector [12]. Counters are 
combinational devices that have the function of 
counting the number of their inputs with the logical 
value ‘1’. They are usually denoted as a pair (p, q), 
which indicates the number of inputs (p) and 
outputs (q) of the circuit, where q ≥ lg2(p+1) [4]. 
The most commonly used counter is the (3, 2), 
which accepts a 3-bit vector as input and produces 
a 2-bit output. This counter is a basic component 
for the construction of the most advanced counters 
and compressors [5]. 

The highest-grade counters increase the 
reduction ratios of their inputs and create more 
compact counting structures by maintaining an 
asymptotic time cost with the number of summands 
to be reduced. [12]. We must remark (7, 3), (15, 4) 
and (27, 5) counters because they have been used and 
studied in other related works [10], [13], [14]. To 
reduce the set of multiplication partial products, 
the counters are usually organized into vector 
structures [15] or tree structures [8], [9]. The 
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design of their organization and some 
improvements related to their performance has 
been reported in several research reports, such as 
[4], [6], [16]. The number of counter levels for 
these trees is proportional to lgp/q N, where N is the 
number of partial products to be reduced. 

The Three-Dimensional Method (TDM) is one 
of the most noticeable algorithms for partial 
product reduction [7], [17] because of its good 
results. This technique takes into account the fact 
that not all the inputs to the reduction tree counters 
contribute in the same way to the delay. This 
method distributes the inputs and outputs into a 
three-dimensional reduction structure which favors 
the minimum delay in the critical path. 

Compressors are also combinational circuits that 
count the number of logical ‘1’ values on its input 
lines [18]; in this case, an independent horizontal 
path is established for the propagation of the carry 
in each device, which reduces the critical path of 
the counting and allows the design of more simple 
and regular structures than counters. The 
compressor notation is defined as a pair [p, q], 
where (p) is the number of input lines and (q) the 
output lines [5]. The most frequent compressors are 
of the [4:2] type. A compressor tree [p:q] reduces 
the partial products by lgp/qN, where N is the 
number of levels [5]. 

To sum up, the great number of research works 
dealing with this topic show how important the 
partial product reduction stage is for an efficient 
computing of the whole multiplication. This fact 
justifies the efforts dedicated to the search for new 
proposals that offer better results in further 
developments. 
 
3. Partial product reduction by means of 
stored logic 
 

Recent advances in electronic technology and 
increasing capacities have resulted in the 
conception of new operator designs in the 
construction of arithmetic units that improve 
performance both in quantitative and qualitative 
terms. 

Our proposal is based on the stored logic 
paradigm so that it is used in a complementary way 
to the combinational design. The technique 
essentially consists of storing the results of any 
combination of operands for the function desired in 
an attached memory. When a result of the operation 
is required, the cell that contains its value is 
selected, without combinational circuitry or 
additional processing. 

Nowadays, in the VLSI operator design, there 
are not many designs of hybrid combinational-
stored logic operators [26]. LUTs are normally 
used to generate initial values or seeds; then, the 
execution of the algorithms is performed by 
combinational circuits [19], [21]. However, if 
memories are only used for this task, their potential 
performance would be wasted in the calculation of 
the required operators. That is the reason why we 
propose the use of LUTs as a central element in 
partial product reduction, taking advantage of the 
most recent advances in technology and 
development of memory devices [22], [23]. To do 
this, the design stage starts with the creation of a 
central LUT which will work as a generalized 
counter element; let us call it LUT-Counter. Its 
notation is carried out by means of a pair (pt, q), in 
which p indicates the columns to be counted, t the 
number of bits per column and q the output lines of 
the device. So, the LUT-Counter module has p·t 
input lines and q output lines. The number of 
output lines in relation to the input lines is 
expressed as: 

t · (2p-1) = 2q-1 (1) 

The inputs consist of p columns of t bits 
corresponding to the partial products and the output 
is related to their adjusted weights. For any set of 
partial products, the same type of reduction has to 
be performed, either simultaneously or 
consecutively, for all the summands until the 
required degree of reduction is reached. To achieve 
this goal, several design methods are proposed, 
considering the performance and size area of the 
operator: systematic reuse for successive 
reductions, high performance equipment using 
multiport memories that allow several simultaneous 
accesses, design of the LUT devices for concurrent 
access, or any combination of these proposals. For 
example, figure 1 shows a general reduction design 
with several LUT-Counter devices. 

· · ·

· ·
· ·
· ·

· · ·

· · ·

· ·
· ·
· ·

· · ·

· · ·
· · ·

· · ·
·
·
·

· · ·

· · ·

p partial
products

t columns

LUT-CounterLUT-Counter

Partial products

p · t

q

· · ·

· · ·q

LUT LUT

· · ·

· ·
· ·
· ·

· · ·

· · ·

· ·
· ·
· ·

· · ·

· · ·
· · ·

· · ·
·
·
·

· · ·

· · ·

p partial
products

t columns

LUT-CounterLUT-Counter

Partial products

p · t

q

· · ·

· · ·q

LUT LUT

 
Figure 1: Partial product reduction using LUTs 



The compression degree achieved when 
counting several columns simultaneously for 
rectangular sizes is defined as: 

t:(q/p) (2) 

The design based on stored logic for counter 
elements discussed allows similar organizations to 
adapt the reduction stage to the characteristics of 
an operand. Moreover, the construction of hybrid 
structures with some counters based on LUTs and 
others based on combinational logic, provides 
flexibility in the design of the multiplier. To 
summarize, we propose the use of LUTs instead of 
gates, since current memory capacity enables the 
design of the reduction stage with a greater 
compression ratio than traditional combinational 
circuits. This will lead to the reduction of the 
partial products in fewer stages, as we will show 
next.  
 
4. Analysis of the performance of the LUT-
counter 
 

As mentioned before, the use of LUTs for the 
practical processing of some stages in usual arithmetic 
operators takes many of the advantages of the 
increased integration density in VLSI implementations 
compared with other combinational methods of 
computation. Their use reduces the costs of hardware 
development, offers flexibility and favors the 
scalability of such kind of systems.  

The LUT memory devices can be reused and 
provide a high degree of parallelism: the use of 
multiport memories with several access channels 
enable parallel results to be obtained on the same 
storage chip. Other benefits come from the inherent 
characteristics of computer memories: the rewriting of 
their contents allows their reconfiguration and 
application in the calculus of other operators, whereas 
the incorporation of some error detection techniques or 
any other correction element within the data facilitates 
a more robust processing [7], [19], [20]. Nevertheless, 
this implementation cannot be generalized for all 
operators, since there are no advantages for all cases. 
As a consequence, they must be analyzed to appreciate 
the potential benefits. 

Let us consider next a comparison between the 
occupied area and the temporal delay. Other 
characteristics, such as energy consumption, are 
not discussed in this paper, although they should be 
considered for a final real chip implementation.  
 

4.1 Area estimations 
 

It is clear that the main factor that will affect the 
final chip area for the partial product reduction stage is 
the size of the LUTs. From a general point of view, a 
LUT-Counter with p and t input lines and q output lines 
needs a memory size (expressed in bits) obtained as: 

Area = 2p·t·q bits (3) 
As we can see in equation (3), the growth of the 

space is directly related to the degree of the 
reduction and it increases exponentially with 
regard to the increase in the number of input lines. 
That is why the desired values for p, t and q are 
generally limited and affect their desired value. 
However, the size of the table can be reduced by 
including a pre-processing stage before the access 
to the LUT and increasing, this way, their 
application scope. The idea consists of reducing the 
possible combinations of the inputs. That is, the 
pre-processing can be summarized as follows: 

 
1. Dividing the initial sequence of p bits to be 

counted, w, into three parts: two of them, wl and wr, of 
size t = ⎣p/2⎦ and the third one, wm, of size 1. 
Fragment wl corresponds to the leftmost p bits, 
whereas wr corresponds to the rightmost t bits from the 
initial sequence of p bits, respectively; finally, wm is 
the bit located in the middle of the sequence. 
Therefore, sequence w can now be expressed as 
follows: 

w = wl,t-1wl,t-2…wl,0 wm wr,t-1wr,t-2…wr,0  
    ≡ wl wm wr 

(4) 

2. Constructing a new sequence of bits, v, resulting 
from applying the following logical operations: 

vl ≡ wl ∨ wr; vr ≡ wl ∧ wr; v ≡ vl wm vr (5) 

The sequence v has the same number of ones as the 
original sequence w, so its sum will give the same 
result. However, there are a fewer number of valid 
combinations of v after this pre-processing stage with 
regard to w: w has 2p-1 different configurations, 
whereas the valid configurations for v are: 

combinations = ∑
=

k

0i

ui22  (6) 

where k = 2p-1 and ui is the number of existing logical 
ones in the binary representation of number i. 

The effect of this pre-processing on the LUT 
structure is evident, since the amount of data contained 
in the LUT is reduced considerably. The memory only 



stores the cells corresponding to the valid 
configurations extracted from Equation (6), in spite of 
having the same addressing lines, as any other 
permutation is not allowed. For instance, figure 2 
shows how we can group a set of inputs in the pre-
processing stage of a LUT-Counter 7:3 (p=7, q=3, t=1). 

0   0   0   1   1   1   1
0   0   1   1   1   1   0
0   1   0   1   1   0   1
0   1   1   1   1   0   0
1   0   0   1   0   1   1
1   0   1   1   0   1   0
1   1   0   1   0   0   1
1   1   1   1   0   0   0

wl wrwm

0   0   1   1   1   1   0

OR AND

1   1   1   1   0   0   0

wl wrwm0   0   0   1   1   1   1
0   0   1   1   1   1   0
0   1   0   1   1   0   1
0   1   1   1   1   0   0
1   0   0   1   0   1   1
1   0   1   1   0   1   0
1   1   0   1   0   0   1
1   1   1   1   0   0   0

wl wrwm

0   0   1   1   1   1   0

OR AND

1   1   1   1   0   0   0

wl wrwm

 
Figure 2: Original sequences of bits 

corresponding to the same LUT input 
 
Let us consider now a comparison of our method 

with other reduction techniques. Let us express the 
required area in terms of complex gates by means of a 
relation between its size, expressed in bits, and the 
addressing lines of the memory. Let τa be the area of a 
complex gate. According to the model* presented in 
[19] and [21], an area of 40τa/Kbit is assumed for 
tables of up to 6 inputs, 35τa/Kbit for tables of 7-11 
inputs, 30τa/Kbit for 12-13 inputs, 25τa/Kbit for tables 
of 14-15 inputs and 20τa/Kbit upwards. Table 1 shows 
the LUT-Counter sizes after the pre-processing and the 
space saving produced by this pre-processing. 

Table 1: Area cost of the LUT-Counter for 
different reduction degrees 

p q LUT-Counter 
size 

Complex 
gates 

Space 
saving (%) 

3 2 12 bits 2 τa 87,5 
7 3 162 bits 6 τa 57,8 
15 4 17,08 Kbit 425 Kτa 86,7 
31 5 17 Mbytes > 426 Mτa 98,3 

 
More complex hardware stages could be considered 

in order to reduce the table size even more, but the 
consequences in terms of delay would also have to be 
considered to evaluate the suitability of their use. This 
issue is discussed in the following section. 

                                                           
* Implementation using a family of standard gates from the AMS 

0.35 µm CMOS library 

4.2 Delay estimations 
 
We can identify the delay of the counter circuit 

based on LUTs with the time required to access the 
table and capture the result; therefore, it is constant and 
independent of the operand values. This delay depends 
on both the memory architecture and its internal 
structure and consists of the access time to the table 
and the response time [24], [25]. 

The use of stored logic in this stage has a great 
influence on the temporal delay of the stage. For 
instance, the use of multiport memories with several 
access routes allows the reduction of multiple columns 
of data within the same table, that is, the LUTs can be 
replicated in order to answer several parallel requests; 
the location of the LUT as a memory embedded in the 
arithmetic unit and near to the rest of the logic of the 
operation reduces its access time [22], [23]. 

To estimate the delay, we have performed a 
benchmark using, firstly, the same estimation model 
than in the previous section and, on the other hand, the 
results of our own experiments† [7], [20]. Let τt be the 
delay for a complex gate. For the whole memory, we 
assume a delay of 3τt for tables with up to 7 inputs, 
3.5τt for tables with 8 inputs, 4τt for tables with 9 
inputs, 4.5τt for tables with 10-11 inputs, 5τt for tables 
with 12-13 inputs and 6τt for tables with 14-15 inputs. 
The pre-processing stage and the resulting memory 
space are also considered. The architecture of the LUT 
in the simulations is based on the design proposed in 
[24] and [25]. The LUT-Counter has been integrated 
into the multiplication operator together with the rest 
of the logic. In relation to these estimations, table 2 
shows the delays in terms of complex gates for a LUT 
with different reduction degrees. 

Table 2: Temporal cost of the LUT-counter for 
different degrees of reduction 

t p q Degree of reduction Complex gates (τt) 
2 5 4 (5, 2) 5 
1 3 2 (3, 2) 3.5 
1 7 3 (7, 3) 3.5 
1 15 4 (15, 4) 6.5 

As it can be observed in table 2, the delay, in terms 
of complex gates, depends on the number of LUT 
inputs. However, in our simulations, we found that the 
reduction in the table size due to the pre-processing 
reduces the delay and improves the global 
performance. This can be explained by the fact that the 
addressing decoders do not implement invalid 
combinations after the pre-processing phase. 
                                                           

† Simulation of the model made with VHDL using ModelSim 6.0. 



5. Comparison with other reduction 
techniques 

 
To validate our proposal, it is necessary to compare 

it with different well-known reduction algorithms, 
which must be independent on the final technology 
used in its practical implementation. The data taken for 
the delay have been compiled from relevant 
publications in this field. Therefore, to call the 
attention to the importance of both technology and 
implementation, in our experiments we have also 
calculated the results of the reduction stages based on 
other generally accepted configurations. Finally, a 
practical example of a complete multiplication is 
performed to check the effects of applying different 
reduction organizations on this operator. 
 
5.1. Comparison in terms of complex gates 
 

According to [5] and  [7], a reduction stage (3:2) 
has a delay of 2 complex gates. Other counters with a 
greater reduction ratio require more complex gates per 
stage. For example, the (7,3) counter  requires 4 τt [4] 
and the (27,5) counter requires 12 τt [10]. Compressors 
provide more compact structures, such that the [4:2] 
model has a delay of 3 complex gates, the [6:2] 
compressor a delay of 5 τt and the [9:2] a delay of 7 τt 
[4]. Table 3 shows these data and their relation to the 
reduction performed; then, it compares them with the 
designs based on stored logic. Other structures that use 
algorithmic reduction schemes, such as the Three-
Dimensional Method (TDM) [4], [17], have delays that 
are essentially related to the number of the generated 
partial products; that is why they are not included in 
this comparison and are considered within the 
framework of the complete operation, instead. 

Table 3: Comparison of characteristics among 
reduction structures  

counter/compressor [4] LUT-Counter  
(3,2) [4:2] (7,3) [6:2] [9:2] (27,5) (5,2) (7,3) (15,4)

Reduction 
ratio (Cr) 1.5 2.0 2.33 3 4.5 5.4 2.5 2.33 3.75
Complex 
gates of 
critical 

path  
2 3 4 5 7 12 4 3 5.5 

Reduction 
ratio per  
complex 

gate 
0.75 0.66 0.58 0.6 0.64 0.45 0.63 0.78 0.68

 
As it can be extracted from the table above, LUT-

Counters achieve reduction ratios per complex gate 
comparable to other commonly used structures. Let us 
remark that, in the case of the (7,3) LUT-Counter, the 
reduction ratio per complex gate is even higher than 

the one for the (3,2) counter, despite the fact that the 
latter has a much higher compression ratio. 

As a conclusion, the implementation of the 
structures mentioned in the previous section 
empirically verifies our assumptions. The simulation 
takes into account the average delays of the 
connections, the fan-out of the gates and the 
characteristics of the reconfigurable device. These 
estimations may vary according to the manufacturing 
technology and we think there would be a good 
behavior in relation to their delays after their 
integration into the operator and their subsequent 
implementation on an ASIC. For this reason the 
simulations of the model, whatever technology is used, 
have special relevance. 

 
5.2. Multiplication examples comparison 

 
To complete our experimentation, some tests 

considering the partial product reduction in 
multiplications of a usual number of bits were 
completed. In particular, 24 and 53 bits were used for 
the factors, as they are the length of the mantissas 
usually employed in floating-point operations. Due to 
their complexity, neither TDM structures nor optimized 
trees [16] have been implemented, so that their 
performance features have been taken from the works 
by Oklobdzija in [7] and [17]. 

Table 4 summarizes the results of the delays and the 
stages required for the previous configurations. This 
table shows, in brackets, the number of stages 
necessary for each partial product reduction structure. 
It can be seen that for both factor lengths, the proposed 
method offers delays that are greater than those ones 
based on Wallace trees and compressors [4:2], and that 
they are comparable to the methods organized into 
three-dimensional structures (TDM). In addition, all 
the advantages inherent to the nature of the memories 
that were mentioned before are now obtained and, 
moreover, we achieve a segmented operation since our 
approach uses a chain of successive multiplications. 
Other schemes, such as the three-dimensional 
reduction structure (TDM), do not easily allow 
segmented operation strategies. 

Table 4: Delay (τt ) and reduction stages 

Reduction scheme 24x24 bit 53x53 bit 
Wallace tree (3,2) counters 14 (7 stages) 18 (9 stages) 

[4:2] tree 12 (4 stages) 15 (5 stages) 
optimized trees [16] 12 15 

TDM [7] 10 13 
Combination of LUT counters 10 (3 stages) 13 (4 stages) 

Other advantages are obtained because all the 
signals from the reduction structure based on stored 



logic reach the last stage of the multiplier (i.e., the final 
addition) at the same time. There are few changes in 
the response delay of a look-up table compared with 
the delay of a combinational circuit using CSA 
elements, where there are generally multiple different 
paths. 
 
6. Conclusions and future work 
 

This work describes a new proposal of partial 
product reduction based on look-up tables. The method 
offers several advantages over classic combinational 
logic, due to its flexibility, reuse, fault tolerance and 
memory parallelism. The proposal is suitable for 
embedded systems design using FPGA where LUTS 
can be utilized to implement a soft processor as well as 
the stored logic for multiplication. We have made a 
rigorous analysis and some comparisons with other 
well-known reduction techniques in terms of temporal 
cost; as a consequence, we have shown that our 
method is a valid alternative to traditional circuits. Our 
experimentation gives fine results, which are 
comparable with those ones obtained from the best 
existing methods. In terms of the required area, the 
proposed method is not, generally speaking, 
comparable to others based on combinational logic. 
Nevertheless, the inclusion of the pre-processing stages 
before the table access to save size on-chip is feasible 
in a near future. 

Our research is currently focused on improving the 
integration cost of look-up tables inside the processor 
and on extending this technique to other operators in 
the arithmetic unit. In future works, we expect to 
obtain good quality results that allow an improvement 
in the performance of current microprocessors. 
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