
Partial Product Reduction based on Look-Up Tables

H. Mora Mora, J. Mora Pascual, J.L. Sánchez Romero, F. Pujol López
Department of Computer Science Technology and Computation, University of Alicante, Spain

{hmora, jeronimo, sanchez, fpujol}@dtic.ua.es

Abstract

In this paper a new technique for partial product
reduction based on the use of look-up tables for
efficient processing is presented. We describe how to
construct counter devices with pre-calculated data and
their subsequent integration into the whole operation.
The development of reduction trees organizations for
this kind of devices uses the inherent integration
benefits of computer memories and offers an
alternative implementation to classic operation
methods. Therefore, in our experiments we compare
our implementation model with CMOS technology
model in homogeneous terms.

1. Introduction

The multiplication operation is needed in most of
the processor arithmetic units and is usually a part of
the set of primitive functions these units provide [1],
[2]. Since this operation is commonly utilized in many
current applications [3], some efforts should be
considered to improve the multiplication algorithms in
order to reduce their processing complexity.

Many practical multiplication techniques employ a
three-stage calculation method [1], [4], [5]: partial
product generation, partial product reduction and the
final addition. The partial product reduction stage
consists of transforming all the generated products into
only two. This stage takes a significant amount of time
in relation to the total delay of the operation [1], [5],
[13]. As a consequence, improving this part of the
operation will have a great effect on the performance
of the complete operator. In this paper, we study the
suitability of using tables with pre-calculated data
(LUT ⎯Look-Up Table) for the partial product
reduction stage in order to improve its latency.

This work is structured as follows: in section 2, we
show a survey of the most usual methods for partial
product reduction. Then, the proposed LUT-based
method for reducing partial products is described in
section 3. In section 4, the method is evaluated in terms
of the time delay and the required area. In section 5,

the method is compared with other reduction
techniques. Finally, we conclude with some advantages
of using our method and some future research.

2. A survey of partial product reduction
methods

The usual partial product simplification method
consists of using structures based on combinational
logic until only two summands are considered. The
final addition, in the subsequent stage, produces
the final result of the operation. These schemes
often make use of some counter and compressor
components organized into different topological
configurations. There is a huge list of works that
deal with improving the performance of these
organizations [1], [4], [7], [8], [9], [10], [11].

The counters and compressors are based on
Carry Save Adders (CSA). Each CSA receives
three bits and provide a sum and a carry bit as
outputs. The resulting carry bit does not propagate
to the next most significant position but is a part of
an output carry vector [12]. Counters are
combinational devices that have the function of
counting the number of their inputs with the logical
value ‘1’. They are usually denoted as a pair (p, q),
which indicates the number of inputs (p) and
outputs (q) of the circuit, where q ≥ lg2(p+1) [4].
The most commonly used counter is the (3, 2),
which accepts a 3-bit vector as input and produces
a 2-bit output. This counter is a basic component
for the construction of the most advanced counters
and compressors [5].

The highest-grade counters increase the
reduction ratios of their inputs and create more
compact counting structures by maintaining an
asymptotic time cost with the number of summands
to be reduced. [12]. We must remark (7, 3), (15, 4)
and (27, 5) counters because they have been used and
studied in other related works [10], [13], [14]. To
reduce the set of multiplication partial products,
the counters are usually organized into vector
structures [15] or tree structures [8], [9]. The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/32322448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

design of their organization and some
improvements related to their performance has
been reported in several research reports, such as
[4], [6], [16]. The number of counter levels for
these trees is proportional to lgp/q N, where N is the
number of partial products to be reduced.

The Three-Dimensional Method (TDM) is one
of the most noticeable algorithms for partial
product reduction [7], [17] because of its good
results. This technique takes into account the fact
that not all the inputs to the reduction tree counters
contribute in the same way to the delay. This
method distributes the inputs and outputs into a
three-dimensional reduction structure which favors
the minimum delay in the critical path.

Compressors are also combinational circuits that
count the number of logical ‘1’ values on its input
lines [18]; in this case, an independent horizontal
path is established for the propagation of the carry
in each device, which reduces the critical path of
the counting and allows the design of more simple
and regular structures than counters. The
compressor notation is defined as a pair [p, q],
where (p) is the number of input lines and (q) the
output lines [5]. The most frequent compressors are
of the [4:2] type. A compressor tree [p:q] reduces
the partial products by lgp/qN, where N is the
number of levels [5].

To sum up, the great number of research works
dealing with this topic show how important the
partial product reduction stage is for an efficient
computing of the whole multiplication. This fact
justifies the efforts dedicated to the search for new
proposals that offer better results in further
developments.

3. Partial product reduction by means of
stored logic

Recent advances in electronic technology and
increasing capacities have resulted in the
conception of new operator designs in the
construction of arithmetic units that improve
performance both in quantitative and qualitative
terms.

Our proposal is based on the stored logic
paradigm so that it is used in a complementary way
to the combinational design. The technique
essentially consists of storing the results of any
combination of operands for the function desired in
an attached memory. When a result of the operation
is required, the cell that contains its value is
selected, without combinational circuitry or
additional processing.

Nowadays, in the VLSI operator design, there
are not many designs of hybrid combinational-
stored logic operators [26]. LUTs are normally
used to generate initial values or seeds; then, the
execution of the algorithms is performed by
combinational circuits [19], [21]. However, if
memories are only used for this task, their potential
performance would be wasted in the calculation of
the required operators. That is the reason why we
propose the use of LUTs as a central element in
partial product reduction, taking advantage of the
most recent advances in technology and
development of memory devices [22], [23]. To do
this, the design stage starts with the creation of a
central LUT which will work as a generalized
counter element; let us call it LUT-Counter. Its
notation is carried out by means of a pair (pt, q), in
which p indicates the columns to be counted, t the
number of bits per column and q the output lines of
the device. So, the LUT-Counter module has p·t
input lines and q output lines. The number of
output lines in relation to the input lines is
expressed as:

t · (2p-1) = 2q-1 (1)

The inputs consist of p columns of t bits
corresponding to the partial products and the output
is related to their adjusted weights. For any set of
partial products, the same type of reduction has to
be performed, either simultaneously or
consecutively, for all the summands until the
required degree of reduction is reached. To achieve
this goal, several design methods are proposed,
considering the performance and size area of the
operator: systematic reuse for successive
reductions, high performance equipment using
multiport memories that allow several simultaneous
accesses, design of the LUT devices for concurrent
access, or any combination of these proposals. For
example, figure 1 shows a general reduction design
with several LUT-Counter devices.

· · ·

· ·
· ·
· ·

· · ·

· · ·

· ·
· ·
· ·

· · ·

· · ·
· · ·

· · ·
·
·
·

· · ·

· · ·

p partial
products

t columns

LUT-CounterLUT-Counter

Partial products

p · t

q

· · ·

· · ·q

LUT LUT

· · ·

· ·
· ·
· ·

· · ·

· · ·

· ·
· ·
· ·

· · ·

· · ·
· · ·

· · ·
·
·
·

· · ·

· · ·

p partial
products

t columns

LUT-CounterLUT-Counter

Partial products

p · t

q

· · ·

· · ·q

LUT LUT

Figure 1: Partial product reduction using LUTs

The compression degree achieved when
counting several columns simultaneously for
rectangular sizes is defined as:

t:(q/p) (2)

The design based on stored logic for counter
elements discussed allows similar organizations to
adapt the reduction stage to the characteristics of
an operand. Moreover, the construction of hybrid
structures with some counters based on LUTs and
others based on combinational logic, provides
flexibility in the design of the multiplier. To
summarize, we propose the use of LUTs instead of
gates, since current memory capacity enables the
design of the reduction stage with a greater
compression ratio than traditional combinational
circuits. This will lead to the reduction of the
partial products in fewer stages, as we will show
next.

4. Analysis of the performance of the LUT-
counter

As mentioned before, the use of LUTs for the
practical processing of some stages in usual arithmetic
operators takes many of the advantages of the
increased integration density in VLSI implementations
compared with other combinational methods of
computation. Their use reduces the costs of hardware
development, offers flexibility and favors the
scalability of such kind of systems.

The LUT memory devices can be reused and
provide a high degree of parallelism: the use of
multiport memories with several access channels
enable parallel results to be obtained on the same
storage chip. Other benefits come from the inherent
characteristics of computer memories: the rewriting of
their contents allows their reconfiguration and
application in the calculus of other operators, whereas
the incorporation of some error detection techniques or
any other correction element within the data facilitates
a more robust processing [7], [19], [20]. Nevertheless,
this implementation cannot be generalized for all
operators, since there are no advantages for all cases.
As a consequence, they must be analyzed to appreciate
the potential benefits.

Let us consider next a comparison between the
occupied area and the temporal delay. Other
characteristics, such as energy consumption, are
not discussed in this paper, although they should be
considered for a final real chip implementation.

4.1 Area estimations

It is clear that the main factor that will affect the
final chip area for the partial product reduction stage is
the size of the LUTs. From a general point of view, a
LUT-Counter with p and t input lines and q output lines
needs a memory size (expressed in bits) obtained as:

Area = 2p·t·q bits (3)
As we can see in equation (3), the growth of the

space is directly related to the degree of the
reduction and it increases exponentially with
regard to the increase in the number of input lines.
That is why the desired values for p, t and q are
generally limited and affect their desired value.
However, the size of the table can be reduced by
including a pre-processing stage before the access
to the LUT and increasing, this way, their
application scope. The idea consists of reducing the
possible combinations of the inputs. That is, the
pre-processing can be summarized as follows:

1. Dividing the initial sequence of p bits to be

counted, w, into three parts: two of them, wl and wr, of
size t = ⎣p/2⎦ and the third one, wm, of size 1.
Fragment wl corresponds to the leftmost p bits,
whereas wr corresponds to the rightmost t bits from the
initial sequence of p bits, respectively; finally, wm is
the bit located in the middle of the sequence.
Therefore, sequence w can now be expressed as
follows:

w = wl,t-1wl,t-2…wl,0 wm wr,t-1wr,t-2…wr,0
 ≡ wl wm wr

(4)

2. Constructing a new sequence of bits, v, resulting
from applying the following logical operations:

vl ≡ wl ∨ wr; vr ≡ wl ∧ wr; v ≡ vl wm vr (5)

The sequence v has the same number of ones as the
original sequence w, so its sum will give the same
result. However, there are a fewer number of valid
combinations of v after this pre-processing stage with
regard to w: w has 2p-1 different configurations,
whereas the valid configurations for v are:

combinations = ∑
=

k

0i

ui22 (6)

where k = 2p-1 and ui is the number of existing logical
ones in the binary representation of number i.

The effect of this pre-processing on the LUT
structure is evident, since the amount of data contained
in the LUT is reduced considerably. The memory only

stores the cells corresponding to the valid
configurations extracted from Equation (6), in spite of
having the same addressing lines, as any other
permutation is not allowed. For instance, figure 2
shows how we can group a set of inputs in the pre-
processing stage of a LUT-Counter 7:3 (p=7, q=3, t=1).

0 0 0 1 1 1 1
0 0 1 1 1 1 0
0 1 0 1 1 0 1
0 1 1 1 1 0 0
1 0 0 1 0 1 1
1 0 1 1 0 1 0
1 1 0 1 0 0 1
1 1 1 1 0 0 0

wl wrwm

0 0 1 1 1 1 0

OR AND

1 1 1 1 0 0 0

wl wrwm0 0 0 1 1 1 1
0 0 1 1 1 1 0
0 1 0 1 1 0 1
0 1 1 1 1 0 0
1 0 0 1 0 1 1
1 0 1 1 0 1 0
1 1 0 1 0 0 1
1 1 1 1 0 0 0

wl wrwm

0 0 1 1 1 1 0

OR AND

1 1 1 1 0 0 0

wl wrwm

Figure 2: Original sequences of bits

corresponding to the same LUT input

Let us consider now a comparison of our method

with other reduction techniques. Let us express the
required area in terms of complex gates by means of a
relation between its size, expressed in bits, and the
addressing lines of the memory. Let τa be the area of a
complex gate. According to the model* presented in
[19] and [21], an area of 40τa/Kbit is assumed for
tables of up to 6 inputs, 35τa/Kbit for tables of 7-11
inputs, 30τa/Kbit for 12-13 inputs, 25τa/Kbit for tables
of 14-15 inputs and 20τa/Kbit upwards. Table 1 shows
the LUT-Counter sizes after the pre-processing and the
space saving produced by this pre-processing.

Table 1: Area cost of the LUT-Counter for
different reduction degrees

p q LUT-Counter
size

Complex
gates

Space
saving (%)

3 2 12 bits 2 τa 87,5
7 3 162 bits 6 τa 57,8
15 4 17,08 Kbit 425 Kτa 86,7
31 5 17 Mbytes > 426 Mτa 98,3

More complex hardware stages could be considered

in order to reduce the table size even more, but the
consequences in terms of delay would also have to be
considered to evaluate the suitability of their use. This
issue is discussed in the following section.

* Implementation using a family of standard gates from the AMS

0.35 µm CMOS library

4.2 Delay estimations

We can identify the delay of the counter circuit

based on LUTs with the time required to access the
table and capture the result; therefore, it is constant and
independent of the operand values. This delay depends
on both the memory architecture and its internal
structure and consists of the access time to the table
and the response time [24], [25].

The use of stored logic in this stage has a great
influence on the temporal delay of the stage. For
instance, the use of multiport memories with several
access routes allows the reduction of multiple columns
of data within the same table, that is, the LUTs can be
replicated in order to answer several parallel requests;
the location of the LUT as a memory embedded in the
arithmetic unit and near to the rest of the logic of the
operation reduces its access time [22], [23].

To estimate the delay, we have performed a
benchmark using, firstly, the same estimation model
than in the previous section and, on the other hand, the
results of our own experiments† [7], [20]. Let τt be the
delay for a complex gate. For the whole memory, we
assume a delay of 3τt for tables with up to 7 inputs,
3.5τt for tables with 8 inputs, 4τt for tables with 9
inputs, 4.5τt for tables with 10-11 inputs, 5τt for tables
with 12-13 inputs and 6τt for tables with 14-15 inputs.
The pre-processing stage and the resulting memory
space are also considered. The architecture of the LUT
in the simulations is based on the design proposed in
[24] and [25]. The LUT-Counter has been integrated
into the multiplication operator together with the rest
of the logic. In relation to these estimations, table 2
shows the delays in terms of complex gates for a LUT
with different reduction degrees.

Table 2: Temporal cost of the LUT-counter for
different degrees of reduction

t p q Degree of reduction Complex gates (τt)
2 5 4 (5, 2) 5
1 3 2 (3, 2) 3.5
1 7 3 (7, 3) 3.5
1 15 4 (15, 4) 6.5

As it can be observed in table 2, the delay, in terms
of complex gates, depends on the number of LUT
inputs. However, in our simulations, we found that the
reduction in the table size due to the pre-processing
reduces the delay and improves the global
performance. This can be explained by the fact that the
addressing decoders do not implement invalid
combinations after the pre-processing phase.

† Simulation of the model made with VHDL using ModelSim 6.0.

5. Comparison with other reduction
techniques

To validate our proposal, it is necessary to compare

it with different well-known reduction algorithms,
which must be independent on the final technology
used in its practical implementation. The data taken for
the delay have been compiled from relevant
publications in this field. Therefore, to call the
attention to the importance of both technology and
implementation, in our experiments we have also
calculated the results of the reduction stages based on
other generally accepted configurations. Finally, a
practical example of a complete multiplication is
performed to check the effects of applying different
reduction organizations on this operator.

5.1. Comparison in terms of complex gates

According to [5] and [7], a reduction stage (3:2)
has a delay of 2 complex gates. Other counters with a
greater reduction ratio require more complex gates per
stage. For example, the (7,3) counter requires 4 τt [4]
and the (27,5) counter requires 12 τt [10]. Compressors
provide more compact structures, such that the [4:2]
model has a delay of 3 complex gates, the [6:2]
compressor a delay of 5 τt and the [9:2] a delay of 7 τt
[4]. Table 3 shows these data and their relation to the
reduction performed; then, it compares them with the
designs based on stored logic. Other structures that use
algorithmic reduction schemes, such as the Three-
Dimensional Method (TDM) [4], [17], have delays that
are essentially related to the number of the generated
partial products; that is why they are not included in
this comparison and are considered within the
framework of the complete operation, instead.

Table 3: Comparison of characteristics among
reduction structures

counter/compressor [4] LUT-Counter
(3,2) [4:2] (7,3) [6:2] [9:2] (27,5) (5,2) (7,3) (15,4)

Reduction
ratio (Cr) 1.5 2.0 2.33 3 4.5 5.4 2.5 2.33 3.75
Complex
gates of
critical

path
2 3 4 5 7 12 4 3 5.5

Reduction
ratio per
complex

gate
0.75 0.66 0.58 0.6 0.64 0.45 0.63 0.78 0.68

As it can be extracted from the table above, LUT-

Counters achieve reduction ratios per complex gate
comparable to other commonly used structures. Let us
remark that, in the case of the (7,3) LUT-Counter, the
reduction ratio per complex gate is even higher than

the one for the (3,2) counter, despite the fact that the
latter has a much higher compression ratio.

As a conclusion, the implementation of the
structures mentioned in the previous section
empirically verifies our assumptions. The simulation
takes into account the average delays of the
connections, the fan-out of the gates and the
characteristics of the reconfigurable device. These
estimations may vary according to the manufacturing
technology and we think there would be a good
behavior in relation to their delays after their
integration into the operator and their subsequent
implementation on an ASIC. For this reason the
simulations of the model, whatever technology is used,
have special relevance.

5.2. Multiplication examples comparison

To complete our experimentation, some tests

considering the partial product reduction in
multiplications of a usual number of bits were
completed. In particular, 24 and 53 bits were used for
the factors, as they are the length of the mantissas
usually employed in floating-point operations. Due to
their complexity, neither TDM structures nor optimized
trees [16] have been implemented, so that their
performance features have been taken from the works
by Oklobdzija in [7] and [17].

Table 4 summarizes the results of the delays and the
stages required for the previous configurations. This
table shows, in brackets, the number of stages
necessary for each partial product reduction structure.
It can be seen that for both factor lengths, the proposed
method offers delays that are greater than those ones
based on Wallace trees and compressors [4:2], and that
they are comparable to the methods organized into
three-dimensional structures (TDM). In addition, all
the advantages inherent to the nature of the memories
that were mentioned before are now obtained and,
moreover, we achieve a segmented operation since our
approach uses a chain of successive multiplications.
Other schemes, such as the three-dimensional
reduction structure (TDM), do not easily allow
segmented operation strategies.

Table 4: Delay (τt) and reduction stages

Reduction scheme 24x24 bit 53x53 bit
Wallace tree (3,2) counters 14 (7 stages) 18 (9 stages)

[4:2] tree 12 (4 stages) 15 (5 stages)
optimized trees [16] 12 15

TDM [7] 10 13
Combination of LUT counters 10 (3 stages) 13 (4 stages)

Other advantages are obtained because all the
signals from the reduction structure based on stored

logic reach the last stage of the multiplier (i.e., the final
addition) at the same time. There are few changes in
the response delay of a look-up table compared with
the delay of a combinational circuit using CSA
elements, where there are generally multiple different
paths.

6. Conclusions and future work

This work describes a new proposal of partial
product reduction based on look-up tables. The method
offers several advantages over classic combinational
logic, due to its flexibility, reuse, fault tolerance and
memory parallelism. The proposal is suitable for
embedded systems design using FPGA where LUTS
can be utilized to implement a soft processor as well as
the stored logic for multiplication. We have made a
rigorous analysis and some comparisons with other
well-known reduction techniques in terms of temporal
cost; as a consequence, we have shown that our
method is a valid alternative to traditional circuits. Our
experimentation gives fine results, which are
comparable with those ones obtained from the best
existing methods. In terms of the required area, the
proposed method is not, generally speaking,
comparable to others based on combinational logic.
Nevertheless, the inclusion of the pre-processing stages
before the table access to save size on-chip is feasible
in a near future.

Our research is currently focused on improving the
integration cost of look-up tables inside the processor
and on extending this technique to other operators in
the arithmetic unit. In future works, we expect to
obtain good quality results that allow an improvement
in the performance of current microprocessors.

7. References

[1] Bewick, G. W.: Fast multiplication: Algorithms and

implementations. PhD Thesis, Dept. of Electrical
Engineering, Stanford University, 1994.

[2] S.F. Oberman. Design Issues in High Performance
Floating Point Arithmetic Units. TR CSL-TR-96-711.
Computer System Lab., Stanford University. 1996.

[3] SPEC Benchmark Suite Release 2/92.
[4] Oklobdzija, V. G., Villeger, D.: “Improving Multiplier

Design by Using Improved Column Compression Tree
and Optimized Final Adder in CMOS Technology”.
"IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 3, pp. 292-301, 1995.

[5] Flynn, M. J.; Oberman, S. F.: Advanced Computer
Arithmetic Design. John Wiley & Sons, 2001.

[6] M.D. Ercegovac and T. Lang, Digital Arithmetic,
Morgan Kaufmann Publishers, Elsevier Science, 2004.

[7] Oklobdzija, V. G., Villeger, D., Liu, S. S.:” A Method
for Speed Optimized Partial Product Reduction and

Generation of Fast Parallel Multipliers Using an
Algorithmic Approach”. IEEE Transactions on
Computers, vol. 45, no.3, pp. 294-306, 1996.

[8] Wallace, C. S.: “A Suggestion for Fast Multipliers”.
IEEE Transactions on Computers, vol. 13, no. 2, 1964.

[9] Dadda, L.: “Some Schemes for Parallel Multipliers”.
Alta frequenza, vol. 34, pp. 349-356, 1965.

[10] Yeung, A. K. et al: A self-timed multiplier with
optimized final adder, Univ. California, Berkeley, Final
Rep., CS 2921, 1989.

[11] N. Takagi, H. Yasuura, S. Yajima. “High-Speed VLSI
Multiplication Algorithm with a Redundant Binary
Addition Tree”, IEEE Transaction on Computers, Vol
C-34, no. 9. , 1985.

[12] Zimmermann, H.: Binary Adder Architectures for Cell-
based VLSI and their Synthesis. PhD Thesis, Swiss
Federal Institute of Technology, 1997.

[13] R. Lin et al; “A Novel Approach for CMOS Parallel
Counter Design”, Euromicro Conference, vol 1, pp.
1112-1119, 1999.

[14] R. McIlhenny and M.D. Ercegovac, “On Using 1-out-
of-n Codes for (p,q) Counter Implementations”.
Asilomar Conference on Signals, Systems, and
Computers, 1996.

[15] S.D. Peraris, “A 40 ns 17-bit Array Multiplier”, IEEE
Transaction on Computers, vol. 20 pp 442-447, 1971.

[16] J. Fadavi-Ardekani, “M x N Booth Encoded Multiplier
Generator Using Optimized Wallace Trees”, IEEE
Transactions on VLSI Systems, vol. 1 no. 2, 1993.

[17] Stelling, P. F., Martel, C. U., Oklobdzija, V. G., Ravi,
R.: “Optimal Circuits for Parallel Multipliers”. IEEE
Trans. on Computers, vol. 47 (3), pp. 273-285, 1998.

[18] A. Weinberger, “4:2 Carry-Save Adder Module”, IBM
Technical Disclosure Bull, vol. 23, 1981.

[19] M.D. Ercegovac et al, “Reciprocation, Square Root,
Inverse Square Root, and Some Elementary Functions
Using Small Multipliers”, Transactions on Computers.
vol. 49 (7) pp. 628-637, 2000.

[20] J.M. García Chamizo et al, “Time-Precision Flexible
Adder”, 10th IEEE ICECS (2003) 994-997

[21] J.A. Piñeiro, J. Díaz Bruguera, “High-Speed Double-
Precision Computation. of Reciprocal, Square Root,
and Inverse Square Root”, IEEE Transactions on
Computers. vol. 51 (12),1377-1388, 2002.

[22] R. Rajsuman. “Design and Test of Large Embedded
Memories: An Overview”. IEEE Design and Test of
Computers, vol. 18, no. 3, pp. 16-27, 2001.

[23] ISSCC Roundtable, “Embedded Memories for the
Future”, IEEE Design and Test of Computers, vol. 20,
n. 4, pp. 66-81, 2003.

[24] S.J.E. Wilton, N.P. Jouppi. “An Enhanced Access and
Cycle Time Model for On-Chip Caches”. Digital
Western Research Laboratory. 1994.

[25] T. Wada, S. Rajan, S.A. Przybylski, “An Analytical
Access Time Model for On-Chip Cache Memories”.
IEEE Journal of Solid-State Circuits, vol. 27 (8),1992.

[26] E.G. Walters, J. Schelessman, M.J. Schulte, “Combined
Unsigned and Two’s Complement Hybrid Squarers”,
35th Asilomar Conference on Signals, Systems, and
Computers, California, pp. 861-866, 2001

