
Using a RGB-D camera for 6DoF SLAM

Jose MUÑOZ, Daniel PASTOR, Pablo GIL, Santiago PUENTE, and
Miguel CAZORLA 1

Computer Science Research Institute. University of Alicante. Alicante, Spain

Abstract. This paper presents a method for fast calculation of the egomotion done
by a robot using visual features. The method is part of a complete system for auto-
matic map building and Simultaneous Location and Mapping (SLAM). The method
uses optical flow in order to determine if the robot has done a movement. If so,
some visual features which do not accomplish several criteria are deleted, and then
the egomotion is calculated. We use a state-of-the-art algorithm (TORO) in order
to rectify the map and solve the SLAM problem. The proposed method provides
better efficiency that others current methods.

Keywords. visual features, 3D data, RGB-D data, SLAM.

Introduction

One of the central research themes in mobile robotics is the determination of the move-
ment performed by the robot using its sensors information, which is usually referred as
egomotion [1], and also as registration. The method proposed in this work presents some
improvements calculating the egomotion which can be used for automatic map building
and Simultaneous Location and Mapping (SLAM) [2]. Our main goal is to perform six
degrees of freedom (6DoF) visual SLAM in semi-structured environments, i.e., man-
made indoor environments. Egomotion can be computed using two main approaches:
point-based and feature-based. In the point-based approaches, the most widely used is
the Iterative Closest Point (ICP [3]), but it does not provide good results in the presence
of outliers and it is time-consuming. Using feature-based (from a RGB-D camera) and
using the RANdom SAmple Consensus (RANSAC) method [4] provide a best egomotion
calculation.

The system proposed in this paper is similar to the one in [5]. That paper proposes
the use of a RGB-D camera (kinect) in order to build a complete SLAM method. The
method follows these steps: first, it obtains visual features from two consecutive frames.
Using those features and applying a RANSAC-similar method, the egomotion from the
two frames is calculated. Then, a global optimization method is applied in order to adjust
the map. In this paper, we proposed several improvements which speed up that method.

The remainder of this paper is organized as follows: Section 1 describes the data
acquisition system and the Ransac method. Section 2 details the complete method and
describes the main improvement of our method. Section 3 shows examples of recon-

1Corresponding Author: Dpto. Ciencia de la Computacion e I.A. Universidad de Alicante. P.O.Box 99.
03080 Alicante (Spain); E-mail: miguel.cazorla@ua.es.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/32322444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

struction using our method and, briefly, comments the navigation method used for our
experiments. Finally, some conclusions and future work are discussed.

1. Data acquisition

The experiments from this paper were done using the robotic platform shown in Fig-
ure 1. The robot platform is a PowerBot from ActiveMedia, which has a good operation
autonomy and can carry out several devices over it.

Kinect is used as a main visual sensor. It has provided new ways to interact with en-
vironment in the robotics area. It is composed of two sensors: an IR (infrared) projector,
IR CMOS camera and a RGB camera. IR sensors provide depth information. The IR pro-
jector sends out a fixed pattern of light and dark speckles. Depth is calculated by triangu-
lation against a known pattern from the projector. The pattern is memorized at a known
depth and then for each pixel, a correlation between known pattern and current pattern is
done, providing the current depth for these pixels. The RGB camera has a resolution of
640 x 480 (307200 pixels) and it can work between 1 and 8 meters, approximately.

Furthermore, in this work, OpenCV (Open source Computer Vision) [6], PCL (Point
Cloud Library) [7] and ROS (Robot Operating System) [8] have been used to: detect
features, represent 3D information about the environment acquired from Kinect, and
control the whole system, from data capture to robot command.

Figure 1. Robot and camera used in our experiments.

We briefly describe here the Ransac method used in this paper. It is an iterative
method that estimates the parameters of a mathematical model from a set of observed
data which contains outliers. In our case, we look for a 3D transformation (our model)
which best explain the data (matches between 3D features). At each iteration of the
algorithm, a subset of data elements (matches) is randomly selected. These elements are
considered as inliers so that a model (3D transformations) is fitted to those elements. All
other data are then tested against the fitted model and if its error is below a threshold then
they are included as inliers. In addition, if the estimated model is reasonably good (its
error is low enough and it has enough matches), it is considered as a good solution. This
process is repeat several times, and the best solution is returned as the system solution.

2. SLAM from visual features

The method used for SLAM using visual features is shown in Figure 2. The method can
be described as follow:

Figure 2. Description of the data flow into the SLAM application.

1. Detecting features for each two frames (fk−1 and fk). In our previous work [9]
we made a study of the different visual features which provide best results for
the SLAM problem. As a result of that study, the combination of ShiTomasi
detector [10] together with SURF descriptor [11] provided the best results. Those
combination of detector and descriptor are the one used for this work. In this
step, also a filter in order to reduce the number of processed frames have been
added. This is done due to the required time to process two consecutive frames
could be high with respect to acquisition rate. Then, some useful frames could
not be processed. We would like to avoid processing frames where the robot has
not changed its pose or the movement is below a given threshold.

• Firstly, when a new image is captured, the ShiThomasi detector is computed.
Then, the optical flow is calculated from those two images, using the iterative
disperse version of the Lucas-Kanade pyramidal optical flow [12].

• If the result from the optical flow indicates that the transformation is below a
given threshold, the system does not process the current frame.

• If the optical flow indicates a significative change, the descriptors from the
points detected by ShiThomasi are calculated. This results is passed to the next
step.

2. From the features of the previous and current frame, we estimate the egomotion
done by the robot. We do not use the result from the optical flow due to that result
is noisy and not as accurate as the one proposed here. Features are matched using
their descriptors information. But first, we propose to use several filters in order
to eliminate bad features. These filters are:

• Intersection: Features outside the common point of view are rejected.
• Unicity: One feature in one image must only match to one feature in the other

image.
• Bijective: If a feature in one image matches to a feature in the other feature,

the former feature must match the same feature in the first image.

• Directionality: If a direction of a match are outside the normal distribution
of directions, this match is deleted. This is done iteratively, calculating the
distribution of matching directions and deleting the ones that are outside the
distribution.

• Dispersion: If two matches are close enough, one of them is deleted. This is
done due to avoid coplanarity in the transformation calculus.

3. At this time, only a few matches have survived (see Figure 3). The 3D informa-
tion for each feature is assigned. Then, the Ransac method is applied, providing a
3D transformation between these two frames. Each processed frame is a node in
a graph, where the transformation between two consecutive frames are the edges.

Figure 3. Two consecutive frames and the points obtained after the filters have been applied.

4. In order to solve the SLAM, we apply the Tree-based netwORk Optimizer
(TORO) method [13]. This method uses a tree structure to define and efficiently
update local regions at each iteration by applying a variant of stochastic gradient
descent. The nodes of the structure are the robot poses and the edges between
nodes are the transformations obtained in the last step. TORO, once applied, pro-
vides the corrections of the errors accumulated in the path. For loop detection
(Figure 2), the search is performed in the neighborhood of the current position.
The neighborhood is represented by the nodes close to the current position inside
the graph. These neighboring nodes are checked against the current frame, using
the method described in the previous step. If a loop closure is detected, the TORO
method is applied in order to correct the transformations between nodes and thus
obtaining the rectified map.

The execution mean time for the different steps are (in a Intel Core2 Duo T7500
2.2Ghz of CPU with 2GiB of memory RAM):

• ShiTomasi detector: 45 milliseconds.
• Optical flow: 150 milliseconds.
• Surf descriptor: 57 milliseconds.
• Ransac: 30 ms
• TORO: 100 milliseconds.

The detector and the optical flow are executed each time a new image is captured, but
the rest of the process is executed by demand, i.e. only when the optical flow filter passes
the information to the next step. The TORO method can be executed in a new thread,

even a different machine. The use of the optical flow provides not only a reduction in
execution time (descriptor plus ransac plus TORO are not executed), but also the number
of nodes in the graph is reduced, reducing at the same time the TORO execution. Without
the use of the optical flow step, the TORO step increases its execution time, due to the
greater number of nodes in the graph.

3. Results and navigation

In this section, we show some results obtained by our method. In Figures 4 and 5 the
reconstructed environments are shown, before and after the TORO SLAM method was
applied. In both images, the top image shows the reconstructions using only the egomo-
tion calculated from two consecutive frames. At the bottom one, a rectification of the
complete trajectory is done, once the loop detection has been detected.

3.1. Navigation

We are also interested in using the reconstructed map for navigation tasks, even we would
like to use partial maps in order to guide the robot through the environment, guiding the
robot to unexplored areas. However, the huge quantity of points (more than 300.000 3D
points for each frame) makes the map unmanageable. For that reason, we discretize the
environment into a more simple one, using voxels. A voxel is a 3D cube which contains
all the points inside its coordinates. Thus, instead of managing millions of points, we
manage hundred of voxels. These voxels are used for the system in the navigation task.
Figure 6 shows an example of voxel reconstruction. The navigation method used is sim-
ple: we calculate a method similar to the Virtual Field Histogram (VFH) [14], looking
for unexplored areas.

Sometimes, the system is not able to find the egomotion. This problem occurs when
a time delay obtaining the data is present or when there is not enough features in the
image. To solve this, every robot command is stored in a stack. When the system detects
any error (lack of features, bad egomotion), it executes the stored robot commands in a
reverse order to reach the last stable pose. Then, it continues with the process.

4. Conclusions

In this paper, a complete and fast method for 6DoF SLAM based on visual features
have been decribed. This method is able to build a 3D map and navigate inside it. The
proposed method speeds up previous methods and incorporates several filters in order to
reduce the inherent error when calculating the egomotion. Results of the SLAM show
the validity of our method.

Acknowledgments

These authors want to express their gratitude to Spanish Ministry of Science and Tech-
nology (MYCIT) and the Research and Innovation Vice-president Office of the Uni-
versity of Alicante for their financial support through the projects DPI2009-07144 and
GRE10-16, respectively.

Figure 4. Top: Reconstruction made only with egomotion. Bottom: Results after applying the TORO algo-
rithm.

Figure 5. Top: Reconstruction made only with egomotion. Bottom: Results after applying the TORO algo-
rithm.

Figure 6. Voxel view of a partial reconstruction.

References

[1] O. Koch, S. Teller, Wide-area egomotion estimation from known 3d structure, in: Proc. IEEE Conference
on Computer Vision and Pattern Recognition CVPR ’07, pp. 1-8.

[2] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, M. Csorba, A solution to the simultaneous
localization and map building (slam) problem, Robotics and Automation, IEEE Transactions on 17
(2001) 229241.

[3] P. Besl, N. McKay, A method for registration of 3-d shapes, IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence 14 (1992) 239256.

[4] M. A. Fischler, R. C. Bolles, Random sample consensus: a par- adigm for model fitting with applications
to image analysis and automated cartography, Commun. ACM 24 (1981) 381395.

[5] Peter Henry, Michael Krainin,Evan Herbst, Xiaofeng Ren and Dieter Fox. RGB-D mapping: Using
Kinect-style depth cameras for dense 3D modeling of indoor environments. The International Journal of
Robotics Research April 2012 vol. 31 no. 5 647-663

[6] OpenCV web site: http://opencv.willowgarage.com/wiki/
[7] PCL web site: http://pointclouds.org/
[8] ROS web site: http://ros.org/
[9] J.L. Muñoz, D. Pastor, P. Gil, S.T. Puente, M. Cazorla. A study of 2D features for 3D visual SLAM.

43rd International Symposium on Robotics (ISR). Taipei (Taiwan) 2012.
[10] J. Shi and C. Tomasi, Good Features to Track, in Proc IEEE Conf. on Computer Vision on Pattern

Recognition (CVPR), Seattle, 1994, pp. 593-600.
[11] H. Bay, A. Ess, T. Tuytelaars, L.V. Gool, SURF: Speeded up robust features, Computer Vision and Image

Understanding, 2008, vol. 110, no. 3, pp. 346-359
[12] B. D. Lucas and T. Kanade (1981), An iterative image registration technique with an application to

stereo vision. Proceedings of Imaging Understanding Workshop, pages 121–130
[13] G. Grisetti, C. Stachmiss, W. Burgard, Non-linear Contraint Network Optimization for Efficient Map

Learning, IEEE Trans. on Intelligent Transportation Systems, 2009, vol. 10, no. 3, pp. 428-439.
[14] Borenstein, J. and Koren, Y., 1991, ”The Vector Field Histogram – Fast Obstacle-Avoidance for Mobile

Robots.” IEEE Journal of Robotics and Automation, Vol. 7, No. 3., June 1991, pp. 278-288.

