Aqueous enantioselective aldol reaction of methyl- and phenylglyoxal organocatalyzed by N -Tosyl-(Sa)-binam-Lprolinamide

Journal:	SYNLETT		
Manuscript ID:	Draft		
Manuscript Type:	Letter		
Date Submitted by the Author:	n/a		
Complete List of Authors:	Navarro Moles, Fernando; University of Alicante, Organic Chemistry Guillena, Gabriela; Universidad de Alicante, Departamento de Química Orgánica Najera, Carmen; University of Alicante, Organic Chemistry		
Keywords:	methylglyoxal, organocatalysis, aldol, prolinamide, aqueous conditions		
Abstract:	The direct aldol reaction between methylglyoxal (40\% aqueous solution) or phenylglyoxal monohydrate and ketones or aldehydes is catalyzed by N- tosyl-(Sa)-binam-L-prolinamide to afford the corresponding chiral Y-oxo- $\beta-$ hydroxy carbonyl compounds, mainly as anti isomers with enantioselectivities up to 97\%.		

SCHOLARONE ${ }^{\text {" }}$
Manuscripts

Aqueous enantioselective aldol reaction of methyl- and phenylglyoxal organocatalyzed by N-Tosyl- $\left(S_{\mathrm{a}}\right)$-binam-L-prolinamide.

Fernando J. N. Moles, Gabriela Guillena,*Carmen Nájera*
Dpto. Química Orgánica and Instituto de Síntesis Orgánica, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
Fax: +0034-965903549.
E-mail: gabriela.guillena@ua.es, cnajera@ua.es.
Received: The date will be inserted once the manuscript is accepted.
Dedication - If you wish to insert a short dedication please overwrite this text, otherwise delete the paragraph.

Abstract

The direct aldol reaction between methylglyoxal (40% aqueous solution) or phenylglyoxal monohydrate and ketones or aldehydes is catalyzed by N-tosyl- $\left(S_{\mathrm{a}}\right)$-binam-Lprolinamide to afford the corresponding chiral γ-oxo- β-hydroxy carbonyl compounds, mainly as anti isomers with enantioselectivities up to 97%.

Key words: methylglyoxal, organocatalysis, aldol, prolinamide, aqueous conditions.

Methylglyoxal (1a), an endogenous α-oxoaldehyde which is a potent protein modifier, ${ }^{1}$ is a versatile reagent for the synthesis of heterocyclic compounds ${ }^{2}$ using organocatalyzed methodologuies. ${ }^{3}$ However, it use as electrophile in related organocatalyzed enantioselective aldol processes ${ }^{4}$ have been scarcely described, ${ }^{5}$ although it would afford to synthetically important chiral γ-oxo- β-hydroxy carbonyl compounds. Probably, the reluctant use of this type of α-alkyl- α-oxo aldehydes as electrophiles is due to their facile hydratation and polymerization tendency. On the other hand, methylglyoxal is only commercially available as an aqueous solution (40\%) and the use of water as a reaction media to carry out organocatalytic processes remains a challenge, due to the fact that water can interfere with the formation of hydrogen bonds and polar interactions between the organocatalysts and substrates. ${ }^{6}$ Only some privileged organocatalytic systems such as prolinamide and diaryl prolinol derivatives among others, have shown their efficiency as organocatalysts in water or aqueous media. ${ }^{7}$ Most of these systems are highly hydrophobic molecules that diminished the contact with bulk water and the transition states, with actually the process taking place in a highly concentrated organic phase. ${ }^{8}$ Recently, we have shown that prolinamides derived from 1,1'-binaphthyl-2, 2'-diamine (binam) $\mathbf{2}^{9}$ and $\mathbf{3}^{10}$ and their supported related binam derivatives (4 and 5), ${ }^{11}$ led to excellent results in the inter- and intramolecular aldol reactions under several reaction conditions, even using challenging aqueous electrophiles such as glyoxylic acid ${ }^{12}$ and 2,2dimethoxyacetaldehyde. ${ }^{13}$
Based on these previous results, we thought of interest the study of the efficiency of binam-prolinamide derivatives as organocatalysts in the reaction between methyl- and phenylglyoxal with ketones ${ }^{5 a}$ and with aldehydes. ${ }^{5 b, \mathrm{c}}$

First, the optimization of the reaction parameters in the reaction between acetone (6a) and methylglyoxal (1a, 40% aqueous solution) was studied. This reaction gave the Henze's ketol ${ }^{14}$ (7a), which is involved in plants metabolism, ${ }^{15}$ as a product.

Figure 1Binam-prolinamide derivatives as catalyst in the aldol reaction.

The efficiency of the two different binam-prolinamide derivatives $\mathbf{2}$ and $\mathbf{3}(20 \mathrm{~mol} \%)$ was evaluated using 10 equiv. of acetone as nucleophile (Table1). Better enantioselectivity was achieved with catalysts 3 than with catalysts 2 (Table 1, entries 1-4). While catalysts $\mathbf{2 a}$ and $\mathbf{3 a}$ afforded compound 7a, catalysts $\mathbf{2 b}$ and $\mathbf{3 b}$ gave its enantiomer (ent-7a) with lower enantioselectivity, showing that the configuration of the achieved aldol product was controlled by the chirality of the proline, ${ }^{16}$ and that the match combination is $\left(S_{\mathrm{a}}\right)$-binam and L -Pro. The results obtained with both catalysts were superior in terms of conversion, yields and enantioselectivities to the results achieved with L-proline (Table 1, compare entries 1-4 with entry 5), that gave product $7 \mathbf{a}$ as a racemic mixture. As the best enantioselectivity for this process was achieved with the $\left(S_{\mathrm{a}}\right)$-binamsulfo-L-Pro derivative (3a) as catalyst, the rest of the reaction
parameters, were done using this catalyst (Table 1, entry 3).
The effect of the amount of nucleophile was evaluated. While decreasing the amount of acetone (6a) from 10 to 5 equiv. led to similar results, using only 2 equiv. of acetone provoked a decrease in the reaction rate and enantioselectivity (Table 1, compare entry 3 with 6 and 7). Changing the catalyst loading to 10 and $5 \mathrm{~mol} \%$, led to similar results in terms of conversion but with slight lower selectivity being found when only $5 \mathrm{~mol} \%$ of $\mathbf{3 a}$ was used (Table 1, entries 8 and 9). Decreasing the temperature to $0^{\circ} \mathrm{C}$ in the presence of $10 \mathrm{~mol} \%$ of $\mathbf{3 a}$ and 5 equiv. of acetone, gave 88% ee but lower conversion and yield (Table 1, compare entries 3 and 10). Therefore, the effect of the addition of $\mathrm{PhCO}_{2} \mathrm{H}$ acid as co-catalyst was evaluated under these reaction conditions, but hardly any acceleration of the reaction was observed (Table 1, entry 12). Thus, under the best reaction conditions ($10 \mathrm{~mol} \%$ of $\mathbf{3 a}, 5$ equiv. of $\mathbf{6 a}$ and $25^{\circ} \mathrm{C}$), the time required for the reaction completion was reevaluated, finding that after 12 h product 7 a was achieved in almost quantitative yield and 90% ee (Table 1, entry 12). These results are better to those previously reported using simple L-prolinamide or the dipeptide L-Pro-L-Leu under neat conditions. ${ }^{5 a}$ Finally, the use of the supported binam-derivatives $\mathbf{4}$ and 5 as catalysts in the reaction between acetone and methylglyoxal was tested, but the reaction failed (Table 1, entries 13 and 14).

Table 1 Optimization of reaction conditions between acetone (6a) and methylglyoxal (1) ${ }^{a}$

		6a		$\xrightarrow[\text { T, additives }]{\text { Cat. }}$		 7a	
Entry	$\begin{gathered} \text { Cat } \\ (\mathrm{mol} \%) \end{gathered}$	$\begin{gathered} \mathbf{6 a} \\ \text { (equiv) } \end{gathered}$	T (${ }^{\circ} \mathrm{C}$)	t (h)	Conv. ${ }^{\text {b }}$	Yield $(\%)^{c}$	ee (\%) ${ }^{\text {d }}$
1	2a (20)	10	25	24	100	-	80
	2b (20)	10	25	24	100	-	-66
	3a (20)	10	25	24	100	82	88
	3b (20)	10	25	24	100	65	-68
	L-Pro (20)	10	25	72	80	66	0
6	3 a (20)	5	25	24	100	-	87
	3a (20)	2	25	24	95	-	80
8	3a (10)	5	25	24	100	-	87
9	3a (5)	5	25	24	100	-	80
10	3a (10)	5	0	24	90	75	88
11^{e}	3a (10)	5	0	24	93	84	88
12	3a (10)	5	25	12	100	94	90
13	4 (20)	5	25	72	-	-	-
14	5 (20)	5	25	168	-	-	-

Once the best reaction conditions were established (Table 1, entry 12), the scope of the aldol reaction of
methylglyoxal (40% aqueous solution) with different ketones was studied (Scheme1 and Table 2). ${ }^{17}$

Scheme 1Aldol reaction of methylglyoxal with ketones.

Table 2Aldol reaction of methylglyoxal with ketones ${ }^{a}$
(\%)
${ }^{a}$ Reaction conditions: Methylglyoxal ($0.25 \mathrm{mmol}, 40 \%$ aq. solution), ketone (5 equiv), catalyst 3a ($10 \mathrm{~mol} \%$) at $25^{\circ} \mathrm{C}$ for 24 h , otherwise stated. ${ }^{b}$ After purification by column chromatography. ${ }^{c}$ Determined by the ${ }^{1} \mathrm{H}$ NMR of the crude product. ${ }^{d}$ Determined by chiral-phase HPLC analysis for the major isomer. ${ }^{e}$ Only 12 h were required for reaction completion. ${ }^{f} 30 \mathrm{~h}$ required for reaction completion.
In all cases, with the exception of cyclopentanone and 1,4-cyclohexadione (Table 2, entry 3 and 7, respectively), the major isomer achieved was the anti
isomer 7. The diastereoselectivities were rather moderate with the exception for cyclohexanone derivatives functionalized at the 4 -position (products $\mathbf{7 d}-7 \mathbf{f}$, entries $4-6$). Only product $7 \mathbf{g}$, achieved by reaction with 1,4 -cyclohexadione, was obtained with low enantioselectivity (Table 2, entry 7), being the enantiomeric excesses for the rest of the examples higher that 82%. In the case of 4 -substituted cyclohexanones, the major diastereoisomer formed was the expected anti,anti-aldol, being the diastereoselectivities highly dependent on the substituent at the 4 -position (Table 1 , entries $8-10$). The relative configuration for compounds $\mathbf{7 h} \mathbf{- 7 \mathbf { j }}$ was done comparing the chemical shifts and coupling constants to those previously reported for related glyoxylic acid and ethyl glyoxylate derivatives, ${ }^{12}$ and confirmed by NOESY experiments. The reaction with cyclobutanone led to the anti expected product $7 \mathbf{k}$ in good enantioselectivity but with low yield and diastereoselectivity (Table 2, entry 11). Attempts to extend the reaction to other ketones such as butanone or α-alkoxy ketones failed.
Once the scope of the reaction of aqueous methylglyoxal with ketones was accomplished, the cross aldol between methylglyoxal with enolizable aldehydes was studied under the same reaction conditions. This cross aldol reaction has been previously reported, ${ }^{5 b, c}$ showing that the corresponding γ-oxo- β-hydroxy aldehydes isomerized easily during purification procedures. Therefore, these aldol products were in situ allowed to react with $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}$ to give the corresponding Wittig adducts. Following this one-pot two step procedure, products 10 were obtained(Scheme 2, Table 3). ${ }^{18}$ As before, in all cases the anti isomer was the major isomer, being the stereochemistry of the product assigned based in previously reported results. ${ }^{5 b}$ The reaction of methylglyoxal (1a) with propanal led to product 10a in moderate yield and diastereoselectivity but excellent enantioselectivity, comparable to the enantioselectivity achieved using diarylprolinol as catalyst ($10 \mathrm{~mol} \%$) in $\mathrm{THF}^{5 \mathrm{~b}}$ (Table 3, entry 1). Better results were achieved in the reaction with octanal and heptanal and phenylpropanal, giving products 10b, 10c and 10d in excellent diastereo- and enantioselectivity, respectively (Table 3, entries 2-4). The reaction between phenylglyoxal ${ }^{19}$ (1b) and several aldehydes was also tested. ${ }^{20}$ When propanal was used as nucleophile, moderate yield, diastereo-
and enantioselectivity was obtained (Table 3, entry 5). Meanwhile, phenylpropanal led to lower diastereoselectivity but better enantioselectivity (Table 3 , entry 6).

Table 3 Aldol reaction of glyoxals $\mathbf{1}$ with aldehydes followed by Wittig olefination ${ }^{a}$

Entry	Major product	Yield $(\%)^{b}$	$\mathrm{Dr}^{\text {c }}$	ee (\%) ${ }^{\text {d }}$
$\overline{1}{ }^{e}$		40	76:24	92
2	OH	57	98:2	95
3	O_{O}	65	99:1	96
4	H	48	99:1	97
5		55	62:38	77
6^{f}		48	55:45	86

${ }^{a}$ Reaction conditions: Methylglyoxal $(0.25 \mathrm{mmol}, 40 \%$ aq. solution) ${ }^{18}$ or phenylglyoxal monohydrate $(0.25 \mathrm{mmol}),{ }^{20}$ aldehyde (2 equiv), catalyst 3a ($10 \mathrm{~mol} \%$) at $25^{\circ} \mathrm{C}$ for 24 h , otherwise stated. ${ }^{b}$ Overall yield after purification by column chromatography. ${ }^{c}$ Determined by the ${ }^{1} \mathrm{H}$ NMR of the crude product. ${ }^{d}$ Determined by chiral-phase HPLC analysis for the major isomer.
In conclusion, N-tosyl-($\left.S_{\mathrm{a}}\right)$-binam-L-prolinamide was an efficient catalysts to promote the aldol reaction between methylglyoxal under aqueous conditions or phenylglyoxal monohydrate with ketones or aldehydes, affording chiral γ-oxo- β-hydroxy carbonyl compounds and ε-oxo- δ-hydroxy α, β-unsaturated esters, respectively in good results in terms of yields, diastereo- and enantioselectivities.
Supporting Information for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/10.1055/s00000083.

Scheme 2 Aldol reaction of glyoxals with aldehydes.

Primary Data for this article are available online at http://www.thieme-
connect.com/products/ejournals/journal/10.1055/s-

00000083 and can be cited using the following DOI: (number will be inserted prior to online publication).

Acknowledgment

This work was financially supported by the Ministerio de Economia y Competitividad (MINECO: Projects: CTQ2010-20387 and Consolider INGENIO CSD20070006), FEDER, the Generalitat Valenciana (Prometeo/2009/039, the University of Alicante and the EU (ORCA action CM0905). We thank to Dr. Rosa M. Ortiz for the synthesis of both enantiomers of [1,1'-binaphthalene]-2,2'-diamine.

References

(1) (a) Klöpfer, A.; Spanneberg, R.; Glomb, M. A. J. Agric. Food Chem. 2011, 59, 394. (b) Pfeifer, Y. V.; Haase, P. T.; Kroh, L. W. J. Agric. Food Chem. 2013, 61, 3090.
(2) (a) Fernández, M; Vicario, J. L.; Reyes, E.; Carrillo, L.; Badia, D. Chem. Commun. 2012, 48, 2092. (b) Ren, L.; Lian.X.-L.; Gong, L.-Z. Chem. Eur. J. 2013, 19, 3315. (c) Xu, Z.; De Moliner, F.; Cappelli, A. P.; Hulme, C. Org. Lett.2013, 15, 2738.
(3) (a) Enantioselective Organocatalysis, Dalko P. I. Ed WILEY-VCH: Weinheim, 2007. (b) Enantioselective Organocatalyzed Reactions, Mahrwald, R. Ed. Springer: Heidelberg, 2011; Vols 1 and 2; (c) Science of Synthesis, List, B. Maruoka,K. Ed. Georg Thieme Verlag, Stuttgart 2011; Vols 1 and 2; (d) Comprehensive Enantioselective Organocatalysis: Catalysis, Reactions and Applications, Dalko, P. I. Ed. WILEY-VCH: Weinheim, 2013.
(4) (a) Guillena, G.; Nájera C.; Ramón, D. J. Tetrahedron: Asymmetry 2007, 18, 2249. (b) Geary L. M.; Hultin, P. G. Tetrahedron: Asymmetry 2009, 20, 131. (c) Zlotin, S. G.; Kucherenko A. S.; Beletskaya, I. P. Russ. Chem. Rev. 2009, 78, 737. (d) Trost B.; Brindle, C. S. Chem. Soc. Rev. 2010, 39, 1600. (e) Heravi M. M.; Asadi, S. Tetrahedron: Asymmetry 2012, 23, 1431. (f)Guillena, G. in Modern Methods in Stereoselective Aldol Reactions, Mahrwald, R. Ed. Wiley-VCH: Weinheim, 2013, 155.
(5) (a) Alberg, D. G.; Poulsen, T. B.; Bertelsen, S.; Christensen, K. L.; Birkler, R. D.; Johannsen, M.; Jørgensen, K. A. Bioorg. Med. Chem. Lett. 2009, 19, 3888. (b) Hayashi, Y.; Yasui, Y.; Kojima, M. Kawamura, T., Ishikawa, H. Chem. Commun. 2012, 48, 4570. (c) Hayashi, Y.; Kojima, M. ChemCatChem, 2013, 5, 2883.
(6) Lidström, U. M. Chem. Rev. 2002, 102, 2751.
(7) (a) Mase, N.; Barbas, C. F. III, Org. Biomol. Chem. 2010, 8, 4043. (b) Toma, S.; Sebesta, R.; Meciarova, M. Curr. Org. Chem. 2011, 15, 2257. (c) Bhowmick, S.; Bhowmick, K. C. Tetrahedron: Asymmetry 2011, 22, 1945. (d) Chen, F.; Gong, P.; Gao, Y.; Zhang, H.; Zhou, A. Mini-Rev. Org. Chem. 2013, 10, 207. (e) Mlynarski, J.; Baś, S. Chem. Soc. Rev. 2014, 43, 577.
(8) Gruttadauria, M.; Giacalone, F.; Noto, R. Adv. Synth. Catal. 2009, 351, 33 and references quoted therein.
(9) (a) Guillena, G.; Hita, M. C.; Nájera, C. Tetrahedron: Asymmetry 2006, 17, 729. (b) Gryko, D.; Kowalczyk, B. Zawadzki, L. Synlett 2006, 1059. (c) Guizzetti, S.; Benaglia, M.; Pignataro, L.; Puglisi, A. Tetrahedron: Asymmetry 2006, 17, 2754.(d) Ma, G.-N.; Zhang, Y.P.; Shi, M. Synthesis 2007, 197.(e) Guizzetti, S.; Benaglia, M.; Raimondi, L.; Celentano, G. Org. Lett. 2007, 9, 1247. (f) Kucherenko, A. S.; Syutkin, D. E.; Zlotin, S. G. Russ. Chem. Bull. 2008, 57, 591.(g) Guillena, G.; Hita, M. C. Nájera, C.; Viózquez, S. F. Tetrahedron: Asymmetry 2007, 18, 2300. (h) Guillena, G.; Hita, M. C.; Nájera, C.; Viózquez, S.
F.J. Org. Chem. 2008, 73, 5933. (i) Viózquez, S. F.; Bañón-Caballero, A.; Guillena, G.; Nájera, C.; Gómez-Bengoa, E.Org. Biomol. Chem. 2012, 10, 4029.
(10) (a) Guillena, G.; Nájera, C.; Viózquez, S. F. Synlett 2008, 3031. (b) Viózquez, S. F.; Guillena, G.; Nájera, C.; Bradshaw, B.; Etxebarria-Jardí, G.; Bonjoch, J. Org. Synth. 2011, 88, 317.
(11) (a) Bañón-Caballero, A.; Guillena, G.;Nájera, C. Green Chem. 2010, 12, 1599. (b) Bañón-Caballero, A.; Guillena, G.; Nájera, C. Helv. Chim. Acta. 2012, 95, 1831. (c) Bañón-Caballero, A.; Guillena, G.; Nájera, C.; Faggi, E.;Sebastián, R. M.; Vallribera, A. Tetrahedron 2013, 69, 1307. (d) Bañon-Caballero, A.; Guillena, G.; Nájera, C. J. Org. Chem.2013, 79, 5349. (a)Moles, F. J. N.; Guillena, G.; Nájera, C. RSC Adv., 2014,4, 9963 . (b) Moles, F. J. N.;Guillena, G.; Nájera, C.;Gómez-Bengoa, E. Synthesis, 2014, in press.
(13) Moles, F. J. N.; Bañón-Caballero, A.; Guillena, G.; Nájera, C. Tetrahedron: Asymmetry 2014, 25, 1323.
(14) (a) Henze, M.; Müller, R. Z. Physiol. Chem. 1933, 214,281. (b) Schechter, M. S.; Green, N.; LaForge, F. B. J. Am. Chem. Soc. 1949, 71, 3165.
(15) (a) Holmes, F. L.; Hans Krebs- The formation of a Scientific Life 1900-1933; Oxford University Press: Oxford 1991, 245. (b) Fang, J-M.; Wang, K.-C.; Cheng, Y.-S. J. Chin. Chem. Soc. 1991, 38, 297. (c) Li, Y.; Shi, Y.-P. Pharmazie 2007, 62, 714.
(16) Stereochemistry assigned by comparison of the optical rotation values of the literature, in reference 5 a.
(17) To a mixture of the methylglyoxal (40% aqueous solution, $0.25 \mathrm{mmol}, 0.038 \mathrm{~mL}$) and catalyst (10 $\mathrm{mol} \%$) at the indicated temperature was added the corresponding ketone (1.25 mmol). The reaction was stirred until the methylglyoxal was consumed (monitored by TLC). The resulting residue was purified by chromatography (hexanes/AcOEt) to yield the pure aldol product. During purification aldols 7d-7f undergo a slight epimerisation.
(18) To a mixture of the methylglyoxal (40% aqueous solution, $0.25 \mathrm{mmol}, 0.038 \mathrm{~mL}$) and catalyst (10 $\mathrm{mol} \%$) at the indicated temperature was added the corresponding aldehyde (0.5 mmol). The reaction was stirred until the methylglyoxal was consumed (monitored by TLC). $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}(0.178 \mathrm{~g}, 0.5$ mmol) was added and reaction mixture was stirred for 2 h . Upon completion, the reaction was quenched by passing through silica gel pad, and concentrated in vacuo. The resulting residue was purified by chromatography (hexanes/AcOEt) to yield the α, β unsaturated ester.
(19) Arylglyoxals are important reagents for the synthesis of heterocyclic compounds. See, for instance: Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Chem. Rev. 2013, 113, 2953.
(20) To a mixture of the phenylglyoxal monohydrate (0.25 mmol, 0.028 g) and catalyst ($10 \mathrm{~mol} \%$) at the indicated temperature was added the corresponding aldehyde (0.5 mmol). The reaction was stirred until the phenylglyoxal was consumed (monitored by TLC). $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}(0.178 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added and reaction mixture was stirred for 2 h . Upon completion, the reaction was quenched by passing through silica gel pad, and concentrated in vacuo. The resulting residue was purified by chromatography (hexanes/AcOEt) to yield the α, β unsaturated ester.

Binam-prolinamides catalyzed the aqueous aldol reaction of glyoxals.

Manuscript submission checklist

- Statement of significance of work.
- Full mailing address, telephone, and fax numbers and e-mail address of the corresponding author.
- Graphical abstract.
- 5 key words.
- Original Word file.
- Original graphics files.

Proceed to submit your article via our online submission system at http://mc.manuscriptcentral.com/synlett.

Supporting Information for:

Aqueous enantioselective aldol reaction of methyl- and phenylglyoxal organocatalyzed by N -Tosyl-(S_{a})-binam-L-prolinamide.

Fernando J. N. Moles, Gabriela Guillena*, Carmen Nájera*
Departamento de Química Orgánica e Instituto de Síntesis Orgánica, Universidad de Alicante, Apdo. 99, Carretera de San Vicente s/n, E-03080-Alicante, Spain

Gabriela.guillena@ua.es, cnajera@ua.es

Table of Contents

General information S3
General procedures for the aldol reaction S3
Spectra data for aldol product S6
HPLC data for aldol products S12
NMR spectra for aldol products S25
HPLC chromatograms for aldol products S51
References S74

1. General information: Catalysts 2 and $\mathbf{3}$ were prepared according to literature. ${ }^{1}$ All the reagents were commercially available and used without further purification. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}, 400$ MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were obtained at $25^{\circ} \mathrm{C}$ using CDCl_{3} as solvent and chemical shifts are reported as δ values relative to TMS as internal standard. IR spectra were obtained with Jasco 4100 LE (Pike Piracle ATR). High resolution mass spectra (HRMS-ESI) were obtained on a Waters LCT Premier XE apparatus equipped with a time of flight (TOF) analyzer and the samples were ionized by ESI techniques and introduced through an ultra-high pressure liquid chromatography (UPLC) model Waters ACQUITY H CLASS. Optical rotations were measured on a Jasco P-1030 Polarimeter with a 5 cm cell (c given in $\mathrm{g} / 100 \mathrm{~mL}$). HPLC analyses were performed on equipped with a chiral column and automatic injector, using mixtures of n-hexane/isopropyl alcohol (IPA) as mobile phase, at $25^{\circ} \mathrm{C}$. Analytical TLC was performed on silica gel plates and the spots were visualized using KMnO_{4} solution as revelator. For flash chromatography we employed silica gel 60 ($0.040-0.063 \mathrm{~mm}$).

2. General procedures for the aldol reaction

2.1 General procedure for the aldehyde-ketone aldol reaction using methylglyoxal $\mathbf{4 0 \%}$

 aqueous solution:To a mixture of the methyl lyoxal 40% aqueous solution ($0.25 \mathrm{mmol}, 0.038 \mathrm{~mL}$) and catalyst ($10 \mathrm{~mol} \%$) at the indicated temperature was added the corresponding ketone (1.25 mmol). The reaction was stirred until the methylglyoxal was consumed (monitored by TLC). The resulting residue was purified by chromatography (hexanes/AcOEt) to yield the pure aldol product. During purification the aldols 7d, 7eand $\mathbf{7 f}$ undergo an epimerisation and therefore the diastereoselectivities of the crude ${ }^{1} \mathrm{H}$-RMN is different than the one showed in the ${ }^{1} \mathrm{H}$ NMR spectra.
2.2 General procedure for the aldehyde-aldehyde aldol reaction using methylglyoxal 40\% aqueous solution:

To a mixture of the methylglyoxal 40% aqueous solution ($0.25 \mathrm{mmol}, 0.038 \mathrm{~mL}$) and catalyst ($10 \mathrm{~mol} \%$) at the indicated temperature was added the corresponding aldehyde (0.5 mmol). The reaction was stirred until the methylglyoxal was consumed (monitored by TLC). Wittig Reagent $(0.178 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added and reaction mixture was stirred for 2 h . Upon completion, the Witting reaction was quenched by passing through silica gel pad, and concentrated in vacuo. The resulting residue was purified by chromatography (hexanes/AcOEt) to yield the \square, \square-unsaturated ester.

2.3 General procedure for the aldehyde-aldehyde aldol reaction using phenylglyoxal

 monohidrate:To a mixture of the phenylglyoxal monohidrate ($0.25 \mathrm{mmol}, 0.028 \mathrm{~g}$) and catalyst ($10 \mathrm{~mol} \%$) at the indicated temperature was added the corresponding aldehyde (0.5 mmol). The reaction was stirred until the phenylglyoxal was consumed (monitored by TLC). Wittig Reagent ($0.178 \mathrm{~g}, 0.5$ mmol) was added and reaction mixture was stirred for 2 h . Upon completion, the Witting reaction was quenched by passing through silica gel pad, and concentrated in vacuo. The resulting residue was purified by chromatography (hexanes/AcOEt) to yield the \square, \square-unsaturated ester.

3. Spectra data of aldol products

7a
(R)-3-hydroxyhexane-2,5-dione (7a). ${ }^{2}$ Yellow oil. $(0.029 \mathrm{~g}, 90 \%) ;[\alpha]^{26}{ }_{\mathrm{D}}=-17(c=0.9$; $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.38\left(\mathrm{Hex} / \mathrm{EtOAc} 1: 1\right.$, revealed with $\left.\mathrm{KMnO}_{4}\right)$. IR: v $3423.0(\mathrm{OH}), 1721.6(\mathrm{C}=\mathrm{O})$, $1707.7(\mathrm{C}=\mathrm{O}), 1357.6\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.36(\mathrm{dd}, J=6.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}$,
$\underline{\mathrm{CHOH}}), 3.00\left(\mathrm{dd}, J=17.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CH}}_{\mathbf{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{CHOH}\right), 2.87\left(\mathrm{dd}, J=17.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{a} \underline{\mathrm{H}}^{-} \underline{-}^{-}\right.$ CHOH), 2.28 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.2$ (C), 207.1 (C), $73.8(\mathrm{CH}), 46.1\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{IE}) \mathrm{m} / \mathrm{z}(\%)$ for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3}: \mathrm{M}^{+}=130$ (2), 112 (3), 97 (6), 87 (100), 70 (10), 55 (11).

7b
(S)-2-((R)-1-hydroxy-2-oxopropyl)cyclohexanone (7b). Data for the isomer ($2 S, 1^{\prime} R$). Yellow oil. $(0.034 \mathrm{~g}, 80 \%) ;[\alpha]^{26}{ }_{\mathrm{D}}=-29\left(c=0.5 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.43$ (Hex/EtOAc 7:3, revealed with $\left.\mathrm{KMnO}_{4}\right)$. IR: v $3460.6(\mathrm{OH}), 1733.69(\mathrm{C}=\mathrm{O}), 1703.8(\mathrm{C}=\mathrm{O}), 1421.3\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.87$ (dd, $J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$), $3.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.15-3.03$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\text {cyclo }}\right), 2.51-2.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {cyclo }}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20-2.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {cyclo }}\right), 2.06-$ $1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {cyclo }}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.3(\mathrm{C}), 210.0(\mathrm{C}), 77.9(\mathrm{CH}), 53.7(\mathrm{CH}), 42.0$ $\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{2}\right)$. HRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}: 170.0943$ found: $171.1020\left(\mathrm{M}^{+}+\mathrm{H}\right.$, calculated 171.1021).

7c
(S)-2-((S)-1-hydroxy-2-oxopropyl)cyclopentanone (7c). ${ }^{3}$ As a diastereoisomer mixture (22:78, anti:syn). Yellow oil. ($0.031 \mathrm{~g}, 79 \%$); $[\alpha]^{26}=-35\left(c=2 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.54$ (Hex/EtOAc 1:1, revealed with KMnO_{4}). IR: v $3455.8(\mathrm{OH}), 1733.7(\mathrm{C}=\mathrm{O}), 1710.5(\mathrm{C}=\mathrm{O}), 1402.9\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.71$ (dd, $J=4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}$, syn), 4.12 (dd, $J=3.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}$, anti), 3.87 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$, anti), $3.54(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$, syn $), 2.81-2.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{cyclo}}\right.$, anti), $2.58-$ 2.48 (m, $1 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$, syn), $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, anti), $2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, syn), $2.20-1.98(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{H}_{\text {cyclo }}$), $1.90-1.67\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\text {cyclo }}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 218.5$ (C), 217.8 (C), 208.7 (C), $207.9(\mathrm{C}), 76.3(\mathrm{CH}), 75.5(\mathrm{CH}), 51.4(\mathrm{CH}), 50.6(\mathrm{CH}), 38.7\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 25.3$ $\left(\mathrm{CH}_{3}\right)$, $25.1\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{IE}) \mathrm{m} / \mathrm{z}(\%)$ for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}: \mathrm{M}^{+}=156$ (2), 138 (3), 113 (100), 96 (30), 85 (40), 67 (84), 57 (28).

7d
(S)-3-((R)-1-hydroxy-2-oxopropyl)dihydro-2H-pyran-4(3H)-one (7d). As a diastereoisomer mixture (89:11, anti:syn). Yellow oil. ($0.035 \mathrm{~g}, 81 \%$); $[\alpha]^{26}{ }_{\mathrm{D}}=-38\left(c=1.5 ; \mathrm{CHCl}_{3}\right)$; $R_{\mathrm{f}}=0.26\left(\mathrm{Hex} / \mathrm{EtOAc} ; 1: 1\right.$, revealed with $\left.\mathrm{KMnO}_{4}\right)$. IR: v $3449.1(\mathrm{OH}), 1769.6(\mathrm{C}=\mathrm{O}), 1712.5(\mathrm{C}=\mathrm{O})$, $1373.1\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomer mixture (1:1)): $\delta 4.70(\mathrm{dd}, J=5.4,3.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHOH}$, syn), 4.35 (dd, $J=11.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$), $4.29-4.18$ (m, $2 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$), 4.03 (dd, J $=11.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$), $3.90-3.65\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\text {cyclo }}\right), 3.43(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.26(\mathrm{ddd}, J=$ $10.9,6.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$), 3.02 (ddd, $J=10.7,6.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$), $2.75-2.56$ (m, 2 H , $\mathrm{H}_{\text {cyclo }}$), 2.52-2.34 (m, 2 H, H cyclo), $2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 209.3(\mathrm{C}), 207.8(\mathrm{C}), 206.4(\mathrm{C}), 206.1(\mathrm{C}), 74.6(\mathrm{CH}), 73.7(\mathrm{CH}), 70.0\left(\mathrm{CH}_{2}\right), 67.7\left(\mathrm{CH}_{2}\right)$, $67.6\left(\mathrm{CH}_{2}\right), 67.5\left(\mathrm{CH}_{2}\right), 53.6(\mathrm{CH}), 53.2(\mathrm{CH}), 42.3\left(\mathrm{CH}_{2}\right), 42.2\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3}\right)$. HRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}$: 172.0736 found: $173.0814\left(\mathrm{M}^{+}+\mathrm{H}\right.$, calculated 173.0814).

(S)-3-((R)-1-hydroxy-2-oxopropyl)dihydro-2H-thiopyran-4(3H)-one (7e). Colorless oil. Data for the isomer $\left(2 S, 1^{\prime} R\right) .(0.034 \mathrm{~g}, 72 \%) ;[\alpha]^{26}=-14\left(c=1 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.33(\mathrm{Hex} / \mathrm{EtOAc} 1: 1$, revealed with KMnO_{4}); IR: v $3413.4(\mathrm{OH}), 1715.5(\mathrm{C}=\mathrm{O}), 1704.8(\mathrm{C}=\mathrm{O}), 1419.3\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.93(\mathrm{dd}, J=7.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$), $3.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 3.46-3.36(m, $1 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$), $3.29-2.75\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\text {cyclo }}\right)$, $2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 208.9(\mathrm{C}), 208.2(\mathrm{C}), 77.8(\mathrm{CH}), 55.8(\mathrm{CH}), 44.2\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 25.4$ $\left(\mathrm{CH}_{3}\right)$. HRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}: 188.0507$ found: $189.0583\left(\mathrm{M}^{+}+\mathrm{H}\right.$, calculated 189.0585).

(S)- tert-butyl 3-((R)-1-hydroxy-2-oxopropyl)-4-oxopiperidine-1-carboxylate (7f). As a diastereomer mixture (93:7, anti:syn). Colorless oil. ($0.064 \mathrm{~g}, 95 \%$); $[\alpha]^{26}{ }_{\mathrm{D}}=-34\left(c=0.7 ; \mathrm{CHCl}_{3}\right)$;
$R_{\mathrm{f}}=0.55\left(\mathrm{Hex} / \mathrm{EtOAc} ; 1: 1\right.$, revealed with $\left.\mathrm{KMnO}_{4}\right)$. IR: v $3390.2(\mathrm{OH})$, $1791.6(\mathrm{C}=\mathrm{O})$, $1691.3(\mathrm{C}=\mathrm{O})$, $1419.3\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereoisomer mixture 1:1): $\delta 4.70$ (dd, $J=4.9$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$, syn), $3.93\left(\mathrm{dd}, J=6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}\right.$, anti), $3.75-3.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{cyclo}}\right)$, 3.49-3.09 (m, 6 H, H cyclo), 2.87 (ddd, $J=10.6,6.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$), $2.63-2.38\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\text {cyclo }}\right)$, 2.30 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$, anti), 2.29 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$, syn), $1.52\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, anti), $1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, syn). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.0$ (C), 207.7 (C), 207.5 (C), 207.0 (C), 154.6 (C), 154.5 (C), $80.8(2 \mathrm{xC}), 75.6(\mathrm{CH}), 74.6(\mathrm{C}), 52.4(\mathrm{CH}), 52.0(\mathrm{CH}), 45.3\left(2 \mathrm{xCH}_{2}\right), 42.9\left(\mathrm{CH}_{2}\right), 42.7\left(\mathrm{CH}_{2}\right), 40.8$ $\left(2 \mathrm{xCH}_{2}\right), 28.3\left(6 \mathrm{xCH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3}\right)$. HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{5}: 271.1421$ found: $294.1322\left(\mathrm{M}^{+}+\mathrm{H}\right.$, calculated 294.1317).

(S)-2-((S)-1-hydroxy-2-oxopropyl)cyclohexane-1,4-dione (7g). As a diastereoisomer mixture (40:60, anti:syn). Yellow oil. ($0.032 \mathrm{~g}, 70 \%$); $[\alpha]^{26}{ }_{\mathrm{D}}=-20\left(c=0.6 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.18$ (Hex/EtOAc; 1:1, revealed with KMnO_{4}). IR: v $3427.8(\mathrm{OH}), 1720.9(\mathrm{C}=\mathrm{O}), 1703.8(\mathrm{C}=\mathrm{O}), 1310.4$ $\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.84$ (dd, $J=4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$, syn), 3.98 (dd, J $=4.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$, anti), $3.82(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$, anti), $3.60(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$, syn), 3.36 (ddd, $J=10.2,6.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$), $3.16-3.03$ (m, $2 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$), $2.91-2.61$ (m, 11 H , $\mathrm{H}_{\text {cyclo }}$), 2.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$, anti), 2.27 (s, 3 H , syn). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.1$ (C), 207.9 (2 xC), $207.3(\mathrm{C}), 207.0(\mathrm{C}), 206.5(\mathrm{C}), 77.7(\mathrm{CH}), 77.2(\mathrm{CH}), 48.9(\mathrm{CH}), 48.1(\mathrm{CH}), 41.3\left(\mathrm{CH}_{2}\right)$, $37.2\left(\mathrm{CH}_{2}\right)$, $37.1\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right)$. HRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4}: 184.0736$ found: $185.0816\left(\mathrm{M}^{+}+\mathrm{H}\right.$, calculated 185.0814).

7h
(2S,4S)-2-((R)-1-hydroxy-2-oxopropyl)-4-methylcyclohexanone (7h). As a diastereoisomer mixture (87:7:4:2). Colorless oil. (0029 g, 78\%); $[\alpha]^{26}{ }_{\mathrm{D}}=-70\left(c=3.2 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.64$ (Hex/EtOAc; 1:1, revealed with KMnO_{4}). IR: v $3450.0(\mathrm{OH}), 1736.5$ (C=O), 1708.6 (C=O), 1239.0 $\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.66$ (dd, $J=4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$, syn), 3.87 (dd, J
$=7.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$, anti) , $3.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$, anti), $3.27(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$, syn),
 $10 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$), 2.05-1.63(m, 8 H, H cyclo), $1.18\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right.$, anti), $1.00(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CHCH}_{3}$, syn). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.6$ (C), 211.6 (C), 210.4 (C), 209.6 (C), 78.5 $(\mathrm{CH}), 75.3(\mathrm{CH}), 52.1(\mathrm{CH}), 49.1(\mathrm{CH}), 41.2\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 34.7\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right)$, $32.2\left(\mathrm{CH}_{2}\right), 31.3(\mathrm{CH}), 26.8(\mathrm{CH}), 26.4\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right)$. HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$: 184.1099 found: $185.1184\left(\mathrm{M}^{+}+\mathrm{H}\right.$, calculated 185.1178).

7i
(2S,4S)-2-((R)-1-hydroxy-2-oxopropyl)-4-phenylcyclohexanone (7i). As a diastereoisomer mixture (68:29:2:1). Colorless oil. (0041 g, 67\%); $[\alpha]^{26}{ }_{\mathrm{D}}=-19\left(c=2.3 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.61$ (Hex/EtOAc; 1:1, revealed with KMnO_{4}). IR: v $3439.4(\mathrm{OH}), 1710.1(\mathrm{C}=\mathrm{O})$, $1704.7(\mathrm{C}=\mathrm{O}), 1102.1$ $\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.21(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.75(\mathrm{dd}, J=4.8,2.3 \mathrm{~Hz}, 1$ $\mathrm{H}, \underline{\mathrm{CHOH}}$, syn), $4.08(\mathrm{dd}, J=5.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$, anti), $3.75(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$, anti), 3.49-3.40(m, 1 H, H cyclo), $3.33\left(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right.$, syn), $3.21-3.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {cyclo }}\right.$), 2.67-2.38 (m, 5 H, H cyclo), $2.36-1.79$ (m, $14 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.8$ (C), 210.3 (C), 210.2 (C), 208.5 (C), 144.2 (C), 143.6 (C), 128.8 (CH), 128.7 (2 xCH), 126.8 (CH), 126.7 (3 xCH), $126.5(\mathrm{C}), 79.2(\mathrm{CH}), 75.4(\mathrm{CH}), 52.5(\mathrm{CH}), 49.9(\mathrm{CH}), 42.6(\mathrm{CH}), 41.5\left(\mathrm{CH}_{2}\right), 39.9\left(\mathrm{CH}_{2}\right), 37.2$ (CH), $35.4\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{3}\right)$. HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}: 246.1256$ found: $247.1342\left(\mathrm{M}^{+}+\mathrm{H}\right.$, calculated 247.1334).

7j
(2S,4S)-4-(tert-butyl)-2-((R)-1-hydroxy-2-oxopropyl)cyclohexanone (7j). As a diastereoisomer mixture (54:32:10:4). Colorless oil. $(0041 \mathrm{~g}, 74 \%) ;[\alpha]^{26}{ }_{\mathrm{D}}=-87\left(c=3.6 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.69$ (Hex/EtOAc; 1:1, revealed with KMnO_{4}). IR: v $3453.9(\mathrm{OH}), 1745.2(\mathrm{C}=\mathrm{O}), 1708.6(\mathrm{C}=\mathrm{O}), 1240.0$ $\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.68$ (dd, $J=4.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$, syn), 4.03 (dd, J
$=6.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$, anti), $3.67(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$, anti), $3.31(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$, syn), 3.06 (td, $J=7.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$), $2.51-2.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {cyclo }}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, anti), 2.24 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$, syn), 2.13-1.47 (m, $11 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$), $0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, anti), $0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, syn). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\square 214.1$ (C), 211.4 (C), 210.3 (C), 209.0 (C), 78.7 (CH), 75.6 $(\mathrm{CH}), 52.4(\mathrm{CH}), 49.7(\mathrm{CH}), 46.4(\mathrm{CH}), 42.6(\mathrm{CH}), 41.3\left(\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right), 33.0(\mathrm{C}), 32.6(\mathrm{C}), 27.5$ $\left(3 \mathrm{xCH}_{3}\right), 27.4\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{3}\right), 27.0\left(3 \mathrm{xCH}_{3}\right), 26.4\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 23.5\left(2 \mathrm{xCH}_{2}\right)$. HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$: 226.1569 found: $227.1638\left(\mathrm{M}^{+}+\mathrm{H}\right.$, calculated 227.1647).

(S)-2-((R)-1-hydroxy-2-oxopropyl)cyclobutanone (7k). ${ }^{4}$ As a diastereoisomer mixture (63:37, anti:syn). Colorless oil. ($0.015 \mathrm{~g}, 42 \%$); $[\alpha]^{26}{ }_{\mathrm{D}}=-20\left(c=1.2 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.46$ (Hex/EtOAc 1:1, revealed with KMnO_{4}); IR: v $3445.2(\mathrm{OH})$, $1776.1(\mathrm{C}=\mathrm{O})$, $1711.5(\mathrm{C}=\mathrm{O})$, $1417.4\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereoisomer mixture 1:1): $\delta 4.62$ (dd, $J=3.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$,
 $\mathrm{H}_{\text {cyclo }}$), 2.29 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$, anti), 2.22 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$, syn), 1.97 (dd, $J=16.9,8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {cyclo }}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.1$ (C), 207.5 (C), 207.1 (C), 206.5 (C), 75.2 (CH), 74.1 (CH), 61.3 $(2 x \mathrm{CH}), 46.7\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{2}\right), 10.6\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{IE}) \mathrm{m} / \mathrm{z}(\%)$ for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{3}: \mathrm{M}^{+}=142$ (2), 124 (10), 99 (34), 86 (24), 71 (80), 57 (100).

(4R,5R,E)-ethyl 5-hydroxy-4-methyl-6-oxohept-2enoato (10a). ${ }^{5}$ As a diastereoisomer mixture ($76: 24$, anti:syn). Colorless oil. $(0.020 \mathrm{~g}, 40 \%) ;[\alpha]^{26}{ }_{\mathrm{D}}=-15\left(c=0.6 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.20$ (Hex/EtOAc; 85:15, revealed with KMnO_{4}). IR: v $3326.6(\mathrm{OH})$, $1715.4(\mathrm{C}=\mathrm{O})$, $1665.2(\mathrm{C}=\mathrm{O})$, $1226.5\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.06$ (dd, $J=15.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CH}=\mathrm{CH}, \text { syn), }}$
 (dd, $J=15.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\underline{\mathrm{CH}}$, syn), 4.27 (dd, $J=4.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}$, syn), $4.24-4.12(\mathrm{~m}$, $5 \mathrm{H}), 3.58(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$, anti), $3.52(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$, syn), $2.98-2.79(\mathrm{~m}, 2 \mathrm{H})$, 2.25 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$, syn), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, anti), $1.32-1.24(\mathrm{~m}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, CHCH_{3}, syn). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.2$ (C), 208.0 (C), 166.3 (C), 165.9 (C), $149.4(\mathrm{CH})$,
$146.6(\mathrm{CH}), 122.8(\mathrm{CH}), 121.9(\mathrm{CH}), 80.1(\mathrm{CH}), 79.0(\mathrm{CH}), 60.5\left(\mathrm{CH}_{2}\right), 60.4\left(\mathrm{CH}_{2}\right), 39.8(\mathrm{CH}), 39.2$ (CH), $25.8\left(\mathrm{CH}_{3}\right)$, $25.6\left(\mathrm{CH}_{3}\right), 16.7\left(\mathrm{CH}_{3}\right), 14.2\left(2 \mathrm{xCH}_{3}\right), 12.0\left(\mathrm{CH}_{3}\right)$. MS (IE) m/z (\%) for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$: $\mathrm{M}^{+}=200$ (2), 182 (3), 157 (40), 128 (38), 111 (100), 100 (35), 83 (28), 55 (42).

10b
($\boldsymbol{R}, \boldsymbol{E}$)-ethyl 4-((\boldsymbol{R})-1-hydroxy-2-oxopropyl)undec-2-enoate (10b). As a diastereoisomer mixture (99:1, anti:syn). Colorless oil. ($0.046 \mathrm{~g}, 65 \%$); $[\alpha]_{\mathrm{D}}^{26}=-56\left(c=1.2 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.23$ (Hex/EtOAc; 85:15, revealed with KMnO_{4}). IR: v 3463.5 (OH), 1715.4 (C=O), 1653.7 (C=O), $1231.3\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.72$ (dd, $J=15.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHCH}}$), 5.81
 $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.55(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.71-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.79-1.62(\mathrm{~m}, 2$ H), 1.42-1.18 (m, 13 H), $0.90\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.0(\mathrm{C})$, $165.7(\mathrm{C}), 145.7(\mathrm{CH}), 123.5(\mathrm{C}), 79.0(\mathrm{CH}), 60.5\left(\mathrm{CH}_{2}\right), 45.6(\mathrm{CH}), 31.8\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 29.4$ $\left(\mathrm{CH}_{2}\right)$, $29.2\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right)$. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4}$: 284.1988 found: $285.2072\left(\mathrm{M}^{+}+\mathrm{H}\right.$, calculated 285.2066).

10c
($\boldsymbol{R}, \boldsymbol{E}$)-ethyl 4-((R)-1-hydroxy-2-oxopropyl)dodec-2-enoate (10c). As a diastereoisomer mixture (98:2, anti:syn). Colorless oil. ($0.042 \mathrm{~g}, 57 \%$); $[\alpha]_{\mathrm{D}}^{26}=-50\left(c=1.4 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.22$ (Hex/EtOAc; 85:15, revealed with KMnO_{4}). IR: v $3463.5(\mathrm{OH}), 1713.4(\mathrm{C}=\mathrm{O}), 1642.0(\mathrm{C}=\mathrm{O})$, $1367.3\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.72$ (dd, $J=15.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHCH}}$), 5.81 (dd, $J=15.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}), 4.27(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.71-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.78-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.19(\mathrm{~m}, 15 \mathrm{H}), 0.90$ (t, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereoisomer mixture 1:1): $\delta 208.5$ (C), $208.1(\mathrm{C}), 166.2(\mathrm{C}), 165.8(\mathrm{C}), 148.5(\mathrm{CH}), 145.8(\mathrm{CH}), 79.6(\mathrm{CH}), 79.0(\mathrm{CH}), 60.5\left(2 \mathrm{xCH}_{2}\right), 45.6$ $\left(\mathrm{CH}_{3}\right), 45.5\left(\mathrm{CH}_{3}\right), 33.9\left(\mathrm{CH}_{2}\right), 31.8\left(2 \mathrm{xCH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.4\left(2 \mathrm{xCH}_{2}\right), 29.2\left(2 \mathrm{xCH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right)$, $27.4\left(\mathrm{CH}_{2}\right)$, $27.3\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$,
$14.1\left(\mathrm{CH}_{3}\right)$. HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4}: 298.2144$ found: $299.2243\left(\mathrm{M}^{+}+\mathrm{H}\right.$, calculated 299.2222).

10d
(4R,5R,E)-ethyl 4-benzyl-5-hidroxy-6-oxohept-2-enoate (10d). ${ }^{5}$ As a diastereoisomer mixture (99:1, anti:syn). Colorless oil. ($0.033 \mathrm{~g}, 48 \%$); $[\alpha]^{26}{ }_{\mathrm{D}}=-42\left(c=1.5 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.15$ (Hex/EtOAc; 80:20, revealed with KMnO_{4}). IR: v $3414.3(\mathrm{OH}), 1712.9(\mathrm{C}=\mathrm{O})$, $1709.6(\mathrm{C}=\mathrm{O})$, $1132.1\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.81(\mathrm{dd}, J=15.8,9.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$), $5.81(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\underline{\mathrm{CH}}), 4.29-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=4.5,2.0$ $\mathrm{Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}), 3.60(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.14-2.68(\mathrm{~m}, 3 \mathrm{H}), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereoisomer mixture (1:1)): $\delta 208.2$ (2 xC), 166.0 (C), 165.6 (C), $147.6(\mathrm{CH}), 144.8(\mathrm{CH}), 138.4(2 x C), 138.2(2 \mathrm{xC}), 129.3(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5$ $(2 x C H), 128.3(2 x C H), 126.7(2 x C H), 126.4(2 x C H), 123.8(C H), 123.1(C H), 79.0(C H), 77.2$ $(\mathrm{CH}), 60.5\left(2 \mathrm{xCH}_{2}\right), 47.3(2 \mathrm{xCH}), 34.3\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right), 14.1$ $\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{IE}) \mathrm{m} / \mathrm{z}(\%)$ for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}: \mathrm{M}^{+}=276$ (2), 258 (8), 233 (16), 203 (28), 187 (27), 129 (37), 91 (100).

($4 R, 5 R, E$)-ethyl 5-hydroxy-4-methyl-6-oxo-6-phenylhex-2-enoate (10e). As a diastereoisomer mixture (61:39, anti:syn). Colorless oil. ($0.035 \mathrm{~g}, 53 \%$); $[\alpha]^{26}{ }_{\mathrm{D}}=-12$ (c=1.2; $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.30\left(\mathrm{Hex} / \mathrm{EtOAc} ; 70: 30\right.$, revealed with $\left.\mathrm{KMnO}_{4}\right)$. IR: v $3439.4(\mathrm{OH}), 1708.6(\mathrm{C}=\mathrm{O})$, $11692.2(\mathrm{C}=\mathrm{O}), 1269.9\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98-7.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.73$
 $\mathrm{CH}=\underline{\mathrm{CH}}), 5.20(\mathrm{dd}, J=6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CHOH}}), 4.22\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.78(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.91-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.32\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH} 3\right), 0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, CHCH_{3}). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.6$ (C), $166.3(\mathrm{C}), 149.8(\mathrm{CH}), 134.3(\mathrm{CH}), 133.5(\mathrm{C})$, $129.1(2 \mathrm{xCH}), 128.5(2 \mathrm{xCH}), 121.7(\mathrm{CH}), 75.0(\mathrm{CH}), 60.4\left(\mathrm{CH}_{2}\right), 40.7(\mathrm{CH}), 14.3\left(\mathrm{CH}_{3}\right), 11.5$ $\left(\mathrm{CH}_{3}\right)$. HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}: 262.1205$ found: $285.1111\left(\mathrm{M}^{+}+\mathrm{H}\right.$, calculated 285.1103).

(4R,5R,E)-ethyl 4-benzyl-5-hydroxy-6-oxo-phenylhex-2-enoate (10f). As a diastereoisomer mixture (55:45, anti:syn). Colorless oil. $(0.044 \mathrm{~g}, 52 \%) ;[\alpha]^{26}{ }_{\mathrm{D}}=-18\left(c=0.4 ; \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.35$ (Hex/EtOAc; 70:30, revealed with KMnO_{4}). IR: v 3452.8 (OH), 1711.5 (C=O), 1656.7 (C=O), $1249.1\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65-7.28(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 6.77(\mathrm{dd}, J=15.8$, $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{CH}}=\mathrm{CH}$), 5.47 (dd, $J=15.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\underline{\mathrm{CH}}$), $4.99(\mathrm{dd}, J=6.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, CHOH), $4.14\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.72(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.15-2.83(\mathrm{~m}, 3 \mathrm{H})$, $1.26\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.7$ (C), 165.7 (C), 144.7 (CH), 138.6 (C), $134.1(\mathrm{CH}), 133.4(\mathrm{C}), 129.5(2 \mathrm{xCH}), 128.9(2 \mathrm{xCH}), 128.8(2 \mathrm{xCH}), 128.3(2 \mathrm{xCH})$, $126.8(\mathrm{CH}), 123.8(\mathrm{CH}), 73.0(\mathrm{CH}), 60.5\left(\mathrm{CH}_{2}\right), 48.8(\mathrm{CH}), 37.7\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$. HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{4}: 338.1518$ found: $339.1600\left(\mathrm{M}^{+}+\mathrm{H}\right.$, calculated 339.1596).

HPLC data for aldol products

7a
The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (80 ${ }^{\circ} \mathrm{C}$, 13.4 Psi), $R_{\mathrm{t}}=34.6 \mathrm{~min}$ (major), $R_{\mathrm{t}}=39.6 \mathrm{~min}$ (minor).

7b
The ee was determined as the benzoate ester.

The ee was determined by chiral HPLC on Chiralpak OD-H column (99% hexane, $1 \% \operatorname{Pr}^{1} \mathrm{OH}$, $25^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, R_{\mathrm{t}}=12.8 \mathrm{~min}($ minor $\operatorname{syn}), R_{\mathrm{t}}=14.9 \mathrm{~min}$ (major syn), $R_{\mathrm{t}}=16.1 \mathrm{~min}$ (major anti), $R_{\mathrm{t}}=22.3 \mathrm{~min}($ minor $a n t i)$.

7c
The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (120 $\left.{ }^{\circ} \mathrm{C}, 13.4 \mathrm{Psi}\right), R_{\mathrm{t}}=21.3 \min \left(\right.$ major anti), $R_{\mathrm{t}}=22.8 \min \left(\right.$ minor anti), $R_{\mathrm{t}}=26.4 \min ($ major $s y n), R_{\mathrm{t}}=$ 31.8 min (minor syn).

7d

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (150 $\left.{ }^{\circ} \mathrm{C}, 13.4 \mathrm{Psi}\right), R_{\mathrm{t}}=8.8 \min \left(\right.$ major anti),$R_{\mathrm{t}}=9.7 \mathrm{~min}\left(\right.$ minor anti), $R_{\mathrm{t}}=10.3 \mathrm{~min}($ major $s y n), R_{\mathrm{t}}=$ $11.0 \mathrm{~min}($ minor syn$)$.

7e
The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (130 $\left.{ }^{\circ} \mathrm{C}, 13.4 \mathrm{Psi}\right), R_{\mathrm{t}}=67.0 \min \left(\right.$ major anti), $R_{\mathrm{t}}=70.7 \mathrm{~min}\left(\right.$ minor anti), $R_{\mathrm{t}}=72.5 \mathrm{~min}($ major $s y n), R_{\mathrm{t}}=$ 79.2 min (minor syn).

The ee was determined by chiral HPLC on Chiralpak IA column (95\% hexane, $5 \% \mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$, $25^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, R_{\mathrm{t}}=17.7 \mathrm{~min}$ (minor syn), $R_{\mathrm{t}}=18.8 \mathrm{~min}$ (major anti), $R_{\mathrm{t}}=20.3 \mathrm{~min}$ (minor anti), $R_{\mathrm{t}}=22.1 \mathrm{~min}$ (minor syn).

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (140 ${ }^{\circ} \mathrm{C}$, 13.4 Psi), $R_{\mathrm{t}}=60.2 \mathrm{~min}$ (major syn), $R_{\mathrm{t}}=62.9 \mathrm{~min}$ (minor syn), $R_{\mathrm{t}}=69.9 \mathrm{~min}$ (major anti), $R_{\mathrm{t}}=$ 71 min (minor anti).

7h
The ee was determined by chiral GC analysis with a CYCLOHEXIL β column $\left(130{ }^{\circ} \mathrm{C}, 13.4\right.$ Psi), $R_{\mathrm{t}}=42.9 \mathrm{~min}$ (major), $R_{\mathrm{t}}=45.5 \mathrm{~min}$ (minor).

7i
The ee was determined by chiral HPLC on AD-H column (95\% hexane, $5 \% \operatorname{Pr}^{\mathrm{i} O H}, 25^{\circ} \mathrm{C}, 1$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm}, R_{\mathrm{t}}=22.2 \min$ (minor), $R_{\mathrm{t}}=24.8 \min$ (major).

7j
The ee was determined by chiral GC analysis with a CYCLOHEXIL β column $\left(165^{\circ} \mathrm{C}, 13.4\right.$ Psi), $R_{\mathrm{t}}=27.8 \mathrm{~min}$ (major), $R_{\mathrm{t}}=29.0 \mathrm{~min}$ (minor).

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (130 ${ }^{\circ} \mathrm{C}$, 13.4 Psi), $R_{\mathrm{t}}=9.1 \mathrm{~min}$ (major anti), $R_{\mathrm{t}}=9.8 \mathrm{~min}$ (minor anti), $R_{\mathrm{t}}=11.1 \mathrm{~min}$ (major syn), $R_{\mathrm{t}}=$ 12.9 min (minor syn).

The ee was determined by chiral GC analysis with a LIPODEX E column $\left(145{ }^{\circ} \mathrm{C}, 13.4\right.$ Psi), $R_{\mathrm{t}}=47.6 \min \left(\right.$ minor anti), $R_{\mathrm{t}}=50.0 \mathrm{~min}$ (major anti), $R_{\mathrm{t}}=55.4 \mathrm{~min}$ (syn).

10b
The ee was determined by chiral HPLC on Chiralpak IA column (97% hexane, $3 \% \mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$, $25^{\circ} \mathrm{C}, 0.3 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, R_{\mathrm{t}}=36.0 \mathrm{~min}($ minor $\operatorname{syn}), R_{\mathrm{t}}=37.6 \mathrm{~min}($ major $\operatorname{syn}), R_{\mathrm{t}}=39.6 \mathrm{~min}$ (major anti), $R_{\mathrm{t}}=46.5 \mathrm{~min}$ (minor anti).

The ee was determined by chiral HPLC on Chiralpak IA column (95\% hexane, 5\% Prioh, $25^{\circ} \mathrm{C}, 0.5 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, R_{\mathrm{t}}=7.0 \mathrm{~min}$ (major syn), $R_{\mathrm{t}}=7.3 \mathrm{~min}$ (minor syn), $R_{\mathrm{t}}=7.7 \mathrm{~min}$ (major anti), $R_{\mathrm{t}}=8.7 \mathrm{~min}($ minor anti).

10d

The ee was determined by chiral HPLC on Chiralpak AD-H column (97% hexane, $3 \% \mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$, $25^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, R_{\mathrm{t}}=25.1 \mathrm{~min}$ (major anti), $R_{\mathrm{t}}=27.9 \mathrm{~min}($ minor $s y n), R_{\mathrm{t}}=29.6 \mathrm{~min}$ (major syn), $R_{\mathrm{t}}=33.2 \mathrm{~min}($ minor anti).

The ee was determined by chiral HPLC on Chiralpak IA column (95\% hexane, $5 \% \mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$, $25^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, R_{\mathrm{t}}=16.4 \mathrm{~min}($ major $s y n), R_{\mathrm{t}}=19.0 \mathrm{~min}($ minor anti) $), R_{\mathrm{t}}=22.0 \mathrm{~min}($ minor syn), $R_{\mathrm{t}}=26.7 \mathrm{~min}($ major anti).

The ee was determined by chiral HPLC on Chiralpak IA column (98% hexane, $2 \% \mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$, $25^{\circ} \mathrm{C}, 1 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, R_{\mathrm{t}}=27.8 \mathrm{~min}$ (major anti), $R_{\mathrm{t}}=35.4 \mathrm{~min}$ (minor anti), $R_{\mathrm{t}}=37.0 \mathrm{~min}$ (major syn), $R_{\mathrm{t}}=39.9 \mathrm{~min}($ minor $s y n)$.

NMR spectra for aldol products

7a

7b
い い N

7c

$\left.\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

$\begin{array}{llllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20\end{array}$

7i

7j

10b

[^0]

年

HPLC spectra for aldol products

7a-Rac

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[p A^{*} s\right]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	36.044	MM	0.5843	71.73704	2.04636	50.27865
2	39.863	MM	0.6651	70.94190	1.77784	49.72135

7a

Peak \#	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area \%
1	35.786	MM	0.6038	78.37714	2.16328	94.89638
2	40.189	MM	0.3498	4.21520	$2.00823 \mathrm{e}-1$	5.10362

7b

7b* - Rac

$\begin{gathered} \text { Feak } \\ \ddagger \end{gathered}$	$\begin{aligned} & \text { Ret Time } \\ & {[\min]} \end{aligned}$		Width [min]	$\begin{gathered} \text { hrea } \\ {\left[\mathrm{maN} \mathrm{~N}^{\prime} \mathrm{l}\right.} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[=\mathrm{maj}} \end{aligned}$	$\begin{gathered} \text { Area } \\ \vdots \end{gathered}$
	12.626	M	0.5528	6159.22656	185.7	31.
	14.694	MF	0.6922	3658.89331	98.82606	18.
	16.162	FM	0.6022	6322.00098	174.97464	31.8436
	22.234	m 5	1.0076	3713.18433	66.86020	18.7031

7b*

7c-Rac

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[\mathrm{pA} * s]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	21.076	MM	0.3800	341.05814	14.96060	19.89804
2	22.247	MM	0.4453	353.51474	13.23264	20.62478
3	26.695	MM	0.6020	507.63150	14.05480	29.61627
4	30.931	MM	0.7330	511.82483	11.63817	29.86092

7c

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [pA]	Area \%
1	21.271	MM	0.3642	256.41824	11.73569	20.88270
2	22.822	MM	0.2436	8.35217	$5.71418 \mathrm{e}-1$	0.68020
3	26.421	MM	0.7746	895.60126	19.27095	72.93775
4	31.784	MM	0.3924	67.52645	2.86842	5.49935

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area \%
1	8.910	MF	0.1960	1119.71643	95.22254	24.26834
2	9.373	FM	0.2269	1142.00781	83.90294	24.75148
3	10.012	MF	0.2503	1187.93152	79.09726	25.74681
4	10.685	FM	0.3089	1164.24207	62.80687	25.23337

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{pA} * \mathrm{~s}]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \frac{\circ}{\circ} \end{gathered}$
1	8.802	MM	0.2981	2300.85913	128.63562	87.62959
2	9.726	MM	0.2150	33.95055	2.63163	1.29303
3	10.304	MM	0.1569	217.19591	23.07042	8.27204
4	11.016	MM	0.1715	73.65915	7.15846	2.80535

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area \%
1	65.937	MF	1.0113	87.23039	1.43767	23.11133
2	68.354	MF	1.0445	90.40750	1.44255	23.95309
3	70.285	MM	1.2913	98.54900	1.27195	26.11014
4	76.727	MM	1.4663	101.24880	1.15087	26.82544

7e

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{pA} * \mathrm{~s}]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	67.053	MF	1.3281	259.55905	3.25723	76.57417
2	70.723	MF	1.0739	26.16152	$4.06014 \mathrm{e}-1$	7.71808
3	72.549	FM	1.0761	40.55659	$6.28127 \mathrm{e}-1$	11.96486
4	79.233	MM	0.7708	12.68706	$2.74316 \mathrm{e}-1$	3.74289

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	16.579	VV	0.3920	2522.59253	93.72870	18.5914
2	18.079	VV	0.4763	4210.12988	125.20703	31.0284
3	20.807	MF	0.6516	4110.35059	105.13191	30.2930
4	22.303	FM	0.7383	2725.55762	61.52640	20.0872

$\mathrm{Boc}_{7 \mathrm{f}}$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min! } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU]] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \frac{1}{2} \end{gathered}$
1	17.702	MM T	0.2954	141.31609	7.97360	2.5221
2	18.768	MM T	0.5259	5084.40479	161.12408	90.7440
3	20.282	MM	0.3800	118.91827	5.21607	2.1224
4	22.117	MM	0.5273	258.37894	8.16640	4.6114

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\text { min] }} \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{pA}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	60.272		1.0633	278.51883	4.36555	40.29986
2	62.904	FM	1.1537	140.48114	2.02949	20.32670
3	69.906	MF	0.7514	70.81514	1.57077	10.24649
4	70.957	FM	1.3743	201.30104	2.44132	29.12695

7h-Rac

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	40.246		0.3817	142.77107	6.23372	12.16131
2	41.630	MF	0.3983	143.87605	6.02115	12.25543
3	42.986	MF	0.4047	68.56679	2.82397	5.84055
4	43.924	MF	0.4499	337.97510	12.51968	28.78889
5	45.486	MF	0.4352	71.20470	2.72679	6.06525
6	46.310	MF	0.5189	346.50616	11.12988	29.51557
7	48.374	MF	0.5316	32.81301	1.02874	2.79503
8	49.031	FM	0.5232	30.26474	$9.64123 \mathrm{e}-1$	2.57797

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area $\%$
1	40.611	MM	0.3919	14.06788	$5.98318 \mathrm{e}-1$	0.80066
2	41.982	MM	0.3836	29.90887	1.29935	1.70223
3	42.937	MF	0.4870	1456.85510	49.85872	82.91518
4	44.372	FM	0.5822	111.78307	3.19989	6.36200
5	45.892	MF	0.4814	59.85265	2.07216	3.40644
$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 46.841 \\ & 48.794 \end{aligned}$	$\begin{aligned} & \text { FM } \\ & \text { MF } \end{aligned}$	$\begin{aligned} & 0.5046 \\ & 0.4111 \end{aligned}$	$\begin{aligned} & 18.42756 \\ & 14.19578 \end{aligned}$	$\begin{aligned} & 6.08637 \mathrm{e}-1 \\ & 5.75525 \mathrm{e}-1 \end{aligned}$	$\begin{aligned} & 1.04878 \\ & 0.80794 \end{aligned}$
8	49.415	FM	0.4556	51.95185	1.90058	2.95678

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime Type } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Width } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	$\underset{i}{\text { Area }}$
1	21.523 MF	0.5323	1915.86108	59.98716	1.7223
2	22.179 MM	0.5526	3667.35156	110.61553	3.2968
3	23.764 MM T	0.5909	1922.35437	52.90542	1.7281
4	24.884 m	0.5205	3854.18628	123.41692	3.4647
5	26.551 MM I	1.4600	7.50899e4	694.66052	67.5022
6	30.107 MM T	1.1167	2.47910 e 4	370.00378	22.2859

$7 i$

$\begin{gathered} \text { Peak } \\ \ddagger \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\min]} \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & {[m i n]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mad]	$\begin{gathered} \text { Area } \\ \text { si } \end{gathered}$
1	21.432	1 M T	0.3912	109.61298	4.98924	0.4725
2	22.372	MI	0.5396	998.37714	30.83524	4.3033
3	24.952	MF T	0.6105	$1.48264 e 4$	404.72870	63.9057
4	26.800	MF T	0.6282	5761.41455	152.86011	24.8333
5	27.865	FM T	0.8002	1211.16748	25.22749	5.2205
6	31.390	$1 \times$	0.5444	293.44104	8.98300	1.2648

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[p A * s]} \end{gathered}$	Height [pA]	Area $\%$
1	25.874	MF	0.2747	741.78180	45.00652	32.81125
2	26.402	FM	0.2570	760.42810	49.30610	33.63603
3	26.745	FM	0.2320	294.07074	21.12223	13.00764
4	27.174	FM	0.2555	298.49817	19.47088	13.20348
5	27.663	MM	0.2535	61.48848	4.04272	2.71982
6	28.393	MM	0.2519	22.16809	1.46666	0.98056
7	28.932	MM	0.3001	60.69062	3.37099	2.68453
8	29.446	MM	0.2931	21.62832	1.23004	0.95669

7j

Deak \#	RatTime [min]	Typa	$\begin{aligned} & \text { Width } \\ & \text { [nin] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[p A * a]} \end{gathered}$	Height [pA]	Area v
1	25.902	MF	0.2553	250.56163	16.35890	27.34689
2	26.372	EM	0.3114	46.08030	2.46622	5.02931
3	26.724	FM	0.3319	36.53725	1.83482	3.98776
4	27.192	FM	0.3424	43.24879	2.10526	4. 72028
5	27.815	FM	0.2924	476.42914	27.15516	51.99860
6	28.350	MF	0.2719	9.87522	$6.05371 \mathrm{~d}-1$	1.07780
7	28.991	MF	0.3065	$22.32 \mathrm{B3日}$	1.21433	2.43697
8	29.527	EM	0.3569	31.17376	1.45561	3.40238

7k-Rac

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.209		0.1174	89.34682	12.68653	21.30984
2	9.696		0.1380	91.04246	10.99381	21.71426
3	11.113	MM	0.1566	119.09615	12.67530	28.40526
4	12.770	MM	0.1910	119.78961	10.45437	28.57065

7k

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{\star} \mathrm{s}\right]} \end{array}$	Height [pA]	Area $\%$
1	9.142	MM	0.1715	335.39655	32.58740	59.57887
2	9.798	MM	0.1127	17.51009	2.58992	3.11044
3	11.143	MM	0.1729	161.10751	15.53290	28.61867
4	12.923	MM	0.1547	48.93132	5.27145	8.69202

Deak \#	$\begin{gathered} \text { Rat:Time } \\ \text { [min] } \end{gathered}$	Typa	Width [m 1 n]	$\begin{gathered} \text { Area } \\ {\left[p A^{*} s\right]} \end{gathered}$	Height [pA]	Araa V
1	47.534	MF	0.9676	228.1450日	3.92978	33.86649
2	50.034	EN	1.0276	225.77日61	3.66183	33.51521
3	55.408	M01	2.0043	219.73653	1.82719	32.61830

$\begin{gathered} \text { Deak } \\ \# \end{gathered}$	$\begin{gathered} \text { RatTine } \\ \text { [min] } \end{gathered}$	Typa	$\begin{aligned} & \text { Width } \\ & \text { [nin] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[p{ }^{2} \pi\right]} \end{gathered}$	Height [pa]	$\begin{gathered} \text { Araa } \\ \mathrm{V} \end{gathered}$
1	47.632	VM	0.6406	5.07409	$1.32018 \mathrm{~m}-1$	2.93308
2	49.980	MN	1.0644	126.13940	1.97509	72.91486
3	55.423	yN	1.8025	41.78198	3.86335a-1	24.15207

10b

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [maU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	38.410	BV	0.6042	280.76089	5.74475	0.6255
2	39.974	VB	1.0269	$4.31121 e 4$	606.80841	96.0521
3	47.462	BB	0.8711	873.47980	12.00126	1. 9461
4	51.311	BB	0.9613	617.74939	7.59209	1. 3763

10c-Rac

10c

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	Area 8
1	6.994	PV	0.2001	145.08846	11.42676	1.3073
2	7.315		0.1664	62.20797	5.74388	0.5605
3	7.774		0.1923	1.06135e4	857.90094	95.6284
4	8.824	VV	0.1914	277.89667	22.92982	2.5039

Peak $\#$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [maU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	24.828	B3	0.5099	3967.47314	119.93842	36.9916
2	27.089	BB	0.5642	1458.02393	40.10164	13.5942
3	30.490	BB	0.6223	1414.68042	35.39716	13.1901
4	33.862	PB	0.7567	3885.15942	74.96174	36.2241

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [maU] } \end{aligned}$	
1	25.11	MM T	0.5554	5009.17139	150.30388	97.7019
2	27.913	MM T	0.4449	7.27816	$2.72646 \mathrm{e}-1$	0.1420
3	29.611	MM T	0.5454	43.59312	1.33217	0.8503
4	33.246	MM T	0.7397	66.95388	1.50849	1.3059

| Peak RetTime Type
 $\#$
 [min] | Width
 [min] | Area
 [mAU*s] | Height
 [maU] | Area | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

References

${ }^{1}$ a) G. Guillena, M. C. Hita, C. Nájera and S. F. Viozquez, J. Org. Chem. 2008, 73, 5933. b) S. F. Viozquez, G. Guillena, C. Nájera, B. Bradshaw, G. Etxebarria-Jardi and J. Bonjoch, Org. Synth. 2011, 88, 317.
${ }^{2}$ Alberg, D. G.; Poulsen, T. B.; Bertelsen, S.; Christensen, K. L.; Birkler, R. D.; Johannsen, M.; Jørgensen, K. A. Bioorg. Med. Chem. Lett. 2009, 19, 3888.
${ }^{3}$ Smith, III, A. B.; Liverton, N. J.; Hrib, N. J.; Sivaramakrishnan, H.; Winzenberg, K. J. Am. Chem. Soc. 1986, 108, 3040.
${ }^{4}$ Mayring, L.; Severin, T. Chem. Ber., 1981, 114, 3863.
${ }^{5}$ Hayashi, Y.; Yasui, Y.; Kojima, M. Kawamura, T., Ishikawa, H. Chem. Commun. 2012, 48, 4570.

[^0]:

