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Abstract: 

The direct aldol reaction between methylglyoxal (40% aqueous solution) or 
phenylglyoxal monohydrate and ketones or aldehydes is catalyzed by N-
tosyl-(Sa)-binam-L-prolinamide to afford the corresponding chiral γ-oxo-β-
hydroxy carbonyl compounds, mainly as anti isomers with 
enantioselectivities up to 97%. 
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Abstract: The direct aldol reaction between methylglyoxal 

(40% aqueous solution) or phenylglyoxal monohydrate and 
ketones or aldehydes is catalyzed by N-tosyl-(Sa)-binam-L-

prolinamide to afford the corresponding chiral γ-oxo-β-hydroxy 
carbonyl compounds, mainly as anti isomers with 

enantioselectivities up to 97%. 

Key words: methylglyoxal, organocatalysis, aldol, 

prolinamide, aqueous conditions. 

Methylglyoxal (1a), an endogenous α-oxoaldehyde 
which is a potent protein modifier,

1 
is a versatile 

reagent for the synthesis of heterocyclic compounds
2 

using organocatalyzed methodologuies.
3
 However, it 

use as electrophile in related organocatalyzed 
enantioselective aldol processes

4
 have been scarcely 

described,
5 

although it would afford to synthetically 
important chiral γ-oxo-β-hydroxy carbonyl 
compounds. Probably, the reluctant use of this type of 
α-alkyl-α-oxo aldehydes as electrophiles is due to 
their facile hydratation and polymerization tendency. 
On the other hand, methylglyoxal is only 
commercially available as an aqueous solution (40%) 
and the use of water as a reaction media to carry out 
organocatalytic processes remains a challenge, due to 
the fact that water can interfere with the formation of 
hydrogen bonds and polar interactions between the 
organocatalysts and substrates.

6
 Only some privileged 

organocatalytic systems such as prolinamide and 
diaryl prolinol derivatives among others, have shown 
their efficiency as organocatalysts in water or aqueous 
media.

7 
Most of these systems are highly hydrophobic 

molecules that diminished the contact with bulk water 
and the transition states, with actually the process 
taking place in a highly concentrated organic phase.

8 

Recently, we have shown that prolinamides derived 
from 1,1’-binaphthyl-2,2´-diamine (binam) 2

9
 and 3

10
 

and their supported related binam derivatives (4 and 
5),

11 
led to excellent results in the inter- and 

intramolecular aldol reactions under several reaction 
conditions, even using challenging aqueous 
electrophiles such as glyoxylic acid

12
 and 2,2-

dimethoxyacetaldehyde.
13

 

Based on these previous results, we thought of interest 
the study of the efficiency of binam-prolinamide 
derivatives as organocatalysts in the reaction between 
methyl- and phenylglyoxal with ketones

5a
 and with 

aldehydes.
5b,c 

First, the optimization of the reaction parameters in 
the reaction between acetone (6a) and methylglyoxal 
(1a, 40% aqueous solution) was studied. This reaction 
gave the Henze´s ketol

14
 (7a), which is involved in 

plants metabolism,
15

 as a product. 
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Figure 1Binam-prolinamide derivatives as catalyst in the aldol 

reaction. 

The efficiency of the two different binam-prolinamide 
derivatives 2 and 3(20 mol%) was evaluated using 10 
equiv. of acetone as nucleophile (Table1). Better 
enantioselectivity was achieved with catalysts 3 than 
with catalysts 2 (Table 1, entries 1-4).While catalysts 
2a and 3a afforded compound 7a, catalysts 2b and 3b 
gave its enantiomer (ent-7a) with lower 
enantioselectivity, showing that the configuration of 
the achieved aldol product was controlled by the 
chirality of the proline,

16 
and that the match 

combination is (Sa)-binam and L-Pro. The results 
obtained with both catalysts were superior in terms of 
conversion, yields and enantioselectivities to the 
results achieved with L-proline (Table 1, compare 
entries 1-4 with entry 5), that gave product 7a as a 
racemic mixture. As the best enantioselectivity for this 
process was achieved with the (Sa)-binamsulfo-L-Pro 
derivative (3a) as catalyst, the rest of the reaction 
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parameters, were done using this catalyst (Table 1, 
entry 3). 

The effect of the amount of nucleophile was 
evaluated. While decreasing the amount of acetone 
(6a) from 10 to 5 equiv. led to similar results, using 
only 2 equiv. of acetone provoked a decrease in the 
reaction rate and enantioselectivity (Table 1, compare 
entry 3 with 6 and 7). Changing the catalyst loading to 
10 and 5 mol%, led to similar results in terms of 
conversion but with slight lower selectivity being 
found when only 5 mol% of 3a was used (Table 1, 
entries 8 and 9). Decreasing the temperature to 0 ºC in 
the presence of 10 mol% of 3a and 5 equiv. of 
acetone, gave 88% ee but lower conversion and yield 
(Table 1, compare entries 3 and 10). Therefore, the 
effect of the addition of PhCO2H acid as co-catalyst 
was evaluated under these reaction conditions, but 
hardly any acceleration of the reaction was observed 
(Table 1, entry 12). Thus, under the best reaction 
conditions (10 mol% of 3a, 5 equiv. of 6a and 25ºC), 
the time required for the reaction completion was re-
evaluated, finding that after 12h product 7a was 
achieved in almost quantitative yield and 90% ee 
(Table 1, entry 12). These results are better to those 
previously reported using simple L-prolinamide or the 
dipeptide L-Pro-L-Leu under neat conditions.

5a
Finally, 

the use of the supported binam-derivatives 4 and 5 as 
catalysts in the reaction between acetone and 
methylglyoxal was tested, but the reaction failed 
(Table 1, entries 13 and 14). 

Table 1 Optimization of reaction conditions between acetone (6a) 

and methylglyoxal (1)
a 

O
O

O

H
Cat.

6a1a

T, additives

O OH

O

7a  

Entry 
Cat 

(mol%)
 
6a 

(equiv) 
T (ºC) 

t (h) 
Conv.

b Yield 

(%)
c ee (%)

d 

1
 
2a (20) 10 25 24 100 - 80 

2 2b (20) 10 25 24 100 - -66 

3 3a (20) 10 25 24 100 82 88 

4 3b (20) 10 25 24 100 65 -68 

5 L-Pro 

(20) 

10 25 72 80 66 0 

6 3a (20) 5 25 24 100 - 87 

7 3a (20) 2 25 24 95 - 80 

8
 
3a (10) 5 25 24 100 - 87 

9 3a (5) 5 25 24 100 - 80 

10 3a (10) 5 0 24 90 75 88 

11
 e
 3a (10) 5 0 24 93 84 88 

12 3a (10) 5 25 12 100 94 90 

13 4 (20) 5 25 72 - - - 

14 5 (20) 5 25 168 - - - 
a
 Reaction conditions: 1a (0.25 mmol, 40% aq. solution), 6a and 10 

mol% of catalysts, otherwise stated.
17b

Conversion based on the 

unreacted aldehyde. 
c 

After purification by column 

chromatography. 
d 

Determined by chiral-phase HPLC.
e
5mol% of 

PhCO2H was added.  

Once the best reaction conditions were established 
(Table 1, entry 12), the scope of the aldol reaction of 

methylglyoxal (40% aqueous solution) with different 
ketones was studied (Scheme1 and Table 2).

17 

 

Scheme 1Aldol reaction of methylglyoxal with ketones. 

Table 2Aldol reaction of methylglyoxal with ketones
a 

Entry
 

Major product
 Yield 

(%)
b 

Dr
c 

ee (%)
d 

1
e 

 

92 - 90 

2 

 

80 62:38 86 

3 

 

79  22:78  86  

4 

 

81 89:11 97 

5 

 

72  86:14  82
 

6
f 

 

77 93:7  95
 

7 

 

70 40:60  34 

8
 

 

78 87:7:4:2 92 

9 

 

67 68:29:2:1 87 

10 

 

74 54:32:10:4 91 

11 

 

42 63:37 90
 

a 
Reaction conditions: Methylglyoxal (0.25 mmol, 40% aq. 

solution), ketone (5 equiv), catalyst 3a (10 mol%) at 25 ºC for 24 

h, otherwise stated. 
b 
After purification by column chromatography. 

c 
Determined by the 

1
H NMR of the crude product. 

d 
Determined by 

chiral-phase HPLC analysis for the major isomer. 
e 
Only 12h were 

required for reaction completion. 
f 

30 h required for reaction 

completion. 

In all cases, with the exception of cyclopentanone and 
1,4-cyclohexadione (Table 2, entry 3 and 7, 
respectively), the major isomer achieved was the anti 
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isomer 7. The diastereoselectivities were rather 
moderate with the exception for cyclohexanone 
derivatives functionalized at the 4-position (products 
7d-7f, entries 4-6). Only product 7g, achieved by 
reaction with 1,4-cyclohexadione, was obtained with 
low enantioselectivity (Table 2, entry 7), being the 
enantiomeric excesses for the rest of the examples 
higher that 82%. In the case of 4-substituted 
cyclohexanones, the major diastereoisomer formed 
was the expected anti,anti-aldol, being the 
diastereoselectivities highly dependent on the 
substituent at the 4-position (Table 1, entries 8-10). 
The relative configuration for compounds 7h-7j was 
done comparing the chemical shifts and coupling 
constants to those previously reported for related 
glyoxylic acid and ethyl glyoxylate derivatives,

12
 and 

confirmed by NOESY experiments. The reaction with 
cyclobutanone led to the anti expected product 7k in 
good enantioselectivity but with low yield and 
diastereoselectivity (Table 2, entry 11). Attempts to 
extend the reaction to other ketones such as butanone 
orα-alkoxy ketones failed. 

Once the scope of the reaction of aqueous 
methylglyoxal with ketones was accomplished, the 
cross aldol between methylglyoxal with enolizable 
aldehydes was studied under the same reaction 
conditions. This cross aldol reaction has been 
previously reported,

5b,c
 showing that the 

corresponding γ-oxo-β-hydroxy aldehydes isomerized 
easily during purification procedures. Therefore, these 
aldol products were in situ allowed to react with 
Ph3PCHCO2Et to give the corresponding Wittig 
adducts. Following this one-pot two step procedure, 
products 10 were obtained(Scheme 2, Table 3).

18
 As 

before, in all cases the anti isomer was the major 
isomer, being the stereochemistry of the product 
assigned based in previously reported results.

5b
 The 

reaction of methylglyoxal (1a) with propanal led to 
product 10a in moderate yield and diastereoselectivity 
but excellent enantioselectivity, comparable to the 
enantioselectivity achieved using diarylprolinol as 
catalyst (10 mol%) in THF

5b
 (Table 3, entry 1). Better 

results were achieved in the reaction with octanal and 
heptanal and phenylpropanal, giving products 10b, 
10c and 10d in excellent diastereo- and 
enantioselectivity, respectively (Table 3, entries 2-4). 
The reaction between phenylglyoxal

19
 (1b) and 

several aldehydes was also tested.
20

 When propanal 
was used as nucleophile, moderate yield, diastereo- 

and enantioselectivity was obtained (Table 3, entry 5). 
Meanwhile, phenylpropanal led to lower 
diastereoselectivity but better enantioselectivity (Table 
3, entry 6).

 

Table 3 Aldol reaction of glyoxals 1 with aldehydes followed by 

Wittig olefination
a 

Entry
 

Major product
 Yield 

(%)
b 

Dr
c 

ee (%)
d 

1
e 

 

40 76:24 92 

2 

 

57 98:2 95 

3 

 

65 99:1 96 

4 

 

48 99:1 97 

5 

 

55 62:38 77
 

6
f 

 

48 55:45 86
 

a 
Reaction conditions: Methylglyoxal (0.25 mmol, 40% aq. 

solution)
18

 or phenylglyoxal monohydrate (0.25 mmol),
20

 aldehyde 

(2 equiv), catalyst 3a (10 mol%) at 25 ºC for 24 h, otherwise 

stated. 
b 

Overall yield after purification by column 

chromatography. 
c 

Determined by the 
1
H NMR of the crude 

product. 
d 

Determined by chiral-phase HPLC analysis for the major 

isomer.  

In conclusion, N-tosyl-(Sa)-binam-L-prolinamide was 
an efficient catalysts to promote the aldol reaction 
between methylglyoxal under aqueous conditions or 
phenylglyoxal monohydrate with ketones or 
aldehydes, affording chiral γ-oxo-β-hydroxy carbonyl 
compounds and ε-oxo-δ-hydroxy α,β-unsaturated 
esters, respectively in good results in terms of yields, 
diastereo- and enantioselectivities. 

Supporting Information for this article is available 
online at http://www.thieme-
connect.com/products/ejournals/journal/10.1055/s-
00000083. 

 

Scheme 2 Aldol reaction of glyoxals with aldehydes. 

Primary Data for this article are available online at 
http://www.thieme-
connect.com/products/ejournals/journal/10.1055/s-

00000083 and can be cited using the following 
DOI: (number will be inserted prior to online 
publication). 
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1. General information: Catalysts 2 and 3 were prepared according to literature.
1
 All the 

reagents were commercially available and used without further purification. 
1
H NMR (300 MHz, 400 

MHz) and 
13

C NMR (75 MHz) spectra were obtained at 25 ºC using CDCl3 as solvent and chemical 

shifts are reported as δ values relative to TMS as internal standard. IR spectra were obtained with 

Jasco 4100 LE (Pike Piracle ATR). High resolution mass spectra (HRMS-ESI) were obtained on a 

Waters LCT Premier XE apparatus equipped with a time of flight (TOF) analyzer and the samples 

were ionized by ESI techniques and introduced through an ultra-high pressure liquid chromatography 

(UPLC) model Waters ACQUITY H CLASS. Optical rotations were measured on a Jasco P-1030 

Polarimeter with a 5 cm cell (c given in g/100 mL). HPLC analyses were performed on equipped 

with a chiral column and automatic injector, using mixtures of n-hexane/isopropyl alcohol (IPA) as 

mobile phase, at 25 ºC. Analytical TLC was performed on silica gel plates and the spots were 

visualized using KMnO4 solution as revelator. For flash chromatography we employed silica gel 60 

(0.040-0.063 mm).  

 

2. General procedures for the aldol reaction 

 

2.1 General procedure for the aldehyde-ketone aldol reaction using methylglyoxal 40% 

aqueous solution: 

To a mixture of the methyl lyoxal 40% aqueous solution (0.25 mmol, 0.038 mL) and catalyst 

(10 mol%) at the indicated temperature was added the corresponding ketone (1.25 mmol). The 

reaction was stirred until the methylglyoxal was consumed (monitored by TLC). The resulting 

residue was purified by chromatography (hexanes/AcOEt) to yield the pure aldol product. During 

purification the aldols 7d, 7eand 7f undergo an epimerisation and therefore the diastereoselectivities 

of the crude 
1
H-RMN is different than the one showed in the 

1
H NMR spectra. 
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2.2 General procedure for the aldehyde-aldehyde  aldol reaction using methylglyoxal 

40% aqueous solution: 

To a mixture of the methylglyoxal 40% aqueous solution (0.25 mmol, 0.038 mL) and catalyst 

(10 mol%) at the indicated temperature was added the corresponding aldehyde (0.5 mmol). The 

reaction was stirred until the methylglyoxal was consumed (monitored by TLC). Wittig Reagent 

(0.178 g, 0.5 mmol) was added and reaction mixture was stirred for 2 h. Upon completion, the 

Witting reaction was quenched by passing through silica gel pad, and concentrated in vacuo. The 

resulting residue was purified by chromatography (hexanes/AcOEt) to yield the �,�-unsaturated 

ester.  

 

2.3 General procedure for the aldehyde-aldehyde aldol reaction using phenylglyoxal 

monohidrate: 

To a mixture of the phenylglyoxal monohidrate (0.25 mmol, 0.028 g) and catalyst (10 mol%) 

at the indicated temperature was added the corresponding aldehyde (0.5 mmol). The reaction was 

stirred until the phenylglyoxal was consumed (monitored by TLC). Wittig Reagent (0.178 g, 0.5 

mmol) was added and reaction mixture was stirred for 2 h. Upon completion, the Witting reaction 

was quenched by passing through silica gel pad, and concentrated in vacuo. The resulting residue 

was purified by chromatography (hexanes/AcOEt) to yield the �,� -unsaturated ester.  

 

3. Spectra data of aldol products 

 

 

(R)-3-hydroxyhexane-2,5-dione (7a).
2
 Yellow oil. (0.029 g, 90%); [α]

26
 D = - 17 (c= 0.9; 

CHCl3); Rf= 0.38 (Hex/EtOAc 1:1, revealed with KMnO4). IR: ν 3423.0 (OH), 1721.6 (C=O), 

1707.7 (C=O), 1357.6 (CH2-C=O).
 1

H NMR (300 MHz, CDCl3): δ 4.36 (dd, J = 6.4, 3.8 Hz, 1 H, 
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CHOH), 3.00 (dd, J = 17.3, 3.8 Hz, 1 H, CHaHb-CHOH), 2.87 (dd, J = 17.3, 6.4 Hz, 1 H, CHaHb-

CHOH), 2.28 (s, 3 H, CH3), 2.24 (s, 3 H, CH3). 
13

C NMR (75 MHz, CDCl3): δ 209.2 (C), 207.1 (C), 

73.8 (CH), 46.1 (CH2), 30.8 (CH3), 25.4 (CH3). MS (IE) m/z (%) for C6H10O3: M
+
 = 130 (2), 112 (3), 

97 (6), 87 (100), 70 (10), 55 (11). 

 

 

(S)-2-((R)-1-hydroxy-2-oxopropyl)cyclohexanone (7b). Data for the isomer (2S,1’R). 

Yellow oil. (0.034 g, 80%); [α]
26

 D = -29 (c= 0.5; CHCl3); Rf= 0.43 (Hex/EtOAc 7:3, revealed with 

KMnO4). IR: ν 3460.6 (OH), 1733.69 (C=O), 1703.8 (C=O), 1421.3 (CH3-C=O). 
1
H NMR (300 

MHz, CDCl3): δ 3.87 (dd, J = 7.9, 3.0 Hz, 1 H, CHOH), 3.56 (d, J = 7.9 Hz, 1 H, OH), 3.15 - 3.03 

(m, 1 H, Hcyclo), 2.51 - 2.32 (m, 2 H, Hcyclo), 2.30 (s, 3 H, CH3), 2.20 - 2.06 (m, 2 H, Hcyclo), 2.06 - 

1.65 (m, 4 H, Hcyclo). 
13

C NMR (75 MHz, CDCl3): δ 212.3 (C), 210.0 (C), 77.9 (CH), 53.7 (CH), 42.0 

(CH2), 30.3 (CH2), 26.9 (CH2), 25.7 (CH3), 24.8 (CH2). HRMS calculated for C9H14O3: 170.0943 

found: 171.1020 (M
+
 + H, calculated 171.1021). 

 

 

(S)-2-((S)-1-hydroxy-2-oxopropyl)cyclopentanone
 

(7c).
3
 As a diastereoisomer mixture 

(22:78, anti:syn). Yellow oil. (0.031 g, 79%); [α]
26

D = -35 (c= 2 ; CHCl3); Rf= 0.54 (Hex/EtOAc 1:1, 

revealed with KMnO4). IR: ν 3455.8 (OH), 1733.7 (C=O), 1710.5 (C=O), 1402.9 (CH3-C=O). 
1
H 

NMR (300 MHz, CDCl3): δ 4.71 (dd, J = 4.8, 2.3 Hz, 1 H, syn), 4.12 (dd, J = 3.6, 3.4 Hz, 1 H, anti), 

3.87 (d, J = 3.6 Hz, 1 H, anti), 3.54 (d, J = 4.8 Hz, 1 H, syn), 2.81 - 2.71 (m, 1 H, Hcyclo, anti), 2.58 - 

2.48 (m, 1 H, Hcyclo, syn), 2.27 (s, 3 H, CH3, anti), 2.22 (s, 3 H, CH3, syn), 2.20 - 1.98 (m, 6 H, 

Hcyclo), 1.90 - 1.67 (m, 6 H, Hcyclo). 
13

C NMR (75 MHz, CDCl3): δ 218.5 (C), 217.8 (C), 208.7 (C), 

207.9 (C), 76.3 (CH), 75.5 (CH), 51.4 (CH), 50.6 (CH), 38.7 (CH2), 38.3 (CH2), 26.3 (CH2), 25.3 

(CH3), 25.1 (CH3), 21.7 (CH2), 21.0 (CH2), 20.6 (CH2). MS (IE) m/z (%) for C8H12O4: M
+
 = 156 (2), 

138 (3), 113 (100), 96 (30), 85 (40), 67 (84), 57 (28). 
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(S)-3-((R)-1-hydroxy-2-oxopropyl)dihydro-2H-pyran-4(3H)-one (7d). As a 

diastereoisomer mixture (89:11, anti:syn). Yellow oil. (0.035 g, 81%); [α]
26

D = -38 (c= 1.5 ; CHCl3); 

Rf= 0.26 (Hex/EtOAc; 1:1, revealed with KMnO4). IR: ν 3449.1 (OH), 1769.6 (C=O), 1712.5 (C=O), 

1373.1 (CH3-C=O). 
1
H NMR (300 MHz, CDCl3, diastereomer mixture (1:1)): δ 4.70 (dd, J = 5.4, 3.1 

Hz, 1 H, CHOH, syn), 4.35 (dd, J = 11.3, 6.8 Hz, 1 H, Hcyclo), 4.29 - 4.18 (m, 2 H, Hcyclo), 4.03 (dd, J 

= 11.3, 6.7 Hz, 1 H, Hcyclo), 3.90 - 3.65 (m, 6 H, Hcyclo), 3.43 (d, J = 5.5 Hz, 1 H, OH), 3.26 (ddd, J = 

10.9, 6.8, 2.9 Hz, 1 H, Hcyclo), 3.02 (ddd, J = 10.7, 6.7, 3.1 Hz, 1 H, Hcyclo), 2.75 - 2.56 (m, 2 H, 

Hcyclo), 2.52 - 2.34 (m, 2 H, Hcyclo), 2.26 (s, 3 H, CH3), 2.25 (s, 3 H, CH3). 
13

C NMR (75 MHz, 

CDCl3): δ 209.3 (C), 207.8 (C), 206.4 (C), 206.1 (C), 74.6 (CH), 73.7 (CH), 70.0 (CH2), 67.7 (CH2), 

67.6 (CH2), 67.5 (CH2), 53.6 (CH), 53.2 (CH), 42.3 (CH2), 42.2 (CH2), 26.1 (CH3), 25.2 (CH3). 

HRMS calculated for C8H12O4: 172.0736 found: 173.0814 (M
+
 + H, calculated 173.0814). 

 

 

(S)-3-((R)-1-hydroxy-2-oxopropyl)dihydro-2H-thiopyran-4(3H)-one (7e). Colorless oil. 

Data for the isomer (2S,1’R). (0.034 g, 72%); [α]
26

D =  -14 (c= 1 ; CHCl3); Rf= 0.33 (Hex/EtOAc 1:1, 

revealed with KMnO4); IR: ν 3413.4 (OH), 1715.5 (C=O), 1704.8 (C=O), 1419.3 (CH3-C=O). 
1
H 

NMR (300 MHz, CDCl3): δ 3.93 (dd, J = 7.3, 2.8 Hz, 1 H, CHOH), 3.60 (d, J = 7.4 Hz, 1 H, OH), 

3.46 - 3.36 (m, 1 H, Hcyclo), 3.29 - 2.75 (m, 6 H, Hcyclo), 2.29 (s, 3 H, CH3).
 13

C NMR (75 MHz, 

CDCl3): δ 208.9 (C), 208.2 (C), 77.8 (CH), 55.8 (CH), 44.2 (CH2), 32.5 (CH2), 29.5 (CH2), 25.4 

(CH3). HRMS calculated for C8H12O3S: 188.0507 found: 189.0583 (M
+
 + H, calculated 189.0585). 

 

 

(S)- tert-butyl 3-((R)-1-hydroxy-2-oxopropyl)-4-oxopiperidine-1-carboxylate (7f). As a 

diastereomer mixture (93:7, anti:syn). Colorless oil. (0.064 g, 95%); [α]
26

D = -34 (c= 0.7 ; CHCl3); 
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Rf= 0.55 (Hex/EtOAc; 1:1, revealed with KMnO4). IR: ν 3390.2 (OH), 1791.6 (C=O), 1691.3 (C=O), 

1419.3 (CH3-C=O). 
1
H NMR (300 MHz, CDCl3, diastereoisomer mixture 1:1): δ 4.70 (dd, J = 4.9, 

2.9 Hz, 1 H, CHOH, syn), 3.93 (dd, J = 6.2, 2.7 Hz, 1 H, CHOH, anti), 3.75 - 3.62 (m, 1 H, Hcyclo), 

3.49 - 3.09 (m, 6 H, Hcyclo), 2.87 (ddd, J = 10.6, 6.2, 2.9 Hz, 1 H, Hcyclo), 2.63 - 2.38 (m, 6 H, Hcyclo), 

2.30 (s, 3 H, CH3, anti), 2.29 (s, 3 H, CH3, syn), 1.52 (s, 9 H, C(CH3)3, anti), 1.50 (s, 9 H, C(CH3)3, 

syn).
 13

C NMR (75 MHz, CDCl3): δ 209.0 (C), 207.7 (C), 207.5 (C), 207.0 (C), 154.6 (C), 154.5 (C), 

80.8 (2xC), 75.6 (CH), 74.6 (C), 52.4 (CH), 52.0 (CH), 45.3 (2xCH2), 42.9 (CH2), 42.7 (CH2), 40.8 

(2xCH2), 28.3 (6xCH3), 25.9 (CH3), 25.2 (CH3). HRMS calculated for C13H21NO5: 271.1421 found: 

294.1322 (M
+
 + H, calculated 294.1317). 

 

 

(S)-2-((S)-1-hydroxy-2-oxopropyl)cyclohexane-1,4-dione (7g). As a diastereoisomer 

mixture (40:60, anti:syn). Yellow oil. (0.032 g, 70%); [α]
26

D = -20 (c= 0.6 ; CHCl3); Rf= 0.18 

(Hex/EtOAc; 1:1, revealed with KMnO4). IR: ν 3427.8 (OH), 1720.9 (C=O), 1703.8 (C=O), 1310.4 

(CH3-C=O). 
1
H NMR (300 MHz, CDCl3): δ 4.84 (dd, J = 4.8, 2.0 Hz, 1 H, CHOH, syn), 3.98 (dd, J 

= 4.3, 2.5 Hz, 1 H, CHOH, anti), 3.82 (d, J = 4.3 Hz, 1 H, OH, anti), 3.60 (d, J = 4.8 Hz, 1 H, OH, 

syn), 3.36 (ddd, J = 10.2, 6.4, 2.5 Hz, 1 H, Hcyclo), 3.16 - 3.03 (m, 2 H, Hcyclo), 2.91 - 2.61 (m, 11 H, 

Hcyclo), 2.35 (s, 3 H, CH3, anti), 2.27 (s, 3 H, syn). 
13

C NMR (75 MHz, CDCl3): δ 208.1 (C), 207.9 

(2xC), 207.3 (C), 207.0 (C), 206.5 (C), 77.7 (CH), 77.2 (CH), 48.9 (CH), 48.1 (CH), 41.3 (CH2), 

37.2 (CH2), 37.1 (CH2), 36.7 (CH2), 35.9 (CH2), 35.8 (CH2), 25.4 (CH3), 25.1 (CH3). HRMS 

calculated for C9H12O4: 184.0736 found: 185.0816 (M
+
 + H, calculated 185.0814). 

 

 

(2S,4S)-2-((R)-1-hydroxy-2-oxopropyl)-4-methylcyclohexanone (7h). As a diastereoisomer 

mixture (87:7:4:2). Colorless oil. (0029 g, 78%); [α]
26

D = -70 (c= 3.2 ; CHCl3); Rf= 0.64 

(Hex/EtOAc; 1:1, revealed with KMnO4). IR: ν 3450.0 (OH), 1736.5 (C=O), 1708.6 (C=O), 1239.0 

(CH3-C=O). 
1
H NMR (300 MHz, CDCl3): δ 4.66 (dd, J = 4.8, 2.3 Hz, 1 H, CHOH, syn), 3.87 (dd, J 
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= 7.2, 3.1 Hz, 1 H, CHOH, anti), 3.58 (d, J = 7.2 Hz, 1 H, OH, anti), 3.27 (d, J = 4.8 Hz, 1 H, syn), 

3.22 - 3.12 (m, 1 H, Hcyclo), 2.92 - 2.82 (m, 1 H, Hcyclo), 2.54 - 2.36 (m, 2 H, Hcyclo), 2.33 - 2.08 (m, 

10 H, Hcyclo), 2.05 - 1.63 (m, 8 H, Hcyclo), 1.18 (d, J = 7.0 Hz, 3 H, CHCH3, anti), 1.00 (d, J = 6.4 Hz, 

3 H, CHCH3, syn).
 13

C NMR (75 MHz, CDCl3): δ 212.6 (C), 211.6 (C), 210.4 (C), 209.6 (C), 78.5 

(CH), 75.3 (CH), 52.1 (CH), 49.1 (CH), 41.2 (CH2), 38.1 (CH2), 36.1 (CH2), 34.7 (CH2), 34.3 (CH2), 

32.2 (CH2), 31.3 (CH), 26.8 (CH), 26.4 (CH3), 25.7 (CH3), 21.3 (CH3), 18.5 (CH3). HRMS 

calculated for C10H16O3: 184.1099 found: 185.1184 (M
+
 + H, calculated 185.1178). 

 

 

(2S,4S)-2-((R)-1-hydroxy-2-oxopropyl)-4-phenylcyclohexanone (7i). As a diastereoisomer 

mixture (68:29:2:1). Colorless oil. (0041 g, 67%); [α]
26

D = -19 (c= 2.3 ; CHCl3); Rf= 0.61 

(Hex/EtOAc; 1:1, revealed with KMnO4). IR: ν 3439.4 (OH), 1710.1 (C=O), 1704.7 (C=O), 1102.1 

(CH3-C=O). 
1
H NMR (300 MHz, CDCl3): δ 7.41 - 7.21 (m, 5 H, ArH), 4.75 (dd, J = 4.8, 2.3 Hz, 1 

H, CHOH, syn), 4.08 (dd, J = 5.8, 3.1 Hz, 1 H, CHOH, anti), 3.75 (d, J = 5.8 Hz, 1 H, OH, anti), 

3.49 - 3.40 (m, 1 H, Hcyclo), 3.33 (d, J = 4.9 Hz, 1H, OH, syn), 3.21 - 3.03 (m, 2 H, Hcyclo), 2.67 - 2.38 

(m, 5 H, Hcyclo), 2.36 - 1.79 (m, 14 H, Hcyclo). 
13

C NMR (75 MHz, CDCl3): δ 211.8 (C), 210.3 (C), 

210.2 (C), 208.5 (C), 144.2 (C), 143.6 (C), 128.8 (CH), 128.7 (2xCH), 126.8 (CH), 126.7 (3xCH), 

126.5 (C), 79.2 (CH), 75.4 (CH), 52.5 (CH), 49.9 (CH), 42.6 (CH), 41.5 (CH2), 39.9 (CH2), 37.2 

(CH), 35.4 (CH2), 33.9 (CH2), 33.5 (CH2), 30.6 (CH2), 26.5 (CH3), 25.6 (CH3). HRMS calculated for 

C15H18O3: 246.1256 found: 247.1342 (M
+
 + H, calculated 247.1334). 

 

 

(2S,4S)-4-(tert-butyl)-2-((R)-1-hydroxy-2-oxopropyl)cyclohexanone (7j). As a diastereoisomer 

mixture (54:32:10:4). Colorless oil. (0041 g, 74%); [α]
26

D = -87 (c= 3.6 ; CHCl3); Rf= 0.69 

(Hex/EtOAc; 1:1, revealed with KMnO4). IR: ν 3453.9 (OH), 1745.2 (C=O), 1708.6 (C=O), 1240.0 

(CH3-C=O). 
1
H NMR (300 MHz, CDCl3): δ 4.68 (dd, J = 4.9, 2.4 Hz, 1 H, CHOH, syn), 4.03 (dd, J 
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= 6.3, 3.4 Hz, 1 H, CHOH, anti), 3.67 (d, J = 6.3 Hz, 1 H, OH, anti), 3.31 (d, J = 4.9 Hz, 1 H, OH, 

syn), 3.06 (td, J = 7.9, 3.4 Hz, 1 H, Hcyclo), 2.51 - 2.38 (m, 2 H, Hcyclo), 2.30 (s, 3 H, CH3, anti), 2.24 

(s, 3 H, CH3, syn), 2.13 - 1.47 (m, 11 H, Hcyclo), 0.93 (s, 9 H, C(CH3)3, anti), 0.90 (s, 9 H, C(CH3)3, 

syn). 
13

C NMR (75 MHz, CDCl3): � 214.1 (C), 211.4 (C), 210.3 (C), 209.0 (C), 78.7 (CH), 75.6 

(CH), 52.4 (CH), 49.7 (CH), 46.4 (CH), 42.6 (CH), 41.3 (CH2), 40.1 (CH2), 33.0 (C), 32.6 (C), 27.5 

(3xCH3), 27.4 (CH2), 27.3 (CH3), 27.0 (3xCH3), 26.4 (CH3), 25.7 (CH3), 23.5 (2xCH2). HRMS 

calculated for C13H22O3: 226.1569 found: 227.1638 (M
+
 + H, calculated 227.1647). 

 

 

(S)-2-((R)-1-hydroxy-2-oxopropyl)cyclobutanone (7k).
4
 As a diastereoisomer mixture 

(63:37, anti:syn). Colorless oil. (0.015 g, 42%); [α]
26

D =  -20 (c= 1.2 ; CHCl3); Rf= 0.46 (Hex/EtOAc 

1:1, revealed with KMnO4); IR: ν 3445.2 (OH), 1776.1 (C=O), 1711.5 (C=O), 1417.4 (CH3-C=O). 

1
H NMR (300 MHz, CDCl3, diastereoisomer mixture 1:1): δ 4.62 (dd, J = 3.6, 3.2 Hz, 1 H, CHOH, 

syn), 4.21 (dd, J = 3.8, 3.4 Hz, 1 H, CHOH, anti), 3.88 - 3.62 (m, 4 H, Hcyclo), 3.15  2.94 (m, 4 H, 

Hcyclo), 2.29 (s, 3 H, CH3, anti), 2.22 (s, 3 H, CH3, syn), 1.97 (dd, J = 16.9, 8.5 Hz, 2 H, Hcyclo). 
13

C 

NMR (75 MHz, CDCl3): δ 208.1 (C), 207.5 (C), 207.1 (C), 206.5 (C), 75.2 (CH), 74.1 (CH), 61.3 

(2xCH), 46.7 (CH2), 46.1 (CH2), 25.4 (CH3), 25.0 (CH3), 13.6 (CH2), 10.6 (CH2). MS (IE) m/z (%) 

for C7H10O3: M
+
 = 142 (2), 124 (10), 99 (34), 86 (24), 71 (80), 57 (100). 

 

O

OH

OEt

O

10a  

(4R,5R,E)-ethyl 5-hydroxy-4-methyl-6-oxohept-2enoato (10a).
5
 As a diastereoisomer 

mixture (76:24, anti:syn). Colorless oil. (0.020 g, 40%); [α]
26

D = -15 (c= 0.6 ; CHCl3); Rf= 0.20 

(Hex/EtOAc; 85:15, revealed with KMnO4). IR: ν 3326.6 (OH), 1715.4 (C=O), 1665.2 (C=O), 

1226.5 (CH3-C=O). 
1
H NMR (300 MHz, CDCl3): δ 7.06 (dd, J = 15.8, 7.1 Hz, 1 H, CH=CH, syn), 

6.80 (dd, J = 15.8, 8.2 Hz, 1 H, CH=CH, anti), 5.93 (dd, J = 15.8, 1.4 Hz, 1 H, CH=CH, syn), 5.84 

(dd, J = 15.8, 1.2 Hz, 1 H, CH=CH, syn), 4.27 (dd, J = 4.6, 2.8 Hz, 1 H, CHOH, syn), 4.24 - 4.12 (m, 

5 H), 3.58 (d, J = 4.7 Hz, 1 H, OH, anti), 3.52 (d, J = 4.9 Hz, 1 H, OH, syn), 2.98 - 2.79 (m, 2 H), 

2.25 (s, 3 H, CH3, syn), 2.20 (s, 3 H, CH3, anti), 1.32 - 1.24 (m, 9 H), 0.95 (d, J = 6.9 Hz, 3 H, 

CHCH3, syn).
13

C NMR (75 MHz, CDCl3): δ 208.2 (C), 208.0 (C), 166.3 (C), 165.9 (C), 149.4 (CH), 
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146.6 (CH), 122.8 (CH), 121.9 (CH), 80.1 (CH), 79.0 (CH), 60.5 (CH2), 60.4 (CH2), 39.8 (CH), 39.2 

(CH), 25.8 (CH3), 25.6 (CH3), 16.7 (CH3), 14.2 (2xCH3), 12.0 (CH3). MS (IE) m/z (%) for C10H16O4: 

M
+
 = 200 (2), 182 (3), 157 (40), 128 (38), 111 (100), 100 (35), 83 (28), 55 (42). 

 

 

(R,E)-ethyl 4-((R)-1-hydroxy-2-oxopropyl)undec-2-enoate (10b). As a diastereoisomer 

mixture (99:1, anti:syn). Colorless oil. (0.046 g, 65%); [α]
26

D = -56 (c= 1.2 ; CHCl3); Rf= 0.23 

(Hex/EtOAc; 85:15, revealed with KMnO4). IR: ν 3463.5 (OH), 1715.4 (C=O), 1653.7 (C=O), 

1231.3 (CH3-C=O). 
1
H NMR (300 MHz, CDCl3): δ 6.72 (dd, J = 15.8, 9.7 Hz, 1 H, CHCH), 5.81 

(dd, J = 15.8, 0.7 Hz, 1 H, CHCH), 4.27 (dd, J = 4.5, 2.4 Hz, 1 H, CHOH), 4.18 (q, J = 7.1 Hz, 2 H, 

OCH2CH3), 3.55 (d, J = 4.5 Hz, 1 H, OH), 2.71 - 2.57 (m, 1 H), 2.20 (s, 3 H, CH3), 1.79 - 1.62 (m, 2 

H), 1.42 - 1.18 (m, 13 H), 0.90 (t, J = 6.7 Hz, 3 H, CH3). 
13

C NMR (75 MHz, CDCl3): δ 208.0 (C), 

165.7 (C), 145.7 (CH), 123.5 (C), 79.0 (CH), 60.5 (CH2), 45.6 (CH), 31.8 (CH2), 31.5 (CH2), 29.4 

(CH2), 29.2 (CH2), 27.3 (CH2), 25.4 (CH3), 22.6 (CH2), 14.2 (CH3), 14.1 (CH3). HRMS calculated 

for C16H28O4: 284.1988 found: 285.2072 (M
+
 + H, calculated 285.2066). 

 

 

(R,E)-ethyl 4-((R)-1-hydroxy-2-oxopropyl)dodec-2-enoate (10c). As a diastereoisomer 

mixture (98:2, anti:syn). Colorless oil. (0.042 g, 57%); [α]
26

D = -50 (c= 1.4 ; CHCl3); Rf= 0.22 

(Hex/EtOAc; 85:15, revealed with KMnO4). IR: ν 3463.5 (OH), 1713.4 (C=O), 1642.0 (C=O), 

1367.3 (CH3-C=O). 
1
H NMR (300 MHz, CDCl3): δ 6.72 (dd, J = 15.8, 9.7 Hz, 1 H, CHCH), 5.81 

(dd, J = 15.8, 0.6 Hz, 1 H, CHCH), 4.27 (d, J = 2.4 Hz, 1 H, CHOH), 4.18 (q, J = 7.1 Hz, 2 H, 

OCH2CH3), 2.71 - 2.57 (m, 1 H), 2.20 (s, 3 H, CH3), 1.78 - 1.56 (m, 2 H), 1.41 - 1.19 (m, 15 H), 0.90 

(t, J = 6.7 Hz, 3 H, CH3). 
13

C NMR (75 MHz, CDCl3, diastereoisomer mixture 1:1): δ 208.5 (C), 

208.1 (C), 166.2 (C), 165.8 (C), 148.5 (CH), 145.8 (CH), 79.6 (CH), 79.0 (CH), 60.5 (2xCH2), 45.6 

(CH3), 45.5 (CH3), 33.9 (CH2), 31.8 (2xCH2), 31.4 (CH2), 29.5 (CH2), 29.4 (2xCH2), 29.2 (2xCH2), 

29.1 (CH2), 27.4 (CH2), 27.3 (CH2), 25.9 (CH3), 25.4 (CH3), 24.7 (CH2), 22.6 (CH2), 14.2 (CH3), 
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14.1 (CH3). HRMS calculated for C17H30O4: 298.2144 found: 299.2243 (M
+
 + H, calculated 

299.2222). 

 

 

(4R,5R,E)-ethyl 4-benzyl-5-hidroxy-6-oxohept-2-enoate (10d).
5
 As a diastereoisomer 

mixture (99:1, anti:syn). Colorless oil. (0.033 g, 48%); [α]
26

D = -42 (c= 1.5 ; CHCl3); Rf= 0.15 

(Hex/EtOAc; 80:20, revealed with KMnO4). IR: ν 3414.3 (OH), 1712.9 (C=O), 1709.6 (C=O), 

1132.1 (CH3-C=O). 
1
H NMR (300 MHz, CDCl3): δ 7.38 -7.22 (m, 5 H, ArH), 6.81 (dd, J = 15.8, 9.0 

Hz, 1 H, CH=CH), 5.81 (d, J = 15.8 Hz, 1 H, CH=CH), 4.29 - 4.14 (m, 2 H), 4.11 (dd, J = 4.5, 2.0 

Hz, 1 H, CHOH), 3.60 (d, J = 4.4 Hz, 1 H, OH), 3.14 - 2.68 (m, 3 H), 2.11 (s, 3 H, CH3), 1.29 (t, J = 

7.1 Hz, 3 H, CH3). 
13

C NMR (75 MHz, CDCl3, diastereoisomer mixture (1:1)): δ 208.2 (2xC), 166.0 

(C), 165.6 (C), 147.6 (CH), 144.8 (CH), 138.4 (2xC), 138.2 (2xC), 129.3 (CH), 128.7 (CH), 128.5 

(2xCH), 128.3 (2xCH), 126.7 (2xCH), 126.4 (2xCH), 123.8 (CH), 123.1 (CH), 79.0 (CH), 77.2 

(CH), 60.5 (2xCH2), 47.3 (2xCH), 34.3 (CH2), 30.6 (CH2), 25.7 (CH3), 25.2 (CH3), 14.2 (CH3), 14.1 

(CH3). MS (IE) m/z (%) for C16H20O4: M
+
 = 276 (2), 258 (8), 233 (16), 203 (28), 187 (27), 129 (37), 

91 (100). 

 

 

(4R,5R,E)-ethyl 5-hydroxy-4-methyl-6-oxo-6-phenylhex-2-enoate (10e). As a 

diastereoisomer mixture (61:39, anti:syn). Colorless oil. (0.035 g, 53%); [α]
26

D = -12 (c= 1.2 ; 

CHCl3); Rf= 0.30 (Hex/EtOAc; 70:30, revealed with KMnO4). IR: ν 3439.4 (OH), 1708.6 (C=O), 

11692.2 (C=O), 1269.9 (CH3-C=O). 
1
H NMR (300 MHz, CDCl3): δ 7.98 - 7.88 (m, 2 H, ArH), 7.73 

- 7.50 (m, 3 H, ArH), 7.15 (dd, J = 15.7, 7.4 Hz, 1 H, CH=CH), 5.94 (dd, J = 15.7, 1.4 Hz, 1 H, 

CH=CH), 5.20 (dd, J = 6.4, 2.4 Hz, 1 H, CHOH), 4.22 (q, J = 7.1 Hz, 2 H, OCH2CH3), 3.78 (d, J = 

6.4 Hz, 1 H, OH), 2.91 - 2.78 (m, 1 H), 1.32 (t, J = 7.1 Hz, 3 H, OCH2CH3), 0.87 (d, J = 6.8 Hz, 3 H, 

CHCH3).
13

C NMR (75 MHz, CDCl3): δ 200.6 (C), 166.3 (C), 149.8 (CH), 134.3 (CH), 133.5 (C), 

129.1 (2xCH), 128.5 (2xCH), 121.7 (CH), 75.0 (CH), 60.4 (CH2), 40.7 (CH), 14.3 (CH3), 11.5 

(CH3). HRMS calculated for C15H18O4: 262.1205 found: 285.1111 (M
+
 + H, calculated 285.1103). 
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(4R,5R,E)-ethyl 4-benzyl-5-hydroxy-6-oxo-phenylhex-2-enoate (10f). As a diastereoisomer 

mixture (55:45, anti:syn). Colorless oil. (0.044 g, 52%); [α]
26

D = -18 (c= 0.4 ; CHCl3); Rf= 0.35 

(Hex/EtOAc; 70:30, revealed with KMnO4). IR: ν 3452.8 (OH), 1711.5 (C=O), 1656.7 (C=O), 

1249.1 (CH3-C=O). 
1
H NMR (300 MHz, CDCl3): δ 7.65 - 7.28 (m, 10 H, ArH), 6.77 (dd, J = 15.8, 

8.8 Hz, 1 H, CH=CH), 5.47 (dd, J = 15.8, 0.7 Hz, 1 H, CH=CH), 4.99 (dd, J = 6.0, 1.4 Hz, 1 H, 

CHOH), 4.14 (q, J = 7.1 Hz, 2 H, OCH2CH3), 3.72 (d, J = 6.1 Hz, 1 H, OH), 3.15 - 2.83 (m, 3 H), 

1.26 (t, J = 7.1 Hz, 3 H, OCH2CH3). 
13

C NMR (75 MHz, CDCl3): δ 200.7 (C), 165.7 (C), 144.7 

(CH), 138.6 (C), 134.1 (CH), 133.4 (C), 129.5 (2xCH), 128.9 (2xCH), 128.8 (2xCH), 128.3 (2xCH), 

126.8 (CH), 123.8 (CH), 73.0 (CH), 60.5 (CH2), 48.8 (CH), 37.7 (CH2), 14.2 (CH3). HRMS 

calculated for C21H22O4: 338.1518 found:  339.1600 (M
+
 + H, calculated 339.1596). 

 

HPLC data for aldol products 

 

 

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (80 

ºC, 13.4 Psi), Rt = 34.6 min (major), Rt = 39.6 min (minor). 

 

 

The ee was determined as the benzoate ester. 
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The ee was determined by chiral HPLC on Chiralpak OD-H column (99% hexane, 1% Pr
i
OH, 

25ºC, 1 mL/min, 230 nm, Rt= 12.8 min (minor syn), Rt = 14.9 min (major syn), Rt = 16.1 min (major 

anti), Rt = 22.3 min (minor anti).  

 

 

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (120 

ºC, 13.4 Psi), Rt = 21.3 min (major anti), Rt = 22.8 min (minor anti), Rt = 26.4 min (major syn), Rt = 

31.8 min (minor syn). 

 

 

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (150 

ºC, 13.4 Psi), Rt = 8.8 min (major anti), Rt = 9.7 min (minor anti), Rt = 10.3 min (major syn), Rt = 

11.0 min (minor syn). 

 

 

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (130 

ºC, 13.4 Psi), Rt = 67.0 min (major anti), Rt = 70.7 min (minor anti), Rt = 72.5 min (major syn), Rt = 

79.2 min (minor syn). 
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The ee was determined by chiral HPLC on Chiralpak IA column (95% hexane, 5% Pr
i
OH, 

25ºC, 1 mL/min, 230 nm, Rt= 17.7 min (minor syn), Rt = 18.8 min (major anti), Rt = 20.3 min (minor 

anti), Rt = 22.1 min (minor syn). 

 

 

The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (140 

ºC, 13.4 Psi), Rt = 60.2 min (major syn), Rt = 62.9 min (minor syn), Rt = 69.9 min (major anti), Rt = 

71 min (minor anti). 

 

 

The ee was determined by chiral GC analysis with a CYCLOHEXIL β column (130 ºC, 13.4 

Psi), Rt = 42.9 min (major), Rt = 45.5 min (minor). 

 

 

The ee was determined by chiral HPLC on AD-H column (95% hexane, 5% Pr
i
OH, 25ºC, 1 

mL/min, 230 nm, Rt= 22.2 min (minor), Rt= 24.8 min (major). 

 

 

The ee was determined by chiral GC analysis with a CYCLOHEXIL β column (165 ºC, 13.4 

Psi), Rt = 27.8 min (major), Rt = 29.0 min (minor). 
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The ee was determined by chiral GC analysis with a CP CHIRALSIL DEX CB column (130 

ºC, 13.4 Psi), Rt = 9.1 min (major anti), Rt = 9.8 min (minor anti), Rt = 11.1 min (major syn), Rt = 

12.9 min (minor syn). 

 

 

The ee was determined by chiral GC analysis with a LIPODEX E column (145 ºC, 13.4 Psi), 

Rt = 47.6 min (minor anti), Rt = 50.0 min (major anti), Rt = 55.4 min (syn). 

 

 

The ee was determined by chiral HPLC on Chiralpak IA column (97% hexane, 3% Pr
i
OH, 

25ºC, 0.3 mL/min, 230 nm, Rt = 36.0 min (minor syn), Rt = 37.6 min (major syn), Rt = 39.6 min 

(major anti), Rt = 46.5 min (minor anti). 

 

 

The ee was determined by chiral HPLC on Chiralpak IA column (95% hexane, 5% Pr
i
OH, 

25ºC, 0.5 mL/min, 230 nm, Rt = 7.0 min (major syn), Rt = 7.3 min (minor syn), Rt = 7.7 min (major 

anti), Rt = 8.7 min (minor anti). 
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The ee was determined by chiral HPLC on Chiralpak AD-H column (97% hexane, 3% Pr
i
OH, 

25ºC, 1 mL/min, 230 nm, Rt = 25.1 min (major anti), Rt = 27.9 min (minor syn), Rt = 29.6 min (major 

syn), Rt = 33.2 min (minor anti). 

 

 

The ee was determined by chiral HPLC on Chiralpak IA column (95% hexane, 5% Pr
i
OH, 

25ºC, 1 mL/min, 230 nm, Rt = 16.4 min (major syn), Rt = 19.0 min (minor anti), Rt = 22.0 min (minor 

syn), Rt = 26.7 min (major anti). 

 

 

The ee was determined by chiral HPLC on Chiralpak IA column (98% hexane, 2% Pr
i
OH, 

25ºC, 1 mL/min, 230 nm, Rt = 27.8 min (major anti), Rt = 35.4 min (minor anti), Rt = 37.0 min 

(major syn), Rt = 39.9 min (minor syn). 
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NMR spectra for aldol products 
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HPLC spectra for aldol products 
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