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ABSTRACT* 
 
A new conception of flexible calculation that allows us to adjust 
a sum depending on the available time computation is 
presented. More specifically, the objective is to obtain a 
calculation model that makes the processing time/precision 
more flexible. The addition method is based on carry-select 
scheme adder and the proposed design uses precalculated data 
stored in look-up tables, which provide, above all, quality 
results and systematization in the implementation of low level 
primitives that set parameters for the processing time. We report 
an evaluation of the architecture in area, delay and computation 
error, as well as a suitable implementation in FPGA to validate 
the design. 
 
 

1. INTRODUCTION 
 
There are a great number of applications that are difficult to fit 
into the rigid schemes of the calculation of conventional 
arithmetic architectures. For these applications it would be 
advantageous to have operators that provide control on the 
results and act on the even quality of the result and processing 
cost based on the specific computational requirements of each 
case [1], [2]. 
     We can find several examples in which an intensive 
processing of data provided by peripheral takes place. In these 
cases, a strong coordination among sensors and the rest of 
system is necessarily produced. For example, in systems of 
mobile objects guidance, when the speed of the object is 
increased, the system has less time to process the information 
that is received from the sensors and to make decisions about its 
movement. In this application, a fast answer in appropiate time 
that allows decisions to be made at every moment may be 
advisable, although at the expense of less precision in the 
results. 
     In this paper, we propose a method of flexible arithmetic 
sum. Its main characteristic is the variable quality of the result 
based on the available time. The algorithm is based on the use 
of strategies that contribute determinism to the response time 
and, at the same time, allow for parallel designs. 
 

2. DESIGN PRINCIPLES 
 
The proposed method consists of the combination of two 
techniques: obtaining the result in a successive processing way 
and using precalculated data in look-up tables. 
     • Response quality is related to the number of calculated 
stages of the sum, and therefore, will be able to act on the time-
quality-parallelism relationship. This approach forms a new 
architecture that will implicitly incorporate flexibility in order to 
adapt the duration of the calculation to time availability, which 
is the instrument for real-time management. This characteristic 
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provides capabilities for successive refinement of the solution. 
     • The precalculated data memories (LUT —Look Up Table) 
have interesting characteristics relating to real-time processing: 
they work in a totally determinist way and they can incorporate 
error detection and correction mechanisms. The treatment of the 
operands in small blocks promotes segmentation and a high 
level of parallelism. These construction possibilities provide 
robustness and flexibility to the operations [3]. 
     Their disadvantage is the high area complexity for overlarge 
operands [4], nevertheless, the progressive improvement in 
performance provided by electronic technology justifies the 
search for new proposals that would probably have been 
prohibitive some time ago. 
     To carry out the sum, we propose the use of a LUT with all 
the possible results of the sum of two numbers of k bits, called 
the LUT-Adder. The use of tables in the computation of 
functions is a well-known technique. In arithmetic literature, 
several implementations of elementary functions based on the 
use of look-up tables are analyzed [4], [5]. In this approach, we 
use look-up table to process directly an elemental operation. For 
performance reasons, it is assumed that the LUT memory is 
implemented in the circuitry of the Arithmetic Unit itself, thus 
reducing communication costs. Figure 1 illustrates the direct 
sum of k-bit numbers using this method.  
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Figure 1: Adder based on Look-Up Table 

 
     Note that this operation is only possible for some k values, as 
will be explained below. 
 

3. ALGORITHM 
 

3.1. Addition Method 
 
The proposed addition method is based on the carry-select adder 
scheme [6] and it is made up of the following steps: 
     1. Fragmentation of operands into k-size blocks: It is 
immediate from the original operands. For numbers of m bits 
(with m>k), we can divide the number into n blocks of k bits, so 
that n·k ≥ m. 
     2. Addition of the corresponding pairs of blocks. The partial 
additions are obtained directly from a look-up table containing 
the precalculated results: LUT-Adder. The processing of the 
carry is directly made by obtaining the sum and its successor 
from a Compound LUT-Adder. Figure 1. By designing multiple 
memory access routes, simultaneous access can be gained 
without the need for several memory chips. 
     3. Ordered concatenation of the partial additions taking the 
carry logics into account: The selection of each block is a 
function of the carry bit of the preceding block selected 
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according to the algorithm carry-select adder [6]. The 
compound LUT-Adder is used to consider the carry in a direct 
way, since adding the carry to a block is the same as obtaining 
its successor in the LUT.  
 
3.2. Flexible addition 
 
The addition operation based on Look-Up Tables offers 
predictability of the response times. The basic idea consists of 
only performing the sum on blocks for which available time 
exists. Therefore, this design has real-time properties. Thus, 
depending on the time available, the system will adapt the 
quality of response. According to the increase in the number of 
iterations, the error rate will decrease. 
     The flexible adder design is based on the previous algorithm 
with the special feature that only part of the blocks obtained 
from the operands are combined, according to the time 
availability. 
     In a scheme of sequential concatenation of the partial 
additions, it is proposed that the combination of the blocks will 
begin with block i, depending on the availability of time, and 
move towards the left, figure 2. It is possible to obtain fast 
approximations of the result by selecting only most of the left 
blocks and selecting the rest at random or the upper ones. 

 
Figure 2: Sequential selection 

 

     For a tree concatenation scheme, figure 3, the process is 
carried out from bottom to top, acting on all the blocks of partial 
solutions concurrently per level. The total number of bits from 
the result increases exponentially with the number of steps. 
 

 
Figure 3: Tree selection 

 

     An arithmetic unit must have an operation control that 
translates the requirements into the number of processed stages. 
The operation control module consists of a combinational 
circuit that has problem conditions in its inputs and a number of 
operation stages in its outputs, for example, a coder, multiplexor 
or table circuit. 
 
4. ARCHITECTURE 
 
This architecture is suitable for specific purpose applications 
where time restrictions are present. 
 
4.1 Design 
 
Figure 4 shows the proposed architecture. We assume, for 
example, the numbers are fragmented into 4 blocks. 
The main features of this architecture are: 
     • Access to the Compound LUT-Adder provides the result 
and its successor for all the pairs of blocks. 

     • The selection circuit has a simple design since the effective 
sum is carried out in the memory with precalculated results. 
     • The tree selection combines the partial results until the 
final result of the complete operation is obtained. Three results 
with different qualities of degree and delay are extracted from 
the tree selection circuit. 
     • The operation control circuit selects the partial result that 
best fits the conditions of the problem. 
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Figure 4: Block diagram of the proposed architecture 

 

4.2. Path time 
 
The path time of the proposed architecture is set by the delay of 
the slowest path in the circuit. Depending on the application 
conditions, it can be any of the main paths of the 
implementation. There are the same number of paths as 
possibilities of result selection. These paths, as shown in figure 
4, are the following: 
• Max(Op.Contr.,Comp.LUT-Adder) + mux 
• Max(Op.Contr.,Comp.LUT-Adder) +and+or+mux 
• Max(Op_Contr.,Comp.LUT-Adder)+2and+2or+mux 
     Apparently, the improvement in time of one incomplete sum 
is not important. Nevertheless, when the amount of the sum to 
be made is elevated, the architecture acquires a greater 
relevance. 
 

5. EVALUATION OF THE ARCHITECTURE 
 
In this section, we present estimates of the area costs, execution 
time and error computation of the architecture proposed in the 
previous section. The power consumption of the circuit is not 
important for this research and is therefore not dealt with in this 
paper. It will be studied in depth in the event that it can be 
implemented in a chip. 
 
5.1. Area estimations 
 
The main contributions to the area of the architecture come 
from the compound LUT-adder. The area of the selection circuit 
is small when compared to the area of the LUT. The model we 
use for the area estimations is taken from [4], [5] and [7].The 
unit used is the size of a complex gate τa, since the area of the 
compound LUT-adder, selection circuits, and multiplexor are 
easily expressed in this unit. The LUT-adder is the component 
of the architecture that occupies the greatest area. The others 



 

 

have a marginal area in comparison and, therefore, the 
estimation is focused only on the LUT-adder. 
     Data storage imposes severe restrictions on k block size. As 
we can see in table 1, the area cost increases exponentially with 
the k value. Therefore, we have to achieve a balance between 
the memory required and the complexity of the circuit. Table 2 
shows the cost in terms of τa for the most common sizes. 
 

Table 1: Compound LUT-
Adder size (bits) 

Table 2: Compound LUT-
Adder size (τa) 

k Addition-LUT 
Size 

4 1360 bits 
6 3.56 KB 
8 72.28 KB 
16 ≈ 26 MB  

k Area 
estimations(τa) 

4 ≈ 47 τa
6 ≈ 855 τa
8 ≈ 11564 τa 

 
     As shown in the previous tables, the amount of area is much 
greater than in conventional adder designs based on simple 
combinational circuits, nevertheless, this architecture is still 
suitable for applications in which the size of the circuit is not a 
problem. 
 

5.2. Delay estimations 
 
Delays in the complete addition calculus is divided into: 
     • Access time to the LUT-Addition in order to obtain the 
precalculated results. This time will only be determined by 
memory access time TLUT. Let τt be the delay of a complex gate, 
such as one full-adder. According to [5], [7] analysis† we 
assume a delay of about TLUT = 3.5τt for 8 input bit tables, TLUT 
= 5τt for 12-13 input tables and TLUT = 6.5τt for 16 input bit 
tables. 
     • Selection of the blocks that make up the result. In the case 
of tree concatenation, total selection time is obtained by taking 
into account that all the selections at one tree level are carried 
out in parallel and that the total number of tree levels is lg2 n. 
Let Tsel be the time taken in the selection on one tree level, so 
the expression for the total selection time is Tsel·lg2 n. A 
selection step consists of two single gates: (and, or), or one 
complex gate τt, so Tsel = 1 τt. For operands of m = n·k bits, the 
proposed algorithm calculates the addition in: Tadd = TLUT + 
Tsel·lg2(m/k) time units. 
 
     We perform a comparison of the proposed architecture with 
other known adder algorithms. 
     In the first place, in terms of the expression of the asymptotic 
temporal complexity, those adders have a growth in the delay 
equal to the proposed design. The table 3 shows the temporal 
complexity of adder designs [8], where m is the length in bits of 
the operands. The addition algorithms differ in the constants 
that modify the general cost expression. In the TLA algorithm, 
the compound LUT-Adder performance plays a fundamental 
role in the final calculation time. 
     In addition, the circuit delays depend on the technology used 
and on the implementation itself. In order to prove this, the 
TLA-4 and TLA-8 have been implemented in VHDL and tested 
on FPGA in comparison with the implementation provided by 
[9]. The LUT implementation corresponds to the design 
presented in [10], [11], and has been integrated into the 
selection circuit. 
     Table 4 shows the results obtained after the synthesis and 
simulation of each adder for some number wordlength, 
including k wordlength. COSA codification is not available in 
[9]. We do not implement it to get objectivity in the results. 
                                                                          
† Implementation using a family of standard gates from the 
AMS 0.35 µm CMOS library 

Table 3: Asymptotic Temporal complexity 

Adder Architecture  Asymptotic Temporal 
complexity 

CLA Carry Lookahead 
Adder standard 4lg2m O(lg m) 

PPA-SK Parallel-Prefix Adder 
Sklansky 2lg2m + 4 O(lg m) 

PPA-BK Parallel-Prefix Adder 
Brent-Kung 4lg2m O(lg m) 

COSA Conditional-Sum 
Adder 2lg2m + 2 O(lg m) 

TLA-4 k=4 LUT adder 
tree selection TTLU + 2 lg2m - 4 O(lg (m/4))

TLA-8 k=8 LUT adder 
tree selection TTLU + 2 lg2m - 6 O(lg (m/8))

 
Table 4: Delays in the calculation of the sum (ns) 

bits (m) Adder 
8 16 32 64 128 

CLA 11,1 25,5 54,0 110,9 224,8 
PPA-SK   9,4 20,4 34,5   37,5   48,6 
PPA-BK   9,4 13,7 19,8   24,3   32,7 
TLA-4   3,3   4,8   7,3   13,1   23,2 
TLA-8   3,1   3,7   5,2     7,7   13,5 

 
     The previous results demonstrate that the proposed adder 
design presents a delay similar or better to the conventional 
designs for this particular implementation, and they show the 
technology’s high degree of dependency on performance. 
 
5.3. Error computation analysis in flexible addition 
 
With the objective of testing the error computation while 
ignoring the correct concatenation of all the sequence of partial 
results, an exhaustive set of experiments has been made to 
prove the method for all cases. The experiments are both in 
individual operations and in sequences of successive operations. 
The profile of the experiments is the following: A compound 
LUT-Adder with k = 8; number length m = 48 bits; operands 
are rational numbers at the interval [0, 1).     The error evolution 
is shown in figure 5. 
 

 
Figure 5: Evolution of the error average in the RT addition 

 

     • The independent additions test consists of calculating the 
average error rate in 107 additions of two random rational 
numbers. 
     • The Successive additions test is aimed at empirically 
analyzing error propagation while adding inaccurate values 
consecutively. In this case, the error average is calculated in 
1,000 sets of 1,000 successive additions of random rational 
numbers within the interval [0,1) for each of the operation's 
loops, that is, the result of each of the additions acts as an 
addend of the following addition operation and so on. The 
numbers are generated at a positive interval, so they do not 
compensate positive errors with negative ones in the successive 
additions. However, the unselected partial results are selected 
alternatively by excess or default in order to provide 
compensation on a complete operation level. 



 

 

6. APPLICATION EXAMPLE 
 
The experiment is located in the Specialized Processing 
Architectures research group of the University of Alicante, 
Spain. One of the most interesting lines of research consists of 
the development of a Real-Time processor that considers the 
temporal restrictions in the low level of the architecture [12]. It 
is usefulness in many interest applications: calculation of 
trajectories for moving bodies, guidance and positioning 
systems, high frequency communications etc.…To process this 
successfully, the flexibility and determinism of the calculations 
plays a fundamental role in the correct working of the 
processor. 
     This section describes a simple example that illustrates the 
specific application of the proposed architecture. Let there be an 
object that moves according to combination of several 3D 
forces if

r
= <xi, yi, zi>; for example: magnetic field, electric 

field, gravity, etc … 
     The application consists of calculating the final force that is 
formed by the combination of individual forces in real-time 
way. This is the sum of all of them: ∑=

i
ifF
rr  (1) 

     We proposed the following architecture to resolve the 
expression (1): 
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Figure 6. Architecture for the final force calculation 
 

     The sum of the individual components of each force is made 
independently in the flexible adders simultaneously. The 
operation control module decides the number of stages that will 
be made in the sum operations. The criterion is based on the 
speed of the moving object. At greater speed, fewer partial 
results are selected. 
     We assume: xi, yi, zi ∈ [0, 1], speed. ∈ [0, 150], n = 32 
bits, k = 8 and five forces: F = f1 + f2 + f3 + f4 + f5. 
     Table 5 shows the number of stages in a tree selection, the 
time-saving that takes place in the five sums and the 
computation error. Simulation is made in FPGA for a set of 
1000 series of five consecutive sums. 
 

Table 5: Experimental results 

speed selection 
stages 

delay 
(ns) 

Saving of 
time (ns) |Error| 

[0, 32) 4 4 · 7,7 0,0 2-64,91 
[32, 64) 3 4 · 5,2 10,0 (32,4%) 2-32,97 
[64, 96) 2 4 · 3,7 16,0 (51,9%) 2-16,82 
[96, 150] 1 4 · 3,1 18,4 (59,7%) 2-8,89 

 
 
     The simulation results demonstrate that this technique saves 
considerable time in cases in which a fast response is necessary. 
Error is maintained within the acceptable margins. Although the 
value of the final force is not obtained with absolute precision, 
the result can be sufficient to make a movement decision. 
 

7. CONCLUSIONS 
 
The following conclusions have been drawn from the research 
described in this paper: 
     • The use of precalculated results in stored logic permits the 
construction of fast operators comparable to existing methods 
and lays the foundations for the design of high performance 
architectures. Adder complexity turns out to be logarithmic with 
the number of blocks: Tsuma ∈ O(log (n)). The proposal equals 
the asymptotic temporal complexity of present-day high 
performance adders. Technological improvements in 
manufacture or in communication with the selection circuit will 
tend to reduce TLUT access time and, therefore, total addition 
time. 
     • The adder behavior, which produces more and more 
precise results as the number of iterations increase, is suitable 
for the construction of systems with temporal/precision 
restrictions, in which result quality is exchanged for response 
determinism and speed. Developed methodology for the adder, 
due to its features of high performance and obtaining imprecise 
calculations with limited and decreasing error, can be used in 
the development of other arithmetic operations with temporal 
restrictions. 
     • Finally, the error analysis carried out shows that the 
algorithm provides limited results in addition operations, even 
in cases in which successive calculations are made with 
imprecise operands. 
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