

TIME-PRECISION FLEXIBLE ADDER
Juan Manuel García Chamizo, Jerónimo Mora Pascual, Higinio Mora Mora

Departamento de Tecnología Informática y Computación
Universidad de Alicante, Spain

{juanma, jeronimo, hmora }@dtic.ua.es

ABSTRACT*

A new conception of flexible calculation that allows us to adjust
a sum depending on the available time computation is
presented. More specifically, the objective is to obtain a
calculation model that makes the processing time/precision
more flexible. The addition method is based on carry-select
scheme adder and the proposed design uses precalculated data
stored in look-up tables, which provide, above all, quality
results and systematization in the implementation of low level
primitives that set parameters for the processing time. We report
an evaluation of the architecture in area, delay and computation
error, as well as a suitable implementation in FPGA to validate
the design.

1. INTRODUCTION

There are a great number of applications that are difficult to fit
into the rigid schemes of the calculation of conventional
arithmetic architectures. For these applications it would be
advantageous to have operators that provide control on the
results and act on the even quality of the result and processing
cost based on the specific computational requirements of each
case [1], [2].
 We can find several examples in which an intensive
processing of data provided by peripheral takes place. In these
cases, a strong coordination among sensors and the rest of
system is necessarily produced. For example, in systems of
mobile objects guidance, when the speed of the object is
increased, the system has less time to process the information
that is received from the sensors and to make decisions about its
movement. In this application, a fast answer in appropiate time
that allows decisions to be made at every moment may be
advisable, although at the expense of less precision in the
results.
 In this paper, we propose a method of flexible arithmetic
sum. Its main characteristic is the variable quality of the result
based on the available time. The algorithm is based on the use
of strategies that contribute determinism to the response time
and, at the same time, allow for parallel designs.

2. DESIGN PRINCIPLES

The proposed method consists of the combination of two
techniques: obtaining the result in a successive processing way
and using precalculated data in look-up tables.
 • Response quality is related to the number of calculated
stages of the sum, and therefore, will be able to act on the time-
quality-parallelism relationship. This approach forms a new
architecture that will implicitly incorporate flexibility in order to
adapt the duration of the calculation to time availability, which
is the instrument for real-time management. This characteristic

* This work is being backed by grant DPI2002-04434-C04-01
from the Ministerio de Ciencia y Tecnología of the Spanish
Government.

provides capabilities for successive refinement of the solution.
 • The precalculated data memories (LUT —Look Up Table)
have interesting characteristics relating to real-time processing:
they work in a totally determinist way and they can incorporate
error detection and correction mechanisms. The treatment of the
operands in small blocks promotes segmentation and a high
level of parallelism. These construction possibilities provide
robustness and flexibility to the operations [3].
 Their disadvantage is the high area complexity for overlarge
operands [4], nevertheless, the progressive improvement in
performance provided by electronic technology justifies the
search for new proposals that would probably have been
prohibitive some time ago.
 To carry out the sum, we propose the use of a LUT with all
the possible results of the sum of two numbers of k bits, called
the LUT-Adder. The use of tables in the computation of
functions is a well-known technique. In arithmetic literature,
several implementations of elementary functions based on the
use of look-up tables are analyzed [4], [5]. In this approach, we
use look-up table to process directly an elemental operation. For
performance reasons, it is assumed that the LUT memory is
implemented in the circuitry of the Arithmetic Unit itself, thus
reducing communication costs. Figure 1 illustrates the direct
sum of k-bit numbers using this method.

LUT-Adder

a b

a + b

k k

k+1

Compound
LUT-Adder

a b

a + b

k k

k+1

a + b + 1

k+1

LUT-Adder

a b

a + b

k k

k+1

LUT-Adder

a b

a + b

k k

k+1

Compound
LUT-Adder

a b

a + b

k k

k+1

a + b + 1

k+1

Figure 1: Adder based on Look-Up Table

 Note that this operation is only possible for some k values, as
will be explained below.

3. ALGORITHM

3.1. Addition Method

The proposed addition method is based on the carry-select adder
scheme [6] and it is made up of the following steps:
 1. Fragmentation of operands into k-size blocks: It is
immediate from the original operands. For numbers of m bits
(with m>k), we can divide the number into n blocks of k bits, so
that n·k ≥ m.
 2. Addition of the corresponding pairs of blocks. The partial
additions are obtained directly from a look-up table containing
the precalculated results: LUT-Adder. The processing of the
carry is directly made by obtaining the sum and its successor
from a Compound LUT-Adder. Figure 1. By designing multiple
memory access routes, simultaneous access can be gained
without the need for several memory chips.
 3. Ordered concatenation of the partial additions taking the
carry logics into account: The selection of each block is a
function of the carry bit of the preceding block selected

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/32322397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

according to the algorithm carry-select adder [6]. The
compound LUT-Adder is used to consider the carry in a direct
way, since adding the carry to a block is the same as obtaining
its successor in the LUT.

3.2. Flexible addition

The addition operation based on Look-Up Tables offers
predictability of the response times. The basic idea consists of
only performing the sum on blocks for which available time
exists. Therefore, this design has real-time properties. Thus,
depending on the time available, the system will adapt the
quality of response. According to the increase in the number of
iterations, the error rate will decrease.
 The flexible adder design is based on the previous algorithm
with the special feature that only part of the blocks obtained
from the operands are combined, according to the time
availability.
 In a scheme of sequential concatenation of the partial
additions, it is proposed that the combination of the blocks will
begin with block i, depending on the availability of time, and
move towards the left, figure 2. It is possible to obtain fast
approximations of the result by selecting only most of the left
blocks and selecting the rest at random or the upper ones.

Figure 2: Sequential selection

 For a tree concatenation scheme, figure 3, the process is
carried out from bottom to top, acting on all the blocks of partial
solutions concurrently per level. The total number of bits from
the result increases exponentially with the number of steps.

Figure 3: Tree selection

 An arithmetic unit must have an operation control that
translates the requirements into the number of processed stages.
The operation control module consists of a combinational
circuit that has problem conditions in its inputs and a number of
operation stages in its outputs, for example, a coder, multiplexor
or table circuit.

4. ARCHITECTURE

This architecture is suitable for specific purpose applications
where time restrictions are present.

4.1 Design

Figure 4 shows the proposed architecture. We assume, for
example, the numbers are fragmented into 4 blocks.
The main features of this architecture are:
 • Access to the Compound LUT-Adder provides the result
and its successor for all the pairs of blocks.

 • The selection circuit has a simple design since the effective
sum is carried out in the memory with precalculated results.
 • The tree selection combines the partial results until the
final result of the complete operation is obtained. Three results
with different qualities of degree and delay are extracted from
the tree selection circuit.
 • The operation control circuit selects the partial result that
best fits the conditions of the problem.

N1

N2 n20n21n22n23

n10n11n12n13

n23+n13

n23+n13+1

n22+n12
n22+n12+1

n21+n11
n21+n11+1

n20+n10

k k k k k k k k

k+1

Compound
LUT - Adder
Compound
LUT - Adder

k+1

4k+1

k+1 k+1 k+1
k+1

2k+1

2k+1

mux

4k+1

2k+1

Operation
Control

2

R = N1 + N2

conditions

4k+1

2k+1

N1

N2 n20n21n22n23

n10n11n12n13

n23+n13

n23+n13+1

n22+n12
n22+n12+1

n21+n11
n21+n11+1

n20+n10

k k k k k k k k

k+1

Compound
LUT - Adder
Compound
LUT - Adder

k+1

4k+1

k+1 k+1 k+1
k+1

2k+1

2k+1

mux

4k+1

2k+1

Operation
Control

2

R = N1 + N2

conditions

4k+1

2k+1

Figure 4: Block diagram of the proposed architecture

4.2. Path time

The path time of the proposed architecture is set by the delay of
the slowest path in the circuit. Depending on the application
conditions, it can be any of the main paths of the
implementation. There are the same number of paths as
possibilities of result selection. These paths, as shown in figure
4, are the following:
• Max(Op.Contr.,Comp.LUT-Adder) + mux
• Max(Op.Contr.,Comp.LUT-Adder) +and+or+mux
• Max(Op_Contr.,Comp.LUT-Adder)+2and+2or+mux
 Apparently, the improvement in time of one incomplete sum
is not important. Nevertheless, when the amount of the sum to
be made is elevated, the architecture acquires a greater
relevance.

5. EVALUATION OF THE ARCHITECTURE

In this section, we present estimates of the area costs, execution
time and error computation of the architecture proposed in the
previous section. The power consumption of the circuit is not
important for this research and is therefore not dealt with in this
paper. It will be studied in depth in the event that it can be
implemented in a chip.

5.1. Area estimations

The main contributions to the area of the architecture come
from the compound LUT-adder. The area of the selection circuit
is small when compared to the area of the LUT. The model we
use for the area estimations is taken from [4], [5] and [7].The
unit used is the size of a complex gate τa, since the area of the
compound LUT-adder, selection circuits, and multiplexor are
easily expressed in this unit. The LUT-adder is the component
of the architecture that occupies the greatest area. The others

have a marginal area in comparison and, therefore, the
estimation is focused only on the LUT-adder.
 Data storage imposes severe restrictions on k block size. As
we can see in table 1, the area cost increases exponentially with
the k value. Therefore, we have to achieve a balance between
the memory required and the complexity of the circuit. Table 2
shows the cost in terms of τa for the most common sizes.

Table 1: Compound LUT-
Adder size (bits)

Table 2: Compound LUT-
Adder size (τa)

k Addition-LUT
Size

4 1360 bits
6 3.56 KB
8 72.28 KB
16 ≈ 26 MB

k Area
estimations(τa)

4 ≈ 47 τa
6 ≈ 855 τa
8 ≈ 11564 τa

 As shown in the previous tables, the amount of area is much
greater than in conventional adder designs based on simple
combinational circuits, nevertheless, this architecture is still
suitable for applications in which the size of the circuit is not a
problem.

5.2. Delay estimations

Delays in the complete addition calculus is divided into:
 • Access time to the LUT-Addition in order to obtain the
precalculated results. This time will only be determined by
memory access time TLUT. Let τt be the delay of a complex gate,
such as one full-adder. According to [5], [7] analysis† we
assume a delay of about TLUT = 3.5τt for 8 input bit tables, TLUT
= 5τt for 12-13 input tables and TLUT = 6.5τt for 16 input bit
tables.
 • Selection of the blocks that make up the result. In the case
of tree concatenation, total selection time is obtained by taking
into account that all the selections at one tree level are carried
out in parallel and that the total number of tree levels is lg2 n.
Let Tsel be the time taken in the selection on one tree level, so
the expression for the total selection time is Tsel·lg2 n. A
selection step consists of two single gates: (and, or), or one
complex gate τt, so Tsel = 1 τt. For operands of m = n·k bits, the
proposed algorithm calculates the addition in: Tadd = TLUT +
Tsel·lg2(m/k) time units.

 We perform a comparison of the proposed architecture with
other known adder algorithms.
 In the first place, in terms of the expression of the asymptotic
temporal complexity, those adders have a growth in the delay
equal to the proposed design. The table 3 shows the temporal
complexity of adder designs [8], where m is the length in bits of
the operands. The addition algorithms differ in the constants
that modify the general cost expression. In the TLA algorithm,
the compound LUT-Adder performance plays a fundamental
role in the final calculation time.
 In addition, the circuit delays depend on the technology used
and on the implementation itself. In order to prove this, the
TLA-4 and TLA-8 have been implemented in VHDL and tested
on FPGA in comparison with the implementation provided by
[9]. The LUT implementation corresponds to the design
presented in [10], [11], and has been integrated into the
selection circuit.
 Table 4 shows the results obtained after the synthesis and
simulation of each adder for some number wordlength,
including k wordlength. COSA codification is not available in
[9]. We do not implement it to get objectivity in the results.

† Implementation using a family of standard gates from the
AMS 0.35 µm CMOS library

Table 3: Asymptotic Temporal complexity

Adder Architecture Asymptotic Temporal
complexity

CLA Carry Lookahead
Adder standard 4lg2m O(lg m)

PPA-SK Parallel-Prefix Adder
Sklansky 2lg2m + 4 O(lg m)

PPA-BK Parallel-Prefix Adder
Brent-Kung 4lg2m O(lg m)

COSA Conditional-Sum
Adder 2lg2m + 2 O(lg m)

TLA-4 k=4 LUT adder
tree selection TTLU + 2 lg2m - 4 O(lg (m/4))

TLA-8 k=8 LUT adder
tree selection TTLU + 2 lg2m - 6 O(lg (m/8))

Table 4: Delays in the calculation of the sum (ns)

bits (m) Adder
8 16 32 64 128

CLA 11,1 25,5 54,0 110,9 224,8
PPA-SK 9,4 20,4 34,5 37,5 48,6
PPA-BK 9,4 13,7 19,8 24,3 32,7
TLA-4 3,3 4,8 7,3 13,1 23,2
TLA-8 3,1 3,7 5,2 7,7 13,5

 The previous results demonstrate that the proposed adder
design presents a delay similar or better to the conventional
designs for this particular implementation, and they show the
technology’s high degree of dependency on performance.

5.3. Error computation analysis in flexible addition

With the objective of testing the error computation while
ignoring the correct concatenation of all the sequence of partial
results, an exhaustive set of experiments has been made to
prove the method for all cases. The experiments are both in
individual operations and in sequences of successive operations.
The profile of the experiments is the following: A compound
LUT-Adder with k = 8; number length m = 48 bits; operands
are rational numbers at the interval [0, 1). The error evolution
is shown in figure 5.

Figure 5: Evolution of the error average in the RT addition

 • The independent additions test consists of calculating the
average error rate in 107 additions of two random rational
numbers.
 • The Successive additions test is aimed at empirically
analyzing error propagation while adding inaccurate values
consecutively. In this case, the error average is calculated in
1,000 sets of 1,000 successive additions of random rational
numbers within the interval [0,1) for each of the operation's
loops, that is, the result of each of the additions acts as an
addend of the following addition operation and so on. The
numbers are generated at a positive interval, so they do not
compensate positive errors with negative ones in the successive
additions. However, the unselected partial results are selected
alternatively by excess or default in order to provide
compensation on a complete operation level.

6. APPLICATION EXAMPLE

The experiment is located in the Specialized Processing
Architectures research group of the University of Alicante,
Spain. One of the most interesting lines of research consists of
the development of a Real-Time processor that considers the
temporal restrictions in the low level of the architecture [12]. It
is usefulness in many interest applications: calculation of
trajectories for moving bodies, guidance and positioning
systems, high frequency communications etc.…To process this
successfully, the flexibility and determinism of the calculations
plays a fundamental role in the correct working of the
processor.
 This section describes a simple example that illustrates the
specific application of the proposed architecture. Let there be an
object that moves according to combination of several 3D
forces if

r
= <xi, yi, zi>; for example: magnetic field, electric

field, gravity, etc …
 The application consists of calculating the final force that is
formed by the combination of individual forces in real-time
way. This is the sum of all of them: ∑=

i
ifF
rr (1)

 We proposed the following architecture to resolve the
expression (1):

F

f = <xi, yi, zi>i
xi yi zi

∑flexible - ∑flexible - ∑flexible -

speed stages

operation
control

F

f = <xi, yi, zi>i
xi yi zi

∑flexible -∑flexible - ∑flexible -∑flexible - ∑flexible -∑flexible -

speed stages

operation
control

operation
control

Figure 6. Architecture for the final force calculation

 The sum of the individual components of each force is made
independently in the flexible adders simultaneously. The
operation control module decides the number of stages that will
be made in the sum operations. The criterion is based on the
speed of the moving object. At greater speed, fewer partial
results are selected.
 We assume: xi, yi, zi ∈ [0, 1], speed. ∈ [0, 150], n = 32
bits, k = 8 and five forces: F = f1 + f2 + f3 + f4 + f5.
 Table 5 shows the number of stages in a tree selection, the
time-saving that takes place in the five sums and the
computation error. Simulation is made in FPGA for a set of
1000 series of five consecutive sums.

Table 5: Experimental results

speed selection
stages

delay
(ns)

Saving of
time (ns) |Error|

[0, 32) 4 4 · 7,7 0,0 2-64,91
[32, 64) 3 4 · 5,2 10,0 (32,4%) 2-32,97
[64, 96) 2 4 · 3,7 16,0 (51,9%) 2-16,82
[96, 150] 1 4 · 3,1 18,4 (59,7%) 2-8,89

 The simulation results demonstrate that this technique saves
considerable time in cases in which a fast response is necessary.
Error is maintained within the acceptable margins. Although the
value of the final force is not obtained with absolute precision,
the result can be sufficient to make a movement decision.

7. CONCLUSIONS

The following conclusions have been drawn from the research
described in this paper:
 • The use of precalculated results in stored logic permits the
construction of fast operators comparable to existing methods
and lays the foundations for the design of high performance
architectures. Adder complexity turns out to be logarithmic with
the number of blocks: Tsuma ∈ O(log (n)). The proposal equals
the asymptotic temporal complexity of present-day high
performance adders. Technological improvements in
manufacture or in communication with the selection circuit will
tend to reduce TLUT access time and, therefore, total addition
time.
 • The adder behavior, which produces more and more
precise results as the number of iterations increase, is suitable
for the construction of systems with temporal/precision
restrictions, in which result quality is exchanged for response
determinism and speed. Developed methodology for the adder,
due to its features of high performance and obtaining imprecise
calculations with limited and decreasing error, can be used in
the development of other arithmetic operations with temporal
restrictions.
 • Finally, the error analysis carried out shows that the
algorithm provides limited results in addition operations, even
in cases in which successive calculations are made with
imprecise operands.

8. REFERENCES

[1] W. A. Halang, K. M. Sacha. Real-Time Systems.

Implementation of Industrial Computerised Process
Automation, World Scientific Publishing Co. Singapore,
1992.

[2] G. C. Butazzo. Hard Real-Time Computing Systems.
Predictable Scheduling Algorithms and Application,
Kluwer Academic Publishers. Netherlands, 1997.

[3] B. Parhami, Computer Arithmetic: Algorithms and
Hardware Designs, Oxford University Press, New York,
2000.

[4] W.F. Wong, E. Goto, “Fast Hardware-Based Algorithms
for Elementary Function Computations Using Rectangular
Multipliers”, IEEE Transaction on Computers, vol. 43 (4),
278-294. 1994.

[5] M.D. Ercegovac, T. Lang, J-M. Muller, A Tisserand,
“Reciprocation, Square Root, Inverse Square Root, and
Some Elementary Functions Using Small Multipliers”,
IEEE Transaction on Computers, vol 49, 628-636, 2000.

[6] J. Sklansky. “Conditional-sum addition logic.” IRE
Transactions on Electronic Computers, vol. 9, pp. 226–
231, 1960.

[7] J-A.. Piñeiro, J.D. Bruguera, J.M. Muller. “Faithful
powering computation using table look-up and a fused
accumulation tree”. Proceedings of the 15th International
Symposium of Computer Arithmetic (ARITH’15), 2001.

[8] R. Zimmermann. Binary Adder Architectures for Cell-
Based VLSI and their Synthesis, PhD Thesis, Swiss Federal
Institute of Technology. Switzerland. 1997.

[9] R, Zimmermann. “VHDL Library of Arithmetic Units”,
Forum of Design Languajes, Lausanne, September 1998.

[10] S.J.E. Wilton, N.P. Jouppi. “An Enhanced Access and
Cycle Time Model for On-Chip Caches”. Digital Western
Research Laboratory. 1994.

[11] H. Nambu, K. Kanetani, K. Higeta, M. Usami, T.
Kusonoki, K. Yamaguchi, N. Homma. “A 1.8 ns Access,
5550 Mhz 4.5 Mb CMOS SRAM”. IEEE ISSCC. 1998.

[12] J.M. Mora Pascual, Real-Time Floating Point Arithmetic
Unit, PhD Thesis, University of Alicante, Spain. 2001.

