

PARAMETRIZED ARCHITECTURE FOR HOUGH TRANSFORM RECURSIVE

EVALUATION

Juan Manuel García Chamizo

Mª Teresa Signes Pont

Higinio Mora Mora

Gregorio de Miguel Casado

Departamento de Tecnología Informática y Computación-Universidad de Alicante

{juanma, teresa, hmora, demiguel}@dtic.ua.es

ABSTRACT

The Hough Transform (HT) is a useful technique in image

segmentation, concretely for geometrical primitive

detection. A Convolution-Based Recursive Method

(CBRM) is presented for function evaluation. In this

generic approach, calculations are carried out by an

unique parametric formula which provides all function

points by successive iterations. The case of combined

trigonometric functions involved in the calculation of the

HT is analyzed under this scope. An architecture for

reconfigurable FPGA-based hardware, using Distributed

Arithmetic (DA) implements the design. The CBRM

implementation provides improvements such as memory

and hardware resources saving, as well as a good balance

between speed and error-dependable precision.

1. INTRODUCTION

Proposed in 1962, the Hough Transform (HT) has become

a widely used technique in image segmentation: plane

curve detection [1], object recognition [2], air picture

vectorization [3], etc. The HT is very suitable because of

its robustness, although the great amount of temporary

and spatial resources that requires has moved it away from

real time applications. This way, the investigation efforts

in HT have dealt with the design of fast algorithms and

parallel or ad-hoc architectures. As the HT consists of

function evaluation using arithmetic operations different

algorithmic approaches have been developed: piece-lineal

(PLHT) [4], combinatory (CHT) [5], binary (BHT) [6],

adaptive (RHT) [7] and fast (FHT) [8]. There are also

implementations of the CORDIC algorithm for

applications that demand high speed and precision, such

as digital signal and image processing and algebra [9][10].

However, their drawback is the lower degree of regularity

and parallelism capabilities when comparing with the

traditional algorithm. The parallelism that underlies in the

traditional algorithm allows the implementation of

architectures with shared or distributed memory (lineal

array, mesh, hypercube [11] and binary tree) as well as

specific HT systolic ones [12].

This paper presents the HT calculation under the scope

of a Convolution - Based Recursive Method (CBRM),

providing a suitable approach for the evaluation of the

combined elementary functions involved, sine and cosine,

together with systematic addition and multiplication

operations. Compared with other proposals, CBRM offers

good performance in speed, memory requirements and

trade-off between precision and error. The Distributed

Arithmetic (DA) implementation provides simplicity to

the circuit and also good results as for error and speed.

The paper is structured in six parts: the CBRM

fundamentals and its application to the calculation of the

HT (Sec. 2); DA-architecture design (Sec. 3);

implementation, experiments and results obtained (Sec.

4); comparison with other proposals (Sec. 5) and the

conclusions drawn from this work (Sec. 6).

2. CONVOLUTION-BASED RECURSIVE METHOD

(CBRM)

In this section, the fundamentals of the method and its

application to the HT are exposed.

2.1. Fundamentals

The CBRM is introduced in order to improve function

evaluation performance in computational operations.

The conceptual foundation of the method resides in

that the convolution provides a framework for evaluating

functions with independence of its structural peculiarities.

In the case of two discrete functions f and g: N→R the

convolution Ψ can be written as:

Using mathematical transformations (1) can be expressed

recursively, achieving a simpler formulation (2).

(0) * (0) (0)· (0)
(1) * (1) (0)· (1) (1)· (0)

...
() * () (0)· () ... ()· (0)

f g f g
f g f g f g

p f g p f g p f p g

  
   

    

(1)

 q+1 =  q +  Gq q  [0, I]  ℕ (2)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/32322385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CBRM is based on a mathematical expression in

which the first term is a  value computed at every q

iteration, which allows the computation of the next value

at iteration q+1, and the second term is a value calculated

using a function called G. The function G can be obtained

like or just as a function of . The contributions of

and G are weighted by the parameters α and β; the

values of the parameters and the contribution of the

function G are particular for each .

Reciprocally, it can be demonstrated that any discrete

variable function that can be expressed in recursive form

(2) with  different from zero, can be split up into two

convolving functions f and g, f(q) = q g(q) = ·Gq

On these theoretical bases, the CBRM (2) supports the

evaluation of a wide group of common functions. The

computational interest of the method is related to the

compactness of the recursive evaluation pattern. It takes

advantage of pre-calculated values of the function to

calculate successive ones by using a repetitive and simple

operation. This specially becomes even more powerful

when calculating combinations of elementary functions

and when a lot of function points are required.

2.2. Application of the CBRM to the HT

The geometric primitive detection using the HT implies

three stages: image outline creation by using an edge

detector, application of the HT to each point of the image

and a voting process in the Hough domain in order to

extract the geometric primitives.

Fig 1. HT parameters for the line detection case.

If the geometric primitive to be detected is a straight line,

the HT transforms each point P(x,y) in the Cartesian

domain in a point (ρ,θ) in the Hough domain, and vice

versa. So, the Hough domain is complete and unique for

0≤ ρ<Π line representation.

The Hough domain can be interpreted as a voting grid.

Each point in the Cartesian domain votes for a set of lines

that intersect it and that stand for a grid point (ρ,θ). A

local maximum point in the voting grid represents the best

adjusted line detected. The increment of the grid points Δρ

y Δθ establish both distance and angular difference

between lines in the Cartesian domain, respectively.

The HT is a robust technique since the voting process

is not affected by isolated noise points because wrong

votes do not affect the local maximum. The HT also

manages successfully line occlusion problems, because

the distance between points is not relevant.

The parametrized space is discretized in Nθ levels,

from 0 to П and Nρ levels, from ρmin to ρmax. The HT

calculates the ρ values for all the angles in [0,П[and for

every pixel in the image. The direct calculation has O(N2)

complexity and the global amount of operations is N2·Nθ.

If [0,П[is considered as [0,П/2[U[П/2,П[, the HT for

every pixel (xi,yj) in the image can be written as:

If:

When substituting (4) in (3) we have that:

As shown in (5), (I)k and )kcan be evaluated by the

CBRM, by using G(k) = (I)k when evaluating (II)kand

vice versa; (ρI)0 y (ρII)0 should be initialized with the

value of the coordinates of each pixel in the image.

3. ARCHITECTURE

Distributed Arithmetic (DA) is used in order to multiply

using a look-up table based scheme. Figure 2 shows the

complete architecture and Figure 3 the DA module.

Fig 2. DA architecture for the CBRM.

Fig 3. Structure of a 2-C·MAC.

First, shift-registers are initialized with ( and

next, feedbacked with the output values. The values of

(i-1i-1 are shifted to MACs one bit a time, starting

() · · /

() · · / 2
I k i k j k k

II k j k i k k

x cos y sen 0 2

y cos x sen

   

   

    

     
 (3)

1

1

1

()
()

,

k k

k k

k k

cos cos
sen sen
cos sen

  
  
  
   







  
  
  

   

 (4)

1 1

1 1
2 2

() ·() ·()
() ·() ·()

I k I k II k

II k II k I k

with 1

    
    

 

 

 

 
 

 

 (5)

k

k

Ak

k

Ak

Bk

2-C MAC1

2-C·MAC2

S-Reg

S-Reg

k

k



)0

+A

(x,y)


 

 X

Y

LUT
Recursive

Compone

nt

Adder

2-1

with the lower less significant bit. MAC blocks multiply

A··and ··in serial mode in n cycles.

These are signed expressions which depend on the sign of

A and B, as we suppose without loss of generality that

and are positive. Every cycle, the only possible values

for Ai and Bi are (00), (01), (10) and (11); so, partial

results of the expressions are stored in a look-up table

(LUT) (Table 1). The sum of partial products is

performed in the scaled accumulator.

The LUT can be addressed using four bits: two bits

represent the input pair (Ai, Bi) and the others are the sign

of A and B (the most significant bit). For each column, the

left subcolumn represents LUT1 and the right one LUT2.

 A>0 y B>0

(00)

A>0 y B<0

(01)

A<0 y B>0

(10)

A<0 y B<0

(11)

(00) 0 0 0 0 0 0 0 0

(01) -       

(10)        

(11)        

Table 1. LUT addressing.

Input data must be signed-value so that to address the

LUT. Parameters and  are real numbers so they might

be represented in fixed point two’s complement and only

the entire part will be considered. Partitions are done as

follows: input values of (kand (k have 1 bit for

sign, n/2 –1 bits for entire part, n/2 bits for fractionnary

part; parameter values and have 1 bit for sign, 1 bit

for entire part, n-2 bits for fractionnary part.

4. IMPLEMENTATION AND EXPERIMENTS

Implementation has been done for FPGA (V300 BG352-6

Xilinx, Virtex E). Simulation in VHDL provides critical

path estimations. The error performed by the CBRM with

regard to the direct calculation has been carried out by

using calculating (k (k using C language.

4.1. Calculation time estimation.

The architecture (Fig. 2) has been implemented with two

identical subcircuits that calculate (k (k in parallel.

VHDL describes both of them as a composition of two

modules: one devoted to the selection of the n partial

products and another one that performs the sum of these

partial products. Table 2 shows CBRM time estimations:

bits module 1 module 2 Overall

8 0.468ns 28.188ns 28.656ns

16 0.468ns 40.620ns 41.088ns

32 0.468ns 139.180ns 139.648ns

Table 2. Calculation time of CBRM versus size of data.

4.2. Error calculation

In order to study the relative error and the number of

erroneous bits in the result (5), the direct calculation has

been taken as reference (3). Increasing data size from 16

to 32 bits rebounds favorably in general improvements.

When rising α, the error increases as the rotated angle

becomes bigger, while when rising ß both increase as the

number of calculated values grow. Furthermore, as the

rotated angle and/or the number of iterations rise, the

erroneous bits increase less steeply (logarithmic growth)

until a constant value is reached that can be notably

lowered by controlling the parameters. The lineal growth

of the relative error is the worst aspect outlined by this

analysis, although it also can be controlled by tuning the

parameters or reducing iterations and/or the rotated angle.

5. COMPARISON WITH OTHER PROPOSALS

Two Fast HT CORDIC architectures are considered for

comparison: a segmented reconfigurable implementation

[13] and a parallel one [14].

5.1. CBRM versus segmented CORDIC.

The segmented CORDIC architecture and the CBRM,

have been tested on the same platform (V300 BG352)

using a 128x128 image with 128 discrete angles; the times

invested have been picked up in tables 3 and 4.

bits Overall Frames/s

8 28.656ns · 128 · 128 · 64 =0.03005 s 33

16 41.088ns · 128 · 128 · 64 =0.04308 s 23

32 139.648ns · 128 · 128 · 64 =0.14643 s 6

Tabla 3. Processing times for CBRM.

bits
Operation

+/-
Overall

Complete

image
Frames/s

8 11.076 ns 132.912 ns 0.139 s 7

16 25.308 ns 303.696 ns 0.318 s 3

32 53.772 ns 1720.704 ns 1.804 s 0.5

Table 4. Times obtained for segmented CORDIC.

As shown in Tables 2 and 3, CBRM provides good results

when comparing with segmented CORDIC according to

the experiments carried out with the HT for line detection.

In the segmented CORDIC implementation, the global

error (E =2N · 2-(n-1/2) + 2-M · n) falls with the number of

bits of the fractional part M and grows with the number of

iterations, n, when n>16. According to [13], the absolute

error for N=128 is of 0.135, for 16 bits data (with 8

fractional) and 12 iterations. It is the same than having 6

erroneous fractional bits in the result. That represents an

approximate relative error of 2-5=3%. The CBRM has a

relative error smaller than 1% for the same precision and

values so, therefore presents a better behaviour.

The amount of hardware resources used by the

segmented CORDIC architecture is higher than that of the

CBRM, which involves two multiplexers, two

displacement registers, 2 MACs of two inputs and 2 16n

bit LUTs (Fig. 2 and 3). The segmented CORDIC

implementation with 12 iterations needs 24 adder-

substracter circuits, 24 fixed displacement registers, 24

registers and a ROM table containing the microrotations,

plus two supplementary adder circuits to carry out the

serial compensation of the scale factor.

5.2. CBRM versus parallel CORDIC.

Both architectures have been implemented on the same

platform (V300 BG352) for comparison. An NxN image

needs ·m calculation cycles, where  is the

number of rotation angles and m the number of

processors. The stage-time, without considering the

multiplexer time, is that of the add/subtraction stage.

Table 5 shows the time taken to transform a 128x128

image with 128 rotation angles and m processors. An

inverse proportion exists between number of processors

and calculation time; the number of processors considered

aims for reaching the CBRM times (Table 3).

The comparison as for hardware resources is highly

unfavourable in the case of the parallel implementation

since it demands many more resources to obtain an

equivalent speed to the implementation CBRM. The

mentioned work does not provide data on the error

performed by the implementation presented.

It suits to mention that the implementation of the

CBRM can achieve even more speed when proposing four

functions (kk (kVk: the angle to rotate would

be the half, and, for the same increment, the number of

iterations would be divided by two. This improvement

would provide additional time-saving by means of

duplicating the hardware used.

bits Add/

Subst.

10 stage

cycle
Complete image

Proc

(m)

8 11.076ns 0.111ms 128·32·32·0.111/m=58.196s/m 1937

16 25.308ns 0.253ms 128·32·32·0.253/m=132.654s/

m
3079

32 53.772ns 0.538ms 128·32·32·0.538/m=282.067s/

m

1926

Table 5. Times obtained for the paralell CORDIC architecture.

6. CONCLUSIONS

A function evaluation method that provides calculation

improvements for the HT has been presented (CBRM). It

outlines the interest of convolution as a powerful tool that

increases computational capabilities, essentially when

applied to massive calculations. The evaluation of the HT

has been carried out with a DA-based architecture.

Compared with other well-known proposals, namely

segmented and parallel CORDIC, it has been confirmed

that the CBRM provides memory and hardware resource

saving as well as speed improvements according to the

experiments carried out with the HT. It also offers good

results in dependable-precision error. These encouraging

partial conclusions make quite reasonable to study in

depth the capabilities of convolution to provide a more

complete set of recursive evaluating patterns in order to

extend the CBRM.

7. REFERENCES

[1] Muamar, H.K and Nixon, M., “Tristage Hough Transform

for multiple ellipse extraction,” IEEE Proc. Part E: Computer

and Digital Techniques, Vol 138 nº 1, 1991.

[2] Haule, D.D and Malowany, A.S., “Object Recognition using

fast adaptative HT,” IEEE Comp. Pacific Conf. On

Communication, Compiler and Signal Processing, pp. 91-94,

1989.

[3] da Silva, I., “Vectorization from aerial photographs applying

the HT method,” Proc. SPIE, Vol 1395, Pt2, pp. 956-963, 1990.

[4] Koshimizu, H. and Numada, M., “On fast Hough Transform

method PLHT based on piecewise-linear Hough function,” J.

System Computer in Japan, Vol 21 nº5, pp. 62-73, 1990.

[5] Ben-Tzvi, D. and Sandler, M. “A Combinatorial Hough

Transform”. J.P. Recognition Letters, Vol 11,pp. 167-174, 1990

[6] da Fontura, L. and Sandler, M.B., “A binary HT and its

efficient implementation in a systolic array architecture,” J.P.

Recognition Letters, Vol. 10, pp. 329-334, 89.

[7] Walther, J.S., “A unified algorithm for elementary

functions,” Proc. Spring Joint Computers Conf., pp. 379-385,

1971.

[8] Li, H.F., Lavin, M.A. and Le Master, R.J., “Fast Hough

Transform: a hierarchical approach,” J. Computer Vision

Graphics Image Processing, Vol.36, pp. 139-161, 1986.

[9] Hu, Y.H., “CORDIC-based VLSI architectures for Digital

Signal Processing,” IEEE Signal Processing Magazine, nº 7 pp.

16-35, 1992.

[10] Villalba, J., “Diseño de Arquitecturas CORDIC

multidimensionales,” Tesis Doctoral Dept. de Arquitectura de

Computadores. Universidad de Málaga. Nov.1995.

[11] Shankar, R.V. and N. Asokan., “A parallel implementation

of the Hough Transform method to detect lines and curves in

pictures,” IEEE 32th Midwest Symp. On Circuits and Systems,

pp. 321-324, 1990.

[12] Chuang ,H.Y.H. and Li, C.C. “A systolic processor for

straight line detection by modified HT”. IEEE Conf. on

Computer Architecture for Pattern Analysis and Image

Database Management, pp. 300-304. 1995.

[13] Deng, Dixon, D.S and El Gindy H., “High speed

Parametrizable HT using reconfigurable hardware,” Pan-Sydney

Area Workshop an Visual Information Processing (VIP), 2001.

[14] Bruguera, J.D. and Guil, N. “CORDIC-based

parallel/pipelined architecture for the HT,” J. of VLSI Signal

Processing, Vol 12 nº 3, pp. 207-221, 1996.

