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ABSTRACT 

 

The Hough Transform (HT) is a useful technique in image 

segmentation, concretely for geometrical primitive 

detection. A Convolution-Based Recursive Method 

(CBRM) is presented for function evaluation. In this 

generic approach, calculations are carried out by an 

unique parametric formula which provides all function 

points by successive iterations. The case of combined 

trigonometric functions involved in the calculation of the 

HT is analyzed under this scope. An architecture for 

reconfigurable FPGA-based hardware, using Distributed 

Arithmetic (DA) implements the design. The CBRM 

implementation provides improvements such as memory 

and hardware resources saving, as well as a good balance 

between speed and error-dependable precision.  

 

1. INTRODUCTION 

 

Proposed in 1962, the Hough Transform (HT) has become 

a widely used technique in image segmentation: plane 

curve detection [1], object recognition [2], air picture 

vectorization [3], etc. The HT is very suitable because of 

its robustness, although the great amount of temporary 

and spatial resources that requires has moved it away from 

real time applications. This way, the investigation efforts 

in HT have dealt with the design of fast algorithms and 

parallel or ad-hoc architectures. As the HT consists of 

function evaluation using arithmetic operations different 

algorithmic approaches have been developed: piece-lineal 

(PLHT) [4], combinatory (CHT) [5], binary (BHT) [6], 

adaptive (RHT) [7] and fast (FHT) [8]. There are also 

implementations of the CORDIC algorithm for 

applications that demand high speed and precision, such 

as digital signal and image processing and algebra [9][10]. 

However, their drawback is the lower degree of regularity 

and parallelism capabilities when comparing with the 

traditional algorithm. The parallelism that underlies in the 

traditional algorithm allows the implementation of 

architectures with shared or distributed memory (lineal 

array, mesh, hypercube [11] and binary tree) as well as 

specific HT systolic ones [12]. 

This paper presents the HT calculation under the scope 

of a Convolution - Based Recursive Method (CBRM), 

providing a suitable approach for the evaluation of the 

combined elementary functions involved, sine and cosine, 

together with systematic addition and multiplication 

operations. Compared with other proposals, CBRM offers 

good performance in speed, memory requirements and 

trade-off between precision and error. The Distributed 

Arithmetic (DA) implementation provides simplicity to 

the circuit and also good results as for error and speed. 

The paper is structured in six parts: the CBRM 

fundamentals and its application to the calculation of the 

HT (Sec. 2); DA-architecture design (Sec. 3); 

implementation, experiments and results obtained (Sec. 

4); comparison with other proposals (Sec. 5) and the 

conclusions drawn from this work (Sec. 6). 

 

2. CONVOLUTION-BASED RECURSIVE METHOD 

(CBRM) 

 

In this section, the fundamentals of the method and its 

application to the HT are exposed. 

 

2.1. Fundamentals 

 

The CBRM is introduced in order to improve function 

evaluation performance in computational operations. 

The conceptual foundation of the method resides in 

that the convolution provides a framework for evaluating 

functions with independence of its structural peculiarities. 

In the case of two discrete functions f and g: N→R the 

convolution Ψ can be written as: 
 

 

Using mathematical transformations (1) can be expressed 

recursively, achieving a simpler formulation (2). 
 

(0) * (0) (0)· (0)
(1) * (1) (0)· (1) (1)· (0)

...
( ) * ( ) (0)· ( ) ... ( )· (0)

f g f g
f g f g f g

p f g p f g p f p g

  
   
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(1) 

 q+1 =  q +  Gq q  [0, I]  ℕ (2) 
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CBRM is based on a mathematical expression in 

which the first term is a  value computed at every q 

iteration, which allows the computation of the next value 

at iteration q+1, and the second term is a value calculated 

using a function called G. The function G can be obtained 

like or just as a function of . The contributions of 

and G are weighted by the parameters α and β; the 

values of the parameters and the contribution of the 

function G are particular for each . 

Reciprocally, it can be demonstrated that any discrete 

variable function that can be expressed in recursive form 

(2) with  different from zero, can be split up into two 

convolving functions f and g, f(q) = q g(q) = ·Gq

On these theoretical bases, the CBRM (2) supports the 

evaluation of a wide group of common functions. The 

computational interest of the method is related to the 

compactness of the recursive evaluation pattern. It takes 

advantage of pre-calculated values of the function to 

calculate successive ones by using a repetitive and simple 

operation. This specially becomes even more powerful 

when calculating combinations of elementary functions 

and when a lot of function points are required. 

 

2.2. Application of the CBRM to the HT 

 

The geometric primitive detection using the HT implies 

three stages: image outline creation by using an edge 

detector, application of the HT to each point of the image 

and a voting process in the Hough domain in order to 

extract the geometric primitives. 
 

 

Fig 1. HT parameters for the line detection case. 
 

If the geometric primitive to be detected is a straight line, 

the HT transforms each point P(x,y) in the Cartesian 

domain in a point (ρ,θ) in the Hough domain, and vice 

versa. So, the Hough domain is complete and unique for 

0≤ ρ<Π line representation. 

The Hough domain can be interpreted as a voting grid. 

Each point in the Cartesian domain votes for a set of lines 

that intersect it and that stand for a grid point (ρ,θ). A 

local maximum point in the voting grid represents the best 

adjusted line detected. The increment of the grid points Δρ 

y Δθ establish both distance and angular difference 

between lines in the Cartesian domain, respectively. 

The HT is a robust technique since the voting process 

is not affected by isolated noise points because wrong 

votes do not affect the local maximum. The HT also 

manages successfully line occlusion problems, because 

the distance between points is not relevant. 

The parametrized space is discretized in Nθ levels, 

from 0 to П and Nρ levels, from ρmin to ρmax. The HT 

calculates the ρ values for all the angles in [0,П[ and for 

every pixel in the image. The direct calculation has O(N2) 

complexity and the global amount of operations is N2·Nθ. 

If [0,П[ is considered as [0,П/2[U[П/2,П[, the HT for 

every pixel (xi,yj) in the image can be written as: 
 

 

If: 
 

 

When substituting (4) in (3) we have that: 
 

 

As shown in (5), (I )k and )kcan be evaluated by the 

CBRM, by using G(k) = (I )k when evaluating (II )kand 

vice versa; (ρI )0 y (ρII )0 should be initialized with the 

value of the coordinates of each pixel in the image. 

 

3. ARCHITECTURE 

 

Distributed Arithmetic (DA) is used in order to multiply 

using a look-up table based scheme. Figure 2 shows the 

complete architecture and Figure 3 the DA module. 
 

 
 

Fig 2. DA architecture for the CBRM. 
 

 
 

Fig 3. Structure of a 2-C·MAC. 

First, shift-registers are initialized with ( and 

next, feedbacked with the output values. The values of 

(i-1i-1 are shifted to MACs one bit a time, starting 
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with the lower less significant bit. MAC blocks multiply 

A··and ··in serial mode in n cycles. 

These are signed expressions which depend on the sign of 

A and B, as we suppose without loss of generality that 

and are positive. Every cycle, the only possible values 

for Ai and Bi are (00), (01), (10) and (11); so, partial 

results of the expressions are stored in a look-up table 

(LUT) (Table 1). The sum of partial products is 

performed in the scaled accumulator. 

The LUT can be addressed using four bits: two bits 

represent the input pair (Ai, Bi) and the others are the sign 

of A and B (the most significant bit). For each column, the 

left subcolumn represents LUT1 and the right one LUT2. 
 

 A>0 y B>0 

(00) 

A>0 y B<0 

(01) 

A<0 y B>0 

(10) 

A<0 y B<0 

(11) 

(00) 0 0 0 0 0 0 0 0 

(01) -        

(10)        

(11)        
 

Table 1. LUT addressing. 
 

Input data must be signed-value so that to address the 

LUT. Parameters and  are real numbers so they might 

be represented in fixed point two’s complement and only 

the entire part will be considered. Partitions are done as 

follows: input values of (kand (k have 1 bit for 

sign, n/2 –1 bits for entire part, n/2 bits for fractionnary 

part; parameter values and have 1 bit for sign, 1 bit 

for entire part, n-2 bits for fractionnary part.  

 

4. IMPLEMENTATION AND EXPERIMENTS  

 

Implementation has been done for FPGA (V300 BG352-6 

Xilinx, Virtex E). Simulation in VHDL provides critical 

path estimations. The error performed by the CBRM with 

regard to the direct calculation has been carried out by 

using calculating (k (k using C language. 

 

4.1. Calculation time estimation. 

 

The architecture (Fig. 2) has been implemented with two 

identical subcircuits that calculate (k (k in parallel. 

VHDL describes both of them as a composition of two 

modules: one devoted to the selection of the n partial 

products and another one that performs the sum of these 

partial products. Table 2 shows CBRM time estimations:  
 

bits module 1 module 2 Overall 

8 0.468ns 28.188ns 28.656ns 

16 0.468ns 40.620ns 41.088ns 

32 0.468ns 139.180ns 139.648ns 
 

Table 2. Calculation time of CBRM versus size of data. 

 

 

4.2. Error calculation 

 

In order to study the relative error and the number of 

erroneous bits in the result (5), the direct calculation has 

been taken as reference (3). Increasing data size from 16 

to 32 bits rebounds favorably in general improvements. 

When rising α, the error increases as the rotated angle 

becomes bigger, while when rising ß both increase as the 

number of calculated values grow. Furthermore, as the 

rotated angle and/or the number of iterations rise, the 

erroneous bits increase less steeply (logarithmic growth) 

until a constant value is reached that can be notably 

lowered by controlling the parameters. The lineal growth 

of the relative error is the worst aspect outlined by this 

analysis, although it also can be controlled by tuning the 

parameters or reducing iterations and/or the rotated angle. 

 

5. COMPARISON WITH OTHER PROPOSALS  

 

Two Fast HT CORDIC architectures are considered for 

comparison: a segmented reconfigurable implementation 

[13] and a parallel one [14]. 

 

5.1. CBRM versus segmented CORDIC. 

 

The segmented CORDIC architecture and the CBRM, 

have been tested on the same platform (V300 BG352) 

using a 128x128 image with 128 discrete angles; the times 

invested have been picked up in tables 3 and 4. 
 

bits Overall Frames/s 

8 28.656ns · 128 · 128 · 64 =0.03005 s 33 

16 41.088ns · 128 · 128 · 64 =0.04308 s 23 

32 139.648ns · 128 · 128 · 64 =0.14643 s 6 
 

Tabla 3. Processing times for CBRM. 
 

bits 
Operation 

+/- 
Overall 

Complete 

image 
Frames/s 

8 11.076 ns 132.912 ns 0.139 s 7 

16 25.308 ns 303.696 ns 0.318 s 3 

32 53.772 ns 1720.704 ns 1.804 s 0.5 
 

Table 4. Times obtained for segmented CORDIC. 
 

As shown in Tables 2 and 3, CBRM provides good results 

when comparing with segmented CORDIC according to 

the experiments carried out with the HT for line detection. 

In the segmented CORDIC implementation, the global 

error (E =2N · 2-(n-1/2) + 2-M · n) falls with the number of 

bits of the fractional part M and grows with the number of 

iterations, n, when n>16. According to [13], the absolute 

error for N=128 is of 0.135, for 16 bits data (with 8 

fractional) and 12 iterations. It is the same than having 6 

erroneous fractional bits in the result. That represents an 

approximate relative error of 2-5=3%. The CBRM has a 

relative error smaller than 1% for the same precision and 

values so, therefore presents a better behaviour. 



The amount of hardware resources used by the 

segmented CORDIC architecture is higher than that of the 

CBRM, which involves two multiplexers, two 

displacement registers, 2 MACs of two inputs and 2 16n 

bit LUTs (Fig. 2 and 3). The segmented CORDIC 

implementation with 12 iterations needs 24 adder-

substracter circuits, 24 fixed displacement registers, 24 

registers and a ROM table containing the microrotations, 

plus two supplementary adder circuits to carry out the 

serial compensation of the scale factor. 

 

5.2. CBRM versus parallel CORDIC. 

 

Both architectures have been implemented on the same 

platform (V300 BG352) for comparison. An NxN image 

needs ·m calculation cycles, where  is the 

number of rotation angles and m the number of 

processors. The stage-time, without considering the 

multiplexer time, is that of the add/subtraction stage. 

Table 5 shows the time taken to transform a 128x128 

image with 128 rotation angles and m processors. An 

inverse proportion exists between number of processors 

and calculation time; the number of processors considered 

aims for reaching the CBRM times (Table 3). 

The comparison as for hardware resources is highly 

unfavourable in the case of the parallel implementation 

since it demands many more resources to obtain an 

equivalent speed to the implementation CBRM. The 

mentioned work does not provide data on the error 

performed by the implementation presented. 

It suits to mention that the implementation of the 

CBRM can achieve even more speed when proposing four 

functions (kk (kVk: the angle to rotate would 

be the half, and, for the same increment, the number of 

iterations would be divided by two. This improvement 

would provide additional time-saving by means of 

duplicating the hardware used. 
 

bits Add/ 

Subst. 

10 stage 

cycle 
Complete image 

Proc 

(m) 

8 11.076ns 0.111ms 128·32·32·0.111/m=58.196s/m 1937 

16 25.308ns 0.253ms 128·32·32·0.253/m=132.654s/

m 
3079 

32 53.772ns 0.538ms 128·32·32·0.538/m=282.067s/

m 

1926 

 

Table 5. Times obtained for the paralell CORDIC architecture. 

 

6. CONCLUSIONS 

 

A function evaluation method that provides calculation 

improvements for the HT has been presented (CBRM). It 

outlines the interest of convolution as a powerful tool that 

increases computational capabilities, essentially when 

applied to massive calculations. The evaluation of the HT 

has been carried out with a DA-based architecture. 

Compared with other well-known proposals, namely 

segmented and parallel CORDIC, it has been confirmed 

that the CBRM provides memory and hardware resource 

saving as well as speed improvements according to the 

experiments carried out with the HT. It also offers good 

results in dependable-precision error. These encouraging 

partial conclusions make quite reasonable to study in 

depth the capabilities of convolution to provide a more 

complete set of recursive evaluating patterns in order to 

extend the CBRM. 
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