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Abstract 
 

A model of an exact arithmetic processing is presented. 

We describe a representation format that gives us a 

greater expressive capability and covers a wider 

numerical set. The rational numbers are represented by 

means of fractional notation and explicit codification of its 

periodic part. We also give a brief description of exact 

arithmetic operations on the proposed format. This model 

constitutes a good alternative for the symbolic arithmetic, 

in special when numerical exact values are required. As 

an example, we show an application of the exact 

numerical processing to calculate the perpendicular 

vector to another one for aerospace purposes. 
 

1. Introduction 
 

Certain applications require elaborate mathematical 

calculations and, at the same time, impose important 

accuracy restrictions. For example, the calculation of 

trajectories for moving bodies in space or over long 

distances, guidance and positioning systems [1], [2], high 

frequency communications, antennae alignment, etc. In 

these applications, a slight lack of precision in the 

operations may cause considerable deviations in the results 

obtained and to cause dramatic consequences. 

The use of computational algorithms raises the 

following important question: what is considered to be 

suitable calculation precision in order to solve each 

problem satisfactorily? Related to this subject, calculus 

inaccuracy is due to the limitations of current 

representation formats. They may cause errors in 

operations such as the ones described in [3], [4], [5] and 

[6]. On the other hand, the use of high level methods 

cannot be adapted to problems in which temporal cost is 

also an important aspect to be considered. 

Our work is focused on conceiving methods to process 

error-free rational operands. This arithmetic model 

includes numerical representation and the execution of 

several elemental operations. This short paper describes 

the model and develops mainly the characteristics of the 

exact arithmetic architecture related to the exact 

representation of rational numbers. In later works, we hope 

to study operation methods in greater depth. 
 

2. Architecture 
 

In the first place, we formalized the characteristics of 

the arithmetical architecture in order to define the exact 

calculation problem. 

 

2.1. Formalization 
 

Let f be a generic mathematical function. 

Definition 1: We define implementation function  of f, 
to any computable function whose result comes near to f 
according to a particular design, so that: 

codomain(f)  codomain(f) (1) 

and  

 x   domain(f), |f ( x ) – f( x )|    (2) 

where x :function’s operands; : approximation degree of 

f by f. 

The general task of an arithmetical unit is to process 

mathematical functions. The calculation of these functions 

is its ideal objective. 

Definition 2: An architecture  is characterized both: 

by the set of functions that it provides and by the form in 

which it implements them. Let the following set of 

functions be: 

 = {f1, f2, ..., fn} (3) 

An architecture  that provides these functions will be 

formed by: 

 = {f1, f2, ..., fn} (4) 

That is,  will contain the specific implementation of 

the  functions set, where each fi produces an approach 

to its fi. Each fi is the arithmetic unit objective, whereas 

each fi corresponds to the function that is finally 

provided. The function implementation does not have to be 

unique, several implementations of the same function that 

represent different approaches to f, with different values of 

 can exist. It is also possible for the same architecture to 

contain several implementations for the same function f, 
giving the function several degrees of approach. For 
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example, the different arithmetic adder implementations 

for each operand size of different representation format. 

Definition 3: We say that an implementation f has an 

exact evaluation of f if the result that f provides agrees 

with the mathematical result of f. That is, according to the 

equation (2),  = 0. 

 x domain(f), f ( x ) = f( x ) (5) 

In this case, the  architecture implements that function 

effectively. An exact arithmetic architecture requires all its 

functions to be implemented in a totally effective way. 

 

2.2. Exact arithmetic architecture 
 

We propose a simple arithmetic architecture unit 

capable of performing a set of exact operations on rational 

numbers. 

ℚ = {identity, addition, multiplication, root, …} (6) 

The architecture implements these operations in an 

effective way: 

ℚ = {identity, addition, multiplication, root, …} (7) 

The identity function expresses the ability to represent, 

and therefore to operate, rational numbers. Actually, this 

function corresponds to the numeric format that codifies 

any error-free rational number. An inverse identity 

function is necessary to show the results in their original 

way.  

 

3. Identity function 
 

Numeric formats are conditioned fundamentally by the 

characteristics of the numerical set to be represented. 

Different methods exist for codification for natural, integer 

or real numbers [7], [8], [9]. 

In the representation of real set, codification of rational 

numbers is of particular interest since it is the largest 

subset of ℝ where the exact value of their elements can be 

written in a positional representation format. There are 

symbolic representation methods characterized by their 

ability to carry out an exact expression of the data they 

operate [8], [10], nevertheless, in several applications it is 

necessary to process numerical values directly and to 

provide a result by means of a number, instead of 

processing and providing symbolic expressions. 

This section is focused on the representation of rational 

numbers by means of a representation format capable of 

expressing error-free values of the ℚ set in a fractional 

positional notation. The idea are similar to was presented 

in [11], even though, the progressive improvement in 

performance provided by electronic technology justifies 

the search for proposals that would probably have been 

prohibitive some time ago, as well as, the conception of 

operation methods with that representation. 

3.1. Specification of the proposed format 
 

We consider the number representation procedure to be 

an implementation of the identity function: identity 

f1  identity: ℚ  ℚ (8) 

 x  ℚ. identity(x) = x (9) 

The inherent characteristics of the set of the rational 

numbers ℚ suggest the possibility of obtaining a 

representation model that fulfills the following objectives: 

1. To contain the exact positional expression of the 

number it represents in a direct way. 

2. To allow an indeterminate number of exact 

fractional digits to be obtained according to the 

requirements of each application. 

3. To reach very high or very low extreme values. 

Rational numbers permit a compact expression that 

defines them exactly: in fractional notation they are 

formed on one integer part and a finite fractional part 

followed by a group of digits that form a period that is 

repeated indefinitely, This characteristic, when the 

periodic part is not null, disables its exact representation in 

the conventional fractional code systems (fixed-point and 

floating-point), therefore, the explicit expression of this 

period permits the error-free codification of the whole 

number with a minimum number of significant digits. 

The proposed model of representation is based on the 

classic floating-point format and incorporates, if necessary, 

a second mantissa that represents the period of the rational 

values. This format distributes the significant digits of the 

number (WL) into three parts (fig. 1): fixed mantissa 

wordlength (MfWL), periodic mantissa wordlength 

(MpWL) and exponent wordlength (EWL). The sign bit is 

included at the beginning. The fixed mantissa comprises 

the non-periodic significant part of the rational number, 

whereas the periodic mantissa represents the repetitive 

digits. The exponent expresses the order of magnitude of 

the number. 

s Exponent (E) Fixed Mantissa (mf) Periodic Mantissa (mp)

EWL MfWL MpWL

s Exponent (E) Fixed Mantissa (mf) Periodic Mantissa (mp)

EWL MfWL MpWL

 
Figure 1. Proposed representation format 

As an illustrative example, decimal number 2.18 has 

not an exact representation in IEEE-754 simple precision 

codification; in the proposed format, the codification of 

2.18 consists of exponent: 010; fixed mantisa: 100; 

periodic mantisa: 01011100001010001111. 

The significance will be made by concatenation of the 

fixed mantissa and the periodic mantissa an indefinite 

quantity of times (fig. 2 illustrates its construction). With 

this technique, numbers with infinite fractional numbers 

are obtained from a finite codification. Their exact 

representation can be obtained by computer. 



Mantissa (M) = mf mp mp mpMantissa (M) = mf mp mp mp  

Figure 2. Mantissa construction 

The value of the number is now obtained according to 

the same expression as in the floating point format: 

A = (-1)
s
 · M · B

E
 (10) 

where B is the base of the representation, M the complete 

mantissa formed by the concatenation of the fixed 

mantissa and the periodic mantissa infinite times and E the 

exponent in sign/magnitude representation. 

The exact value of the complete mantissa can be 

obtained by means of the following expression: 

(B – 1) ··· (B – 1) 0  ··· 0

M =
pf mm fm

MPWL MFWL

(B – 1) ··· (B – 1) 0  ··· 0

M =
pf mm fm

MPWL MFWL  (11) 
where mfmp is the concatenation of the fixed mantissa and 

the periodic mantissa once. In order to avoid multiple 

codification of the same number, it is necessary to 

normalize the representation. 
 

3.2. Characteristics of the proposed format 
 

Greater expressiveness is obtained if we use a variable 

size for each field according to the representation 

requirements, including the possibility of maintaining 

some field empty. We have observed that with a sufficient 

number of digits, the implementation identity fulfills the 

injective and surjective properties: 

Injective: Any rational value has a different codification. 

Surjective: Any codification corresponds to only one 

rational value. 

Existence of inverse: Due to the conjunction of the two 

previous properties, the correspondence function allows its 

inverse on the set ℚ, that is, it is possible to construct a 

function identity
-1

, that obtains the initial rational value 

again from any codification. 

As a result of these properties, any standardized rational 

value according to the format will have a characteristic 

expression, composed of an exponent, one fixed mantissa 

and one periodic mantissa. 

When limitations in the number of digits to be 

represented exist, the method can introduce a rounding 

stage that approaches the number to the nearest 

representable value using any IEEE floating-point 

rounding mode. In this situation where it is not possible to 

express all the number’s digits, the field of the period lacks 

relevance and makes the most of its space to code the 

largest possible number of digits of the fixed mantissa. 
 

4. Arithmetic operators 
 

In this section we describe the ideas on which the sum 

and multiplication methods are based and which permit 

effective data processing and its practical application. The 

arithmetic algorithms according to number representation 

format identidad must solve the following questions: 

(a) Variable field length of the operands advises against 

the application of rigid process procedures; (b) existence 

of a periodic mantissa causes the sequence of significant 

digits to become infinite. (c) normalization of the results in 

the new format implies taking additional steps. 

In answer to the previous questions, the arithmetic 

algorithms are based on the following principles: 

1. The stages of standard floating-point operation are taken 

as a starting-point for the new methods [12], [13], [14]. 

2. The application of iterative methods that process the 

data successively and facilitate a parallel design. 

3. The development of strategies adapted for the treatment 

of each significant mantissa and its later integration in 

obtaining the result. 

Hence, the calculation methods provide the exact result 

of the sum and multiplication operations and the rounding 

stage is avoided. The length of the positional fractional 

representation of the exact result is proportional to the 

initial size of the operands, being feasible the design of 

strategies to manage the precision and the result length. 

It is necessary to conceive a memory unit that allows us 

to lodge data of variable length. It avoids the rigidities of 

the fixed-size registers and facilitates the manipulation of a 

number with a variable number of digits. 
 

5. Application example 
 

The growth of the significant digits of the computation 

results of this exact processing method recommends its 

application in critical calculations with a limited number of 

consecutive operations and where an exact or very precise 

result is essential. In this section we show a representative 

exact numerical processing application example. 

The experiment is located in the Communications 

Systems and Telematic Applications research group of the 

University of Alicante. One of the most interesting lines of 

research consists of the development of a distance 

calculation method by means of a multifrequency 

technique [15], [16].The accuracy of the calculations plays 

a fundamental role in the correct working of the method. 

Let us give a simple example: the orientation of the 

antenna is a critical aspect in the emission and reception of 

signals, even more so when the objective is the positioning 

and direction of an object. A geostationary satellite needs 

to orient its antenna perpendicularly to its movement 

vector s


(fig. 3): s

 r


 where s


 = (xs, ys, zs) is the 

satellite movement vector and r


 = (xr, yr, zr) is the 

antenna orientation vector. 

The following expressions calculate the vector r


 
components by means of additions and multiplications: 

xr = xs · zs; yr = ys · zs; zr = −(xs
2
 + ys

2
) (12) 



A slight lack of precision in the calculations of the 

vector direction causes deviations in the alignment of the 

antenna, so that the angle is not perfectly perpendicular: 

/2 , (fig. 3). This problem causes a deviation of the 

signal towards a zone around the desired point. The error 

worsens as a result of atmospheric conditions that affect 

the angle of incidence, for example, refraction. According 

to Snell's Law: 

n1 · sin 1 = n2 · sin 2 (13) 

A completely perpendicular signal will not be affected 

by atmospheric refraction, since, 

sin 0 = 0   n1, n2. 1 = 2 (14) 

 

 
Figure 3. Geostationary orbit satellite 

Nevertheless, a wrong angle 1  0, will cause a greater 

deviation in the signal, especially when the satellite is 

located at a considerable distance. As a result, a slight lack 

of precision in the calculations of the vector componentes 

will cause great deviations in the alignment of the antenna 

with the target. The following numerical example provides 

proof of that: let s


 be the movement vector of a 

geostationary satellite (orbit located between 35000 km 

and 37000 km), 

s


= (-5.69, -0.07, -5.71) 

The perpendicular vector to s


 according to (12) 

equation with the proposed arithmetic is: 

r


1 = (32.4899, 0.3997, -32.381) 

Same calculation result, using simple precision IEEE- 

754 format and arithmetic operators, give us: 

r


2=(32.48989868, 0.39970001578, -32.381004334) 

We verified that 

s


· r


1 = 0; s


· r


2 = 3.162·10
-5

  0. 

Despite of the deviation being small, it produces an 

error in the Earth’s surface of 15.39m. A direct incidence 

antenna capable of being in tune with the satellite signal 

must have a surface of 744.25 m
2
. It is possible to reduce 

this error by using more fractional digits, for example 

double precision.  
 

6. Conclusions 
 

In this work a new arithmetic model on rational 

numbers is presented. The design methodology has been 

oriented towards providing exact calculation results. The 

arithmetic architecture has been provided with several 

elementary operations. 

The identity operation performs numerical 

representation of rational numbers. Its main characteristic 

is that, with a sufficient number of finite bits, it enables 

any rational number to be error-free represented. The 

proposed format uses a fractional numerical representation 

that directly expresses the magnitude of the number and 

allows its value to be known immediately. Its floating-

point characteristics, together with the variable size of the 

fields, provide flexibility and an adjustment capacity to 

meet the requirements of each problem. These qualities 

allow us to codify rational numbers and to overcome the 

errors made in decimal-binary conversion in human 

interaction. It offers an alternative to symbolic calculation 

for exact processing 

The addition and multiplication operations acquire the 

same exact processing properties from operating with 

numbers expressed in the proposed format. The 

experiments and the application example clearly show the 

disadvantages of standard representation formats and 

demonstrate the need for exact calculations in critical 

operations. 
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