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Abstract.- This paper presents a function evaluation 
method developed under the scope of recursive 
expression of function convolution. This approach 
is based on a unique parametrizable formula 
capable of providing function points by successive 
iteration. The computational interest of the method 
is related to the compactness of the formula 
specially when calculating combinations of 
functions . When tackling design level, it also shows 
suitable for developing architectural schemes 
capable of dealing with different speed and 
precision issues. 
     An architecture for reconfigurable FPGA based 
in distributed arithmetic implements the design for 
fast prototyping. The case of combined 
trigonometric functions involved in rotation is 
analyzed under this scope. Compared with others 
methods, our proposal offers a good balance 
between speed and precision.  
 
Keywords.- convolution, function evaluation, 
FPGA, serial-distributed arithmetic. 
 

I. INTRODUCTION 
 
     Research work in function computing has provided 
a set of well known approaches. That is the case of the 
CORDIC algorithm (COordinate Rotation DIgital 
Computer), wich provides function approximation 
using rotations in a three coordinate system: linear, 
circular and hyperbolic [1][2][3][4]. This algorithm 
only uses additions, subtractions and shift operations 
so that to perform the calculations. Several VLSI 
designs have been developed for CORDIC application 
to digital signal and image processing [5][6][7], 
matrix algebra and robotics [8][9][10][11]. Generally, 
high speed computation is provided by using 
pipelining and/or redundant arithmetic [12]. 
     Regarding to the calculation of elementary 
functions, most methods use Look-Up Table (LUT) 
schemes. Newton-Raphson algorithm [13] provides a 
quadratic convergence iterative method that achieves a 
good approximation for inverse, square root and 

inverse square root, initializing computation with a 
seed [14][15]. Interpolation methods provide function 
approximation by using polynomial, rational or Taylor 
series, by means of coefficient computing. In 
polynomial interpolation [16], coefficient calculation 
is performed so that to minimize the relative error in 
the interval [17]. Tchebyshev's node calculation of 
coefficients performs interval partitioning in N parts, 
where N is determined by a previously obtained 
pattern. The computation of Stirling's coefficients is 
based on some function values that can be 
precalculated and stored in a table or just even 
calculated on the fly. For applications that require 
high speed and low-precision, LUT based schemes are 
often employed, with a great concern in the increasing 
size of the memory needed as the required precision 
grows. In general, multipartite LUT schemes [18][19] 
are considered a suitable approach because the amount 
of memory used becomes drastically reduced. 
However, a multi-operand adder is required in order to 
sum the table outputs. 
     This paper presents a recursive method that 
performs function evaluation by means of successive 
iteration on a parametrizable formula. Following the 
introduction, section 2 develops the basic concepts of 
the Convolution Based Recursive Method (CBRM). 
Section 3 is deals with the CBRM architecture design 
principles as well as implementation issues and cycle 
time analysis. Section 4 develops an evaluation of the 
architecture proposed. In section 5, an application for 
the calculation of the combined trigonometric 
functions involved in rotations (sine and cosine) is 
discussed. Section 6 deals with CBRM comparison 
with others approaches and section 7 summarizes 
results and presents the concluding remarks.  
 

II. CONVOLUTION–BASED RECURSIVE 
METHOD (CBRM) 

 
This section introduces some fundamental concepts of 
the Convolution-Based Recursive Method (CBRM) 
and outlines its particular features. Mathematical 



demonstrations that are not under the scope of this 
paper will be omitted. 
     Convolution is an operation between two functions 
that is relevant to many different applications in 
digital signal and image processing [20], control 
engineering [21], mathematical morphology [22] or 
pattern analysis [23]. All these applications share as a 
common feature the calculation of mathematical 
spatial or temporary transforms that must be carried 
out by means of convolution. Generally, convolution 
is difficult to calculate. This drawback is faced by 
substituting the initial convolution expression of the 
functions by the product of these functions which have 
been previously transformed to frequential ones. 
However, CBRM is not concerned directly with this 
well-known duality: it rather exploits the primitive 
meaning of convolution. That is, the convolution 
between two functions is a mean to evaluate one of 
them using the other one as a unit [24]. This 
fundamental provides a powerful basic tool for 
function evaluation purposes. Equation (1) shows the 
expansion of convolution in the case of two discrete 
functions f and g in the interval [0, +∝). The result of 
the operation is also the function Ψ , which represents 
the evaluation of f by g (or g by f). 
 
Ψ(0) = f * g(0) = f(0) · g(0) 
Ψ(1) = f * g(1) = f(0) · g(1) + f(1) · g(0) 
… 
Ψ(p) = f * g(p) = f(0) · g(p) +… +  f(i) · g(0) 
… 

(1) 

 
     In the case of discretized functions, a recursive 
formulation of the convolution can easily be achieved 
from (1) for function Ψ, providing a more compact 
and useful formula, see equation (2). 

Ψ i+1 = α Ψ i + β Gi i ∈ [0, I] ⊂ N  (2) 

     Reciprocally, it can be demonstrated that any 
discrete recursive equation represented by a weighted 
sum of two terms like those of equation (2) can be 
split up into two convolving discrete functions 
(namely f(i) = αi and g(i)=β G(i)), if α ≠ 0. The 
equivalence between (1) and (2) provides an approach 
for discrete function evaluation suitable in many cases 
(trigonometric, hyperbolic, logarithmic, exponential, 
inverse, square-root, constant, lineal functions). 
Particular features of CBRM are: 

• CBRM is not concerned with the particular 
structural characteristics of the evaluated function 
because it only uses the Ψ value computed at i 
iteration as an explicit argument which allows the 
computation of the next value at iteration i+1.  

• The algorithm runs under a unique compact 
recursive formula and suits in a great amount of 
cases. 

• The evaluation of any function Ψ is carried out as 
a sum of two parts which have fixed contributions 
held by parameters α  and β (see equation 2). G is 

an auxiliary function that its value can be 
provided by application parameters or evaluated 
in the same way asΨ. It also can be a function of 
Ψ  itself.  

• Parameters α., β and function G characterizes the 
function Ψ regarding to behavioural aspects and 
iteration path. Attended that CBRM runs under a 
unique formula, the combinations of α., β values 
are crucial and little changes in any of these 
values affects dramatically the overall behaviour. 
Parameter space is tightly related with 
behavioural features. 

• CBRM provides a newΨ-value per iteration. 
• The initial values of Ψ and G are fixed by the user 

specifications. 

     A convolution table can be built for providing the 
(α, β, G) associated to the calculation of f*g, but it 
must be noticed that in spite of the generic 
mathematical equivalence between (1) and (2), the 
computational usefulness of CBRM reduces when 
function G is not easy to carry out. 
 

III. ARCHITECTURE 
 
     The formalization of CBRM set by equation (2) 
leads to the functional architecture shown in figure 1, 
where each Ψ-value calculation involves two 
multiplications and one sum. 
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AdderAdder
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MultiplierMultiplier MultiplierMultiplier
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Figure 1: CBRM functional architecture 

 
A. Design principles 
 
     The proposed design consists of using look-up 
tables (LUT) to store α and β constants and to make 
the effective calculation. 
     The implementation of the architecture using look-
up tables provides a greater density of VLSI 
integration than in combinational methods. In this 
design, advances in technology play a determining 
role in performance improvement and in the reduction 
of the temporal delay [25]. The location of the look-up 
tables inside the arithmetic unit next to the rest of the 
operation’s logic also reduces memory access time. 
     On the other hand, the use of look-up tables 
decrease hardware development costs, contributes 
flexibility and limits the number and variability of 
modules required. In addition, they can incorporate 



elements of error detection and correction and, 
therefore, improvements in the results they produce. 
     Memory construction offers the architecture the 
possibilities of reliability and flexibility: the use of 
read only memories is a more robust option than 
combinational circuits and, alternatively, the use of 
read and write memories enables several different 
functions to be configured in the same chip. In 
addition, this option improves the maintenance and 
repair of the arithmetic unit [14], [26]. 
     Finally, we stressed that the nature of the memories 
facilitates its reusability and provides a high degree of 
parallelism. Multiport memories with several access 
channels enable parallel results to be obtained in the 
same storage chip. In this way, design decisions for 
the arithmetic unit can be made: multiple access 
memories versus several similar single access 
memories. 
 
B. Proposed implementation 
 
The implementation proposed is concerned with the 
trade-off between time delay, memory and hardware 
resource saving. 
     The main idea consists of taking the operation 
performed by the function Ψ from a look-up table on 
every iteration. Due to the fact that α and β    remain 
constant through the whole calculation, the following 
values of F and G will provide its result in the table. 
Figure 2 shows the Convolution-LUT which provides 
the result pursued. 
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Figure 2: Convolution-LUT calculation 

 
     Memory size involves a limitation for the general 
case. Therefore, an operator fragmentation into blocks 
handling a set of digits capable of providing a suitable 
memory addressing. 
     Considering that the variables involved in the 
calculation are n digit length and that k stands for the 
number of digits of each set, the operators are divided 
into t parts: t = n/k. This way, obtaining the partial 
results for every block from the memory should be 
required. On every memory access the operator sign is 
also pointed out. 
     Convolution-LUT table memory access for each 
block is shown in Figure 3. 
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Figure 3: Convolution-LUT partial calculation 

 
     It should be pointed out that for k=1, the 
architecture proposed works in a serial way, because 
the calculation of the function Ψ performs so many 
LUT access as the number of digits of the numbers. In 
this particular case, the memory structure is shown in 
the following table. 

TABLE I: CONVOLUTION-LUT STRUCTURE FOR K=1 

ΨijGij Ψ>0 
G>0 

Ψ>0 
G<0 

Ψ<0 
G>0 

Ψ<0 
G<0 

00 0 0 0 0 
01 β - β β - β 
10 α α - α - α 
11 α + β α -  β - α + β - α -  β 

 
     Finally, the t partial results shifted related to all the 
blocks considered have to be added in order to provide 
the following value of Ψ. We assume a complement 
number coding in order to allow add operations. 
 

     The addition sequence calculation establishes 
several design possibilities: 
• Serial scheme for processing each add operands 

in a single iteration. 
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Figure 4: Serie structure add operands 

 
• Add operand reduction scheme into two final 

ones so that to perform a final addition. This 
design is similar to that used in a multiplier for 
performing partial product reduction. 
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Figure 5: Reduction structure add operands 
 
     This approach provides the whole set of partial add 
operands in parallel in order to feed a reduction tree 
process. This way, in spite of a hardware complexity 
growth, a smaller operation delay is achieved. 
     For the calculation of a new value of Ψ it will be 
necessary to recode the result to the initial signed 
codification. 
 
Cycle time 
 
The delay related to every function value calculation 
depends on the particular implementation developed. 
According to the schemes analysed previously, these 
delays could be expressed in the following way, 
respectively: 
• n · (Convolution-LUT + Adder) 
• Convolution-LUT + ReductionStructure + Adder 
 
     So, the cycle delay depends on the particular 
implementation. 
 

IV. EVALUATION OF THE PROPOSED 
ARCHITECTURE 

 
In this section, we present estimates of the area costs 
and execution time of the architecture proposed in the 
previous section. The power consumption of the 
circuit is not important for this research and is 
therefore not dealt with in this paper. It will be studied 
in depth in the event that it can be implemented in a 
chip. 

A. Area estimations 

The model we use for the area estimations is taken 
from [10] and [27].The unit used is the size of a 
complex gate τa, since the area of the LUTs and other 
components are easily expressed in this unit. 

• Convolution-LUT: Data storage imposes severe 
restrictions on k block size. As we can see in table 
1, the area cost increases exponentially with the k 
value. Therefore, we have to achieve a balance 
between the memory required and the complexity 

of the circuit. The model assumes a 40 τa/Kbit 
rate for tables addressed by words of up to 6-bits 
long, a 35 τa/Kbit rate for 7-11 input bit tables, a 
30 τa/Kbit rate for 12-13 input bit tables and 25 
τa/Kbit one for 14-15 input bit tables. Following 
table shows the cost in terms of τa and bytes for 
the most common sizes and wordlength. 

TABLE II: LUT MEMORY REQUIREMENTS 

LUT memory requirements n k 
Bytes complex gates 

1 32 B 6 τa 
2 128 B 10 τa 
4 2 KB 60 τa 

16 

8 512 KB 12800 τa 
1 64 B 8 τa 
2 256 B 14 τa 
4 4 KB 120 τa 

32 

8 1 MB 25600 τa 
• Adder: A n-bit adder requires n τa. [27] 
• Reduction structure: A 3:2 counter uses 2 τa, and 

a 4:2 counter uses 4 τa. 
     As shown in the previous tables, the main 
contributions to the area of the architecture come from 
the convolution-LUT. With the previous area cost for 
each component the total area for design alternatives 
can be calculated. 

B. Delay estimations 

Let τt be the delay of a complex gate, such as one full-
adder. The delay estimations have been performed 
making the following assumptions: 

• Convolution-LUT: According to [10], [27] 
analysis1 we assume a delay of about TLUT = 3.5τt 
for 8 input bit tables, TLUT = 5τt for 12-13 input 
tables and TLUT = 7.0τt for 16-18 input bit tables. 

• Adder: The delay of the n-bit adder is lgn τt. [14]. 

• Reduction structure: This module has a delay of 2 
τt for 3:2 counter stage and 3 τt for 4:2 counter 
stage. [14] 

 

V. APPLICATION EXAMPLE 
 

In this section the case of rotation evaluation is 
presented as an example that outlines CBRM 
capabilities. Here, we are concerned with coordinates 
evaluation. 
     Let P(xi,yi) be a point of a circumference with 
radius R and θ i  the angle with the horizontal axis  

x i = R cos θ I 
y i = R sen θ i    

(3) 

                                                 
1 Implementation using a family of standard gates from the 
AMS 0.35 µm CMOS library 



     Let’s have arbitrary rotation increment ∆θ  of the 
angle in each iteration: 

     ∀ iteration i,  θ i =  θ i-1  + ∆θ,  
so, 

cos θ i  =  cos (θ i -1  +  ∆θ)  
sen θ i   =  sen (θ i-1   + ∆θ) 

(4) 

     Setting: cos ∆θ = α,  sen ∆θ = β 

     Expanding and substituting (4) in (3) and grouping 
terms: 

xi = α xi-1+(−β) yi-1 
yi =  α yi-1 + β xi-1 

(5) 

     A crossed evaluation of the coordinates xi and yi 
can be carried out by CBRM, through the computation 
of a pair of functions Ψ and G if identifying  

     Ψi ≡ xi Gi ≡ yi 

so, 

Ψi+1 = α  Ψi + β Gi 
G i+1 = α  G i + β Ψi 

(6) 

    With additional restriction α 2 + β 2 = 1 

    CBRM provides a mean to calculate the rotation 
coordinates with fixed iteration path held by 
parameters α , β. The number of iterations depends on 
the whole interval angle to rotate and on the increment 
∆θ (i.e. on  α , β.). 

We proposed the following architecture to resolve the 
expression (6), see figure 7. We assume n=32 bits, 
k=8, t=4. 
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Figure 6: Block diagram of the proponed architecture 

for n= 32 bits 
 
     According to the previous evaluation of the 
propose architecture, this implementation requires 
approximately 1 MB of memory. That is ≈ 25600 
complex gates of area. Nevertheless, the time delay 

for the calculation of a new value of the functions Ψ 
and G is about 15 complex gates. 
     In order to verify the operation of the new 
calculation method a series of simulation tests has 
been made in reconfigurable hardware platform. 
     Hardware design and simulation techniques and 
their subsequent implementation in reconfigurable 
systems such as FPGAs, enable valid designs to be 
made and a high productivity in development to be 
obtained. The results of this study are focused on 
designs implemented on standard FPGAs, specifically 
on the Xilinx family of FPGAs. These devices have 
had a wide acceptance and are used by the scientific 
community as a whole for processing results. 
     In spite of the fact that the speed of these devices is 
not very high (up to 50 MHz), by choosing them we 
aim to establish a homogeneous basis for comparing 
the addition algorithms and draw conclusions from 
this comparison. Using one of these devices, the 
simulation and testing of the proposed design have 
been carried out with definition and simulation free 
software Xilinx WebPack 3.2XEn2. 
     Table III presents the path delay of the CBRM 
iteration for n = 32 and n= 64 bits of precision. 
 
TABLE III: PATH DELAY OF THE CBRM ITERATION (NS) 

n Convolution 
LUT 

Reduction 
Structure Adder Total 

32 6.5 1.7 7.3 15.5 
64 6.5 3.5 13.1 23.1 

 
The following table shows to the deviation produced 
in the calculation for several ∆θ and number of values 
to process. The error that shows the table is referred 
on the last value. 
 

TABLE III: ABSOLUTE ERROR 

number of calculated points (I)  
I= 12 I= 36 

∆θ =  π/4 rad 3.52 10-6  9.41 10-6  
∆θ =  π/72 rad 1.17·10-5 6.17·10-5 

∆θ =  π/360 rad 5.92·10-5 9.51·10-5 
 
It is observed that error increases with the amount of 
points to calculate. On the other hand, also it is 
observed that whichever minor is the increase of the 
angle more iterations will be necessary to reach the 
final value. 
 
VI. COMPARISON WITH OTHERS APPROACHES 

 
In order to obtain conclusions in terms of precision 

and error the comparison of the CBRM has been 
performed with CORDIC, which stands for one of the 
most extensively used algorithms for performing 

                                                 
2 http://www.xilinx.com 



function calculation with an iterative scheme 
[1][2][3][4]. 

CORDIC algorithm motivates a great amount of 
FPGA implementations [12]. Here a rotation mode 
bit-serial design is considered. This implementation 
uses three shift-registers, three serial adder-
subtractors, and one serial ROM. All this configurates 
a circuit divided in three parallel subcircuits. The 
following tables show the results. 

 
TABLE IV: PATH DELAY OF THE CORDIC ITERATION 

(NS) 

n Total 
32 404.928 
64 1720.704 

 
TABLE V: ABSOLUTE ERROR CORDIC 

number of calculated points (I)  
I= 12 I= 36 

∆θ =  π/4 rad 10-6  10-6  
∆θ =  π/72 rad 10-6 10-6 

∆θ =  π/360 rad 10-6 10-6 
 
     It is observed that the obtained error is similar to 
the CBRM, whereas time delay is much greater. 
 

VII. CONCLUSIONS 
 

The main purpose of this paper is to present a 
generic method for function evaluation that achieves 
good performances in speed and a good trade-off 
between error and precision. Fundamentals of this 
method claime that convolution is a means to evaluate 
functions. Design has been implemented in 
reconfigurable FPGA based hardware. Comparison 
with an important alternative approach computation 
scheme outlines good time performances for CBRM. 
The basic case of combined trigonometric functions 
involved in rotation that is analyzed in this paper 
offers good issues for signal and image processing 
transforms calculation. Fourier and Hough transforms 
can follow CBRM calculation scheme [28] with good 
results. These encouraging partial conclusions make 
quite reasonable to study in depth the capabilities of 
convolution to provide a more complete set of 
recursive evaluating patterns in order to extend the 
CBRM. 
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