
Parametrizable Architecture for Function Recursive
Evaluation

Juan Manuel García Chamizo

Mª Teresa Signes Pont
Higinio Mora Mora

Gregorio de Miguel Casado

Departamento de Tecnología Informática y Computación-Universidad de Alicante
{juanma, teresa, hmora, demiguel}@dtic.ua.es

Abstract.- This paper presents a function evaluation
method developed under the scope of recursive
expression of function convolution. This approach
is based on a unique parametrizable formula
capable of providing function points by successive
iteration. The computational interest of the method
is related to the compactness of the formula
specially when calculating combinations of
functions . When tackling design level, it also shows
suitable for developing architectural schemes
capable of dealing with different speed and
precision issues.
 An architecture for reconfigurable FPGA based
in distributed arithmetic implements the design for
fast prototyping. The case of combined
trigonometric functions involved in rotation is
analyzed under this scope. Compared with others
methods, our proposal offers a good balance
between speed and precision.

Keywords.- convolution, function evaluation,
FPGA, serial-distributed arithmetic.

I. INTRODUCTION

 Research work in function computing has provided
a set of well known approaches. That is the case of the
CORDIC algorithm (COordinate Rotation DIgital
Computer), wich provides function approximation
using rotations in a three coordinate system: linear,
circular and hyperbolic [1][2][3][4]. This algorithm
only uses additions, subtractions and shift operations
so that to perform the calculations. Several VLSI
designs have been developed for CORDIC application
to digital signal and image processing [5][6][7],
matrix algebra and robotics [8][9][10][11]. Generally,
high speed computation is provided by using
pipelining and/or redundant arithmetic [12].
 Regarding to the calculation of elementary
functions, most methods use Look-Up Table (LUT)
schemes. Newton-Raphson algorithm [13] provides a
quadratic convergence iterative method that achieves a
good approximation for inverse, square root and

inverse square root, initializing computation with a
seed [14][15]. Interpolation methods provide function
approximation by using polynomial, rational or Taylor
series, by means of coefficient computing. In
polynomial interpolation [16], coefficient calculation
is performed so that to minimize the relative error in
the interval [17]. Tchebyshev's node calculation of
coefficients performs interval partitioning in N parts,
where N is determined by a previously obtained
pattern. The computation of Stirling's coefficients is
based on some function values that can be
precalculated and stored in a table or just even
calculated on the fly. For applications that require
high speed and low-precision, LUT based schemes are
often employed, with a great concern in the increasing
size of the memory needed as the required precision
grows. In general, multipartite LUT schemes [18][19]
are considered a suitable approach because the amount
of memory used becomes drastically reduced.
However, a multi-operand adder is required in order to
sum the table outputs.
 This paper presents a recursive method that
performs function evaluation by means of successive
iteration on a parametrizable formula. Following the
introduction, section 2 develops the basic concepts of
the Convolution Based Recursive Method (CBRM).
Section 3 is deals with the CBRM architecture design
principles as well as implementation issues and cycle
time analysis. Section 4 develops an evaluation of the
architecture proposed. In section 5, an application for
the calculation of the combined trigonometric
functions involved in rotations (sine and cosine) is
discussed. Section 6 deals with CBRM comparison
with others approaches and section 7 summarizes
results and presents the concluding remarks.

II. CONVOLUTION–BASED RECURSIVE
METHOD (CBRM)

This section introduces some fundamental concepts of
the Convolution-Based Recursive Method (CBRM)
and outlines its particular features. Mathematical

demonstrations that are not under the scope of this
paper will be omitted.
 Convolution is an operation between two functions
that is relevant to many different applications in
digital signal and image processing [20], control
engineering [21], mathematical morphology [22] or
pattern analysis [23]. All these applications share as a
common feature the calculation of mathematical
spatial or temporary transforms that must be carried
out by means of convolution. Generally, convolution
is difficult to calculate. This drawback is faced by
substituting the initial convolution expression of the
functions by the product of these functions which have
been previously transformed to frequential ones.
However, CBRM is not concerned directly with this
well-known duality: it rather exploits the primitive
meaning of convolution. That is, the convolution
between two functions is a mean to evaluate one of
them using the other one as a unit [24]. This
fundamental provides a powerful basic tool for
function evaluation purposes. Equation (1) shows the
expansion of convolution in the case of two discrete
functions f and g in the interval [0, +∝). The result of
the operation is also the function Ψ , which represents
the evaluation of f by g (or g by f).

Ψ(0) = f * g(0) = f(0) · g(0)
Ψ(1) = f * g(1) = f(0) · g(1) + f(1) · g(0)
…
Ψ(p) = f * g(p) = f(0) · g(p) +… + f(i) · g(0)
…

(1)

 In the case of discretized functions, a recursive
formulation of the convolution can easily be achieved
from (1) for function Ψ, providing a more compact
and useful formula, see equation (2).

Ψ i+1 = α Ψ i + β Gi i ∈ [0, I] ⊂ N (2)

 Reciprocally, it can be demonstrated that any
discrete recursive equation represented by a weighted
sum of two terms like those of equation (2) can be
split up into two convolving discrete functions
(namely f(i) = αi and g(i)=β G(i)), if α ≠ 0. The
equivalence between (1) and (2) provides an approach
for discrete function evaluation suitable in many cases
(trigonometric, hyperbolic, logarithmic, exponential,
inverse, square-root, constant, lineal functions).
Particular features of CBRM are:

• CBRM is not concerned with the particular
structural characteristics of the evaluated function
because it only uses the Ψ value computed at i
iteration as an explicit argument which allows the
computation of the next value at iteration i+1.

• The algorithm runs under a unique compact
recursive formula and suits in a great amount of
cases.

• The evaluation of any function Ψ is carried out as
a sum of two parts which have fixed contributions
held by parameters α and β (see equation 2). G is

an auxiliary function that its value can be
provided by application parameters or evaluated
in the same way asΨ. It also can be a function of
Ψ itself.

• Parameters α., β and function G characterizes the
function Ψ regarding to behavioural aspects and
iteration path. Attended that CBRM runs under a
unique formula, the combinations of α., β values
are crucial and little changes in any of these
values affects dramatically the overall behaviour.
Parameter space is tightly related with
behavioural features.

• CBRM provides a newΨ-value per iteration.
• The initial values of Ψ and G are fixed by the user

specifications.

 A convolution table can be built for providing the
(α, β, G) associated to the calculation of f*g, but it
must be noticed that in spite of the generic
mathematical equivalence between (1) and (2), the
computational usefulness of CBRM reduces when
function G is not easy to carry out.

III. ARCHITECTURE

 The formalization of CBRM set by equation (2)
leads to the functional architecture shown in figure 1,
where each Ψ-value calculation involves two
multiplications and one sum.

MultiplierMultiplier MultiplierMultiplier

AdderAdder

Gα β

Ψ

MultiplierMultiplier MultiplierMultiplier

AdderAdder

Gα β

Ψ
Figure 1: CBRM functional architecture

A. Design principles

 The proposed design consists of using look-up
tables (LUT) to store α and β constants and to make
the effective calculation.
 The implementation of the architecture using look-
up tables provides a greater density of VLSI
integration than in combinational methods. In this
design, advances in technology play a determining
role in performance improvement and in the reduction
of the temporal delay [25]. The location of the look-up
tables inside the arithmetic unit next to the rest of the
operation’s logic also reduces memory access time.
 On the other hand, the use of look-up tables
decrease hardware development costs, contributes
flexibility and limits the number and variability of
modules required. In addition, they can incorporate

elements of error detection and correction and,
therefore, improvements in the results they produce.
 Memory construction offers the architecture the
possibilities of reliability and flexibility: the use of
read only memories is a more robust option than
combinational circuits and, alternatively, the use of
read and write memories enables several different
functions to be configured in the same chip. In
addition, this option improves the maintenance and
repair of the arithmetic unit [14], [26].
 Finally, we stressed that the nature of the memories
facilitates its reusability and provides a high degree of
parallelism. Multiport memories with several access
channels enable parallel results to be obtained in the
same storage chip. In this way, design decisions for
the arithmetic unit can be made: multiple access
memories versus several similar single access
memories.

B. Proposed implementation

The implementation proposed is concerned with the
trade-off between time delay, memory and hardware
resource saving.
 The main idea consists of taking the operation
performed by the function Ψ from a look-up table on
every iteration. Due to the fact that α and β remain
constant through the whole calculation, the following
values of F and G will provide its result in the table.
Figure 2 shows the Convolution-LUT which provides
the result pursued.

Convolution
LUT

Convolution
LUT

Ψi Gi

Ψi+1 = αΨi + βGi

n n

n

Convolution
LUT

Convolution
LUT

Ψi Gi

Ψi+1 = αΨi + βGi

n n

n

Figure 2: Convolution-LUT calculation

 Memory size involves a limitation for the general
case. Therefore, an operator fragmentation into blocks
handling a set of digits capable of providing a suitable
memory addressing.
 Considering that the variables involved in the
calculation are n digit length and that k stands for the
number of digits of each set, the operators are divided
into t parts: t = n/k. This way, obtaining the partial
results for every block from the memory should be
required. On every memory access the operator sign is
also pointed out.
 Convolution-LUT table memory access for each
block is shown in Figure 3.

ΨiΨi0ΨijΨit

GiGi0Gij

Convolution
LUT

Convolution
LUT

Git

Ψij Gij

sign Ψi

sign Gi

Ψ(i+1)j = αΨij + βGij

k

k k

ΨiΨi0ΨijΨit

GiGi0Gij

Convolution
LUT

Convolution
LUT

Git

Ψij Gij

sign Ψi

sign Gi

Ψ(i+1)j = αΨij + βGij

k

k k

Figure 3: Convolution-LUT partial calculation

 It should be pointed out that for k=1, the
architecture proposed works in a serial way, because
the calculation of the function Ψ performs so many
LUT access as the number of digits of the numbers. In
this particular case, the memory structure is shown in
the following table.

TABLE I: CONVOLUTION-LUT STRUCTURE FOR K=1

ΨijGij Ψ>0
G>0

Ψ>0
G<0

Ψ<0
G>0

Ψ<0
G<0

00 0 0 0 0
01 β - β β - β
10 α α - α - α
11 α + β α - β - α + β - α - β

 Finally, the t partial results shifted related to all the
blocks considered have to be added in order to provide
the following value of Ψ. We assume a complement
number coding in order to allow add operations.

 The addition sequence calculation establishes
several design possibilities:
• Serial scheme for processing each add operands

in a single iteration.

Convolution
LUT

Convolution
LUT

Ψij Gij
k k

kΨ(i+1)j

sign Ψ

sign G

AdderAdder

Ψ(i+1) n

Convolution
LUT

Convolution
LUT

Ψij Gij
k k

kΨ(i+1)j

sign Ψ

sign G

AdderAdder

Ψ(i+1) n

Figure 4: Serie structure add operands

• Add operand reduction scheme into two final

ones so that to perform a final addition. This
design is similar to that used in a multiplier for
performing partial product reduction.

Convolution
LUT

Convolution
LUT

Ψi(t-1) Gi(t-1)

Ψ(i+1)(t-1)

sign Ψ

sign G

AdderAdder

Ψ(i+1)

Reduction Structure
(3:2) (4:2) Counters

···

···

Ψi0 Gi0

k k

k k Ψ(i+1)0

n n

n

Convolution
LUT

Convolution
LUT

Ψi(t-1) Gi(t-1)

Ψ(i+1)(t-1)

sign Ψ

sign G

AdderAdder

Ψ(i+1)

Reduction Structure
(3:2) (4:2) Counters

···

···

Ψi0 Gi0

k k

k k Ψ(i+1)0

n n

n

Figure 5: Reduction structure add operands

 This approach provides the whole set of partial add
operands in parallel in order to feed a reduction tree
process. This way, in spite of a hardware complexity
growth, a smaller operation delay is achieved.
 For the calculation of a new value of Ψ it will be
necessary to recode the result to the initial signed
codification.

Cycle time

The delay related to every function value calculation
depends on the particular implementation developed.
According to the schemes analysed previously, these
delays could be expressed in the following way,
respectively:
• n · (Convolution-LUT + Adder)
• Convolution-LUT + ReductionStructure + Adder

 So, the cycle delay depends on the particular
implementation.

IV. EVALUATION OF THE PROPOSED
ARCHITECTURE

In this section, we present estimates of the area costs
and execution time of the architecture proposed in the
previous section. The power consumption of the
circuit is not important for this research and is
therefore not dealt with in this paper. It will be studied
in depth in the event that it can be implemented in a
chip.

A. Area estimations

The model we use for the area estimations is taken
from [10] and [27].The unit used is the size of a
complex gate τa, since the area of the LUTs and other
components are easily expressed in this unit.

• Convolution-LUT: Data storage imposes severe
restrictions on k block size. As we can see in table
1, the area cost increases exponentially with the k
value. Therefore, we have to achieve a balance
between the memory required and the complexity

of the circuit. The model assumes a 40 τa/Kbit
rate for tables addressed by words of up to 6-bits
long, a 35 τa/Kbit rate for 7-11 input bit tables, a
30 τa/Kbit rate for 12-13 input bit tables and 25
τa/Kbit one for 14-15 input bit tables. Following
table shows the cost in terms of τa and bytes for
the most common sizes and wordlength.

TABLE II: LUT MEMORY REQUIREMENTS

LUT memory requirements n k
Bytes complex gates

1 32 B 6 τa
2 128 B 10 τa
4 2 KB 60 τa

16

8 512 KB 12800 τa
1 64 B 8 τa
2 256 B 14 τa
4 4 KB 120 τa

32

8 1 MB 25600 τa
• Adder: A n-bit adder requires n τa. [27]
• Reduction structure: A 3:2 counter uses 2 τa, and

a 4:2 counter uses 4 τa.
 As shown in the previous tables, the main
contributions to the area of the architecture come from
the convolution-LUT. With the previous area cost for
each component the total area for design alternatives
can be calculated.

B. Delay estimations

Let τt be the delay of a complex gate, such as one full-
adder. The delay estimations have been performed
making the following assumptions:

• Convolution-LUT: According to [10], [27]
analysis1 we assume a delay of about TLUT = 3.5τt
for 8 input bit tables, TLUT = 5τt for 12-13 input
tables and TLUT = 7.0τt for 16-18 input bit tables.

• Adder: The delay of the n-bit adder is lgn τt. [14].

• Reduction structure: This module has a delay of 2
τt for 3:2 counter stage and 3 τt for 4:2 counter
stage. [14]

V. APPLICATION EXAMPLE

In this section the case of rotation evaluation is
presented as an example that outlines CBRM
capabilities. Here, we are concerned with coordinates
evaluation.
 Let P(xi,yi) be a point of a circumference with
radius R and θ i the angle with the horizontal axis

x i = R cos θ I
y i = R sen θ i

(3)

1 Implementation using a family of standard gates from the
AMS 0.35 µm CMOS library

 Let’s have arbitrary rotation increment ∆θ of the
angle in each iteration:

 ∀ iteration i, θ i = θ i-1 + ∆θ,
so,

cos θ i = cos (θ i -1 + ∆θ)
sen θ i = sen (θ i-1 + ∆θ)

(4)

 Setting: cos ∆θ = α, sen ∆θ = β

 Expanding and substituting (4) in (3) and grouping
terms:

xi = α xi-1+(−β) yi-1
yi = α yi-1 + β xi-1

(5)

 A crossed evaluation of the coordinates xi and yi
can be carried out by CBRM, through the computation
of a pair of functions Ψ and G if identifying

 Ψi ≡ xi Gi ≡ yi

so,

Ψi+1 = α Ψi + β Gi
G i+1 = α G i + β Ψi

(6)

 With additional restriction α 2 + β 2 = 1

 CBRM provides a mean to calculate the rotation
coordinates with fixed iteration path held by
parameters α , β. The number of iterations depends on
the whole interval angle to rotate and on the increment
∆θ (i.e. on α , β.).

We proposed the following architecture to resolve the
expression (6), see figure 7. We assume n=32 bits,
k=8, t=4.

αG(i+1)2 + βΨ(i+1)2

αG(i+1)3 + βΨ(i+1)3

Convolution - LUT

mux mux

··· ···
Ψ(i+1)3
G(i+1)3

Ψ(i+1)0
G(i+1)0

G(i+1)0
Ψ(i+1)0Ψ(i+1)3

G(i+1)3

αG(i+1)0 + βΨ(i+1)0

αG(i+1)1 + βΨ(i+1)1

αΨ(i+1)0 + βG(i+1)0

αΨ(i+1)1 + βG(i+1)1

αΨ(i+1)2 + βG(i+1)2

αΨ(i+1)3 + βG(i+1)3

4:2 counter

4:2 counter

Adder Adder

mux

Complement

mux

Complement

Ψ(i+1)
G(i+1)

Ψ(i+1)
G(i+1)Ψ0

G0

αG(i+1)2 + βΨ(i+1)2

αG(i+1)3 + βΨ(i+1)3

Convolution - LUT

muxmux muxmux

··· ···
Ψ(i+1)3
G(i+1)3

Ψ(i+1)0
G(i+1)0

G(i+1)0
Ψ(i+1)0Ψ(i+1)3

G(i+1)3

αG(i+1)0 + βΨ(i+1)0

αG(i+1)1 + βΨ(i+1)1

αΨ(i+1)0 + βG(i+1)0

αΨ(i+1)1 + βG(i+1)1

αΨ(i+1)2 + βG(i+1)2

αΨ(i+1)3 + βG(i+1)3

4:2 counter
αΨ(i+1)0 + βG(i+1)0

αΨ(i+1)1 + βG(i+1)1

αΨ(i+1)2 + βG(i+1)2

αΨ(i+1)3 + βG(i+1)3

4:2 counter

4:2 counter

Adder Adder

muxmux

Complement

muxmux

Complement

Ψ(i+1)
G(i+1)

Ψ(i+1)
G(i+1)Ψ0

G0

Figure 6: Block diagram of the proponed architecture

for n= 32 bits

 According to the previous evaluation of the
propose architecture, this implementation requires
approximately 1 MB of memory. That is ≈ 25600
complex gates of area. Nevertheless, the time delay

for the calculation of a new value of the functions Ψ
and G is about 15 complex gates.
 In order to verify the operation of the new
calculation method a series of simulation tests has
been made in reconfigurable hardware platform.
 Hardware design and simulation techniques and
their subsequent implementation in reconfigurable
systems such as FPGAs, enable valid designs to be
made and a high productivity in development to be
obtained. The results of this study are focused on
designs implemented on standard FPGAs, specifically
on the Xilinx family of FPGAs. These devices have
had a wide acceptance and are used by the scientific
community as a whole for processing results.
 In spite of the fact that the speed of these devices is
not very high (up to 50 MHz), by choosing them we
aim to establish a homogeneous basis for comparing
the addition algorithms and draw conclusions from
this comparison. Using one of these devices, the
simulation and testing of the proposed design have
been carried out with definition and simulation free
software Xilinx WebPack 3.2XEn2.
 Table III presents the path delay of the CBRM
iteration for n = 32 and n= 64 bits of precision.

TABLE III: PATH DELAY OF THE CBRM ITERATION (NS)

n Convolution
LUT

Reduction
Structure Adder Total

32 6.5 1.7 7.3 15.5
64 6.5 3.5 13.1 23.1

The following table shows to the deviation produced
in the calculation for several ∆θ and number of values
to process. The error that shows the table is referred
on the last value.

TABLE III: ABSOLUTE ERROR

number of calculated points (I)
I= 12 I= 36

∆θ = π/4 rad 3.52 10-6 9.41 10-6
∆θ = π/72 rad 1.17·10-5 6.17·10-5

∆θ = π/360 rad 5.92·10-5 9.51·10-5

It is observed that error increases with the amount of
points to calculate. On the other hand, also it is
observed that whichever minor is the increase of the
angle more iterations will be necessary to reach the
final value.

VI. COMPARISON WITH OTHERS APPROACHES

In order to obtain conclusions in terms of precision

and error the comparison of the CBRM has been
performed with CORDIC, which stands for one of the
most extensively used algorithms for performing

2 http://www.xilinx.com

function calculation with an iterative scheme
[1][2][3][4].

CORDIC algorithm motivates a great amount of
FPGA implementations [12]. Here a rotation mode
bit-serial design is considered. This implementation
uses three shift-registers, three serial adder-
subtractors, and one serial ROM. All this configurates
a circuit divided in three parallel subcircuits. The
following tables show the results.

TABLE IV: PATH DELAY OF THE CORDIC ITERATION

(NS)

n Total
32 404.928
64 1720.704

TABLE V: ABSOLUTE ERROR CORDIC

number of calculated points (I)
I= 12 I= 36

∆θ = π/4 rad 10-6 10-6
∆θ = π/72 rad 10-6 10-6

∆θ = π/360 rad 10-6 10-6

 It is observed that the obtained error is similar to
the CBRM, whereas time delay is much greater.

VII. CONCLUSIONS

The main purpose of this paper is to present a
generic method for function evaluation that achieves
good performances in speed and a good trade-off
between error and precision. Fundamentals of this
method claime that convolution is a means to evaluate
functions. Design has been implemented in
reconfigurable FPGA based hardware. Comparison
with an important alternative approach computation
scheme outlines good time performances for CBRM.
The basic case of combined trigonometric functions
involved in rotation that is analyzed in this paper
offers good issues for signal and image processing
transforms calculation. Fourier and Hough transforms
can follow CBRM calculation scheme [28] with good
results. These encouraging partial conclusions make
quite reasonable to study in depth the capabilities of
convolution to provide a more complete set of
recursive evaluating patterns in order to extend the
CBRM.

REFERENCES

[1] Volder, J.E. “The CORDIC trigonometric computing

technique”. IRE Trans. Elect. Comput., vol EC- 8 pp. 330-
334. Sept. 1959.

[2] Walther, J.S. “A unified algorithm for elementary functions”,
Proc. Spring. Joint. Comput. Conf., pp379-385, 1971

[3] Haviland, G.L. and Tuszynski, A.A. “A CORDIC arithmetic
processor chip”, IEEE Trans. on Computers., vol C-29 nº2
pp. 68-79- 1980.

[4] Nakayama et al. “ A 6.7 MFLOPS floatig-point coprocessor
with vector/matrix instructions”. IEEE Journal on Solid-State
Circuits, vol 24 nº 5 pp. 1324-1330 -1989.

[5] Ahmed, H.M. “ Directions in DSP Processors”, IEEE Journal
on Selected Areas i Communications , vol. 8 nº8 pp. 1420-
1427- 1990.

[6] de Lange, A.A et al. “Real time applicactions of the floating-
point pipeline CORDIC processor in massive-parallel
pipelined DSP algorithms”. Proc. ICASSP-90 pp. 1013-1016-
1990.

[7] Hu, Y.H. “CORDIC-based VLSI architectures for Digital
Signal Processing”, IEEE Signal Processing Magazine, nº 7
pp. 16-35- July 1992.

[8] Cavallaro, J.R Luk, F.T. “CORDIC arithmetic for SVD
processor”. Journal of Parallel and Distributed Computing ,
nº5, pp.271-290, 1988

[9] Cavallaro, J.R Lester, A.C. “CORDIC processor array for the
SVD of a complex matrix”. SVD and Signal processing , II,
Algorithms, Analysis and Applications, R.J. Vaccado (editor),
Elsevier Science Publishers, pp. 227-239, 1991

[10] Ercegovac, M. Y lang, T. “Division and Square root: Digit-
Recurrence, Algorithms and Implementations”, Kluwer
Academic Pub., 1994

[11] Villalba, J., “Diseño de Arquitecturas CORDIC
multidimensionales” Tesis Doctoral Dept. de Arquitectura de
Computadores. Universidad de Málaga . Nov.1995

[12] Andraka, Ray. “A survey of CORDIC algorithms for FPGA”.
FPGA’s 98.Proceedings of the 1998 ACM/SIGDA sixth
international symposium of Field Programmable Gate Arrays-
22-24 de Febrero de 1998. Monterrey, CA.pp.191-200

[13] Schulte, M.J. and Schwartzlander.E. “Hardware Designs for
Exactly Rounded Elementary Functions. IEEE Transactions
on Computers, vol 43, nº 8, August 1994.

[14] Wong W,F. Goto,E.”Fast Evaluation of Elementary Functions
in Single Precision”.IEEE Transactions on Computers, vol.C-
44, pp.453-457, 1995

[15] Ito, M. Naofumi, T. “Efficient Inicial Approximation for
Multiplicative Division and Square Root by a Multiplication
with operand Modification”. IEEE Transactions on
Computers, vol 46, nº4. Abril 1997

[16] Koren,I.”Computer Arithmetic Algorithms”. Prentice Hall,
Englewood Cliffs, NJ, 1993

[17] Cao, Jun. Wei, Belle, W.Y. “High performance of the 13th
symp. on Computer Arithmetic (ARITH’97)

[18] Schulte, M.J. and Stine, J.E. “Accurate function
approximations by symmetric table look-up and addition”. 11th
International Conference on application-specific, systems,
architecture and processors, 1997

[19] Hassler H. and Takagi, N. “Function Evaluation by Table
Look-up and Addition “ . Proceedings of the 12th Symposium
o Computer Arithmetic, pp.10-16, 1995.

[20] González,R.C; Woods, R.E. “Tratamiento digital de
imágenes”. Addison-Wesley. Iberamericana. S.A. 1996

[21] Katsuhiko O.”Ingeniería de control moderna”. Prentice-Hall
Hispanoamericana. 1993

[22] Serra, J. “Image Analysis and Mathematical Morphology”.
Academic Press, London, 1982.

[23] Kittler, J. and Alkoot, F.M.: "Sum versus Vote Fusion in
Multiple Classifier Systems," IEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 25, nº 1, January
2003.

[24] Weyl, H: Meter, F. “Die Vollstaändigkeit der primitiven
Darstellungen einer geschlossen kontinuierlichen Gruppen”.
Math. Ann. tXCVII. Pp.737-755. (1927)

[25] B. Parhami, “Computer Arithmetic: Algorithms and Hardware
Designs”, Oxford University Press, 2000.

[26] P.T.P.Tang, “Table look-up Algorithms for Elementary
Functions and Their Error Analisys””, Proc. Symp. Computer
Arithmetic, pp. 232-236, 1991.

[27] J-A.. Piñeiro, J.D. Bruguera, J.M. Muller. “Faithful powering
computation using table look-up and a fused accumulation
tree”. Proceedings of the 15th International Symposium of
Computer Arithmetic (ARITH’15), 2001.

[28] García Chamizo, J.M.; Signes Pont, M.T.; Mora Mora, H.; de
Miguel Casado, G.: “Parametrized Architecture for Hough
Transform Recursive Evaluation”, Proc. SMMSP 2003,
Barcelona, Spain, 2003.

