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ABSTRACT 

This study is based on the statistical downscaling and spatial interpolation of high-

resolution temperatures (90 m) over the 1948-2011 period performed for the Valencia 

Region (east Iberian Peninsula) after considering local topographical factors in the fine-

scale distribution of temperatures. The objective was to detect the areas that were 

potentially more vulnerable to air temperatures change. This allowed the detection of 

local climate change patterns, which were analysed and found to be consistent in spatial 

and temporal terms. These patterns indicate a more marked warming tendency in higher 

parts of reliefs and their slopes. However, this tendency is less pronounced in bottoms 

of valleys and on coastal plains, particularly for minimum temperatures, while the 

tendency for increasing maximum temperatures becomes more generalised. These 

patterns seem to connect well with regional changes in pressure fields, wind frequency, 

precipitation patterns and sea surface temperature. 

 

Key words: Temperature, climate change, local patterns, local vulnerability. 

 

 

1. INTRODUCTION 

 

Based on current knowledge of climate change, the need to study its regional and 

local processes more accurately is more than evident since this is precisely where most 

uncertain aspects are found. Availability of long temperature series in the Mediterranean 

region of the Iberian Peninsula has enabled the determination of general growing air 

temperature trends for this region by means of relative homogenisation processes 

(Quereda et al., 2000; Miró et al., 2006a;  Brunet et al., 2007; Quereda et al., 2009; 

Bladé & Castro Díez, 2010; Del Río et al., 2012). However, the spatial density of these 

long series has not allowed a local scale to be obtained that identifies the fine-scale 

behaviour of climate change. It is here where statistical downscaling (SD) tools prove 

useful (Hewitson & Crane, 1996; Wilby et al., 1998) as they allow the reconstruction of 

missing temporal and spatial information from available information and its 
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extrapolation to future scenarios. This approach is becoming mainstreamed, as 

evidenced by the CORDEX2 activity of the World Climate Research Programme.  

The strong point of SD tools is the possibility of fitting a signal over the real data 

observed on a local scale, as well as its low computational cost compared to dynamic 

downscaling. In addition there are controversies regarding the dynamical downscaling 

ability to adding more information at different scales from general circulation models or 

reanalysis without local information for reference considered in the SD (Xue et al., 

2014) . However, the weak point for SD lies in the stationary relationships on which the 

obtained local models are based, which could vary with time, specifically by forcings 

caused by climate change (Wilby et al., 2004). Regarding the value of multiple 

downscaling techniques for the current status, some have been found to be pessimistic 

(e.g. Pielke and Wilby 2012), but others are more optimistic (e.g. Maraun et al. 2010). 

This entails the recommendation of reaching an SD that is as plausible, defensible and 

actionable as possible (Hewitson et al. 2014). Therefore, the present study focuses on 

the results of SD dedicated to the reconstruction and filling in of the daily temperature 

series observed, validated with the observed data and consistent results in spatial and 

temporal terms. This work commences from that conducted by Miró et al. (2012), Miró 

(2014) and Miró et al. (2014), which provide details of how the data employed herein 

were obtained,:  

1. The set of the observed series employed and homogeneity.  

2. The SD process followed and its validation. This process enabled the 

reconstruction of over 300 temperature series in the study area (the Valencia Region) 

over the 1948-2011 period with homogenity and without gaps. Originally, only three of 

all the observed series completely covered this period. 

3. The spatial interpolation (SI) of the temperaturas obtained from the new density of 

the available series in the region after SD, along with its validation, which contemplated 

peaks of mountains with lower station density.  

4. Grouping the SD series into clusters according to the ratio between the air 

temperature change trends noted during the study period and the local physical 

characteristics of their location (station). 

The present study focuses on the Valencia Region and bordering areas (Figure 1). It 

consists in showing and analysing the results of the SD and spatial interpolation (SI) of 

daily temperatures, obtained in this region according to Miró et al. (2012; 2014) and Miró 

(2014). The general objective was to analyse air temperature change trends in the study 

area between 1948 and 2011 according to SD-SI. There were two subsequent specific 

objectives: to show the most relevant and consistent change patterns on a local scale; to 

provide further evidence that supports/explains these change patterns.  

In the study area, no attempts have been made to date to study air temperature change 

patterns on a local and finer scale, despite the above-cited studies having done general 

analyses in the study area. This justifies the novel aspect of the present research, 

particularly as other inicipient studies in different world areas with similar latitudes, and 

in regions of complex terrain, are finding distinct local air temperature change patterns, 

especially through disconnected trends by air temperatures decoupling between valleys 

and mountains with minimum temperatures (Daly et al., 2010; Pepin et al., 2011; 

Dobrowski et al., 2011). In the study area, different trends for minimum temperatures in 

nearby locations have already been suggested (Miró, 2014; Miró et al., 2014) in relation 

to a distinct sensitivity to air temperature inversions caused by increased and more 

favourable stable situations. 

The present study extends the results and connections of this line of work, which is 

also novel given the Iberian Peninsula and Mediterranean setting. 
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Figure 1: Study area (western Mediterranean Basin) and location of the 40 meteorological stations used 

for cross-validating spatial interpolation. 
 

 

2. DATA AND METHODS 

 

The series of air temperature trends, and the maps of the maximum (Tmax), 

minimum (Tmin) and mean (Tmed) temperatures presented in this paper, derive from 

the variety of the SD and SI methodological procedures discussed, described in detail 

and performed in Miró et al. (2012; 2014) and Miró (2014). The present study deals 

with the monthly and yearly results obtained from the cited publications and some 

climate connections. Nonetheless, essential information about these data and methods is 

included herein. 

 

2.1. Air temperature data and reconstruction 

SD was performed for 314 Tmax series and 320 Tmin series (observed) in the 

Valencia Region and bordering areas. This refers to the daily series corresponding to 

automatic and manual stations of official organisation networks or important research 

institutions in the region: 

- AEMET  <http://www.aemet.es> 

- CEAM  <http://www.ceam.es>, <http://www.ceam.es/ceamet> 
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- SIAR-IVIA <http://www.ivia.es/>, <http://eportal.magrama.gob.es/websiar> 

- SIAR (other Spanish Autonomous Communities) 

<http://eportal.magrama.gob.es/websiar> 

- IIG <http://iig.ua.es/>, <http://m.web.ua.es/es/labclima/> 

The basic selection criterion was a minimum, continuous 10-year duration covering 

the 1948-2011 period. However, this criterion was reduced to 8 years for mountainous 

areas with lower station density (for automatic stations in which SD was particularly 

good). 

Initially, 326 stations were submitted to SD, and 12 Tmax series and 6 Tmin ones 

were ruled out for providing SD of a significantly poorer quality than the rest. This was 

due to the poor quality of the specific series observed, while SD obtained good results in 

neighbouring series in a similar location. In general terms, SD was more accurate for 

automatic stations than for manual ones as poor quality recordings were found in the 

latter. Examples of both cases are provided (Figure 2). 

 

 
Figure 2: An example of adjusting SD to daily observed data, and to filling in its gaps. Above, an 

observed quality series.  Below, an observed series with no record of decimals, but with suspicious data. 

 

SD was always more accurate between the 25 and 75 percentiles (daily data) and, as 

expected, extreme values tended to be underestimated (percentiles > 90 and < 10). This 

implied having to apply a final correction to SD per percentile range to improve 

estimating daily extreme values. This calculation was done separately per month and 

particular series to compare their observed daily series (available stretches) with SD 
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within each percentile range. A sample (averaged case) of the correction made (bias) is 

offered in Table 1. 

 

TMAX 
Bias 

Percent. 
<=5 

Bias 
Percent. 

<=10 

Bias 
Percent.  

10-25 

Bias 
Percent.  

25-75 

Bias 
Percent. 75-

90 

Bias 
Percent.>= 

90 

Bias 
Percent.>= 

95 

-1.80 -1.45 -0.63 0.01 0.61 1.42 1.81 

TMIN 

-2.03 -1.68 -0.81 0.07 0.79 1.34 1.56 

Table 1: Average negative bias in ºC that the daily data deriving from SD present compared with the 

observed data, per percentile range, averaged for all series and months.  

The cross-validation of SD was always done on stretches of series not used for 

training the SD model. However, the best final SD resulted from performing multiple 

SD on the sectorial stretches of each series. After testing the homogeneity of the 

available observed series, probable rupture points were delimited, which helped 

differentiate various streatches in each series. For each stretch, sectorial SD (sSD) was 

done. Attempts were made to not use stretches with less than 10 years and the object 

was triple. Firstly, it helped avoid lack of homogeneity in the observed data as it would 

affect SD performance. To this end, the probable loss of the local components that 

clashed with the general climate signal was avoided as it could be caused by circular 

homogenisation methods. Secondly, it helped test the coherence of sSD for each series 

(sSDs) during the extrapolated period. This allowed us to see if the stationary 

relationships that sustained SD had been maintained throughout the study period. 

Thirdly, it allowed the elimination of probable spurious long-term trends in the 

observed series. This was evident with the Tmin series from the stations that have been 

most affected by growing peri-urbanisation in the last few decades. This did not apply 

to more rural stations. 

An example of how to configure all sSDs for each series is provided in Figure 3. 

Table 2 depicts the correlation matrix found between sSDs by taking the averaged case 

of all the series with four stretches or more of the available sSDs. Maintaining a good 

correlation between the first and last sSD is an indicator of good performance in long-

term extrapolation as the sSDs trained during periods separated by as many as 40-50 

years were compared.     

 

 
Figure 3: Division of the observed Tmin series of Alicante „Ciudad Jardín‟ into stretches 
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To each stretch shown in black, sSD was applied, which was then 

extrapolated to the rest of the 1948-2011 period. 

 

Tmax Tmax (HP filt.) 

  SD 1 SD 2 SD 3 SD 4 SD 5 SD 6  SD 1 SD 2 SD 3 SD 4 SD 5 SD 6 

SD 1 1.00 0.988 0.982 0.982 0.981 0.982 SD 1 1.00 0.951 0.926 0.923 0.917 0.924 

SD 2   1.00 0.986 0.985 0.984 0.987 SD 2   1.00 0.944 0.937 0.930 0.944 

SD 3     1.00 0.988 0.984 0.988 SD 3     1.00 0.950 0.932 0.951 

SD 4       1.00 0.990 0.990 SD 4       1.00 0.956 0.959 

SD 5         1.00 0.992 SD 5         1.00 0.965 

SD 6           1.00 SD 6           1.00 

Tmin Tmin (HP filt.) 

SD 1 1.00 0.987 0.984 0.982 0.982 0.984 SD 1 1.00 0.932 0.918 0.908 0.900 0.914 

SD 2   1.00 0.987 0.984 0.982 0.985 SD 2   1.00 0.932 0.920 0.905 0.924 

SD 3     1.00 0.989 0.987 0.989 SD 3     1.00 0.946 0.932 0.944 

SD 4       1.00 0.990 0.989 SD 4       1.00 0.941 0.946 

SD 5         1.00 0.992 SD 5         1.00 0.959 

SD 6           1.00 SD 6           1.00 

Table 2: Correlation matrix ( all series) in the daily data among the sectorial SDs extrapolated to 

the whole 1948-2011 period. Left: raw data. Right: seasonal oscillation and low frequency cycles 

was removed by Hodrick-Prescott filtering. They were all statistically significant at 99.9% (student‟s 

t-distribution). 
 

The differences in the long-term trends that gave sSDs of each series during the 

extrapolated period were assessed. No significant differences were found in their trends, 

particularly in the series that well fitted the sSDs to the observed data. Thus sSDs were 

coherent to each other during the extrapolated period in both short-term fluctuations and 

long-term trends.  

The final SD per station was obtained from the weighted average of the SDs. Indeed 

the final SD was somewhat better than the sSDs when fitting the observed cross-

validation data, and also during the training period of each particular SD. Hence in the 

final SD, this “multimodel” approach improved the estimation of the probabilistic 

range.   

The final fit achieved by SD for the observed data was averaged with a mean 

absolute error (MAE) of 1.36ºC for Tmax and an MAE of 1.32ºC for Tmin in the daily 

data, and with MAEs of 0.26ºC and 0.23ºC for Tmax and Tmin, respectively, in the 

monthly data.  

 

2.2. Reanalysis data 

 

As a source of explanatory variables, the NCEP/NCAR reanalysis was taken 

(2.5ºx2.5º Lat/Lon grid) <http://nomad1.ncep.noaa.gov/cgi-bin/ftp2u_6p_r1.sh>. The 

variables used per grid point are described in Table 3. The data in the boundary layer 

(surface) were not employed because are more problematic according to a previous 

work (Rubinstein et al., 2004).  
 

NCEP variable Tmax (  12h and 

18h) 

Tmin (  00h and 

06h) 

 Day 0 Day -1 Day 0 Day -1 

TMP 1000 hPa X X X  

TMP 925 hPa X  X  

TMP 850 hPa X  X X 

TMP 700 hPa X  X  

HGT 1000hPa X  X  

HGT 700 hPa X  X  

U-GRD 1000hPa X  X  
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U-GRD 925hPa X  X  

U-GRD 850 hPa X  X  

U-GRD 700 hPa X  X  

V-GRD 1000hPa X  X  

V-GRD 925hPa X  X  

V-GRD 850 hPa X  X  

V-GRD 700 hPa X  X  

RH 1000hPa X  X  

RH 925hPa X  X  

RH 850 hPa X  X  

RH 700 hPa X  X  

P-WAT X  X  

4LFTX X X X X 

Table 3: The reanalysis variables included as inputs in the SD done per grid point. 
  

However for the SD done of each station, the variables that referred to the four 

closest grid points in the reanalysis were used. To this end, the original reanalysis grid 

points and an exact interpolation of the equidistant points to the original grid points 

were utilised. This is reflected in Figure 4, which depicts the boxes carried out for SD 

and the stations assigned to each box.  

 

 
Figure 4: Grouping stations into five boxes of the four reanalysis grid points used to perform SD for each 

particular station. 

 

Therefore for each SD, 88 variables were included (22x4), plus the seasonal 

oscillation of the solar constant; that is, 89 explanatory variables in all. 

 

 

2.3. The SD technique  

A hybrid artificial neural network (ANN) was employed. This ANN incorporated a 

modular cross between two types of weight layers (Figure 5). The first type (the weight 
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layer block) acts as a conventional ANN of the multilayer perceptron (MLP) type 

<http://www.peltarion.com/doc/index.php?title=Synapse:Weight_layer_block>. The 

second type is based on Hebb‟s learning (the Hebbian layer block) 

<http://www.peltarion.com/doc/index.php?title=Synapse:Hebbian_layer_block>. 

There were always eight neurons in each hidden layer. 

 

 
Figure 5: Diagram showing the modular ANN configuration used for SD. 

 

The main reason for using a Hebbian ANN in parallel with MLP was the significant 

improvement gained in cross-validation, and there was much less overfitting with only 

one MLP-type ANN (the fit in the validation data became worse compared to the 

training data). It was not necessary to separate data seasonally or monthly to accomplish 

optimum ANN performance. 

 

2.4. Trend and cluster analyses 

 

Having obtained the final SD for all the series, the Mann-Kendall trend test was 

calculated for the annual SD series, and also for the 1948-2011 period, as was the Sen 

slope trend estimation method (Salmi et al., 2002). The statistical significance of the 

trends at α = 0.001, α = 0.01, α = 0.05 and α = 0.1 was included for the Mann-Kendall 

test, and a 95% confidence interval was used for the Sen slope. 

Having obtained the trends for all the series and for the whole 1948-2011 period, 

they were related with the group of physical factors characterising each station location 

type. These factors were:  

a. Elevation. 

b. Latitude. 

c. Degree of continentality, measured (1 to 3) as distance from the coast: Less 

than 20km =1; between 20 and 40km = 2; more than 40km = 3. 

d. Exposure to solar radiation, measured as the degree of terrain slope to the 

north or south, derived from a digital terrain model (DTM) 

e. Potential nocturnal to air temperature inversion (0 to -3). 

The last factor (e) refers to the distinct potentiality of accumulating cold night air 

owing to air temperatures inversion phenomena (the mountain-valley duo). This was 

calculated according to both the affluence-diffluence of the terrain by a laplacian 

operator and the absolute land slope, derived from the DTM. An example of this (the 

DTM derivative) is shown in Figure 6 (details of the Aitana zone). 
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Figure 6: Example of the “potential nocturnal to air temperature inversion” DTM result (blue intensity). 

Elevation contours of 100 m are included. 

 

In order to find relationships between thermal trends and the various location factors, 

a multiple correlation procedure was followed firstly by multiple linear regression. 

Secondly, a cluster analysis was done by Kohonen maps (Kohonen, 2001), known as 

SOM (Self-Organising Maps). This analysis, previously explained in Miró (2014) and 

Miró et al. (2014), revealed that the spatial distribution of some of these factors 

modulates air temperatures change trends on a local and regional scale, particularly for 

Tmin. Specifically, elevation and continentality were determinants for Tmax, and  

basically helped distinguish two clusters. However for Tmin, the topographical 

influence on the formation of night air temperatures inversion phenomena also played a 

key role as another more variable element in the local vicinity. Accordingly, five 

clusters or groups of series were differentiated, which displayed similar behaviour in the 

Tmin trends (Table 4). The multiple correlation results were consistent with clustering.  

 

2.5. The SI technique  

 

With the reconstructed series corresponding to the 1948-2011 period (the NCEP-

NCAR reanalysis availability period), SI was done at a resolution of 90x90m over the 

whole study area and was carried out by ordinary kriging. The tests done using other 

interpolation techniques did not give better results than kriging did in the cross-

validation, which denotes a sufficient station density for SI by kriging. Nevertheless, a 

blank mask was applied to the maps beyond the areas with the included stations because 

kriging did not give good results near the edges of the interpolated area. 

The availability of derivative DTMs, e.g., exposure to solar radiation and the 

potential nocturnal to air temperature inversion, used initially for clustering stations, 

served to extrapolate the spatial modulation of air temperatures, which causes the relief, 

to the whole territory. This was done in accordance with what was observed in the 

stations, and not only due to height variation. 

The gradient weights of these physico-geographical variables were estimated in 

accordance with the air temperatures available in the surrounding stations of each area 

by reduced major axis (RMA) regression. Several tests were done in distinct territorial 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

settings and in different months until the weighting in ºC of the original DTM values 

was found. This gave a better general result in cross-validation per month (Miró, 2014). 

This cross-validation was done by subtracting 40 stations, which were distributed 

aleatorily throughout the contemplated territory from one SI test (Figure 1). Yet some 

located in more difficult mountainous areas and in a lower station density were included 

on purpose. This entailed the risk that even a lower station density in these areas could 

make the SI validation result worse than the final SI employed.  

Generally speaking, the fit accomplished in the cross-validation was better for Tmax 

than for Tmin. However the cross-validation result improved when the potential 

nocturnal to air temperature inversion DTM was incorporated into the SI for Tmin. 

Figure 7 shows the difference in the fit finally accomplished in the cross-validation for 

Tmin, when applying both the elevation DTM (only vertical gradient) and applying in 

addition the derivative DTM.  

 

 
Figure 7: Cross-validation by RMA of the SI-interpolated Tmin values in relation to that expected in 

the control stations (1948-2011, average), by including, or not, the potential to the air temperatures 

inversion DTM. The coefficient of determination and mean absolute error (MAE) are shown. 
 

For latitude and continentality, station density was estimated as being sufficient to 

reflect any variability in SI that depended on them. So no other DTM that explicitly 

expressed them was introduced. 

The cross-validation results of the SI validation refer to the annual and monthly 

temperatures taken from the complete 1948-2011 period, (see Figure 8). Collectively, 

Tmin show a somewhat wider margin of error than Tmax (MAE of 0.36ºC for Tmax as 

opposed to 0.79ºC for Tmin for the yearly data).  

SI allowed the modulation that the contemplated physico-geographical factors had on 

temperature, and therefore, on their air temperatures trends, to be covered over the 

entire analysed geographical space according to their weight, and also from the points 

where temperature information originally became available (stations).  
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Figure 8: Cross-validation of SI by the linear regression (RMA) of the interpolated data in relation to that 

expected in the control stations. The coefficient of determination and mean absolute error (MAE) are 

included. 
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Nevertheless, trend testing was not feasible for all the 9,019,338 cells that were the 

object of interpolation, and which covered the whole analysed territory. As such testing 

has been previously done for the available SD series, the SI analysis was performed by 

calculating the magnitude of the air temperatures change that occurred between two 

periods: an initial one vs. a final one. For this purpose, a decadal analysis, like that done 

in Miró (2014) and Miró et al. (2014), was run. It established that within the 1948-2011 

period, the greater increasing subperiod in air temperatures occurred between 1980 and 

1998. Therefore a first subperiod between 1948 and 1979 was defined where, apart from 

typical cyclic climate oscillations, no long-term temperature trends took place. We took 

this finding as the baseline period. Hence from 1998, a pause, or a consolidation 

subperiod of change in air temperatures, was defined until 2011. We considered that 

calculating the magnitude of the average change during at least the last 15 years of the 

study period was a suitable measure (1997-2011) compared to the average baseline 

period (1948-1979). 

 

2.6. Other variables used for potential climatic connections 

 

To evaluate possible connections of the temperature trends results with other climate 

variables, have been used the following variables: 

1. Wind speed and direction: Given the NCEP-NCAR reanalysis availability for the 

1948-2011 period, we tested the tendency of wind derived for the U-GRD and V-

GRD wind components from reanalysis. For this purpose, the two reanalysis grid 

points that coincided more with the Valencian Region coastline were used: 40ºN and 

0ºW, and 37.5ºN and 0ºW. The average value of both points was taken at 1,000hPa. 

Their daily averages of prevailing wind direction and speed were taken (Miró, 2014). 

Were calculated the trends (Mann-Kendall trend and Sen slope) of the annual 

average of daily wind speed and annual frequency of days with winds per quadrant 

(mean or predominant in the four outputs per day of reanalysis). And finally were 

calculated the trends of the annual cumulative sum of the average daily wind speed, 

where the cumulative sum of the winds of the first and second quadrants are 

separated from those from the third and fourth quadrants. 

2. Pressure: This was done by taking the daily averages from the NCEP-NCAR 

reanalysis (1948-2011), referred to as the reanalysis grid points in Table 4. The mean 

geopotential altitude (HGT) values at each grid point were calculated at 1,000hPa 

and 500hPa for the baseline (1948-1979) and the 1997-2011 periods by following the 

same temporal criterion to calculate magnitudes of air temperatures change by SI. 

Next the magnitude of change between both periods was calculated for each pressure 

level. The obtained data were interpolated, especially in the east Iberian Peninsula 

region (Miró, 2014). 
Latitude Longitude 

42.5 -2.5 

42.5 0 

42.5 2.5 

40 -2.5 

40 0 

40 2.5 

37.5 -2.5 

37.5 0 

37.5 2.5 

Table 4: The grid nodes in the NCEP/NCAR Reanalysis used in Figure 17. 
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3. Sea Surface Temperature (SST): in order to compare the SST tendencies in waters 

closer to the study area, we had to use satellite data (the NOAA/NASA database, 

„AVHRR Oceans Pathfinder‟). These data stem from the processing methods carried 

out by members of the meteorology and climatology team of the CEAM Foundation 

(Pastor et al., 2008; Pastor, 2012). This database covers only the 1985-2007 period, 

and from it, an average annual/monthly SST value was taken for the points over the 

sea between latitudes from 37.5ºN to 40ºN and longitudes from 1ºW to 2ºE. The 

series obtained in this way were submitted to the Mann-Kendall trend and Sen slope 

trend estimate tests 
 

 

3. RESULTS 

 

3.1. Air temperature trends of all the SD series grouped into clusters: determining 

factors 

First of all, Table 5 presents the air temperatures trend results for each cluster and for 

the complete period (1948-2011). This table provides the values that indicate the 

physico-geographical factors, which were strongly related with air temperatures trends, 

as determined by the cluster analysis. 

 

Physical-geographical 

factors (average values) 

Tmax Tmin 
Cluster 

0 
Cluster 

1 
Cluster 

0 
Cluster 

1 
Cluster 

2 
Cluster 

3 
Cluster 

4 
Elevation (m). 97.6 610.6 552.1 68.4 476.4 169.9 894.5 

Degree of continentality (1 to 

3)
1 1.18 2.46 2.71 1.17 2.39 1.16 2.47 

Potential nocturnal to air 

temperature inversión (0 to -3)
2 - - -1.75 -1.62 -1.39 -0.53 -0.64 

MANN-KENDALL TEST(Z) 
 ANNUAL 3.86*** 4.43*** -2.35* -1.11 -0.41 0.68 2.76** 

JANUARY 0.96 1.64 -1.45 -1.22 -0.86 -0.52 0.54 

FEBRUARY 0.69 1.25 -1.91+ -1.47 -1.08 -0.62 0.28 

MARCH 1.47 2.43* -2.44* -1.82+ -1.25 -0.63 0.49 

APRIL 2.44* 2.31* -1.09 -0.54 -0.12 0.26 1.32 

MAY 0.93 1.49 -0.68 -0.20 0.27 0.31 1.21 

JUNE 3.16** 3.40*** 0.65 0.86 2.01* 2.01* 3.09** 

JULY 2.35* 2.73** 0.10 0.64 1.18 1.20 2.13* 

AUGUST 2.33* 2.49* 1.48 1.89+ 2.00* 2.32* 2.42* 

SEPTEMBER -0.24 -0.78 -0.32 -0.13 -0.24 -0.05 -0.38 

OCTOBER 2.51* 2.21* 0.45 1.09 1.21 1.74+ 2.29* 

NOVEMBER 0.26 0.18 -0.81 -0.55 -0.18 0.06 0.02 

DECEMBER 1.00 1.77+ -2.11* -1.48 -1.07 -0.81 0.01 

SEN´S SLOPE IN ºC PER DECADE 

 ANNUAL +0.12 +0.19 -0.06 -0.03 -0.01 +0.02 +0.09 

JANUARY +0.10 +0.17 -0.13 -0.08 -0.05 -0.02 +0.04 

FEBRUARY +0.07 +0.17 -0.19 -0.13 -0.10 -0.05 +0.04 

MARCH +0.16 +0.29 -0.21 -0.12 -0.08 -0.03 +0.04 

APRIL +0.18 +0.25 -0.07 -0.03 -0.01 +0.01 +0.09 

MAY +0.07 +0.18 -0.03 -0.01 +0.02 +0.03 +0.10 

JUNE +0.17 +0.35 +0.03 +0.04 +0.11 +0.10 +0.20 

JULY +0.13 +0.24 +0.01 +0.04 +0.05 +0.06 +0.13 

AUGUST +0.11 +0.19 +0.07 +0.09 +0.09 +0.09 +0.14 

SEPTEMBER -0.02 -0.08 -0.02 -0.01 -0.02 +0.00 -0.02 

OCTOBER +0.20 +0.23 +0.04 +0.08 +0.09 +0.11 +0.17 
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NOVEMBER +0.02 +0.02 -0.08 -0.05 -0.02 +0.01 +0.00 

DECEMBER +0.09 +0.15 -0.18 -0.12 -0.10 -0.07 +0.00 

Table  5: Air temperature trends for the average of the series in each cluster. For the Mann-Kendall test, 

statistically significant trends are shown in bold as: *** (α = 0.001), ** (α = 0.01), * (α = 0.05) + (α = 

0.1). The non-significant ones for any of the previous levels are depicted in grey. For Sen slopes, the 

exclusivity of the same sign slope within the 95% confidence range is denoted in bold. If the above 

condition is no longer satisfied, it is shown in grey. Clusters are ordered from the least to the most 

positive trends.
1
 The most positive is greater.  

2
 The most negative is greater. 

 

A clearly generalised increasing trend in air temperatures was observed for Tmax. 

However, the higher and inland sectors were those that showed a more marked trend 

(Cluster 1), which became more moderate the closer to the coast and pre-coastal 

depressions (Cluster 0). Conversely, more constrasts appeared with less significant 

trends for Tmin. The decoupling of these trends was caused by a clearly topographical 

factor (mountain-valley difference). Two antagonical clusters appeared and transition 

clusters were inserted between them, but they showed less clearly defined trends. The 

Tmin Cluster 0 presented less positive, and even negative, air temperature trends in 

continentalised settings, with a high potentiality to night air temperature inversion at a 

certain elevation, which resulted from its continentality; hence these are the stations 

located on plains or at bottoms of inland valleys. Conversely the latter, Cluster 4, 

presented the strongest increasing trends in air temperatures, which coincides with the 

stations located at higher elevation and with a low night inversion potentiality, but also 

with a slightly high degree of continentality. Here, therefore, the continentality factor 

played a reinforcing role of positive and negative trends. In fact Clusters 1 and 3 

exhibited the same trend as their neighbouring clusters 0 and 4, be it somewhat weaker 

and not statistically significant at a less continental or coastal location. Cluster 2 

included all the indefinite cases with no trend, and occupied a position of transition 

between bottoms of valleys and flat depressions, and also on mountain sides. 

When disaggregating for months, the strongest and clearest positive trends appeared 

in summer and spring, especially in June, but also in October. The lull in September 

was very interesting as no trend occurred. The recorded negative trends were limited to 

winter months and to the first two Tmin clusters, when statistical significance was noted 

only for cluster 0. A tendency to more positive trends was generally maintained for 

Tmax, and the last Tmin clusters compared to the first ones, in most months. In many 

cases however, no statistical significance was obtained at the tested levels, and this was 

particularly true for winter months. 

  

3.2. Evaluating the magnitude of air temperatures change and its spatial patterns 

with SI. 

The air temperature change patterns observed in the trend analysis of the series are 

clearly seen in the SI maps, especially when compared with the relief in the area (Figure 

1). However, it is now possible to establish the sectors in which extrapolation to the 

points with no available data estimates stronger change trends in air temperatures and 

their spatial distribution. 
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Figure 9: Magnitude of temperature change (°C) for the annual averages of Tmax, Tmin, Tmed and daily 

oscillation between the 1948-1979 period and the last 15 years of the series (1997-2011). 

 

The annual results are offered first (Figure 9) and refer to the magnitude of the 

change calculated from the SI during the 1997-2011 period compared to the baseline 

period (1948-1979). Calculations for Tmax, Tmin, Tmed (average of Tmax and Tmin) 

are provided, along with the annual average of daily temperature oscillation (as the 

difference between Tmax and Tmin). 

We can see that the highest warming rates exceed 1ºC (inland and high areas) for 

Tmax, and they reach 1.3ºC in the Iberian Mountain Range (the Gúdar and Javalambre 

Mountains). They also exceed 1ºC in the pre-Betico System of Alicante. The coastal 
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strip and precoastal depressions present a warming rate that does not generally exceed 

0.7ºC (sporadically 0.5ºC). In contrast, we find more marked contrasts for Tmin and in 

the same spatial vicinity, with clear mountain-valley contrasts resulting from night air 

temperatures inversion phenomena. We also find that these contrasts are more marked 

inland and in mountainous areas than on the coastline. We observe warming rates (for 

Tmin) of 1ºC in the higher relief areas in the Iberian sector (Gúdar in particular), and 

also in culminations to the north of Alicante (the Aitana area), which run almost in 

parallel with Tmax. Conversely we find slight cooling rates that reach -0.6ºC in the 

bottoms of the valleys located in the more continental area of the Iberian sector, and 

also in depressions that lie more inland in the provinces of Valencia (center of region) 

and Alicante (south of region). These contrasts are reproduced more gently on the 

coastal strip, and slight warmings generally predominate, except in the precoastal 

depression of Valencia, with values that come close to 0. This means that generalised 

warming trends predominate for Tmed, but major geographical and spatial vicinity 

differences also exist. Thus the most marked magnitudes of change correspond to higher 

relief areas, and to a greater extent in the Gúdar Mountains (N, inland), but also to the 

peaks of the Aitana and Mariola Mountains (South), where temperatures exceed 1ºC. In 

contrast, weaker or more moderate warming was recorded in deeper areas in inland 

valleys, and on coastal plains and precoastal depressions (especially of Valencia), which 

barely reached 0.2ºC at some points. 

A more pronounced increase for Tmax than for Tmin (particularly in more 

continentalised bottoms of valleys) spells a more generalised tendency to increased 

daily temperature oscillation. This could increase from 1.5º to 2ºC in the flatlands and 

valleys that lie more inland, and could remain below 0.5ºC on precoastal and coastal 

reliefs. 

The results of the monthly air temperatures change in magnitude between the two 

indicated periods are presented below. Firstly the Tmax results are shown (Figure 10). 

June stands out as warming rose dramatically to 3ºC in the inland and high areas of the 

Gúdar and Javalambre Mountains (N, inland), and rose by between 2º and 3ºC in most 

of the study area. However, this warming appears to be milder in the precoastal plains 

and on the coastline because it did not generally go below 1ºC. The warming rates 

recorded from the second half of winter to August, and once again in October, are 

relevant. In October, no differences between the inland and coastal data were found, 

unlike the other months. We can state that summer temperature behaviour has clearly 

extended to June, and spring to March. In the second half of the year, the behaviour 

noted for September and November stands out because, on the one hand, it alternated 

with October and, on the other hand, it exhibited an almost opposite pattern to the rest 

of the year. Indeed these are the only two months when no generalised warming 

occurredor Tmax, and when slight negative anomalies appeared at points inland 

(preferably in the southern half), where significant warming occurred for the rest of the 

year.  

Secondly, the Tmin results are provided (Figure 11). In this case, June was also the 

month with the largest magnitudes of warming, but constrasts were more marked. In 

high areas of Gúdar, SI estimated that warming could reach 2.3ºC, and could be even 

higher than 2ºC in pre-Betico System summits (southern half). This contrasts with the 

warming rates of 0.3ºC in the bottom lands of the precoastal depressions at center and 

south of region. In this case, October was also the month with more pronounced air 

temperatures increases, followed by other spring and summer months. 
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Figure 10: Magnitude of temperature change (°C) for the monthly averages of Tmax during the 1948-

1979 period and the last 15 years of the series (1997-2011). 

 

In winter months (December-February), negative anomalies appeared in all the 

sectors that were more affected by the air temperatures inversion phenomena associated 

with high pressures and wintry stability. These anomalies even went beyond -1.5ºC in 

more continentalised bottoms of valleys and bottom lands. Nevertheless in these winter 

months, warming trends remained outside valleys and depressions, especially in high 

areas of reliefs. March showed a transition to a greater predominance of positive 

anomalies, but strong contrasts remained in the spatial vicinity. It was only in 

September, and to a certain extent in November, that less marked spatial contrasts were 
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noted, with low magnitudes of warming or cooling. So once again, we observe a 

behaviour that is less connected to general trends. 

 

Figure 11: Magnitude of temperature change (°C) for the monthly averages of Tmin during the 1948-

1979 period and the last 15 years of the series (1997-2011). 

 

The previous results included the mean monthly temperature results, which are 

shown in Figure 12. Here we stress the result of warming for June, which reached up to 

2.5ºC in higher parts of the Gúdar, Javalambre and Aitana mountains.  
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Figure 12: Magnitude of temperature change (°C) for the monthly averages of Tmed during the 1948-

1979 period and the last 15 years of the series (1997-2011). 

 

Finally, Figure 13 shows the changes in the monthly daily temperature oscillation 

averages. These results reveal that the daily thermal oscillations increased in most 

months, particularly those that showed a more pronounced pattern for mountain-valley 

decoupling in air temperature trends. In March, increases in temperature oscillation of 

up to 3ºC took place in the bottoms of the most inland valleys in the region. Conversely, 

September and November were not linked to these trends. 
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Figure 13: Magnitude of temperature change (°C) for the monthly averages of daily oscillation during the 

1948-1979 period and the last 15 years of the series (1997-2011). 

 

3.3. Climate connections of spatial change patterns 

The fact that previous results are consistent with topographical and geographical 

factors seems to be related with possible changes in frequency of weather types, winds 

and pressure fields or circulatory patterns over the 1948-2011 period. For instance, the 

mountain-valley decoupling in air temperature trends apparently depends on more stable 

situations, or winds calming down, which produce higher temperatures in mountains, 

but air temperature inversion in valleys. The more moderate trends on the coast could 

also be related with a relative change in the frequency of sea winds vs. land winds, if 

compared to inland and high areas. The sea‟s soothing effect and the role of air 

temperature trends that sea surface temperature (SST) showed could also intervene. 
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First we can see (Figure 14) the tendency that the mean daily wind speed (provided 

annually) presents (1948-2011), along with the Mann-Kendall test and Sen slope 

estimation results. A significant downward trend is observed. 

 

 
Figure 14: Trend for the annualised daily average wind speed (m/s) derived from the NCEP/NCAR for 

40° N-0ºW and 37.5ºN-0ºW (1,000 hPa and the average for both points). Mann Kendall and Sen slope 

estimations are included along with their 95% and 99% confidence intervals. 

 

 
Figure 15: Trends for the number of days per year with winds from the first or second quadrants (top) or 

from the third or fourth quadrants (below). They derive from the NCEP/NCAR for 40° N-0ºW and 
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37.5ºN-0ºW (1,000 hPa and the average of both points). Mann Kendall and Sen slope estimations are 

included along with their 95% and 99% confidence intervals. 

 

Then days of each year were grouped into two groups according to the predominant 

direction that the wind blew in: first- or second-quadrant winds (sea); third- and fourth-

quadrant winds (land). Figure 15 shows the graphs that illustrate the annual frequency 

of land and sea winds, and the statistics of the trend between 1948 and 2011. 

Figure 15 depicts a clear diversion in the frequency of land winds to sea winds. A 

significant upward tendency is seen for the first- and second-quadrant winds, while the 

trend is downward for the third- and fourth-quadrant one. Some 28 days a year moved 

from the first group to the second one throughout the study period.  

 

 
Figure 16: Trends for the annual cumulative sum of the average daily wind speed in m/s., where the 

cumulative sum of the winds of the first and second quadrants (top) are separated from those of the third 

and fourth quadrants (below). They derive from the NCEP/NCAR for 40° N-0ºW and 37.5ºN-0ºW (1,000 

hPa and the average of both points). Mann Kendall and Sen slope estimations are included along with 

their 95% and 99% confidence intervals. 

 

If we take the concept of comparing sea and land winds from a simple frequency to a 

total „volume‟ of blown wind, which also implies speed, another reading stands out 

(Figure 16). The mean daily wind speed loss shown in Figure 14 is caused 

predominantly by a drastic loss in speed and weight for the land winds in the region, 

generally linked to westerlies associated with general atmospheric circulation in middle 

latitudes. Thus the strong downward tendency of the total annual „m/s‟ blown by land 
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winds is not compensated by the moderate upward tendency of the total „m/s‟ blown by 

sea winds. So we can state that the weight of the westerlies in the region diminished by 

almost one third throughout the study period (1948-2011). 

To a great extent, these analysed wind-resulting elements already explain the 

behaviour of air temperature trends. Indeed, the more moderate warming trends on the 

coast can be linked to a reduced frequency of katabatic thermic trip phenomena that 

land winds provoke on the coast and in depressions. Reductions in mean wind speed can 

be related with more frequent situations of calm or breezes, which favour the formation 

of air temperatures inversion phenomena. 

It is also interesting to compare possible changes in pressures fields as the causes of 

changes in wind frequency and speed, and also in stability-instability cycles. Figure 17 

illustrates these results. It is worth comparing them with the results provided in figures 9 

to 13. For annual values, the geopotential altitudes increased between both periods at 

both 1,000hPa and 500hPa; therefore, the frequency of high pressures also increased. 

However, the increase at 500hPa was greater, which suggests temperature warming 

forcing. This, in turn, determines a more pronounced tendency of stable conditions. The 

increase in HGT was also more pronounced north-westerly at 1,000hPa and north-

easterly at 500hPa. This implis an increase in the first- and second-quadrant flows to the 

detriment of the third- and fourth-quadrant ones, and reasserts the scenario of more 

moderate air temperatute trends on the coast as opposed to a pronounced warming 

scenario inland and in elevated areas. 

Winter months more markedly showed increases in the HGT at both 1,000hPa and 

500hPa (December-March). March, and particularly February, presented the largest 

increase in atmospheric pressures, and a sharp rise in easterly or north-easterly flows 

(from the Mediterranean or inland Europe), which are associated with more stable 

situations. This suggest that mixed anticyclone situations in winter, which centred to 

Central Europe and to the northern Iberian Peninsula, notably increased, at least in 

February (but also in January). This explains the strong dissociation of air temperature 

trends between mountains and valleys given the increase in air temperature inversions, 

favoured by fewer gentle westerly winds. It also implies more irradiation phenomena 

and cold air accumulating in lower areas. However, higher parts are submitted to clear 

skies, more solar radiation and to cold air escaping to lower parts. 

As from April and during the summer semester, the disparity between the changes 

occurring at 500hPa and those at 1,000hPa became wider. Whereas an upward change 

in pressure continued at 500hPa, the magnitudes of change at 1,000hPa tended to 

become smaller or more neutral. This can be associated with increasing low relative 

pressures on the surface of a thermic origin, which compensates part of the increase in 

high subtropical pressures at middle and high troposphere levels. 

April, and particularly October, were the only months that presented increased land 

flows at both 1,000hPa and 500hPa. This explains why the differences in air 

temperature trends resulting from continentality in October were attentuated, unlike the 

whole annual set.  

The marked increase in HGT at 500hPa in June is stressed, and is comparable to that 

recorded in winter months. Nonetheless, it showed a much less significant increase in 

HGT at 1,000hPa, and also in a lower baroclinic atmosphere. This suggests that stable 

situations, due to expanding high subtropical warm pressures, are dramatically 

increasing, and cause a clear weak thermic low manifestation on the surface level 

(almost 1,000hPa). Indeed this drives June towards typical summer behaviour, and 

explains why it is the month with the highest warming rate. The increased frequency of 

summer breezes, and a slightly increased frequency of easterly winds at 1,000hPa, could 
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also explain the more moderate warming scenario observed on the coastal strip 

compared with inland areas. 

 

 
Figure 17: Change between the 1948-1979 and the 1997-2011 periods  in the HGT (the mean of these 

periods) at the 1,000 hPa and 500 hPa levels, measured in geopotential metres of change. Calculations 

from the NCEP/NCAR, 2.5x2.5 
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September and November, which presented different air temperature change patterns 

to the rest of the year, also showed a distinct change pattern of pressures. These were 

the only two months in which the geopotential altitude at 500hPa barely increased 

according to the pattern of relatively lower pressures over the Mediterranean versus the 

northwest. This pattern became more marked at 1,000hPa, where the geopotential 

altitude lowered around the Balearic Isles, and where cyclone wind circulations 

increased. This suggests that the instability processes and mechanisms in autumn, which 

are typically Mediterranean, increased along with more frequent first-quadrant flows. 

To a great extent, this could explain the disconnection of the air temperature trends in 

these months from those of other months.  

To some extent, July also showed a similar pattern of change to that of September, 

but at 1,000hPa and not at 500hPa. In any case, we can see that the increasing 

temperature changes in July were not so marked as in surrounding months of June and 

August. 

Another element that supports the hypotheses of previous climate connections is 

precipitation. Several studies have focussed on this region and have reported a 

downward tendency of precipitations from the Atlantic, with a heavier weight towards 

inland areas. Conversely on the coast (especially the Gulf of Valencia), precipitations 

are maintained thanks to the increased relative weight of precipitations which originate 

in the Mediterranean (Estrela et al., 2004; Millán et al., 2005; Millán et al., 2006; Miró 

et al., 2006b; Miró et al., 2010; Estrela et al., 2010). 

The final element to be verified was the role of the sea surface temperature (SST) 

close to the Valencia Region. However, the studies conducted on the Mediterranean 

SST that have dealt with changes in SST during our study period (1948-2011) are quite 

general throughout the Mediterranean, and have estimated an absolute warming rate of 

around 0.45ºC (Marullo et al., 2011). For the western Mediterranean basin, and over a 

shorter period, Skliris et al. (2012) estimated a warming slope of 0.22ºC per decade 

between 1973 and 2008 (the SST NOCS database, V.2, obtained in situ). This coincides 

with the mean air temperature increase in the land series on the coast deriving from SD 

(less than 20 km from the coast) for the same period. 

In any case, in order to compare the SST tendencies in waters closer to the study 

area, we had to use satellite data described in „Data and methods‟(2.6). The trend results 

are shown in Table 6. 

 

 Mann-Kendall 

(Z-Test) 
Sen slope in 

ºC/decade 

Absolute magnitude of change between 

1985 and 2007 (as in Sen slope) in ºC 

ANNUAL 2.64** 0.26 0.61 

JANUARY 0.85 0.16 0.36 

FEBRUARY 1.27 0.17 0.39 

MARCH 1.16 0.21 0.47 

APRIL 2.80** 0.54 1.24 

MAY 2.91** 0.68 1.57 

JUNE 2.64** 0.68 1.57 

JULY 1.90+ 0.40 0.92 

AUGUST 0.63 0.11 0.25 

SEPTEMBER -0.85 -0.11 -0.26 

OCTOBER 0.58 0.21 0.49 

NOVEMBER 0.32 0.08 0.18 

DECEMBER 0.42 0.07 0.16 

Table 6: Trends for the SST average between latitudes 37.5ºN and 40°N and longitudes 1ºW to 2ºE for 

the 1985-2007 period according to the Mann-Kendall test and Sen slope estimations. For the Mann-
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Kendall test, statistically significant trends are shown in bold as: *** (α = 0.001), ** (α = 0.01), * (α = 

0.05) + (α = 0.1). Those that are non-significant for any of the previous levels are depicted in grey. For 

Sen slopes, the exclusivity of the same sign slope within the 95% confidence range is denoted in bold. If 

this condition is not met, it is shown in grey. 

 

It is worth referring to Table 6 which, for the study period, coincides approximately 

with the period of most land temperature warming. For this reason, a comparison of 

trends should not be made absolutely, but relatively, as they are based on periods of 

different lengths. 

We observe that the annual SST tended to increase, which occurred essentially in 

spring and summer months (April-July), whereas trends were not statistically significant 

at the testing levels for the rest of the year. When we ignored statistical significance, the 

more positive trend was noted in October compared to the surrounding months of 

September and November (which even became negative in September). 

Therefore to a certain extent, the monthly SST trends also match not only the 

monthly land temperature trends in the region according to SD and SI, but also their 

connections with the atmospheric pressure change patterns.  

All the former connections separately explain the obtained change patterns partially. 

Taken together, however, they provide a better explanation of these patterns. 

 

 

4. DISCUSSION 

 

The research done and the results obtained in Miró et al. (2012; 2014), Miró (2014) 

and in present study were considered an alternative solution in the analysis of local 

climate change patterns. Particularly when the spatial density of long series was 

insufficient, but density of shorter series is sufficient, a local signal sample is provided. 

However, the reconstruction and filling in of gaps in the temporarily inconsistent series 

observed by SD is debatable, which employs a signal from a reanalysis model because it 

could lack inhomogeneity. Likewise, the scientific literature recommends caution with 

SD products (Wilby et al., 2004; Hewitson et al. 2014). However numerous studies 

have indicated the validity of the signal deriving from global reanalysis models to study 

air temperature trends for mid-latitudes in the North hemisphere (Bengtsson et al., 

2004; Rubinstein et al., 2004; Simmons et al., 2004; CCSP, 2008), For instance, it has 

established a good correspondence in the study area between the NCEP-NCAR 

reanalysis and ERA-40, especially in winter despite higher dissimilarities in other 

regions of the globe (Sterl, 2004; Xue et al., 2014). Furthermore, the use of a complex 

hybrid ANN, by modeling multiple sSDs cross-valitated, has allowed improve the SD 

error in respect to observed data. In this sense, the idea that hybrid or multi-model 

approaches tend to improve the performance of downscaling is reinforced (Tebaldi et al. 

2007; Liu and Fan, 2014; Xue et al., 2014). Nevertheless, perhaps the best way to 

determine an accurate temperature trend is to use relative homogenisation procedures 

with the observed series (Venema et al. 2012). Since availability of long series is scarce, 

the utilisation of only circular relative homogenisation among the observed series might 

not properly describe detailed differences on a local scale, provided mainly by the 

modulation that the relief and other physico-geographical factors can have on air 

temperature trends. This is because circular-type relative homogenisation tests can 

eliminate or amend the local variability components that are discordant with general 

behavior. So these tests are better for evaluating the general air temperature change 

signal of the group of series involved. This is the case when available scarce and short 

series, which are representative of the culminal mountain sectors in the area, are 
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homogenised with neighbouring reference series in valleys, and are submitted to 

different local processes; e.g., air temperature inversions and their frequency. This more 

local component can sporadically give rise to air temperature trends that differ from 

general ones, which is precisely the case in our study area; here different trends for 

minimum temperatures (Tmin) in nearby locations are strongly suggested in the present 

line of research to result from a distinct sensitivity to air temperature inversions caused 

by an increase in more favourable, stable situations. These increasing trends to the 

decoupling of Tmin in the mountain-valley tandem coincide with other results obtained 

at similar latitudes and in regions of complex terrain (Daly et al., 2010; Pepin et al., 

2011; Dobrowski et al., 2011). Other recent results also suggest that a climate change in 

moisture conditions causes different responses in ground temperature trends, according 

to local topography factors or vegetation cover (Ashcroft and Gollan, 2013). Thus 

neighbouring observatories do not always share the same climate signal used as the 

baseline required for good relative homogenisation.  

At this point, the SD followed in Miró et al. (2012; 2014) and Miró (2014), as a way 

to detect these different behaviours on a local scale, makes sense because, after all, it is 

a method used to indicate territory sectors that are potentially more vulnerable to 

climate change. It is also necessary to bear in mind that this SD was submitted to 

various validation processes used to minimise the problems usually associated with SD 

as much as possible. Therefore, the value of the results obtained and presented in this 

study does not merely reflect a global temperature change rate in the region (one that 

has, perhaps, been better estimated in other studies), but a novel revelation of local fine-

scale change patterns in the territory. So it would be interesting to compare these results 

with others on a local scale using different procedures. Applying the methodology, but 

with other reanalysis models, e.g. the „20th Century NOAA Reanalysis, V2‟, would also 

be interesting. 

Furthermore, the climate connections of the SD-SI results, herein related to possible 

changes in wind frequency and pressure patterns in the study area, support the results, 

and pose new questions and the need to better test these connections in future works. 

This applies to finding teleconnections among these patterns with decadal variability of 

major atmospheric circulation patterns; e.g., the North Atlantic Oscillation Index or the 

Western Mediterranean Oscillation Index. Regarding wind frequency, it is advisable to 

better validate the trends obtained with the re-analysis done with the surface wind data 

observed. Nevertheless, for these wind data, studies have indicated decreasing mean 

wind speed trends not only globally (e.g. McVicar et al., 2012), but also with the data 

observed in the Iberian Peninsula (Azorín Molina et al. 2014). This last work shows 

weak trends, but does not differentiate the origin of winds.  

According to Vautard et al. (2010), stilling on the northern hemisphere mid-latitudes 

in the past 30 years may be partly attributed to a recent increase in vegetation and 

associated changes in roughness length (25-60%); increases of up to 50% may be 

attributed to atmospheric circulation changes, which seems to be the main cause herein. 

Similar patterns of change to those shown herein are indicated when we look at 

future scenarios (A-2, IPCC) using high-resolution models that centre on the region; e.g. 

CGCM2, ECHAM4 and HadCM3 (Brunet et al., 2009), or CCSM and EH5 (Argüeso, 

2012). A sharp increase in maximum temperatures, in daily temperature oscillations, 

which are stronger inland and in mountains than on the coast, plus more reduced 

precipitation inland than on the coast, have been observed in the aforementioned works, 

particularly in Argüeso (2012).  

Finally, it is noteworthy that most former studies that have analysed general air 

temperature trends in the study area (Quereda et al., 2000; Miró et al., 2006a;  Brunet et 
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al., 2007; Quereda et al., 2009; Bladé & Castro Díez, 2010; Del Río et al., 2012) 

reflected on more positive trends for Tmin than the present study. Here it is essential to 

bear in mind that many stations in the region, particularly those on the coast, have had 

to withstand major urban development processes carried out in bordering areas. This 

circumstance has affected most of the available long series observed. Thus the doubt 

remains as to whether the relative homogeneisation processes in these studies, which are 

circular among the observed series, ended up including part of the predominant urban 

signal in the series so that Tmin would overweigh positive trends. Or if, conversely, if 

any inhomogeneity of the reanalysis or any change in climatic stationary relationships 

on which SD is sustained (e.g., forcing caused by climate change) would cause the 

positive trends in Tmin to be underweighted. Podría también ser el caso para las menor 

tendencia general al calentamiento encontrada en invierno con respecto al verano, ya 

que se han constatado para los meses invernales mayores If the latter were the case (or 

even a mixture of the former and latter), the value of the present study would be none 

the worse because it still indicates the most vulnerable areas to change in the territory, 

regardless of change being less pronounced or more pronounced.  

 

 

5. CONCLUSIONS 

 

The results of this work reveal that changes in the behaviour of temperatures have 

taken place in recent decades. They also show change patterns on a local and 

subregional scale, and differences depending on the time of year. These patterns may be 

related with relative changes in frequency of winds and advections in the pressure 

patterns of the region, and also with an increased frequency tendency of stable 

situations. 

These change patterns firstly indicate a contrast between coast and precoastal 

depressions, with more moderate trends as opposed to higher and mountainous inland 

areas where more marked warming trends are seen. They also reveal a wider mean daily 

temperatures oscillation, which becomes more marked with continentality.  

A stronger warming tendency is also indicated in spring and summer, especially in 

June, but also in October. This contrasts with the scarce tendencies seen in September 

and November, and with the marked air temperatures that decouple in the mountain-

valley duo in winter months and for Tmin. The fact that this decoupling is detected for 

Tmin trends in the region is a novel aspect that is related with increased air temperature 

inversions. However, these findings fall in line with the results obtained in middle 

latitudes and complex reliefs in other world regions (Daly et al., 2010; Pepin et al., 

2011; Dobrowski et al., 2011). Thus the obtained results back the hypothesis of a 

quicker change trend in higher mountain areas compared with valleys.  

An assessment of these results and their connections with precipitation (Estrela et al., 

2004; Millán et al., 2005; Millán et al., 2006; Miró et al., 2006b; Miró et al., 2010; 

Estrela et al., 2010) has evidenced that the sectors most exposed to climate change 

coincide with those that have a higher natural value, which shape the areas that recharge 

the aquifers and rivers supplying most human consumption in the region. When we 

consider that the SD and SI results did not contemplate a possible modification in the 

stationary relations that sustain them, the problem could become more serious if this 

change occurs with climate change. 
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HIGHLIGHTS 

 

 

Magnitude of temperature change (°C) for the annual averages of maximum (center) and 

minimum (right) temperatures, between the 1948-1979 period and the last 15 years of analyzed 

series (1997-2011). It is based on a statistical downscaling for reconstruct a large number of 

incomplete observed series in the Valencia region for the NCEP-NCAR Reanalysis availability 

period (since 1948) and 90x90 m spatial interpolation. Sub-regional and local climate change 

patterns are revealed. Relief is included (left) for reference. 

Graphical abstract 


