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Jofre-Reche José Miguel Martı́n-Martı́nez

PII: S0169-4332(15)00169-5
DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2015.01.144
Reference: APSUSC 29581

To appear in: APSUSC

Received date: 18-11-2014
Revised date: 18-1-2015
Accepted date: 19-1-2015

Please cite this article as: M.I. Butrón-García, J.A. Jofre-Reche, J.M. Martín-Martínez,
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HIGHLIGHTS
Design of experiments is effective in optimizing the LPP treatment conditions of 
PDMS 
Working pressure in LPP treatment affects markedly the hydrophobic recovery 
(ageing) of PDMS
Low power and long duration of LPP treatment retard ageing 
Use of Ar + O2 mixtures for LPP treatment of PDMS is more efficient than Ar or 
O2 only
Surface modifications of LPP treated PDMS under optimal conditions are 
maintained for 14 days
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Abstract

Polydimethylsiloxane (PDMS) film was treated with RF low-pressure plasmas 

(LPPs) made of mixtures of oxygen and argon for increasing surface polarity, 

minimizing hydrophobic recovery (i.e. retard ageing) and increasing adhesion to 

acrylic adhesive tape for medical use. Statistical design of experiments has 

been used for determining the most influencing experimental parameters of the 

LPP treatment of PDMS. Water contact angle values (measured 24 hours after 

treatment) and the O/C ratio obtained from XPS experiments were used as 

response variables. Working pressure was the most influencing parameter in 

LPP treatment of PDMS, and the duration of the treatment, the power and the 

oxygen-argon mixture composition determined noticeably its effectiveness. The 

optimal surface properties in PDMS and inhibited hydrophobic recovery were 

achieved by treatment with 93vol% oxygen+7vol% argon LLP at low working 

pressure (300 mTorr), low power (25 W) and long duration of treatment (120 

seconds).

Keywords: PDMS, low-pressure plasma, surface treatment, hydrophobic 
recovery, ageing, water contact angle, XPS, adhesion. 
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1. Introduction

PDMS is biocompatible amorphous polymer [1,2] commonly used in medical 

devices including contact lenses, denture liners, wound dressing, drug delivery 

systems, catheters, ear correctors and implants. The particular properties of 

PDMS derived from its chemical structure made of siloxane (Si-O) backbone 

with methyl pendant groups and its higher ionic character derived from the 

higher electronegativity of oxygen and the lower electronegativity of silicon with 

respect to that of carbon. As a consequence, PDMS is more polar and stable 

than other polymers (i.e. the silicon-oxygen bond energy is higher than for 

carbon-carbon bonds [3]) which justify its high thermal stability, chemical 

inertness, and flexibility. However, the non-polar nature of the methyl pendant 

groups in PDMS structure results in low intermolecular forces and internal 

mobility imparting high hydrophobicity. Because of its hydrophobicity, PDMS 

shows low wettability and low surface energy, and its adhesion is also poor. 

In some medical devices made in PDMS (catheters or ear correctors for 

example), polarity is mandatory and it must last over time. Plasma treatments 

have been used often for increasing the polarity of the PDMS surface, and the 

effects produced have been widely studied in the past. Although different 

mechanisms for explaining the modification of PDMS produced by plasma 

treatment have been proposed, it is commonly accepted that bond scission and 

oxidation of methyl groups in the polymeric chains of PDMS are the most 

relevant [4-5] and they produced the formation of a silica-like layer on the 

PDMS surface; as a consequence, an increase in the surface energy and 

hydrophilicity of PDMS is produced, and the formation of micro-cracks on the 

brittle silica-like layer surface too [6-10]. However, the migration of low 

molecular weight species from the bulk to the PDMS surface across those 

cracks and the reorientation of the new polar groups towards the bulk produced

the loss of the hydrophilicity with time after plasma treatment, causing fast 

ageing (i.e. hydrophobic recovery) in 24 hours after treatment [11-14]. 

The influence of the plasma treatment conditions on the surface modifications of 

PDMS and their stability have been studied extensively [6,13-21]. It has been 

demonstrated that the extent of ageing or hydrophobic recovery depended on 

the experimental parameters of the plasma treatment including its duration [15-

18], power [6,18,19], composition of the gas used for generating the plasma 
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[13,14,16,18,20], working pressure [6,17], and extent of crosslinking of PDMS 

[21-22], among other. However, the influence of these parameters on the 

hydrophobic recovery of LPP treated PDMS have been studied separately.

Although the influence of the experimental conditions of the LPP treatment 

determined the adhesion and the extent of hydrophobic recovery in PDMS, a 

systematic study involving simultaneously all relevant experimental parameters 

has not been carried out up yet. A statistical design of experiments 

methodology was used in this study and all relevant experimental parameters in 

the LPP treatment of PDMS were varied simultaneously in order to find the 

optimal conditions for increasing the surface polarity and adhesion to acrylic 

tape, and minimizing at the same time its hydrophobic recovery, i.e. retard 

ageing. The seven most relevant experimental parameters of the LPP treatment 

of PDMS used in this study were the gas composition, the power, the duration, 

the working pressure, the distance between the power and the ground shelves, 

the distance between the PDMS surface and the plasma source, and the extent 

of crosslinking of PDMS. Once the optimal conditions were obtained, the LPP 

treated PDMS surface was characterized, and its adhesion to acrylic adhesive 

tape and the extent of hydrophobic recovery with time under storage in open air 

were studied too. Furthermore, different mixtures of argon and oxygen for LPP 

treatment of PDMS were used and these mixtures has not used in the existing 

literature yet. 

2. Materials and methods

2.1. Materials

Two commercial room temperature moisture vulcanizing (RTV) 

polydimethylsiloxane prepolymers with different degree of crosslinking, Elastosil 

E-41 and Elastosil E-43 (Wacker Silicones AG, Munich, Germany) were used. 

These prepolymers were selected because their formulations allowed produce 

different degree of crosslinking when they are cured in presence of moisture at 

room temperature. PDMS films were prepared by placing a solution of 75 wt% 

prepolymer in methyl ethyl ketone (for reducing its viscosity) in a clean leveled 

Mylar® surface under reduced pressure (50 mTorr) during 1 hour for allowing 

solvent removal and avoid bubbles formation; afterwards, the film was cured 
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under open air at 25ºC and 50% relative humidity for 3 days. Finally, the cured 

PDMS film of 1 mm thick was placed under reduced pressure (50 mTorr) during 

10 hours for removing potential byproducts of the polymerization.

2.2. Low-pressure plasma (LPP) treatment

Low-pressure RF (13.56 MHz) plasma treatment of PDMS was carried out in 

capacitively coupled discharge NT-1 Supersystem equipment (BSET-EQ, 

Pittsburg, PA, USA) using different mixtures of oxygen and argon (99.999% 

purity; supplied by Abelló-Linde, Barcelona, Spain). The scheme of the plasma 

chamber used in this study is given in Figure 1. The PDMS film was placed on 

the floating shelf between the power and ground electrodes, the power 

electrode was placed above the PDMS surface. The experimental parameters 

of the LPP plasma treatment of PDMS studied simultaneously were the gas 

composition (G), the power (Pw), the duration (t), the working pressure (Pr), the 

distance between the power and the ground electrodes (d), the distance 

between the PDMS surface and the power electrode (h), and the extent of 

crosslinking of the PDMS (S).

Figure 1. Low-pressure plasma chamber configuration used in this study.
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2.3. Statistical design of experiments

Statistical experimental design methodology was used to identify the most 

influencing experimental parameters of the LPP treatment of PDMS which 

produce the optimal surface properties and the slowest ageing over time. 

Screening design based on Plackett-Burman matrix was selected and Doehlert 

experimental plan was chosen because of its spherical domain with uniformity 

in space filling, its ability to extend the results obtained for two-factors to three 

factors, its ability to explore the whole domain and its potential to reuse the 

experiment when the boundaries have not been well chosen initially [23].

2.4. Experimental techniques

Contact angle measurements. The changes on the wettability of the LPP-

treated PDMS were assessed by measurements of the contact angle values at 

25 ºC in ILMS 377 goniometer (GBX Instruments, Bourg de Péage, France). At 

least five drops of 4 µl of deionized bidistilled water (polar test liquid) or 

diiodomethane (non-polar test liquid) were placed on the LPP-treated PDMS 

surface and the contact angles were measured immediately and 24 hours after 

LPP plasma treatment on both sides of the drops and averaged. 

The surface energy of the LPP treated PDMS was calculated following the 

Owens, Wendt, Rabelt and Kaeble approach - equation (1) :

      

(1)

where   is the contact angle, γl is the surface tension of the liquid and γl
p and 

γl
d are its polar and dispersive components respectively; γs

p and γs
d are the 

polar and dispersive components of the surface free energy of the PDMS 

respectively. The total surface energy of the LPP treated PDMS is obtained by 

adding the corresponding polar and dispersive components [24]. 

On the other hand, the stability of the surface modifications on the LPP treated 

PDMS (i.e. the extent of ageing or hydrophobic recovery) was monitored by 

measuring the water contact angle values measured 24 hours after treatment.
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ATR-IR spectroscopy. The chemical composition of the LPP treated PDMS 

surfaces was analyzed by infrared spectroscopy in attenuated total reflectance 

(ATR) mode using Alpha IR spectrometer (Bruker Optiks GmbH, Etlingen, 

Germany) with Germanium prism. The incidence angle of the IR beam was 45º 

and 60 scans were recorded and averaged with a resolution of 4 cm-1. Under 

these experimental conditions, the depth of the PDMS surface analyzed was 

about 1 µm. 

X-ray photoelectron spectroscopy (XPS). The chemical modifications on the 

outermost untreated and LPP treated PDMS surfaces were assessed by XPS 

using K-Alpha Thermoscientific instrument (Thermo Fischer Scientific, Waltham 

MA, USA) provided with Al-Kα X-Ray source (1486.6 eV) and twin crystal 

monochromator, operating at 3 mA and 12 kV; the residual pressure during the 

experiments was lower than 2·10-9 mTorr. Two XPS experiments on the same 

sample were carried out and the results were averaged with an error lower than 

0.01 at%.

Scanning electron microscopy (SEM). The topography of the untreated and LPP 

treated PDMS surface was examined by SEM in Jeol JSM-840 microscope 

(JEOL Ltd., Tokyo, Japan). For improving contrast the surface of PDMS was 

gold coated, and the energy of the electron beam was 12 kV. 

Atomic force microscopy (AFM). The nanoroughness on the untreated and LPP 

treated PDMS surface was analyzed by AFM in NTEGRA Prima microscope 

(NT-MDT, Moscow, Russia) in an area of 25x25 µm under semi-contact mode.

Adhesion measurement. Adhesion was obtained from T-peel tests of adhesive 

joints made with untreated and LPP treated PDMS and acrylic adhesive tape for 

medical use (3M Co., St. Paul, MN, USA). The dimensions of the PDMS 

samples were 20×50 mm. During joint formation pressure was applied manually 

by rolling ten times a cylindrical rod (25 mm width, 100 mm diameter) of 1 kg 

weight over the adhesive joints. The adhesion was measured 2 hours after joint 

formation in TA-TX2i Texture Analyzer equipment (Stable Micro Systems, 

Surrey, UK) by using a pulling rate of 1 mm/s. 
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3. Results and discussion

3.1. Survey screening in LPP treatment of PDMS

The most influencing experimental conditions of the LPP treatment favouring 

the increase in polarity and minimizing the hydrophobic recovery of PDMS were 

determined by using Plackett-Burman layout screening simultaneously seven 

process parameters or factors (Table 1) at two levels of values, i.e. the highest 

and the lowest values for each parameter. Table 1 shows the values of the 

seven experimental parameters of the LPP treatment of PDMS used in the 

survey screening, and they are the power supplied by the RF power source to 

ionize the gas (A), the duration of the LPP treatment (B), the working pressure 

in the plasma chamber (controlled by the flow rate of the inlet gases) (C), the 

composition of the gas – i.e. mixtures of oxygen and argon – in the plasma 

chamber (D), the degree of crosslinking of the PDMS (E), the distance between 

the PDMS surface and the power electrode (F), and the distance between the 

power and the ground electrodes (G). The range of values for the power, 

working pressure, duration of treatment and degree of crosslinking of PDMS 

were selected according to previous papers [6,13-22]; the range of values for 

the rest of parameters (i.e. the maximum and minimum positions of the floating 

shelf and the power electrode, and the distance between the power and the 

ground electrodes) were the maximum and minimum ranges in the plasma 

equipment.

The water contact angle (WCA) values measured immediately (WCA-0h) and 

24 hours after treatment (WCA-24h) on the LPP treated PDMS surface were 

chosen as response variables in the statistical experimental design to evaluate 

the relative influence of each factor or experimental parameter. The percentage 

of hydrophobic recovery on the PDMS surface within 24 hours after LPP 

treatment was also used as response variable, and it was calculated as the 

relative increase in the water contact angle values measured immediately and 

24 hours after LPP treatment.
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Table 1. Experiments performed in Plackett-Burman layout screening design to 

find the most influencing experimental parameters in the LPP treatment of 

PDMS. WCA : Water contact angle.

Run
A

(W)

B

(min)

C

(mTorr)

D

(%O2-Ar)

E F

(cm)

G

(cm)

WCA-0h

(deg)

WCA-24h

(deg)

1 100 1 200 80-20 low 4.8 12.4 1±1 70±3

2 100 5 200 20-80 high 2.3 12.4 17±2 53±1

3 100 5 600 20-80 low 4.8 7.5 14±1 87±2

4 25 5 600 80-20 low 2.3 12.4 13±1 83±2

5 100 1 600 80-20 high 2.3 7.5 9±2 101±4

6 25 5 200 80-20 high 4.8 7.5 11±1 67±2

7 25 1 600 20-80 high 4.8 12.4 8±1 86±1

8 25 1 200 20-80 low 2.3 7.5 5±1 62±1

Table 2 shows the regression coefficients for each parameter obtained from the 

statistical analysis using the different response variables; positive or negative 

sign of the coefficients (β) indicates that the parameter value increases or 

decreases the corresponding response variable, respectively. According to 

Table 2, the wettability of the PDMS surface immediately after LPP treatment 

during 5 minutes is lower than during 1 minute (positive regression coefficient), 

likely due to overtreatment, in agreement with previous studies [17,18]; 

however, longer LPP treatment provides lower water contact angle values 24 

hours after treatment and, in consequence, lower degree of hydrophobic 

recovery and higher ageing stability. A similar conclusion is obtained by varying 

the oxygen content in the gas composition of the plasma. On the other hand, 

the working pressure shows the highest positive coefficient value indicating that 

the higher is the working pressure, the higher is the water contact angle 24 

hours after treatment and, therefore, the higher is the hydrophobic recovery.



Page 11 of 49

Acc
ep

te
d 

M
an

us
cr

ip
t

11

Table 2. Regression coefficients values (β) of the factors obtained from the 
statistical analysis of the screening experimental design of LPP treated PDMS 
for each response variable. WCA: Water contact angle.

Response variable βA βB βC βD βE βF βG

WCA (0 h) -0.2 4.0 1.5 -1.2 1.5 -1.2 0.2

WCA (24 h) -3.1 -3.6 13.1 4.1 0.6 1.4 1.6

Percentage of 

hydrophobic recovery
-2.9 -7.6 11.6 5.4 -0.9 2.6 1.4

By using the regression coefficient values in Table 2, the relative influence of 

the different experimental parameters or factors was obtained and it was 

calculated as the percentage of variation for each factor on the response 

variable when it was varied between its corresponding low and high level value 

by keeping constant the rest of factors. Figure 2 shows the relative influence of 

each factor on the response variable (i.e. water contact angle values) for the 

LPP treatment of PDMS. The duration of the LPP plasma treatment is the most 

influencing factor (67%) on the wettability of the PDMS surface just after 

treatment, followed by the working pressure (9%) and the crosslinking degree of 

PDMS (9%). On the other hand, according to Table 1, the water contact angle 

value of the PDMS surface measured 24 hours after LPP treatment is higher 

than immediately after treatment, indicating that hydrophobic recovery is 

produced. 

If the water contact angle value measured 24 hours after LPP treatment is used 

as response variable, the working pressure is the most influencing parameter 

(80%) (Figure 2), and the duration of treatment, the gas composition and the 

power are also relevant. On the other hand, although the degree of crosslinking 

of PDMS has a noticeable effect on the water contact angle value measured 

immediately after LPP treatment, it has not an influence on the water contact 

angle value measured 24 hours after LPP treatment. Furthermore, the distance 

between the PDMS surface and the power electrode has minor effect on 

wettability and hydrophobic recovery in the LPP treated PDMS. As the main 
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objective of the study was retard ageing of the LPP treated PDMS surface, the 

most influencing parameters of the plasma treatment was selected by using the 

water contact angle values obtained 24 hours after plasma treatment (WCA-

24h) as variable response.

Figure 2. Relative influence of each parameter and percentage of hydrophobic 
recovery in LPP treated PDMS on the wettability measured immediately and 24 
hours after treatment. WCA: Water contact angle.

3.2. Influence of the working pressure in the plasma chamber on the LPP 

treatment of PDMS

Since the most influencing experimental parameter of the LPP treatment of 

PDMS that inhibits more the hydrophobic recovery is the working pressure in 

the plasma chamber, the water contact angle values measured 24 hours after 

LPP treatment were measured by changing the working pressure and fixing the 

rest of the parameters at intermediate values; the potential mislead information 

obtained from these experiments is assumable as long as the effect of the 

working pressure is huge as compared to that of the rest of the experimental 

parameters in the LPP treatment (Figure 2). 

Figure 3 shows the variation of the water contact angle values measured 24 

hours after LPP treatment of PDMS as a function of the working pressure. For 
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working pressure value below 300mTorr, the water contact angle value does 

not vary significantly and it is low, whereas fast hydrophobic recovery is 

produced for working pressure above 400mTorr. Therefore, the working

pressure during LPP treatment should be 300 mTorr or lower for inhibiting 

hydrophobic recovery in the PDMS surface.
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Figure 3. Variation of the water contact angle values measured 24 hours after 
treatment on LPP treated PDMS surface as a function of the working pressure 
in the plasma chamber.

3.3. Influence of the power and the duration of treatment on the effectiveness of 

the LPP treatment of PDMS

The working pressure was set at 300 mTorr and the influence of other most 

influencing experimental parameters (i.e. duration of treatment, gas composition 

and power) on the effectiveness of LPP treatment on the surface modifications 

of PDMS and their stability over time were studied simultaneously by using 

Doehlert experimental design (Figure 4). The domain limits of the experimental 

parameters were set to shorter ranges at lower levels or values of parameters, 

to ensure that the analysis is carried out in a region with marked effect of the 

factors and for enhancing the reliability of the Doehlert experimental design. 

Therefore, the duration of LPP treatment is varied between 30 and 150 

seconds, and the values of power range between 10 and 50 watts. Later, the 
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experimental points placed in the mid-plane of the spherical experimental 

domain, where the gas composition is constant (mixture of 50vol% Ar and 

50vol% O2) - Figure 4, right -, were analyzed to determine if the variations of the 

duration of treatment and the power are independent or not. The distance 

between the electrodes and the distance between the PDMS surface and the 

power electrode were fixed at 10 cm and 5 cm, respectively, and the PDMS with 

higher degree of crosslinking was used.

Figure 4. Doehlert experimental plan for LPP treatment of PDMS varying the 
duration of treatment, the power and the gas composition (left), and 
experimental domain of the mid-plane region showing the range of values 
chosen (right).

The surface energy of the LPP treated PDMS surface obtained from the contact 

angle values measured 24 hours after treatment was chosen as response 

variable for determining the optimal values of the duration of treatment and the 

power. The water (w) and diiodomethane (i) contact angle values on the 

untreated and LPP treated PDMS surface at different values of the duration of 

treatment and the power are shown in Table 3 in which the values of the polar, 

dispersive and total surface energy (γp, γd and γt, respectively) are also given. 
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Table 3. Values of contact angles and surface energies on untreated and LPP 
treated PDMS surface at different values of power and duration of treatment. 

Time

(s)

Power

(W)

w

(deg)

i

(deg)

γp

(mJ/m2)

γd

(mJ/m2)

γt

(mJ/m2)

Untreated Untreated 117±0 73±0 0 19.4 19.4

30 20 54±0 44±1 21.1 27.2 48.3

30 40 43±1 46±1 32.3 23.5 55.8

90 10 33±0 45±1 38.5 23.0 61.5

90 30 31±1 48±1 40.9 21.3 62.2

90 50 35±1 35±1 36.9 23.4 60.3

150 20 27±1 46±0 42.8 22.0 64.8

150 40 30±1 46±1 40.2 22.8 63.0

Figure 5a shows the dependence of the surface energy on the LPP treated 

PDMS surface (taken as response variable) on the duration of LPP treatment 

and the power, and Figure 5b shows the curve levels plot of iso-response. Both 

figures show that the highest surface energy values correspond to the LPP 

treatment of PDMS carried out for long time and low power. Moreover, the slope 

of the response surface plot in Figure 5a indicates that the influence of the 

duration of treatment is a more influencing parameter than the power, in 

agreement with the results shown in Figure 2. Furthermore, the changes in the 

slope along the response surface plot indicate the existence of an interaction 

between the duration of treatment and the power, i.e. the effect of the duration 

of treatment on the effectiveness of LPP treatment of PDMS surface depends 

on the value of the power or vice versa. In fact, the dependence of the duration 

of treatment and the power on the contact angle values has been shown 

previously [25,26]. On the other hand, the interaction between the duration of 

treatment and the power is also observed in Figure 6 in which the variation of 

the oxygen-carbon ratio obtained from XPS experiment as response variable ii 

used. According to Figure 6, as the two lines are not parallel, the effects of the 
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power and the duration of treatment are not independent. Furthermore, 

according to Figure 5a, higher surface energies are obtained when short 

treatment and high power are used in the LPP treatment of PDMS and vice 

versa, but according to Figure 6 the higher oxygen-carbon ratio values 

correspond to the higher O/C values. The mislead information obtained from 

Figures 5a and 6 can be explained from the curve fitting (70% Lorentz – 30% 

Gauss mixed-model was used) of the Si2p3/2 photopeaks of the LPP treated 

PDMS surfaces.

Figure 5a. Surface response plot of LPP treated PDMS surface for different 
values of duration of treatment and power. Surface energy is used as response 
variable.

Figure 5b. Optimal values of power and duration of treatment for the LPP 
treatment of PDMS that maximizes the surface energy measured 24 hours after 
LPP treatment.
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Figure 6. Variation of the oxygen-carbon (O/C) ratio obtained from XPS 
experiment as a function of the duration of the LPP treatment at different values 
of power. 

Figure 7 shows the curve fitting of the Si2p3/2 photopeaks of the LPP treated 

PDMS materials with different power and duration of treatment. Three 

contributions can be distinguished at binding energies of 102.1 eV, 102.8 eV 

and 103.4 eV corresponding to SiO2(CH3)2, SiO3(CH3) and SiO4 species 

respectively [22,27]. Figure 7 and Table 4 show that the LPP treated PDMS 

surface with lower oxygen/carbon ratio (i.e. 20 W and 150 s) contains higher 

amount of SiO4 species (silica-like layer) indicating that the LPP treatment using 

low power and long duration shows the smallest hydrophobic recovery, likely 

due to the crosslinking caused by the silica-like layer created on the surface 

which prevents the reorientation of the oxidized species towards the PDMS bulk 

and the migration of low molecular weight non-polar species from the bulk to the 

surface as well. However, in the LPP treated PDMS surfaces with higher O/C 

ratios, during hydrophobic recovery the oxygen species may have been moved 

a few monolayers under the outermost surface, and they can be detected by 

XPS but not by water contact angle measurements. Moreover, the O/C ratio 

may increases by rising the oxygen content on the LPP treated PDMS surface 

and/or by leaving off methyl groups. On the other hand, considering that the 

theoretical atomic content of silicon in as-received PDMS is quite similar to the 

experimental one obtained using XPS (Table 4), the O/Si ratio seems more 

reliable for analyzing the extent of hydrophobic recovery. In fact, the LPP 
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treated PDMS surface with high power and long time shows a lower content of 

fully oxidized silicon species, i.e. SiO4 species, which could be an indication of 

ablation.

Figure 7. Curve fitting of Si2p3/2 photopeaks on the LPP treated PDMS surfaces 
with different power and duration of treatment. XPS experiments.

Table 4. Atomic percentages of the species obtained from the curve fitting of 
Si2p3/2 photopeaks of LPP treated PDMS surfaces, and O/C and O/Si ratios 
obtained from the survey XPS experiment.

Power 

(W)

Time

(s)

(CH3)2SiO2

(at%)

CH3SiO3 

(at%)

SiO4

(at%)
O/C O/Si

20 30 62.7 1.9 35.4 1.1 1.9

20 150 38.8 0 61.2 0.8 2.7

40 30 62.0 3.5 34.5 1.1 1.6

40 150 76.3 1.1 22.6 0.8 1.4

Untreated Untreated 88.3 0.0 11.7 0.5 1.4
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3.4. Influence of the gas composition (argon + oxygen mixtures) on LPP 

treatment of PDMS

For analyzing the influence of the gas composition of the plasma on the surface 

modifications of PDMS and their stability over time, different mixtures of argon 

and oxygen were used; the power was set to 25 W and the duration of 

treatment was varied. The water contact angle values measured 24 hours after 

LPP treatment were used as response variable. Figure 8 shows the surface 

response of the water contact angle values on LPP treated PDMS surface as a 

function of the gas mixture composition and the duration of treatment. The 

treatment with plasmas enriched in oxygen produces more stable hydrophilic 

PDMS surfaces 24 hours after LPP treatment, whereas for the plasmas 

enriched in argon the more stable hydrophilic surfaces are obtained for lower 

duration of treatment (60–90 seconds); however, more hydrophobic PDMS 

surfaces 24 hours after treatment are obtained by increasing the duration of 

LPP treatment. 

Figure 8. Surface response of the water contact angle values on LPP treated 
PDMS surface measured 24 hours after treatment as a function of the duration 
of treatment and the composition of the gas mixture. 
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The treatment of PDMS surface with oxygen-enriched plasmas creates higher 

amount of polar groups than with argon-enriched plasmas, and the most stable 

surface is obtained with the LPP treatment with 93vol% oxygen + 7vol% argon 

plasma during 120 seconds (Figure 8). This can be explained by considering 

that argon promotes the ionization of oxygen during plasma treatment due to 

the longer lifetime and higher energy of argon metastable excited atoms (lower 

ionization energy is required by argon than by oxygen [28,29]). On the other 

hand, due to excessive ion bombardment, overtreatment of the PDMS can be 

produced with argon-enriched LPP longer than 90 seconds, this may cause loss 

of hydrophilicity.

The chemical modifications produced on the PDMS surface treated with 

oxygen, argon and oxygen+argon low pressure plasmas with 25 W and 120 

seconds were analyzed using ATR-IR spectroscopy. Under the experimental 

conditions used in this study, the depth of the PDMS surface analyzed by ATR-

IR spectroscopy is about 1 µm. Figure 9a shows the ATR-IR spectra of the 

untreated and LPP treated PDMS surfaces in which the main absorption bands 

due to PDMS can be observed. The bands at 1082 and 1016 cm-1 correspond 

to simmetric and asimmetric stretching of siloxane (Si-O) respectively, the band 

at 1260 cm-1 corresponds to bending of Si-CH3 and the band at 795 cm-1

corresponds to stretching of Si-(CH3)2 [30]. According to Figure 9a, the 

treatment with oxygen or argon plasmas increases slightly the intensity of the 

siloxane absorption bands with regard to these of the untreated PDMS 

indicating that if some chemical modifications are produced by treatment with 

plasma they must be located on the outermost surface; however, the treatment 

with 93vol% oxygen + 7vol% argon plasma produces an increase of the 

intensity of the siloxane band likely due to the creation of thicker silica-like layer 

due to deeper PDMS surface modification. The creation of the thicker silica-like 

layer is evidenced better in the Si-O/Si-CH3 ratios given in Table 5 in which the 

highest values correspond to the 93vol% oxygen + 7vol% argon plasma treated 

PDMS. Moreover, Figure 9b shows a higher intensity of the broad OH band in 

the 3000-3600 cm-1 region of the ATR-IR spectra in the 93vol% oxygen + 7vol% 

argon LPP treated PDMS indicating that the formation of the crosslinked silica-

like layer seems to be produced by hydroxilation of the silicon atoms.



Page 21 of 49

Acc
ep

te
d 

M
an

us
cr

ip
t

21

Figure 9a. ATR-IR spectra of the untreated and treated PDMS with LPP of 
different gases. Power: 25 W; duration of treatment: 120 s.

Figure 9b. Region of hydroxyl group vibrations in the ATR-IR spectra of 
untreated and treated PDMS with LPP of different gases. Power: 25 W; duration 
of treatment: 120 s.
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Table 5. Ratio of the intensities of the bands of Si-O and Si-CH3 (Si-O/Si-CH3) 
in the ATR-IR spectra of the untreated and treated PDMS with LPP of different 
gases.

Gas composition (vol%O2-vol%Ar) Si-O/Si-CH3

0-100 0.54

93-7 0.66

100-0 0.53

Untreated 0.52

The chemical composition on the outermost PDMS surface treated with oxygen, 

argon and 93vol% oxygen + 7vol% argon plasmas was obtained using XPS. 

The PDMS surface treated with argon plasma shows higher oxygen content 

than the one treated with oxygen gas and 93vol% oxygen + 7vol% argon 

mixture plasmas (Table 6); however, the curve fitting of the Si2p3/2 photopeaks 

(Figure 10, Table 7) shows that the argon LPP treated PDMS surface has 

higher amount of non-oxidized (CH3)2SiO2 species (38.9at%) than in the PDMS 

treated with oxygen (30.3at%) and the 93vol% oxygen + 7vol% argon (24.3at%) 

plasmas. The lower content of non-oxidized siloxane species in the 93vol% 

oxygen + 7vol% argon LPP treated PDMS is an indication of the existence of a 

thicker silica-like layer, in agreement with the higher intensity of the Si-O bands 

at 1082 and 1016 cm-1 and the more intense OH band at 3000-3600 cm-1

shown in the ATR-IR spectrum (Figures 9a and 9b).

Table 6. Chemical surface composition on untreated and treated PDMS surface 
with LPP of different gases. XPS experiments.

Gas composition

(vol%O2-vol%Ar)

C

(at%)

O

(at%)

N

(at%)

Si

(at%)

O/C O/Si

0-100 32.5 42.3 0.3 24.9 1.3 1.7

93-7 38.5 38.9 0.2 22.4 1.0 1.7

100-0 38.0 38.4 0.0 23.6 1.0 1.6

Untreated 53.9 26.6 0.2 19.3 0.5 1.4



Page 23 of 49

Acc
ep

te
d 

M
an

us
cr

ip
t

23

Figure 10. Curve fitting of the Si2p3/2 photopeak on argon (a), 97vol% oxygen + 
7vol% argon (b) and oxygen (c) LPP treated PDMS surface. XPS experiments.

Table 7. Atomic percentages of the species obtained from the curve fitting of 
the Si2p3/2 photopeak of PDMS surface treated with LPP of different gases. 
XPS experiments.

Gas composition 

(vol%O2-vol%Ar)

(CH3)2SiO2

(at%)

CH3SiO3 

(at%)

SiO4

(at%)

0 – 100 38.9 0.2 60.9

93 – 7 24.3 9.8 65.9

100 - 0 30.3 4.3 65.4

Untreated 88.3 0.0 11.7

The extent of ablation produced on the PDMS surface by treatment with LPP of 

different gases can also be evaluated from the weight loss produced during 

treatment. The weight losses were referred to the surface area of each LPP 

treated PDMS (Table 8). The most noticeable weight loss corresponds to the 

argon LPP treated PDMS because important etching is produced. On the other 

hand, the treatment of PDMS with 93vol% oxygen + 7vol% argon LPP produces 

moderate etching but the degree of oxidation produced is important (according 

to the surface chemical composition given in Table 6).
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Table 8. Weight losses in PDMS after LPP treatment with different gases.

Gas composition

(vol%O2-vol%Ar)

Weight loss per surface area

(mg/cm2)

0-100 0.050

93-7 0.040

100-0 0.035

The changes on the PDMS surface topography caused by treatment with 

93vol% oxygen + 7vol% argon LPP with 25 W and 120 seconds were evaluated 

by SEM and AFM. SEM micrographs (Figure 11) shows the formation of some 

few cracks on the LPP treated PDMS surface due to the brittleness of the silica-

like layer on its surface. Figure 12 shows the 2D amplitude and 3D AFM 

micrographs of the untreated and LPP treated PDMS surface. The ablation 

caused on the PDMS surface by treatment with 93vol% O2 + 7vol% Ar plasma 

is observed and the presence of small thin nanocracks can also be 

distinguished. Because of the ablation produced, the average surface 

roughness value of the PDMS surface decreases from 33 nm (untreated) to 26 

nm in the 93vol% O2 + 7vol% Ar LPP treated PDMS, confirming the combined 

effect of oxidation and ablation produced by 93vol% oxygen + 7vol% argon 

plasma treatment.

Figure 11. SEM micrographs of untreated and 93vol% O2 + 7vol% Ar LPP 
treated PDMS surface with 25 W for 120 seconds.
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Figure 12. 2D amplitude (top) and 3D (down) AFM micrographs of untreated 
and 93vol% O2 + 7vol% Ar LPP treated PDMS surface with 25 W for 120 
seconds.

The effect of the LPP treatment with different oxygen and argon mixtures on the 

hydrophobic recovery of the PDMS surface was monitored by measuring the 

water contact angle values on the treated surfaces stored in open air for two 

weeks. Figure 13 shows a fast initial increase in water contact angle value up to 

35 degrees during 12 hours after treatment in all LPP treated PDMS surfaces 

irrespective of the gas composition of the plasma. However, the rate of increase 

in water contact angle value, or in hydrophobic recovery, depends on the 

composition of the plasma for longer times after treatment. Thus, the oxygen 

LPP treated PDMS surface suffers faster hydrophobic recovery than the argon 

LPP treated one, although after seven days both reach similar water contact 

angle values. The hydrophobic recovery in the 93vol% O2 + 7vol% Ar LPP 

treated PDMS is the slowest one and even 14 days after treatment the water 
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contact angle value is 10 degrees lower than for the other LPP treated PDMS 

surfaces. 

Figure 13. Variation of the water  contact angle values (25ºC) on PDMS surface 
treated with oxygen, argon and different oxygen and argon mixtures LPP as a 
function of the time after treatment. 25W, 300mbar, 120s. 

Hydrophobic recovery was also monitored by following the variation on the 

surface chemistry on the LPP treated PDMS surfaces. Table 9 shows the 

chemical composition on the PDMS surface treated with oxygen, argon and 

different oxygen and argon mixtures LPP measured 14 days after treatment. All 

LPP treatments show lower carbon and higher oxygen content than for the 

untreated PDMS, the highest O/C ratio corresponds to the treatment with 

93vol% O2 + 7vol% Ar LPP. Furthermore, the silicon content in all LPP treated 

surfaces is higher than for the untreated PDMS likely due to the creation of the 

silica-like layer. 

Figure 14 shows the silicon species content obtained 14 days after treatment 

from the curve fitting of the Si2p3/2 photopeaks of the untreated and oxygen, 

argon and different oxygen and argon mixtures LPP treated PDMS. All LPP 

treated PDMS surfaces show an important percentage of SiO4 species, the 

highest one corresponds to the PDMS surface treated with 93vol% O2 + 7vol% 

Ar LPP, confirming the inhibition of the hydrophobic recovery in PDMS by 
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treatment under the optimal conditions derived from the statistical design of 

experiments.

Table 9. Chemical surface composition 14 days after treatment of untreated 
and oxygen, argon and different oxygen and argon mixtures LPP treated 
PDMS. XPS experiments.

Gas composition

(vol%O2-vol%Ar)

C

(at%)

O

(at%)

N

(at%)

Si

(at%)

O/C

0-100 42.0 37.3 0.0 20.7 0.9

50-50 38.0 39.3 0.2 22.5 1.0

93-7 34.8 42.3 0.2 22.7 1.2

100-0 38.3 38.2 0.0 23.5 1.0

Untreated 53.9 26.6 0.2 19.3 0.5

Figure 14. Percentages of silicon species 14 days after treatment on untreated 
and oxygen, argon and different oxygen and argon mixtures LPP treated PDMS 
surface with 25W for 120s. Curve fitting of Si2p3/2 photopeaks. XPS 
experiments. 
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Finally, for evaluating adhesion, T-peel tests were carried out in untreated and 

93vol% O2+7vol% Ar LPP treated PDMS/acrylic adhesive tape joints. Adhesive 

joints were made with 93vol% O2+7vol% Ar LPP treated PDMS immediately 

and after being stored in open air for 3 and 14 days after treatment. Figure 15 

shows that adhesion of PDMS increases noticeably (from 22 to 226 N/m) by

treatment with LPP plasma under optimal conditions, and furthermore the 

adhesion is maintained for 14 days after treatment.

Figure 15. T-peel strength values of untreated and 93vol% O2+7vol% Ar LPP 
treated PDMS/acrylic adhesive tape joints made at different times after 
treatment. LPP treatment conditions : 25W, 300mTorr, 2min.  

4. Conclusions

The use of statistical design of experiments has been proved useful in 

optimizing adhesion and minimizing hydrophobic recovery in oxygen + argon 

mixtures LPP treated PDMS. The working pressure was the parameter 

influencing more the surface modification and inhibiting more the hydrophobic 

recovery of LPP treated PDMS surface. Furthermore, the duration of the plasma 

treatment, the gas composition and the power influenced the effectiveness of 

the LPP treatment of PDMS. The optimal conditions for maximizing the surface 
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modifications and adhesion, and minimizing the hydrophobic recovery in LPP 

treated PDMS were the use of 93vol% O2 + 7vol% Ar mixture, 300 mTorr of 

working pressure, 25 W of power and 120 seconds. Adhesion of LPP treated 

PDMS stored under open air was maintained up to 14 days. 

Acknowledgments. This study was carried out in the framework of COST 

MP1101 project.
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