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Abstract

Modern compilers present a great and ever increasing number of options
which can modify the features and behavior of a compiled program. Many
of these options are often wasted due to the required comprehensive knowl-
edge about both the underlying architecture and the internal processes of
the compiler. In this context, it is usual not having a single design goal but
a more complex set of objectives. In addition, the dependencies between
different goals is difficult to be a priori inferred. This paper proposes a
strategy for tuning the compilation of any given application. This is accom-
plished by using an automatic variation of the compilation options by means
of multi-objective optimization and evolutionary computation commanded
by the NSGA-II algorithm. This allows finding compilation options that si-
multaneously optimize different objectives. The advantages of our proposal
are illustrated by means of a case study based on the well-known Apache web
server. Our strategy has demonstrated an ability to find improvements up to
7.5% and up to 27% in context switches and L2 cache misses, respectively,
and also discovers the most important bottlenecks involved in the application
performance.
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1. Introduction

In software solution production, compilers constitute a crucial tool in the
software prototype development. Modern compilers expose an ever increas-
ing number of optimization features. However, these options are not fully
exploited because that would require a deep knowledge of both the underly-
ing architecture and the target application as well as the compiler usage and
internals. The selection of the most convenient set of options to improve a
specific goal (e.g. execution time, code size, cache misses, context-switching
rate, etc.) represents a task of enormous complexity because there are inter-
dependencies that can not be predicted. Modern most-used compilers, such
as GCC [1], CLang [2] or ICC [3], provide a large number of compilation
options which can modify the features of the compiled programs.

Many of these compiler options support different modifiers that markedly
increase the number of possibilities to compile an application and, conse-
quently, this complicates the selection of the most convenient set of options.
Furthermore, certain option combinations can diminish the performance or
even change the execution results (for example, code vectorization may re-
lax the floating point accuracy). With thousands of possibilities to consider,
estimating the optimal combination to compile a certain code by brute-force
is unfeasible in terms of time.

On the other hand, the performance improvement of an application can be
characterized by various technical criteria and design constraints that must
be satisfied simultaneously and optimized as far as possible. Occasionally,
these criteria may conflict and result in a mutual worsening (e.g. performance
and power consumption in embedded systems).

Aforementioned reasons lead us to propose a strategy that is able to pro-
duce good solutions in an affordable time. In this paper, multi-objective
optimization based on a Genetic Algorithm is used to explore the huge so-
lution space. Our proposal runs independently of the underlying compiler
under consideration, and it simultaneously optimizes any kind of objective
of interest. Furthermore, the process has been accelerated using a parallel
scheme based on an island model.

2



Page 3 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

Eventually, the goodness of the proposed approach is shown in a case
of study applied to improve the performance of the Apache web server. In
this kind of network applications, as they usually involve many processes
from the web server, the network stack and the operating system, global
compiler optimization options are not enough to optimize. When our method
is applied, however, a set of compilation options that simultaneously improve
several metrics is obtained.

The rest of the paper is structured as follows: Section 2 includes some
related works; Section 3 presents the intrinsic of the compilation process; the
proposed system is described in section 4; Section 5 describes the experi-
mental case of study, the obtained results are deeply analyzed in section 6;
finally, Section 7 provides the conclusions of this work.

2. Related work

Our solution considers the compiler as a black box so that internal details
are transparent to the potential users. This approach was studied before by
Pinkers et al. [4] who based their work on orthogonal arrays, inferring the
effects of each compiler option in the performance. ACOVEA [5] uses a mono-
objective Genetic Algorithm to find the best options for compiling programs
with GCC C and C++ compilers. Guy Bashkansky and Yaakov Yaari [6]
proposed a framework (ESTO) which obtains suboptimal compilations by
using a Genetic Algorithm too. All previous proposals try to optimize a single
criterion as a result of the compilation (usually the execution time) and ignore
other features that may be equally important in relation to performance.

Only a few works tackle performance improvement as multi-objective op-
timization problem (MOP), that is, searching the optimal solutions for a
set of criteria and taking into account the conflicting interactions among
themselves. MOP in combination with GA have been widely studied be-
fore [7, 8, 9, 10]. Authors in [11] also adopted a multi-objective evolutionary
search for finding the best compiler options.

In this context, the main contributions of our approach are:

• It uses the well-known NSGA-II [12] multi-objective optimization al-
gorithm, to optimize the generated machine code for both, the specific
hardware and specific application level objectives.

• It has no dependency on the compiler (compiler agnostic). Moreover,
the only need for our optimization technique is a non-interactive appli-

3



Page 4 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

cation whose execution can be operated by means of a set of options
at the command line and whose output can be taken from an external
program to assess the goodness of a number of objectives of interest.

• It is intended to deal with any kind of objectives of interest. Partic-
ularly, we present a case of study to optimize not only the execution
of a well known server application, but also the interaction with other
possible applications running together (by minimizing L2 cache hits),
and the operating system (by minimizing context-switching rate).

• It is parallelized using MPI library on an island model, which reduces
the effect of local minima in the search process. In addition, it is imple-
mented in a multi-computer (distributed memory parallel computer) to
speed up its execution.

3. Tuning compilations

The compilation process is strongly related to the target architecture. The
available compilation options can alter the functioning of the system, as well
as the interaction with the operating system, e.g. increasing or decreasing the
number of context switches and cache misses, phenomena that can directly
affect performance.

Performance of current microprocessors, with their complex pipelines and
integrated data and instruction cache, is highly dependent on the compiler
and its ability to structure the code for optimal performance. Obtaining
the optimal program structure and scheduling is a complex process which
is specific to each architecture, leading to large differences in performance
depending on the employed optimization techniques. This task is extremely
carried out in VLIW (Very Long Instruction Word) and EPIC (Explicitly
Parallel Instruction Computing) architectures such as Itanium or Itanium 2.
These microprocessors delegate the instruction scheduling to the compiler in
order to reduce the complexity and free up space on the circuit. In these
cases, the compiler must statically determine the structure and exploit the
parallel architecture to optimize the performance [13].

Besides the above stated, it should be noted that optimization options
from modern compilers do not work in an atomic way, i.e. its influence varies
depending on other modifiers. Because of this fact, the task of adjusting the
compilation in order to take the maximum advantage of the system has an
enormous complexity, even with a full knowledge of the process.
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Although some compilers include predefined global optimization levels
(e.g. -O1, -O2, -O3 to speed-up the application, and -Os to shrink the gen-
erated code, in the case of GCC and CLang compilers), in most applications
they are far from being optimal, especially if we are dealing with different
contexts (desktop computers, servers, embedded systems, etc.) or different
flavor for a given microprocessor architecture (e.g. Intel Pentium D, Intel
Core2 Duo or Intel Core i7). In addition, GCC -O2 global optimization
level is used as baseline, providing a reliable optimization level to deploy
the software packages in practically any modern Linux distribution. In fact,
-O2 global optimization represents a conservative trade-off between reliability
and speed performance, whereas -O3 decreases the possible microprocessor
targets when using aggressive optimization that takes advantage of hardware
resources not always available.

Moreover, the use of some optimization techniques can produce adverse
effects. For example, function inlining can make a program run faster by
avoiding the time cost of routine calls. However, inlining overuse can result
in a very large program which directly affects the instruction cache misses
and therefore the final performance [14]. Due to these circumstances we
propose a strategy which combines a multi-objective optimization scheme
for optimizing conflicting goals, with a Genetic Algorithm for speeding up
the exploration of the search space.

4. A multi-objective parallel genetic strategy to tune the compila-

tion of applications

In Section 1 the problem of getting the optimal compilation selection has
been presented. Considering the number of compilation options which must
be taken into account, the problem can not be dealt by exploring all the
solution space. Therefore, the proposed strategy uses a genetic algorithm as
search engine. Genetic Algorithm (GA) is a stochastic search inspired by nat-
ural evolution. It belongs to the group of techniques known as Evolutionary
Algorithms (EAs) which are based on the mimicry of evolutionary processes
such as natural selection, crossover or mutation. GAs operate with a pop-
ulation of individuals in which each one represents a single solution to the
problem. Every individual is codified by its chromosome, which represents
a possible solution to the problem. Individuals are randomly initialized and
better solutions are obtained by evolving the population through crossover
and mutation operators. These individuals are evaluated and selected so
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Figure 1: Example of an individual binary codification for GCC compiler. Unset options
are represented using a shaded gray background

that only those that represent better solutions can survive. At the end of the
process, a set of solutions can be extracted from the surviving population.

For this problem, better solutions will be those that further optimize the
target application through the compilation process. Optimization during the
compilation consists in the adjustment of certain compiler options in order
to improve some features of the program without changing the results, that
is, maintaining the correctness. Usually the most common criteria are the
reduction of both execution time and code size. Unfortunately, many time
optimizations increase the code size and vice versa, so finding a good trade-off
between them is not straightforward. But these are not the only conflicting
objectives to be taken into account, especially if the scope is not desktop
computing. For instance, in embedded systems, there are other factors such
as energy consumption, security or fault tolerance. In these situations, where
the evaluation of the quality of a solution is unclear, different approaches can
be adopted. In this work, a hybrid GA/MOO strategy is adopted.

The following subsections describe the details of the implementation of
our algorithm.

4.1. Multi-objective compilation optimization

In our approach, each individual represents a possible compilation with a
binary-coded chromosome. We consider two different types of compiler op-
tions. The first one defines compiler flags such as -finline-functions-called-once,
which are encoded using a single gene that enables (1) or disables (0) that op-
tion. The second type defines options that take values within a set. An exam-
ple of this case is the GCC generic optimization levels -OX (X ∈ {0, 1, 2, 3, s}).
These compiler options are encoded using log2(n) genes, where n is the num-
ber of possible values. The binary number indicates which of the possible
values is enabled. An example of an individual is illustrated in Fig. 1.

The search evolutionary process consists in five stages (Figure 2). The
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population is initialized randomly although initial individuals can be speci-
fied to take advantage of previous knowledge. In the evaluation stage, each
individual compiles the target application by using the data stored in its
genes and evaluates the set of defined criteria. Our implementation uses the
MOO algorithm as a way of sorting the population as it will be explained in
Section 4.1.1. In the selection stage any surplus individuals are suppressed
to control the size of the population. Next, new individuals are created in
the crossover stage.

The crossover operator takes two individuals and creates a new one based
on them. We implement a uniform crossover, in which the chromosome of
every new individual is generated gene by gene choosing randomly (with
equal probability) between the values of its parents. Specifically, we cross
pairs of randomly chosen individuals until the initial size of the population is
doubled. Afterwards, in the mutation stage, three fourths of the population
are forced to mutate. The mutation is controlled by a low probability value
pmut that some gene of the chromosome changes its value. These stages
are repeated until the algorithm computes a maximum number of iterations,
specified at the time of launching the search. At the end, the output of
the system will be the surviving individuals and the value of its compilation
options.

4.1.1. Multi-objective strategy

The main goal of our strategy is to improve the performance of an appli-
cation through the compilation process. This improvement can be charac-
terized by several metrics of interest that must be optimized simultaneously.
Occasionally, these metrics may conflict and result in a mutual worsening
(e.g. execution time and code size due to function inlining). For this reason,
our approach takes advantage of MOO optimization, which establishes an
ordering relation among the set of solutions while taking into account the
whole set of criteria at the same time.

In recent years, many different resolution methods have been proposed
to solve multi-objective problems. These methods can be classified into two
groups: the first are relatively simple algorithms based on Pareto ranking
(NSGA [15], NPGA [16], VEGA [17] and MOGA [18]), not currently used,
while the second group includes elitist algorithms that emphasize computa-
tional efficiency (SPEA [19], SPEA2 [20], NSGA-II [12], MOGLS [21], PESA
[22], PESA II [23]). Currently NSGA-II (Non-dominated Sorting Genetic
Algorithm II) has been reported to be one of the most successful MOO al-
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MOO Genetic Tuning Strategy

Initialization

Evaluation

MOO Sorting

Crossover

Mutation

stop

Target

Compiler

Best compilations

Compiler options

Compilation string

Generate instance

Performance
measurementsSelection

Figure 2: Steps of the MOO genetic tuning strategy

gorithm.
NSGA-II algorithm establishes an order relationship among the individu-

als of a population mainly based on the concept of non-dominance or Pareto
fronts (see Figure 3). It is said that one solution Xi dominates other Xj

if the first one is better or equal than the second in every single objective
and, at least, strictly better in one of them (i.e. Pareto fronts are defined by
those points in which no improvements in one objective are possible without
degrading the rest of objectives).

NSGA-II firstly groups individuals in a first front (F1) that contains all
non-dominated individuals, that is the Pareto front. Then, a second front
(F2) is built by selecting all those individuals that are non-dominated in
absence of individuals of the first front. This process is repeated iteratively
until all individuals are placed in some front.

After the fronts are built, NSGA-II gives another order for the individuals
that belong to the same front. To maintain a good spread of solutions,
NSGA-II uses the crowding distance function (cd) to estimate the diversity
value of a solution. Algorithm 1 shows how cd values for a given front F are
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Figure 3: Population sorting and selection using NSGA-II

calculated. Once it is performed, individuals of F are sorted in descending
order based on its cd value. Therefore those solutions having more diversity
are prioritized.

Algorithm 1 Computation of the Crowding Distance

Require: F = {Ii}
|F |
i=1 : front; M : number of objectives

for all Fi ∈ F do

Fi.cd← 0
end for

for all m ≤M do # Loop over each objective
F ← sort(F,m) # Sort using the single objective m

vmax
m ←max(F,m)
vmin
m ←min(F,m)
F1.cd← F|F |.cd←∞ # Boundary points
for all i = 2 to |T | − 1 do

Fi.cd← Fi.cd+
Fi+1.m−Fi−1.m

vmax
m −vmin

m

end for

end for

Summarizing, after the execution of the NSGA-II algorithm, the pop-
ulation is first sorted by non-dominated fronts and then, by the crowding
distance (Fig. 3).

9



Page 10 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

4.2. Parallelizing the optimization algorithm

The evaluation stage takes up most of the time in our scenario due to the
fact that it requires the execution of the target application or, at the very
least, its compilation. Fortunately, since each individual can be evaluated in-
dependently this problem presents a great level of parallelism. Nevertheless,
in order to make the most of the parallelization, the island model has also
been implemented. This model considers several different populations and
simultaneously iterate over all of them. The islands exchange individuals of
their population in order to improve the search engine by helping to keep
the diversity of solutions. This can also help to avoid as far as possible the
likelihood to come to a standstill because of local maxima, as reported on
[24, 25].

In our implementation, after a certain number of iterations our islands
exchange individuals within F1 (given by the MOO order relationship as in-
dicated in Section 4.1.1). This migration stage does not modify the inner
working of the system explained previously in section 4.1 because it is in-
cluded as a new step at the end of the GA main loop. Therefore, it has no
interference in other stages.

As many islands may be considered, this process could cause execution
and network overload. To alleviate this situation, instead of exchanging in-
dividuals among every pair of islands, only some combinations are taken into
account in every execution of the migration stage. Hence, at the migration
stage, pairs of islands are chosen randomly where one of them acts as sender
and the other as receiver. The process that coordinates the island model is in
charge of doing this choices and notifying its role to every island (sender, re-
ceiver or not involved). The sender island sends its individual to the receiver
island which includes them into its population as conventional individuals.
The following evaluation and sorting stages of the GA (see Fig. 2) will de-
termine the goodness of the migrated individuals in the receiving population
as it is done with the rest of the population.

Within the island model, our proposal implements a parallelization using
the Message Passing Library (MPI) [26] and a master-slave programming
structure (see Fig. 4): n processes are launched as islands (executing its own
genetic search), taking the master role; these processes are provided each
one with m slave processes. The slaves, also called fitness processes, are in
charge of receiving a solution, using the associated compilation to generate
the application and measure the considered metrics of interest (fitness of

10
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Figure 4: Process tree created in our proposal. There are N populations, each of which
have a set of fitness processes.

the individual). Thus, simultaneous evaluation of solutions is carried out.
Afterwards, fitness processes return the set of results to its island process.

5. Case of study: optimization of the Apache web server

The experimental part of this work aims to show the effectiveness of the
proposed approach to find a set of compilation options that maximize a set of
predefined criteria in an interesting case of study. To this end, the proposed
strategy is applied in an effort to improve the performance of the Apache
web server running on a Linux machine.

The exponential demands for high performance web servers is a trend
which is gaining importance in the world of information and business-oriented
services [27]. Modern web servers devote most of the execution time to the
network operating system stack. Therefore, the network stack has a great
influence on the global performance. In these applications, the number of
cache misses is usually high due to the fact that the Linux TCP/IP stack
does not fit in usual sized L2 cache. Furthermore, if pages with random
data (which can avoid the microprocessor predictors) are being used, the L2
cache misses can increase as well. As latency of the DRAM is usually over
a hundred clock cycles, these cache misses greatly reduce the throughput of
the processor. Therefore, the optimization of Apache web server involves the
following metrics of interest: number of operating system context switches
(obtained from /proc/stat), L2 cache misses, web server throughput and
mean time per request. All mentioned criteria must be taken into account
to measure the overall performance.

The evaluation of the web server performance was done through the use
of Apache Benchmark (AB) tool [28]. It allows to do load tests with different
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MOO Genetic
Strategy

OProfile

Apache
Web Server

Apache
Benchmark

compile

L2 cache misses
request

Perl CGI

time per request
throughput

Figure 5: Scenario of the Apache case of study

configurations and it provides a range of performance indicators, such as the
number of requests processed per second or the number of failed requests.
On the other hand, OProfile [29] was used to do cache performance mea-
surements. OProfile is a fine-grained code profiling tool which consists of a
kernel driver, a daemon and many reporting tools. By means of sampling,
it collects data from the performance counter registers within defined time
intervals. Unlike other tools, OProfile can profile the whole system without
the need to modify the target application. Figure 5 represents the scenario
of the case of study.

To take into account the worst-case scenario, avoiding the CPU predictors
is mandatory [30]. Thus, the requested page was established as a Perl CGI
script that generates random real numbers printed on a single line. This
test also allows us to have more precise measurements since it minimizes I/O
usage. Test have been done with page lengths of 2 KiB and 32 KiB. The
overall optimization process over 145 generations with 34 individuals took
about 6 days.

The experimental setup is composed of Intel Core 2 Duo 2.3GHz machines
with 4 GiB of RAM and a Realtek RTL8169 based gigabit network interface
controller (NIC), running Debian Linux with the 3.2.0-1-amd64 kernel and
GCC 4.6.2. The NIC maximum transmitted unit (MTU) was configured to
the maximum allowed value of 7000 to optimize the bandwidth. Apache
version 2.2.21 was used in our tests.

The parameters of the genetic operation are selected as follows: pop-
ulation size 32, mutation probability (Pmut) 0.05 and number of iterations
200.
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5.1. Experimental results

The results are expressed with a set of points closest to the origin of co-
ordinates in both axes. GCC global optimization levels (-O1, -O2, -O3, -Os)
are within this set and represent a baseline to compare with the improve-
ments achieved by our method. It is worth noting that -O2 and -O3 global
compilation options do not provide 100 % compatible code for each micro-
processor flavor from a given architecture, as they generate optimized code
that may take advantage of specific hardware resources not always available
in each microprocessor version for the same architecture.

The data are shown in graphs facing pairs of criteria. The individuals
belonging to the Pareto front are identified by means of blue dots.

5.1.1. 2 KiB page
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There are two different groups consistently throughout all results. Figure
6 shows a point cloud with the set of solutions obtained throughout the
execution based on L2 cache misses and the number of context switches.
The solutions belonging to the Pareto front range from individuals with a
low number of context switches and a high amount of L2 cache misses to
more balanced individuals. The latter shows a significant reduction of cache
misses compared to the predefined optimization levels.
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Figure 7 shows the solutions in terms of throughput (in KiB/s) and con-
text switches. Similarly to the previous graph (Figure 6) there are two differ-
ent groups, more so in this case since the groups are more compact. Figure
8 represents the time per request and the number of context switches. The
behavior is similar in both cases and express the inverse proportionality be-
tween those two criteria. There are differences however, because of the time
per request being a mean value, so that the relationship is not necessarily
linear (Figure 9).

x-axis in Figure 10 represents the number of L2 cache misses while the
y-axis represents the throughput. A relation can be seen between these two
criteria: individuals with the highest number of cache misses get a much lower
throughput. The predefined optimization levels, nevertheless, produce a good
throughput despite having a worse result in cache misses. The solutions
belonging to the Pareto front have a marginally higher throughput and are
significantly better in terms of cache misses. The situation is similar when
comparing the mean time per request and the L2 cache misses (Figure 11).

5.1.2. 32 KiB page

Figures 12, 13, 14, 15, 16 and 17 show similar patterns and trends,
with two clearly differentiated groups and little-differentiated Pareto fronts.
Again, the default optimization levels from GCC are within the point cloud
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of individuals that yield better results.

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

150000 160000 170000 180000 190000 200000 210000 220000

M
e
a
n
ti
m
e
p
e
r
re
q
u
e
s
t
(m

s
)

Number of context switches

1750

1760

1770

1780

156000 156750 157500

O0

O3
O1

O2

Figure 14: Time per request (mean) against
context switches

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

9500 9000 8500 8000 7500 7000 6500 6000 5500 5000 -4500

M
e

a
n

ti
m

e
p
e

r
re

q
u
e

s
t
(m

s
)

Throughput (KiB/s)

1750

1760

1770

1780

9120 9040 8960

O0

O2

O1
O3

Figure 15: Time per request (mean) against
throughput

9500

9000

8500

8000

7500

7000

6500

6000

5500

5000

4500

400 600 800 1000 1200 1400 1600 1800

T
h
ro
u
g
h
p
u
t
(K

iB
/s
)

Number of L2 global misses

9150

9100

9050

9000

8950

8900

540 630 720 810 900

O0

O2
O1
O3

Figure 16: Throughput against L2 cache
misses

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

400 600 800 1000 1200 1400 1600 1800

M
e

a
n

ti
m

e
p
e

r
re

q
u
e

s
t
(m

s
)

Number of L2 global misses

1750

1760

1770

1780

540 630 720 810 900

O0

O2
O1
O3

Figure 17: Time per request (mean) against
L2 cache misses

Finally, if the optimization interest is on every single criterion separately,
a simplification of the multiobjective problem to four mono-objective prob-

16



Page 17 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

lems, can be done. In this context Table 1 shows the maximum % of im-
provement for the best case in each single criterion across every individual
from all generations and for 2KiB and 32KiB pages.

CS L2 TPUT MTPR
2 KiB 8,5 30,1 0,8 0,7
32 KiB 0,3 29,8 0,5 0,5

Table 1: Maximum % of improvement for the best case in each single criterion (CS:
Context switching, L2: L2 cache misses, TPUT: Throughput, MTPR: Mean Time per
Request) across every individual from all generations for 2KiB and 32KiB pages.

6. Discussion

In this case study, Apache web server has been optimized to improve its
performance by following simultaneously diverse criteria of interest. Specifi-
cally, the following four criteria have been selected in the conducted experi-
ments:

1. Minimize total number of context switches across all CPUs: criterion
strongly linked to the interaction of the application under study and
the operating system scheduler.

2. Minimize L2 cache misses across all CPUs: which represent a very
important criterion when having applications with a high network pro-
cessing workload. In this sense, the TCP/IP stack of an operating
system is a well-known bottleneck in the communication path which
relies in the Linux kernel [31] [32] [33]. Therefore, tuning the compi-
lation of a network application to avoid unnecessary overload on L2
cache is a must.

3. Maximize web server throughput: criterion strongly related with any
web server.

4. Minimize mean time per request: as the previous criterion, this one
is also strongly related with any web server. In addition, in this ex-
periment a theoretical linear relationship between these two criteria
(T imePerRequest ∝ Throughput) must be revealed and tested to en-
sure the correctness of the experimental setup. With this purpose, this
criterion has been introduced.
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Analyzing the results of every Pareto-front figure within this paper (with
served pages lengths of both 2 and 32KiB), we note that GCC predefined
optimization levels do not provide a significant performance improvement
by themselves. Moreover, their graphical location show a distribution of
always dominated solutions very far from the optimal Pareto Front. Focusing
our attention to the average improvement of the four criteria by taking into
account the best candidates in every generation, we achieved an improvement
of 7.5% and 8.8% when serving 2 KiB and 32 KiB pages respectively. It is
important to highlight the dependence of the overall improvement level on the
served page length, showing that changes in the processed workload length
have a mayor influence on cache hits and context switches.

It is interesting to remark the spatial distribution of red points (or dom-
inated solutions) across all Pareto-front figures where we can observe some
aggregations of points always located next to the Pareto front. These points
depict a solution space where mutations have little to no effect on the final
solution. More than one aggregation of this type can be observed, leading
us to think that an important mutation has occurred. In addition, in some
graphs, the cloud of points resembles a straight line with slope different to
0 or ∞, which clearly indicates a linear dependency between the facing cri-
teria. In this case, we can omit one criterion (as one is a function of the
other), nevertheless as pointed above we have left them with the purpose of
testing and ensuring the correctness of experimentation. This behavior can
be observed in Figures 9 and 15, where mean time per request as a function
of throughput is represented. In these figures, as pointed at the beginning
of this section, the proportional relation T imePerRequest ∝ Throughput is
revealed. As shown in Table 1, while 30% of improvement in L2 cache misses
is achieved for the 2KiB case, the number of context switches (CS) is reduced
in 8,5%. These two objectives contribute to release CPU cycles which can be
taken by the application. Regarding the 32 KiB case, while L2 cache misses
reduction is similar to the 2KiB case, context switching reduction drops to
0,3%. As larger pages tend to produce a lower number of context switches,
the optimization is less evident in this case.

Figure 18 shows the improvement provided by different compilation op-
tions corresponding to non-dominated solutions (MOO1, MOO2, MOO3 and
MOO4) with respect to -O2 compilation. Moreover, improvements provided
by -O0, -O1 and -O3 are provided for comparison. Graphs in Figure 18 show
that optimized compilations using the non-dominated solutions provide clear
improvements over the -O2 compilation. Specifically, improvements in con-
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text switches are specially relevant as they determine the performance of the
network subsystem when small packets are used [33, 34, 32]. Thus, improve-
ments in context switches are more noticeable for small packets, as expected
[34, 35, 32]. Additionally, cache misses are reduced for both 2KiB and 32KiB
case. Again, compilations generated by non-dominated solutions clearly out-
perform -O0, -O1, -O2, and -O3 compilations. Regarding throughput and
mean time per request improvements, these are less noticeable as maximum
throughput is usually limited by packet size [32]. However, improvements in
context switches and L2 cache misses decidedly contribute to release CPU
cycles that remains available to other processess [34].
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Figure 18: Improvement in (%) achieved by the non-dominated solutions with respect to
-O2 in the considered criteria.

7. Conclusions

In this paper we present an optimization tool which figures out the com-
piler options that aims to maximize the performance of a specific application.
As multiple criteria are required in the optimization process, this tool has
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been implemented using a multi-objective Genetic Algorithm that can work
in parallel in a multi-computer environment, speeding up the overall process.
It has been observed that the presented technique performs well when deal-
ing with optimization problems with multiple criteria satisfaction, by means
of the implemented sorting and conservation of the best solutions strategy
based on the algorithm NSGA-II. In addition, the presented tool may reveal
the relationship among objectives. This is an important feature as the results
can be used for further software and hardware improvements.

In our case of study, focused on optimizing the operation of Apache, we
found a limited room for improvements with respect to the default compi-
lation in each criterion separately. However, we show improvements in the
cache operation and a relationship between cache hits and web server per-
formance is figured out. This way, our strategy has demonstrated an ability
to find improvements up to 7.5% and up to 27% in context switches and L2
cache misses, respectively, contributing to release CPU cycles that remains
available to other processes.

As a future direction we will attempt to infer the incidence of compilation
options to each criterion. In this case, it would be interesting to know which
option or combination of options makes individuals belong to a better or
worse front as seen in the graphs. Another interesting field of study would
be to consider other applications that do not have such a high dependency
on network resources in order to compare the results. This would also allow
us to make a study of the incidence of compilation options depending on
the application type, whose results could be used in the strategy as a-priori
knowledge. In fact, the presented technique can be used with every applica-
tion and platform, constituting a valuable tool to optimize the performance
of a specific application. Moreover, the optimization process also discov-
ers the most important bottlenecks involved in the application performance
through the relationships between objectives, which can be used to improve
the software and to optimally scaling the server hardware.
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 A strategy and tool for tuning compilations by multiobjetive optimization is 
proposed. 

 Multiple criteria satisfaction is based on NSGA II algorithm. 

 The tool has been tested using a case of study based on Apache web 
server. 

 Overall Apache  improvement achieved up to 8.5% assuming 4 criteria of 
interest. 

 30,1% of improvement when a single criterion (minimize L2 cache misses) 
is selected. 
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