
Accepted Manuscript

Title: Imparting improvements in electrochemical sensors:
evaluation of different carbon blacks that give rise to
significant improvement in the performance of
electroanalytical sensing platforms<!–<query id="Q1"> “Your
article is registered as a regular item and is being processed for
inclusion in a regular issue of the journal. If this is NOT
correct and your article belongs to a Special Issue/Collection
please contact j.alwyn@elsevier.com immediately prior to
returning your corrections.”</query>–>
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Abstract 

Three different carbon black materials have been evaluated as a potential modifier, 

however, only one demonstrated an improvement in the electrochemical properties. The carbon 

black structures were characterised with SEM, XPS and Raman spectroscopy and found to be 

very similar to that of amorphous graphitic materials. The modifications utilised were 

constructed by three different strategies (using ultrapure water, chitosan and 

dihexadecylphosphate). The fabricated sensors are electrochemically characterised using 

N,N,N’,N’-tetramethyl-para-phenylenediamine and both inner-sphere and outer-sphere redox 

probes, namely potassium ferrocyanide(II) and hexaammineruthenium(III) chloride, in addition 

to the biologically relevant and electroactive analytes, dopamine (DA) and acetaminophen (AP). 

Comparisons are made with an edge-plane pyrolytic graphite and glassy-carbon electrode and the 

benefits of carbon black implemented as a modifier for sensors within electrochemistry are 

explored, as well as the characterisation of their electroanalytical performances. We reveal 

significant improvements in the electrochemical performance (excellent sensitivity, faster 

heterogeneous electron transfer rate (HET)) over that of a bare glassy-carbon and edge-plane 

pyrolytic graphite electrode and thus suggest that there are substantial advantages of using 

carbon black as modifier in the fabrication of electrochemical based sensors. Such work is highly 

important and informative for those working in the field of electroanalysis where 

electrochemistry can provide portable, rapid, reliable and accurate sensing protocols (bringing 

the laboratory into the field), with particular relevance to those searching for new electrode 

materials. 

Keywords: Carbon black; Advanced electrochemical materials; Chitosan; Electroanalysis. 

 

1. Introduction 
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In the last decade, plenty of carbonaceous materials, such as, carbon nanofibers[1], 

carbon nanotube[2-5], graphene[6, 7], carbon black[8, 9], fulerenes[10, 11], carbon 

nanoparticles[12, 13] and carbonaceous foam materials[14] have been studied and used to 

develop new sensors and biosensors. Carbon black is generally used as inexpensive and high 

effectiveness reinforcement for rubber tyres and others polymer-matrix composites[15, 16] with 

its characteristics allowing carbon black to develop a fibrous morphology which exhibits a 

reinforcing ability. Also this material is applied as an electrically conductive filler in polymer-

matrix composites[17-19] and this particular use calls attention to the development of 

electroanalytical sensors and other fields such as fuel cells and lithium batteries[20-22]. 

In terms of electrochemical performance, which corresponds to the key aims of this 

paper, until now very few applications are reported in the literature[9, 23-26] with the majority 

not explaining the behaviour and potentialities of carbon black. One notable contribution has 

been from Arduini et al.[8] who were the first to compare the electroanalytical performance of 

carbon black (CB N220) “film” deposited onto screen-printed electrodes with its electrochemical 

performance explored towards ferricyanide, epinephrine, norepinephrine, benzoquinone and 

NADH; their results shown significantly enhanced electrochemical activity when compared with 

screen-printed electrodes without the modification of carbon black. Following this notable work 

the same group presented two more electroanalytical applications of carbon black for metal 

determination (Hg2+) where the authors reported a limit of detection of 5.0 × 10−9 mol L−1 and 

the proposed method was satisfactory applied for drinking waters with good recoveries[9] and 

was also used as a biosensor[27] platform/substrate to determine catechol using a tyrosinase 

enzyme reporting a low detection limit of 8.0 × 10−9 mol L−1. 
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Note that in all these literature reports, no comparisons are made with a similar allotropic 

structures, that is, any other types of carbon blacks nor other graphitic electrodes; in this paper 

we make this key comparison, also in order to understand the behaviour of carbon black further, 

we make a critical comparison with edge-plane pyrolytic graphite allowing us to critically 

evaluate the electroanalytical performance of carbon blacks. 

The development of new sensors with long shelf life’s and improvements in 

electrochemical performance towards target analytes is not new with plenty of compounds 

reported to provide benefits such as through the additions of surfactants, polyelectrolytes and 

biopolymers onto electrode surfaces. For example, dihexadecylphosphate (DHP) is a 

hydrophobic surfactant which has two long hydrocarbon chains linked to a phosphate group that 

self-assemble into multiple bilayer structures similar to lipid bilayers and this structure allows 

stable films to be immobilised onto surface electrodes[28-30]. Also another common reticulant 

agent used is chitosan which produces films with high chemical stability and mechanical 

resistance; these chitosan films show other attractive characteristics such as excellent film-

forming ability, high permeability, good adhesion, non-toxicity and susceptibility to various 

modifications with various chemical agents[31] and facilitates electron transfer due to their 

hydrophilic nature[32, 33]. 

Inspired by the limited amount of literature available on the highly fascinating carbon 

black within electrochemistry, we carried out careful experiments using carbon black as an 

electrode material towards commonly encountered redox probes in aqueous solutions, which also 

is contrasted to different types of carbon black and edge-plane pyrolytic graphite thus providing 

valuable information on the electronic properties and applicability of this intriguing material. ACCEPTED M
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Additionally we perform experiments in order to demonstrate the electroanalytical performances 

of black carbon.  

 

 

 

2. Experimental Section 

Dihexadecylphosphate (DHP), chitosan (CTS) of low molecular weight and 80% 

deacetylation degree, potassium ferrocyanide(II), hexaammineruthenium(III)  chloride, 

N,N,N’,N’-tetramethyl-para-phenylenediamine (TMPD), dopamine (DA) and acetaminophen 

(AP) were purchased from Sigma-Aldrich. The VXC72R, BP4750 and E2000 carbon blacks 

(CBs) were kindly supplied by Cabot Corporation. All other chemicals were of analytical grade 

and were used as received without any further purification. A 1.0 × 10−3 mol L−1 DA and AP 

stock solutions were prepared in a 0.1 mol L−1 phosphate buffer solution (pH 7.0), which was 

made using NaH2PO4 and Na2HPO4. All solutions were prepared using nanopure water 

(resistivity > 18.2 MΩ cm) from Millipore Milli-Q system (Billerica, USA). 

Voltammetric measurements were conducted using a model µAutolab type 3 

potentiostat/galvanostat (Metrohm-Autolab, Utrecht, Netherlands) controlled by GPES 4.9 

software. The voltammetric experiments were carried out with a three-electrode system: a 

platinum plate as counter electrode, an Ag/AgCl (3.0 mol L−1 KCl) as reference electrode to 

which all potentials are referred, and the working electrodes: a carbon black-modified glassy 

carbon electrode (CBs/GCE) (3 mm diameter), an edge-plane pyrolytic graphite (EPPG) 

electrode (Le Carbone, Ltd. Sussex, UK) was machined into a 4.9 mm diameter, with the disc 

face parallel to the edge plane as required from a slab of highly ordered pyrolytic graphite 
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(HOPG: highest grade available; SPI-1, equivalent to Union Carbide's ZYA grade, with a lateral 

grain size, La of 1–10 µm and 0.4 ± 0.1° mosaic spread) and a GCE (3 mm diameter) were also 

used. Cyclic voltammetric measurements were carried out in a 20.0 mL electrochemical cell. The 

background current was subtracted from all voltammograms. All experiments were carried out at 

room temperature (25 ± 1°C). 

For SEM, Raman spectroscopy and XPS analysis, the respective powder was used as 

received from the supplier without any further modification. Scanning Electron Microscopy 

(SEM) images were obtained using a CB dispersion deposited over the GC surface, Supra 35-VP 

equipment (Carl Zeiss, Germany) with electron beam energy of 25 keV was employed. Raman 

spectra were recorded with all analyzes collected at a single point in the carbon blacks, which 

was performed using lens with 10x increase and 540 nm laser at a very low laser power level 

(0.9 mW) to avoid any heating effect at a dispersive Raman spectrometer Horiba / Join Yvon 

Labram equipped with an Olympus BX41 microscope (France) between 1000-4000 cm −1 and 10 

seconds and 10 cycles of exposure.  X-ray photoelectron spectroscopy (XPS, K-Alpha, Thermo 

Scientific) was used to analyse the respective powders. All spectra were collected using Al-K 

radiation (1486.6 eV), monochromatised by a twin crystal monochromator, yielding a focused X-

ray spot with a diameter of 400 µm, at 3 mA × 12 kV. The alpha hemispherical analyser was 

operated in the constant energy mode with survey scan pass energies of 200 eV to measure the 

whole energy band and 50 eV in a narrow scan to selectively measure the particular elements. 

Thus, XPS was used to provide the chemical bonding state as well as the elemental composition 

of the powders utilised. Charge compensation was achieved with the system flood gun that 

provides low energy electrons and low energy argon ions from a single source. ACCEPTED M
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Measurements of pH were performed using an Orion pH-meter, Expandable Ion 

Analyser, model EA-940, connected to a Digimed combined glass electrode. 

 

2.1. Preparation of the CBs Dispersions 

The CTS stock solution (1.0% w/w) was obtained as described previously[34]. Briefly, 

0.5 g of CTS powder was dissolving in 50 mL of 1.0% (v/v) acetic acid solution at room 

temperature (25°C) and kept under constant stirring for 3 h until complete dissolution. The CTS 

stock solution was stored at 4°C in a refrigerator when not in use. 

A GCE was carefully polished to a mirror finish with 0.3 and 0.05 µm alumina slurries, 

and rinsed thoroughly with ultrapure water. So, the GCE was sonicated in isopropyl alcohol and 

then with ultrapure water, each for about three minutes, and dried at room temperature. 

Fig. 1 presents the strategies performed for preparation of the modified GCE with 

VXC72R CB within different films. The first strategy (dispersing in ultrapure water) was 

performed by ultrasonication of 1.0 mg of VXC72R CB in 1.0 mL of ultrapure water for 30 

minutes. The second strategy (dispersing within DHP film) was prepared by ultrasonication of 

1.0 mg of VXC72R CB and 1.0 mg of DHP in 1.0 mL of ultrapure water for 30 minutes to give a 

VXC72RCB-DHP suspension. The third strategy (dispersing within CTS film) was carried out 

by ultrasonication of 1.0 mg of CB in 1.0 mL of CTS stock solution (1.0% w/w) for 30 minutes 

to provide a VXC72RCB-CTS suspension. For each modified electrode, a volume of 8 µL of 

each suspension was dropped onto the GCE surface and the solvent allowed to evaporate for 2 h 

(at 25°C). 
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3. Results and Discussion 

 

3.1. Physical Characterisation 

We first consider the structural characterisation of the carbon black (CBs) samples, 

VXC72R, BP4750 and E2000, as can be observed in Table 1, XPS analysis was carried out to 

establish the elemental composition of each sample, where it can be readily observed that there is 

only a small difference between each sample. Furthermore, de-convolution of the spectra was 

conducted with this analysis revealing the VXC72R CB to be composed of 91.2 % carbon and 

7.8 % oxygen. The carbon content comprises 74.35 % corresponding to 284.7 eV which is 

characteristic of graphitic groups, 10.66 % at 286 eV and 6.22 % at 289 eV which both 

correspond to C–O and C=O bonds respectively. The oxygen content is comprised from 3.7 % at 

531.7 eV which corresponds to C–OH bonds and 4.1 % at 533.3 eV which corresponds to groups 

such as C=O, O=C–O, and C–O. Additionally, the XPS shows oxygenation in the carbon 

structure which was confirmed by Raman exhibiting a characteristic D band (see below). 

Next, Raman spectroscopy was performed for all CBs (Fig. 2) which revealed two 

characteristic bands: D (1331 cm–1) and G (1551 cm–1) and a wide G’ band at ca. 2800 cm–1; 

which as reported widely in the literature is consistent with amorphous carbon materials[35-37]. 

The D band is usually attributed to the disorder and imperfection of the carbon crystallites (basal 

plane defects). The G band is assigned to one of the two E2g modes corresponding to stretching 

vibrations in the basal plane (sp2 domains) of single crystal graphite or graphene[14]. The poor 

intensity G’ band reveals that these materials present poor structural quality (closest to 

amorphous structure materials)[35]. Also as known, integrated intensity ratio ID/IG in the 

Raman spectrum should approximately correspond to the extent of order/disorder in the graphitic 
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carbon, in order to estimate the integrated intensity of D and G band was assumed as the full 

width at half maximum (FWHM) for the Lorentzian line [38], was carried out a comparison of 

the ID/IG ratio for the different carbon black in order to clarify the degree of order of carbon 

materials. The results showed a similar ratio for the two carbon blacks (VXC72R = 2.64 and 

E2000 = 2.36) and BP4750 CB presented a higher ratio value of 3.65. It should be pointed out 

that materials with R > 1, indicate that CBs are in the transition from graphite to nanocrystalline 

graphite [38]. For comparison, in the literature  ratio values such as: a carbon nanofiber = 0.96 

[39], vertically aligned carbon nanotubes = 0.54 and graphene oxide = 0.23 [40, 41] have been 

reported. 

Finally, the CBs were analysed via SEM (see Fig. 3a-b for VXC72R CB, Fig. 3c for 

BP4750 CB and Fig. 3d for E2000 CB), which reveals a material consisting of multiple 

grains/nanoparticles of amorphous carbon, this nanoparticle material presents a high uniform size 

c.a. ~25 nm, probably due of the fabrication process. It is important to note that E2000 CB (Fig. 

3d) shown a poor distribution over the GCE, leaving many uncovered areas. Moreover, this 

morphology results in a porous surface, which can provide a higher electroactive surface area. 

Also is evident from SEM images of VXC72R CB the nanoparticles do not exhibit a perfect 

spherical shape, there are wrinkles (as confirmed via Raman spectroscopy) over the surface 

which can potentially influence the electrochemical response and could give rise to beneficial 

electron transfer properties.  

3.2. Electrochemistry Characterization 

 

We first performed a study in order to produce a stable film over a glassy carbon (GCE) 

electrode substrate. VXC72R CB was suspended into ultrapure water with aliquots made onto 

ACCEPTED M
ANUSCRIP

T



the GCE surface (see experimental section). Preliminary studies revealed a non-adherent film 

was produced and two well-known molecules were next evaluated: DHP and CTS in a 

proportion of 1 mg of VXC72RCB / (1 mL water or 1 mg DHP or 1mL CTS). As can be seen in 

Fig. 4, the VXC72RCB-CTS/GCE (black line) exhibits the greatest current with optimal 

voltammetric behaviour evident as observed through good electrochemical reversibility (close 

peak-to-peak separations) compared to the case of no CTS and a more adherent and stable (over 

50 measurement with analytical signal ranging 4.2%) film. The VXC72RCB-DHP/GCE (blue 

line) shows good stability but appears to exhibit a less reversible electrochemical process. Thus, 

CTS was chosen for further experiments with the best proportion of CB optimised; 

VXC72RCB:CTS as 1.00 mg/mL (Fig. S1, in the Supporting Information) by varying the 

VXC72R CB proportion between 0.25 to 2.00 mg in a 1.0 mL of CTS stock solution (1.0% w/v). 

 

We now turn to the electrochemical characterisation of our three carbon blacks (VXC72R 

CB, BP4750 CB and E2000 CB). This study was performed towards the well characterised 

inner-sphere redox probe ferro-/ferri- cyanide in 0.1 mol L–1 KCl. Fig. 5 shows typical 

voltammograms for VXC72RCB-CTS/GCE, BP4750CB-CTS/GCE and E2000CB-CTS/GCE at 

a scan rate of 100 mVs–1 exhibits a well-defined pair of redox peaks with a peak separation (ΔEp) 

of ca. 215.3, 237.2 and 452.3mV (vs. Ag/AgCl (3.0 mol L–1 KCl)) for VXC72RCB-CTS/GCE, 

BP4750CB-CTS/GCE and E2000CB-CTS/GCE, respectively. The VXC72RCB-CTS/GCE and 

BP4750CB-CTS/GCE presents a small ΔEp value than E2000CB-CTS/GCE, which is indicative 

of a more favourable electrochemical interaction at the electrode surface and thus enhanced 

electron transfer kinetics[42]. This worst voltammetric behaviour of E2000CB-CTS/GCE can be ACCEPTED M
ANUSCRIP
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attributed to the poor distribution of E2000CB over the GCE, as confirmed by the MEV (Fig. 3 

(d)). 

 

Scan rate studies were performed on the three different carbon blacks where the 

voltammetric peak height (Ip) was monitored as a function of scan rate (v) with a plot of peak 

height versus square-root of the scan rate revealing the following trends: VXC72RCB-

CTS/GCE, Ip (A) = −4.91 × 10–6 A/(Vs–1)0.5 + 1.58 × 10–4 A (R2 = 0.998); BP4750CB-

CTS/GCE, Ip (A) = 6.50 × 10–6 A/(Vs–1)0.5 + 8.46 × 10–5 A (R2 = 0.997); E2000CB-CTS/GCE, Ip 

(A) = 4.32 × 10–6 A/(Vs–1)0.5 + 8.02 × 10–5 A (R2 = 0.993). It is clear that in each of the cases a 

linear response is observed, indicating diffusional processes. Furthermore, an analysis of log Ip 

versus log v was carried out to be sure if the semi-infinite diffusion model was governed by the 

Randles–Ševćik equation[43], the gradients of 0.58 (VXC72RCB-CTS/GCE), 0.41 (BP4750CB-

CTS/GCE) and 0.46 (E2000-CTS/GCE CB), indicate no thin-layer effects (such that the redox 

probe is not trapped within the network of the film) and representing a response that is purely 

diffusional in each case. 

The most important parameter to evaluated the quality of an electrode material is the 

heterogeneous electron transfer (HET) rate (which is an advantageous characteristic in a plenty 

electrochemical areas)[42], which is intrinsically dependent of ΔEP values, where a smaller ΔEp 

value represents an increased reversibility of the redox probe utilised and thus faster HET 

kinetics at a given electrode material[7, 42]. 

For the inner-sphere redox probes performed, no significant changes was observed in the 

reversibility of the probe at two carbon blacks (VXC72RCB-CTS/GCE  and BP4750CB-

CTS/GCE), which exhibited similar ΔEp values. However for E2000CB-CTS/GCE the ΔEp value 
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was ca. 200 mV higher, note that inner-sphere redox mediators are strongly influenced/sensitive 

to the surface, where the state of the electrode surface (surface chemistry and microstructure) can 

give an improvement (or inhibition) via particular electro-catalytic interactions with specific 

surface oxygenated groups/species or impurities, such that the surface effects can strongly 

influence beneficially or detrimentally the electrochemical response[14, 42]. As presented in 

Table 1, the XPS analysis shows a high concentration of Ni in the E2000 carbon black structure, 

which probably gives a detrimental response for HET [44]. 

Returning to the electrochemical comparison of the carbon blacks, attention was turned to 

exploring the performance towards the outer-sphere electron transfer redox probe 1 mmol L–1 

hexaammineruthenium(III) chloride in 0.1 mol L–1 KCl, the voltammetric behaviour of the three 

carbon blacks electrodes was recorded and found to exhibit reversible profiles (Fig. S2, in the 

Supporting Information). Similarly to the ferro/ferri probe the (ΔEp) showed a small variance 

between the values obtained (ca. 63.4, 66.5 and ca. 68.7 mV for VXC72RCB-CTS/GCE, 

BP4750CB-CTS/GCE and E2000CB-CTS/GCE respectively at a scan rate of 100 mVs–1 (vs. 3.0 

mol L1 Ag/AgCl). 

In the case of an outer-sphere probe the electrochemical response is sensitive to the 

electronic structure of the electrode material (the respective coverage of ‘reactive’ edge plane 

sites or ‘un-reactive’ basal plane sites, for the case of graphitic materials),[14, 42, 45]. For the 

outer-sphere system the electrode acts solely as an electron sink/supplier and electron transfer is 

not influenced by the surface state (absence/presence of specific oxygen containing 

functionalities, or the surface cleanliness in terms of the presence of uncharged impurities)[7, 

42]. The insights gained above indicate that the three CBs exhibit similar electronic structures 

(once no significant changes was observed). 
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In order to estimate the heterogeneous electron transfer rate constant, k0, was used the 

outer-sphere electron transfer probe hexaammineruthenium(III) chloride. The Nicholson method 

was applied to estimate the observed standard HET rate constant (k0) for quasi-reversible 

systems using the following equation[46]: 

 

 

 

where Ψ a the kinetic parameter, D is the diffusion coefficient, n is the number of electrons 

involved in the process, F is the Faraday constant, R the gas constant and T the temperature. The 

kinetic parameter, Ψ, is tabulated as a function of ΔEp at a set temperature (298 K) for a one-step, 

one electron process (where the transfer coefficient, α = 0.5)[46]. The function of Ψ (ΔEp), which 

fits Nicholson's data, for practical usage (rather than producing a working curve) is given by: 

 

 

 

where X = ΔEp is used to determine Ψ as a function of ΔEp from the experimentally recorded 

voltammetry. From this, a plot of Ψ against (scan rate-1/2 × 32.79) allows the k0 to be readily 

determined. Using this approach the k0 values of 9.26 × 10−2, 5.74 × 10−3 and 6.23 × 10−4 cm s–1 

were estimated for the for VXC72RCB-CTS/GCE, BP4750CB-CTS/GCE and E2000CB-

CTS/GCE respectively (utilising a D of 9.1 × 10–6 cm2 s–1 for hexaammineruthenium(III) 

chloride[47, 48] in 0.1 mol L–1 KCl and deduced over the scan rate range of 5–500 mV s–1). The 

obtained k0 value for VXC72R CB was 160 higher than for a fluorinated tin oxide glass electrode 

(FTO) modified with single-walled carbon nanotubes (SWCNT) (5.76 × 10−4 cm s−1) and 153 

ACCEPTED M
ANUSCRIP

T



higher than FTO modified with double-walled carbon nanotubes (DWCNT) as presented by 

Moore et al.[49] which also used the hexaammineruthenium(III) chloride probe. This result 

confirms the great ability of the VXC72RCB-CTS/GCE to transfer electrons. The next step was 

analysis of the anodic peak against square-root of the scan rate, where all equations present linear 

response, indicating clearly a diffusional process (again indicating no possibility of the 

electroactive analyte being trapped inside of the film/structure). 

Next we turn to exploring the voltammetry of N,N,N’,N’-tetramethyl-para-

phenylenediamine (TMPD). The VXC72RCB-CTS/GCE cyclic voltammograms (CV) show a 

higher current, better voltammetric profile and an improvement in its electrochemical 

reversibility over the others alternatives (BP4750CB-CTS/GCE and E2000CB-CTS/GCE), in 

terms of HET kinetics, as deduced through the ΔEp values for the first and second redox peak-

couples (ca. 56.9 and 79.9 (at VXC72RCB-CTS/GCE), 58.0 and 97.2 mV (BP4750CB-

CTS/GCE) and 88.6 and 106.2 mV (E2000CB-CTS/GCE), at 50 mVs–1). Fig. 6 shows the CVs 

obtained with CB’s-CTS/GCE. Note that (as discussed earlier) in all cases, diffusional processes 

are in operation. Is well known[50, 51] the electrochemical process at TMPD, which is due to 

two one-electron oxidations (and corresponding reductions on the reverse scan), described as: 

 

 

which gives rise to the unique voltammetric profiles observed in Fig. 6. At this point it is worth 

considering the origin of the observed electrochemical responses. From inspection of the XPS 

data, it is clear that E2000 CB has the greatest amount of nickel, followed by VXC72R CB and 

then BP4750 CB. If the origin of the electrochemical responses above were soley due to the 

occluded nickel, then we would expect E2000CB-CTS/GCE to consistently give rise to the best 

2

TMPD e TMPD
TMPD e TMPD

 

 

 

 
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voltammetric responses which is not the case but rather VXC72CB-CTS/GCE does. The nickel, 

due to the fabrication process of the carbon black resides as an oxide and hence its 

electrochemical activity is reduced/ negligible. While metals in carbon black samples cannot be 

one hundred percent excluded, that is, they are always present in such samples, it is good 

practice to consider exactly what the origin of the observed electrochemical response is. 

3.3. Electroanalytical Applications 

 

Following the morphological and electrochemistry characterisations as described above, 

we start exploring the electroanalytical response for AP using the VXC72RCB-CTS/GCE, EPPG 

and GCE via cyclic voltammetry. Fig. 7 (a) shows the voltammetric responses obtained which 

indicate that VXC72RCB-CTS/GCE presents a smaller peak-to-peak separation (ca. 393.0 mV) 

when compared with the others electrodes (ca. 485.1 mV for EPPG and 500.2 mV GCE), after 

was carried out successive additions of AP into a 0.1 mol L−1 phosphate buffer solution, pH 7.0. 

Fig. 7 (b) shows the response of analytical signal (cathodic current density) (j) as a function of 

AP concentration. It is clear that linear responses are observed over the concentration range 

studied, 2.5 × 10−6 to 9.0 × 10−5 mol L−1, however it is most remarkable the VXC72RCB-

CTS/GCE exhibits an improvement over that of EPPG in terms of the observed sensitivity (slope 

of the calibration plot); usually EPPG shows the best sensitivity among different carbonaceous 

materials as can found in the literature[6, 52, 53]. The linear equations for the electroanalytical 

response using VXC72RCB-CTS/GCE are as follows: j (µAcm−2) = 4.36 × 10−6 + 0.60 ([AP] 

µmol L−1), R2 = 0.997; j (µAcm−2) = −7.15 × 10−7 + 0.29 ([AP] µmol L−1), R2 = 0.999 for the 

EPPG and j (µAcm−2) = −5.13 × 10−7 + 0.22 ([AP] µmol L−1), R2 = 0.999) for the GCE. 
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Fig. 8 explores the electrochemistry of DA; note DA is a catecholamine neurotransmitter 

that has vital function of the hormonal, renal and central nervous systems. However, abnormal 

DA concentrations have been associated with neurological disorders; thus, the determination of 

the DA concentration can be very important in diagnostic applications[7, 54]. As shown in Fig. 8 

(a), the cyclic voltammograms (Fig. 7 (a)) give no significant changes to an oxidation peak at ca. 

0.198, 0.209 and 0.230 V at the VXC72RCB-CTS/GCE, EPPG and GCE respectively (50 mVs–

1). 

We turn to exploring the electroanalytical response from successive additions of DA into 

a 0.1 mol L−1 phosphate buffer solution, pH 7.0 using VXC72RCB-CTS/GCE, EPPG and GCE, 

which is presented in Fig. 8 (b) with the appropriate calibration plots. It is evident that the linear 

response for VXC72RCB-CTS/GCE exhibits a better sensitivity, with a linear equation j 

(µAcm−2) = 3.57 × 10−6 + 0.53 ([DA] µmol L−1), R2 = 0.999, when contrasted with EPPG (j 

(µAcm−2) = 1.18 × 10−6 + 0.36 ([DA] µmol L−1), R2 = 0.996) and GCE (j (µAcm−2) = 5.82 × 10−7 

+ 0.15 ([DA] µmol L−1), R2 = 0.999). Although, the linear range was lower for VXC72RCB-

CTS/GCE, this can be attributed to the large background current (Fig. S3, in the Supporting 

Information), that is evident when utilising this electrode, however, as with each of the previous 

analytes it is clear that the analytical sensitivity of the VXC72RCB-CTS/GCE is greater than 

others graphitic electrodes. 

 

 

Table 2 summarises the analytical performance of the carbon based electrodes in terms of 

the sensitivity (Acm−2 L mol−1) and detection limits (mol L−1) (three times the standard deviation 

of the blank solution divided by the slope of the analytical curve) towards the AP and DA. 
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Inspection of Table 2 indicates that VXC72RCB-CTS/GCE exhibits the highest sensitivity and 

lowest detection limits than that achievable using the EPPG or GCE. The intra-day repeatability 

of the VXC72RCB-CTS/GCE, EPPG and GCE were determined for 9.9 × 10−6 mol L−1 AP and 

DA solutions in 0.1 mol L−1 phosphate buffer solution, pH 7.0. The relative standard deviation 

(RSD) values obtained were 2.35%, 2.77% and 3.17% for AP and 0.51%, 1.44% and 2.63% for 

DA; (N = 5, VXC72RCB-CTS/GCE, EPPG and GCE, respectively), indicating a good stability 

of the VXC72RCB-CTS film. Given the results and discussion above, it appears that there is 

apparent advantage of using VXC72RCB as modifier for electrodes for the electroanalysis of 

target analytes in aqueous based solutions.  

 

4. Conclusions 

This work demonstrates the potential of VXC72R CB as electrode modifier which is 

shown to consistently out-perform routinely used alternatives in terms of both electron transfer 

kinetics (HET rates) and the magnitude of the analytically important current passed in all 

instances, between all the carbon blacks used as comparison. The morphological characterization 

was fully investigated and the results demonstrate the difference of VXC72R CB between others 

carbon blacks (BP4750 and E2000) indicating a promising platform from which the development 

of next generation electrochemical sensors. 
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Figure Captions 

 

Fig. 1. Schematic representation of the GCE modification. 

 

Fig. 2. Raman spectra of (a) VXC72R CB, (b) BP4750 CB and (c) E2000 CB. 
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Fig. 3. SEM images of (a – b) VXC72R CB, (c) BP4750 CB and (d) E2000 CB on the surface of 

GCE at different magnifications: (a) 40,000 × (b, c and d) 250,000 ×. 

 

Fig. 4. Cyclic voltammetric of 1.0 × 10−3 mol L−1 potassium ferrocyanide(II) in 0.1 mol L−1 KCl 

recorded on VXC72RCB-CTS/GCE (black line), VXC72RCB-water/GCE (red line) and 

VXC72RCB-DHP/GCE (blue line) at scan rate 25 mV s−1. 

 

Fig. 5. Cyclic voltammetric profiles of VXC72RCB-CTS/GCE (black line), BP4750CB-

CTS/GCE (red line) and E2000CB-CTS/GCE (blue line) recorded towards 1.0 × 10−3 mol L−1 

potassium ferrocyanide(II) in 0.1 mol L−1 KCl, v = 100 mV s−1. 

 

Fig. 6. Cyclic voltammetric profiles of VXC72RCB-CTS/GCE (black line), BP4750CB-

CTS/GCE (red line) and E2000CB-CTS/GCE (blue line), recorded towards 1.0 × 10−3 mol L−1 

TMPD in 0.1 mol L−1 KCl, v = 50 mV s−1. 

 

Fig. 7. (a) Cyclic voltammetric profiles of VXC72RCB-CTS/GCE (black line), EPPG (red line) 

and GCE (blue line), recorded towards 5.21 × 10−5 mol L−1 AP in 0.1 mol L−1 phosphate buffer 

solution, pH 7.0, v = 50 mV s−1. (b) Calibration plot after successive additions of AP for 

VXC72RCB-CTS/GCE (black squares), EPPG (red circles) and GCE (blue triangles). 

 

Fig. 8. (a) Cyclic voltammetric profiles of VXC72RCB-CTS/GCE (black line), EPPG (red line) 

and GCE (blue line), recorded towards 5.21 × 10−5 mol L−1 DA in 0.1 mol L−1 phosphate buffer ACCEPTED M
ANUSCRIP

T



solution, pH 7.0, v = 50 mV s−1. (b) Calibration plot after successive additions of DA for 

VXC72RCB-CTS/GCE (black squares), EPPG (red circles) and GCE (blue triangles). 

 

 

 

Table 1 

 

 

Atomic weight percentage obtained from the XPS. 

 

Sample Carbon  Oxygen Sulphur Nickel 

 Binding 

energy 

wt% Binding 

energy 

wt% Binding 

energy 

wt% Binding 

energy 

wt% 

VXC72R CB 

284.73 74.35 532.14 3.73 163.71 0.23 399.75 0.32 

286.52 10.66 533.57 4.11 164.77 0.23 400.57 0.15 

289.03 6.22       

BP4750 CB 

284.73 74.07 532.14 3.8 163.53 0.24 399.38 0.1 

286.51 10.81 533.56 4.12 164.79 0.24 400.56 0.2 

289.03 6.43       

E2000 CB 

284.88 72.2 532.06 6.33 163.36 0.16 399.74 0.5 

286.68 7.92 533.55 5.52 164.58 0.16 400.65 0.09 

288.90 6.64   167.71 0.24   

     168.85 0.24   
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N = 3 

 

 

 

 

 

Table 2 

 

 

Comparison of the analytical parameters for determination of AP and DA using VXC72RCB-

CTS/GCE, EPPG and GCE electrodes using CV. 

 

Analyte Electrode Analytical parameter Obtained values 

 

 Sensitivity (Acm−2 L mol−1) 0.60 

VXC72RCB-CTS/GCE Detection limit (mol L−1) 1.9 × 10−7 

 Linear range (mol L−1) 5.0 × 10−6 to 9.0 × 10−5  

AP 

 Sensitivity (Acm−2 L mol−1) 0.29 

EPPG Detection limit (mol L−1) 3.6 × 10−7 

 Linear range (mol L−1) 2.5 × 10−6 to 9.0 × 10−5 

 

 Sensitivity (Acm−2 L mol−1) 0.22 

GCE Detection limit (mol L−1) 5.0 × 10−7 

 Linear range (mol L−1) 2.5 × 10−6 to 9.0 × 10−5 
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 Sensitivity (Acm−2 L mol−1) 0.53 

VXC72RCB-CTS/GCE Detection limit (mol L−1) 2.1 × 10−7 

 Linear range (mol L−1) 5.0 × 10−6 to 9.0 × 10−5 

  Sensitivity (Acm−2 L mol−1) 0.36 

DA EPPG Detection limit (mol L−1) 5.6 × 10−7 

  Linear range (mol L−1) 2.5 × 10−6 to 9.0 × 10−5 

  Sensitivity (Acm−2 L mol−1) 0.15 

 GCE Detection limit (mol L−1) 1.0 × 10−6 

  Linear range (mol L−1) 2.5 × 10−6 to 9.0 × 10−5 
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