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Abstract  If one has a distribution of words (SLUNs or CLUNS) in a text written in language L(MT), and is 
adjusted one of the mathematical expressions of distribution that exists in the mathematical literature, some 
parameter of the elected expression it can be considered as a measure of the diversity. But because the adjustment is 
not always perfect as usual measure; it is preferable to select an index that doesn't postulate a regularity of 
distribution expressible for a simple formula. The problem can be approachable statistically, without having special 
interest for the organization of the text. It can serve as index any monotonous function that has a minimum value 
when all their elements belong to the same class, that is to say, all the individuals belong to oneself symbol, and a 
maximum value when each element belongs to a different class, that is to say, each individual is of a different 
symbol. It should also gather certain conditions like they are: to be not very sensitive to the extension of the text and 
being invariant to certain number of operations of selection in the text. These operations can be theoretically random. 
The expressions that offer more advantages are those coming from the theory of the information of Shannon-Weaver. 
Based on them, the authors develop a theoretical study for indexes of diversity to be applied in texts built in 
modeling language L(MT), although anything impedes that they can be applied to texts written in natural languages. 
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1. Introduction: The Textual Grammar  
The Ecological Model as a whole, even though its 

methodology is not separated from the rest of the models, 
possesses certain characteristics that specify in its own 
original form the functions of these. On the one hand, they 
must be separated from models based on physical, 
mechanical causes. The existence of feedback expresses 
the conditions of adaptation, regulation, a structural 
response to equally structural signals that have been 
constructed on documentary bases typical of theories of 
biology, ecology and socio-economics. On the other hand, 
a special effort has to be made to overcome the ease and 
ambiguity of intuition. All models have in common that 
they encode experience and always involve signs, signals, 
syntaxes, semantics and an ability to decode and derive 
meaning from what is encoded, Gash (2014). 

That is to say, it meets the conditions of a language. 
The authors consider the idea of language according to 
Chomsky (1965, 1969) as: 

1. The elements are discreet and arbitrary. The only 
elements which are going to be relevant for the 
grammatical description are discreet ones. 

2. Combinations of elements are linear, denumerable. 

3. Not all combinations of sentences constitute a 
sentence. We describe a sentence (word-string) as an 
occurring mathematical sequence that obeys the 
regularities for sentence hood required by "model 
grammar". Not all finite sequences of elements occur 
as sentences. The fact that not all combinations occur 
makes it possible to define larger elements as 
restrictions on the combinations of smaller elements. 

4. In language there is redundancy in respect to the 
sequence of ultimate elements and this redundancy is 
composed of a system of intermediate elements. 

5. This language has a semantic meaning, the meaning 
of entities and the meaning of grammatical relations 
among them. 

Obviously, if what we pretend is to build a 
mathematical model of a system, we will use the formal 
language of mathematics. Using mathematical expressions, 
a level of objectivity can be reached, or at least get as 
close to it as possible. The models that we propose are 
those based on the Dynamic of Systems (Forrester 1961) 
with the modifications made by the authors (Usó-
Domènech et al.1997), with which it becomes clear that 
we do not expect to create a generically theory of models, 
but a specific form, as we consider them one of the most 
generalized and possibly most powerful among the wide 
range of alternatives offered to the modeler. For this 
special type of models the authors have built a language 
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which they have called L(MT) whose syntax is, on a wide 
scale, the following (Nescolarde-Selva and Usó-
Doménech, 2013; Sastre-Vazquez et al., 2000; Usó-
Domènech et al., 1997, 2000a, b, 2001, 2002, 2006a,b, 2014; 
Villacampa & Usó-Domènech, 1999; Villacampa et al., 
1999a, b): 

We define as associative field of a measurable attribute 
w and we called wΦ , the set constituted by all possible 
symbols of said measurable attribute: 

{ { } { } { } }0 1 2, , .... ,...n
w w w w wϕ ϕ ϕ ϕΦ = . The set wΦ  will be a 

denumerable set. In the practical tool, it will be a requisite 
to define one subset w wV ⊂ Φ  whose cardinal will be an 
integer number. The associative field of a measurable 
attribute w will be called First Order Vocabulary (FOV) 
or Vocabulary of order one and will be denoted by 1

wV . 
The elements of 1

wV  will be called t-symbols and will be 

denoted by j
iϕ , where i represents an index of the 

symbol and j denotes the order of transformation. The 
measurable attributes are a particular case of the t-symbols. 
The set X formed by a FOV generated by the set of 
measurable attributes { }1 2, ,... nW w w w=  will be called 
Primary Lexicon (PL) or alphabet of the n-order monoads, 

{ }1 1 1
1 2

, ,...,w w wn
X V V V= . 

The primitive monoad or alphabet A is formed by a set 
W of characters used to express measurable attributes 

{ }, ,...,1 2 ,...W w w wn= , a set D of differential functions in 

relation to time dD
dt

 =  
 

 and a set Φ  of n-order 

monoads { } { } { }{ }1 2, ,..., nϕ ϕ ϕΦ = . The W set is formed 

by the input and state variables, and A W D= ∪ ∪Φ . 
The textual alphabet tA  is jointly built with the 

alphabet A and the set R of real numbers (model 
parameters) { }/R r r= ∈ℜ .  

The Simple Lexical Units (SLUN) are constituted by the 
elements of the set A-D.  

The Operating Lexical Units or operator-LUN (op-
LUN) are the mathematical signs +, -. 

The Ordenating Lexical Units or Ordenating-LUN (or-
LUN) are the signs =, <, >.  

The Special Lexical Unit (SpLUN) is the sign d/dt, 
which belongs to the alphabet A and defines the beginning 
of a phrase (state equation). The differential vocabulary or 
d-vocabulary of a measurable attribute w, wV ∂ , is the set 
formed by all partial derivatives of any order of w with 
respect to any other measurable attribute and the time t.  

The primary differential vocabulary, 1
wV ∂ , is the set 

formed by all partial derivatives of order 1 of w with 
respect to any other measurable attribute and the time 

t. }1 , ,...w
w wV
t y

∂
∂ ∂
∂ ∂= 


. 

Secondary a higher order differential vocabularies may 
also be defined and will be denoted by ,  1n

wV n∂ ≥ . For 
ease of calculation in practical complex system modeling, 

we define a subset of 1
wV ∂  called dimensional primary 

differential vocabulary, 1XYZt
wV ∂ , consisting of all partial 

first order derivatives of the measurable attribute w with 
respect to the three spatial dimensions X, Y, Z and time t, 

1 , , ,XYZt
w

w w w wV
X Y Z t

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 =  
 

. 

To implement the models of the System Dynamics 
(Forrester, 1961), a subset of cardinal 1, 1t

wV ∂ , and whose 
only element is the partial derivative of the p-symbol with 
respect to the time, will be used. 

Let 1 2, ,..., nw w w  be a set of measurable attributes. The 
differential Lexicon, d-L, is the set formed by the d-
vocabularies generated by the measurable attributes, 

 
1 2 1
1 2 2 2

2 1
2 2

, ,..., ; ,
.

,..., ;...; ,....,

n
w w w w

n n
w w w wn n

V V V V
d L

V V V V

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

 
 − =  
  

 

The Elements of d-L will be called d-symbols. The 
characters (, ), { ,}, [, ], are simply signs since they lack of 
meaning and they are the equivalent to the signs ?, !, ; ( , ) 
in the natural languages.  

The Separating of Lexical Units (s-LUN) are the signs 
* and /.  

The Composed Lexical Units (CLUN) are the strings of 
a SLUN separated by a s-LUN. The syllables or composed 
Lexical units (CLUN) are constituted by a SLUN, or a 
chain of them, separated by an op-LUN or a or-LUN.  

The word is the SLUN or CLUN. The symbols [·] 
preceding the other symbols + or – are word separations.  

The opsep vocabulary SV  is the one formed by 
operating and separating LUNs. 

}{; , ,*,:SV⊗∈ ⊗ = + − and it will be written a element of 
VS by ⊗ .  

A simple sentence is a flow variable (Forrester, 1961). 
It is built by a CLUN or a combination of CLUNs.  

The vocabulary of order n ...1 2
n
w w wn

V  is the one formed 

by simple sentences 

 

{ }
1 1 1...1 2
1 2

... ...1 1

... ;

, ,....,

/ ... ;

i jn
w w wn i jw w wn

n n
i j iw w w wn n

V
V V V

ω

ω

ω

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

⊗ ⊗ ⊗  =  
∈ ∈ ∈  

= Ψ Ψ = ⊗ ⊗ ⊗

 

A short notation would be , ,.., 11 2
.......n

i iw w w nn
φ ϕ ϕ= ⊗ ⊗ . 

The set of all vocabularies of any order is called t-
Lexicon t-L, and it is formed by the FOV and simple 
sentence vocabularies. 

 
1 1 1 2 2
1 2 1 2 2 3

2 2 2
...1 2 3 1 1 2

, ,..., , , ,...,
t L

, ,..., ,

w w w w w w wn
n

w w w w w w w w wn n n n

V V V V V

V V V V
−

 
 − =  
  

 

The set Φ will be a subset of t-L. 
Let }{ 1

1,...,1.,..,n i ni n Vφ ==
∈ . We say that 1 2, ,..., nφ φ φ  

are related linguistically in a n-order relationship and we 
call it 1 2( , ,..., )n nrφ φ φ ∈  if and only if 
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12... 12... 12...( ) ( ) ( )S n n n
n n nV V V∃⊗∈ ∨ ∃ ∨ ∃Ψ ∈  and 

12... 1 ....n
n nφ φΨ = ⊗ ⊗ . We will call LR  the whole of all 

linguistic relationships ; 1,2,...,Lr L n= . Let 

12... 12... 12..., ,.....,n m l
n m lV V V  be vocabularies of n, m,...,l orders, 

respectively. We say that 12... 12... 12..., ,.....,n m l
n m lV V V  are 

related linguistically and we will call it 

12... 12... 12...( , ,....., )n m l
n m l VV V V r∈  if and only if 

12... / ...h
hV h n m l= + + +  vocabulary exists so that 

 12... 12...

12... ... 12...

( ) ( ) ...

( ) ( ) ( )

n n m m
i n j m

l l S h h
k l ij k h

V V

V V A V

∃Ψ ∈ ∧ ∃Ψ ∈ ∧

∧ ∃Ψ ∈ ∧ ∃⊕∈ ∧ ∃ ∈
 

where ... ...h n m l
ij k i j kA = Ψ ⊕Ψ ⊕ ⊕Ψ .  

A complex sentence is each ordinary differential 
equation (ODE) or state equation, which is built by linear 
combination of simple sentences 

... ...h n m l
ij k i j kA = Ψ ⊕Ψ ⊕ ⊕Ψ . A text T = (L, A ) is the 

concatenation of complex sentences, determined by the 
argument A of the text or semantic links between these 
complex sentences.  

The Lexicon L of a text is the union between the t-
Lexicon and the differential Lexicon, L t L d L= − ∪ − . 
We can say that the text is written in a formal language, 
and we call it as L(MT).  

Mathematical modeling of complex structural systems 
is the process of producing texts of mathematical relations 
with the rules defined by the syntax of the L(MT) with a 
homomorphism in respect to a conceptual semiotic system 
and/or ontological reality. 

The past few years have seen a rapid development in 
novel high-throughput technologies that have created 
large-scale data. This data is commonly represented as 
networks, with nodes. A fundamental challenge to 
bioinformatics is how to interpret this wealth of data to 
elucidate the interaction of patterns and the biological 
characteristics. One significant purpose of this 
interpretation is to predict unknown functions. Although 
many approaches have been proposed in recent years, the 
challenge still remains how to reasonably and precisely 
measure the functional similarities to improve the 
prediction effectiveness (Yan, et. al., 2014; Marashi and 
Tefagh, 2014; Rubin, et. al., 2014; Zhu, et. al. 2010) 

2. Diversity and Information in a Text-
Model 

Consider the lexicon L. Consider a sign system S, 
representing a set of texts { }T on the lexicon L and 

{ }S T= . By definition, the sign system S consists of all 

texts generated by the argument A. being A 
hypothesis objective→ + . It is defined a textual space T = 

< A, S>. For signs of lexicon L, Lδ ∈ there is defined a 
number function ( )E δ , which is interpreted as the 
complexity of the generation of the sign δ in the argument 
A. With each text T S∈  there is associated a complexity 

of generation E(T), equal to the sum of the complexities 
appearing in the sign text 

 ( ) ( )( )
T V

E T E f Eδ
δ δ

δ δ
∈ ∈

= =∑ ∑  (1) 

being fδ the number of distinct appearances of the sign 
δ in the text t or frequency of δ . Obviously, fδ = Λ∑  
or length of the text (number of equal or different signs). 

2.1. Thermodynamic of Text 
Using a thermodynamic analogy, E(T) will be the 

energetic cost or energy of generation of the text T. 
Mandelbrot (1954, 1961), propose for the Zipf's Law 
(1949) the following:  

 ( )( )f r P r βρ −= Λ +  (2) 

being ,ρ β  two parameters depending of the text T and 
0β > , and P is determined by  

 ( ) ( ) ( )1 1 2 ...P β β βρ ρ ν ρ− − −− = + + + + + +  (3) 

ν  the number of different signs of the text T. the formula 
(2) can be written in probabilistic form as 

 ( )rp P r βρ −= Λ +  (4) 

The parameter β  is the inverse of temperature of 

information of the text T, 1
β

Θ = . The entropy H of the 

text, will be determinate by Shannon's formula 

logr rH p p= −∑ . 0, 0H H
β

∂ ∂
< >

∂ ∂Θ
. H continuously 

growths from 0 to logΛ when Θ  goes from 0 to +∞ . H 
determines Θ  for a given Λ . The Mandelbrot's criteria 
consists on transforming in 0 the variation free of 

( )A E Hδ= −Θ , that is to say, the energy excess if the 

energy for symbol in the formula of Shannon was 1
Θ

. A it 

will be the usable energy of Helmholtz, that is to say, the 
available energy for the dissipation, being ( )E δ the 
enthalpy or heating content of information. Therefore it 
can assimilate Λ as a text volume, and ,Λ Θ  as state 
variables. The existence of a hypothetical text volume will 
make suppose the existence of a "recipient" where the 
components of this text exercise a hypothetical pressure of 
information P. The entropy H measures how much 
information lacks to understand that structure has a system 
that is disordered for the observer of this system. From (2) 

 ( )
1

1
rf P r ρ−

ΘΛ = +   (5) 

1. The entropy H is a growing magnitude that goes of 0 
to +∞ . Therefore in this case the information I will 
be 0. 

2. If 0Θ = ⇒ Λ = ∞  and 0H = , that which is logical 
since the signs of very high range add very little to H 
or to ( )E δ . The information I will be 0. An infinite 
text is equal to an infinite volume, formed by infinite 
signs with a structure infinitely rigid without any 
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movement (appearance) of the signs. Then we will be 
before the absolute zero of information. The absolute 
zero of information will correspond to the maximum 
of information. 

3. If 0 1 1β< ≤ ⇒ ≤ Θ < ∞⇒ Λ→∞  therefore 
0H →  and the information will spread to be zero. 

The system will spread to be more and more 
structured. 

4. If 1 0rf P−Θ = ∞⇒ Λ = = , then therefore the 
information will be I = 0. The structure is zero. An 
empty volume corresponds to the empty text T = ∅ . 

5. To take information means to make the most 
complex, stronger structure and logically to go 
bringing near the temperature of information from 
the system to the absolute zero of information. 
Contrarily, to give information means to make the 
weakest structure and to bring near the temperature 
of information to the infinite. 

6. A system is informatively colder regarding other, 
when its temperature of information is more near the 
absolute zero of information that the other system 
that will be considered informatively hotter. 

7. If a system informatively cold contacts another 
informatively hotter, the first one will cool down 
more, at the same time that the second system warms, 
increasing its temperature of information.  

8. A system takes information of other when it makes 
more complex its structure and therefore it 
diminishes its temperature of information. 

2.2. The Hypothesis of "soup-state" 
Before the modeler prepares to create the text, a system 

exists constituted by the language that must use in the 
generation of this text, in our case the L(MT) language. 
This system is constituted by all primitive symbols (n-
order monoads, SLUNs) and its corresponding grammars. 
This way, in this initial state we can consider the existence 
of a singularity formed by an infinite number of elements 
that is in a minimum energy state and having such form 
that belongs together to the structure of language, but 
without any relationship to each other to constitute a text. 
In this state there will be a temperature of infinite 
information, a volume zero and infinite entropy. We have 
spoken of this singularity in the sense defined by the 
current cosmology (Davies, 1983), since it represents the 
absolute uncognisciability and where is possible to apply 
the Hawking's principle of absolute ignorance and it is 
therefore lacking of all information, that is to say I = 0 or 
H = +∞ . This singularity is in a state of maximum 
disorder or thermodynamic balance. If it is compared with 
a perfect gas, the most probable state in certain quantity of 
gas locked in a recipient, is the uniform density, the 
position of the individual molecules are at random, that is 
to say, any configuration among the high number of the 
possible ones, it will be equally probable. This would be 
the situation in that is our system before beginning to use 
the language, when it is only had this singularity to which 
have defined as "soup state", and is constituted by all the 
symbols of the language and generated by their 
corresponding grammar. This is the limit of our measure 
of information, the situation of maximum statistical 
entropy. 

2.3. The No Selective Contraption 
One of features essential of all text is its degree of 

organization that results notably in a certain specific 
abundance distribution, by a certain relative frequency 
specter, of the most abundant symbol to the rarest symbol. 
However, the relative frequency of a symbol is not other 
that its probability of apparition in a determined text, 
when the apparition is done at random by a technique or a 
no selective contraption. This probability is unknown. The 
theory of said no selective contraption is the following 
way: 

Suppose the Nature or Ontologic System like a discreet 
source ∆ by heart null generating data 

{ }1 2, ,..., N∆ = ∆ ∆ ∆ . This source emits a sequence of 
symbols belonging to a finite and fixes alphabet 
(Abramson, 1980) whose elements form a data structure. 
These symbols are chosen with a fixed law of probability 
and we will admit that they are statistically independent. 
The probabilities with which the symbols are presented 
are 1 2( ), ( ),..., ( )Np p p∆ ∆ ∆ . The quantity of information 
generated by the occurrence of i∆  is: 

 1( ) log log ( )
( )i i

i
I p

p
∆ = = − ∆

∆
  (6) 

It is also called value of surprise of symbol. The 
formula for the calculation of the mean quantity of 
information ( )I ∆  associated to the source ∆  is: 

 ( ) ( ) ( )i iI p I
∆

∆ = ∆ ⋅ ∆∑  (7) 

That is to say, they are taking the surprise values of 
each one of the possibilities of the source ∆  and they are 
pondered according to the occurrence probability ( )ip ∆ . 
The sum of all they will be the quantity of information 
generated by the source ∆ . To measure of 

( )ip ∆ approaches to 1, the quantity of information 
associated with the occurrence of the symbol i∆  spreads 
to 0. In the case limit in that the probability of the symbol 
is 1, the occurrence of i∆  doesn't generate any 
information. That is to say, information is not generated 
by the occurrence of symbols for which alternative 
possibilities don't exist. 

We will designate like Σ  to a receiver of information 
on ∆ . To Σ  will be denominated sign and it will be 
formed by the elements of the alphabet A-D, that is to say, 
the union of set W of characters used to express 
measurable attributes and to set Φ  of n-order monoads 
that are before the interaction in the " soup-state " (Figure 1). 

 

Figure 1. Source-reception process 

That way I( Σ ) is received information of ∆ or about 
∆ ?. ( )I∆ Σ will be used to designate this new information, 
indicating the subindex ∆  the part of I(Σ ) that received 
information is of ∆ . The information transmitted from ∆  
to Σ  is the total quantity of available information in Σ , 
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I( Σ ), fewer a quantity R or noise, and it will be expressed 
as: 

 ( ) ( )I I R∆ Σ = Σ −  (8) 

In the same way 

 ( ) ( )I I ε∆ Σ = ∆ −  (9) 

being ε the equivocity of the information generated in ∆  
which is not transmitted to Σ . The information generated 
in ∆  is divided in two parts: 

1. The part [ ]( )I∆ Σ  that is transmitted to ∆ . 
2. The part ε that is not transmitted or equivocity. At 
the same time, the information that there is in Σ  can be 
divided in a similar way in two parts:  

a. The one [ ]( )I∆ Σ  that represents the received 
information of ∆ . 

b. The remaining part whose source is not ∆  or noise 
R. An increase of R makes to be hidden a part of 
the sign Σ , and this way ( )I∆ Σ will decrease by 
means of the increase of the equivocity ε . 

If the noise increases the quantity of information that 
gets lost, it diminishes the quantity of transmitted 
information, but if it doesn't affect to ∆ , then ( )I∆ Σ  
continues being the same one.  

In the classic Theory of the Information (Abramson, 
1980), an equivalence settles down among R and ε, 
resultant of having chosen the set of possibilities of the 
source ∆  and of the receiver Σ  in such a way that 
( ) ( )I I∆ = Σ . If we imagine changes in the set of 

possibilities that define ( )I Σ  without the corresponding 

changes in the set of possibilities that define ( )I ∆  and 
vice versa, have not to exist a necessary equivalence 
among them. In case there was a maximum dependence 
among what happens in ∆  and what happens in Σ , then R 
= ε = 0 and the quantity of transmitted information ( )I∆ Σ  
will be highest and in this case ( ) ( )I I∆ Σ = Σ . 
Let ( / )i ip Σ ∆  be the conditional probability of iΣ  
given i∆ . One will be able to calculate the contribution of 

i∆ to the noise R by means of  

 ( / ) log ( / )i i i iR p p
∆

= − Σ ∆ ⋅ Σ ∆∑  (10) 

The equivocity ε will be calculated in a similar way 

 ( / ) log ( / )i i i ip pε
∆

= − ∆ Σ ⋅ ∆ Σ∑  (11) 

The flow of information depends on underlying causal 
processes. But it will be necessary to distinguish between 
the causal relationships and the existent informational 
among ∆ and Σ . If the real data were always the same 
ones, that is to say there was an experimental perseverance 
(what doesn't happen in the reality) there would be a strict 
causal dependence (strong) among ∆  and Σ . 

It happens that { }i∆  is cause of { }iΣ  depending on the 
real data. The sign jΣ  doesn't say what happened exactly 

in the source ∆ , while 1 2, ,..., nΣ Σ Σ  they say it. From an 
informational point of view, 1 2, ,..., nΣ Σ Σ  take more 

information than jΣ it has more than enough what 
happened in ∆ . Although, for a certain structure of data, 
each symbol possesses a significance or concrete 
adjustment, the temporary change of this structure, it can 
determine a change in the symbol that represents it, a 
change in its significance or adjustment of the symbol to 
the fact and in its significant one or decoding on the part 
of observer (Villacampa et al., 1999a). 

3. Text and Indetermination 
What one can know that is the relative frequency of 

every symbol in determined model-text, frequency that 
differs more or less its probability of occurrence or 
apparition in the text. However, according to the law of 
the great numbers, one knows that the observed relative 
frequency offers toward the probability of apparition, 
which is said, toward the relative frequency when the total 
strength or size of the sample increases. The symbol to 
which belongs the individual apparition is uncertain and 
the degree of uncertainty or indetermination on the result 
is function of the relative frequencies of symbol in the text, 
therefore of its diversity. Consider a lexicon L', 'L L⊆  . 
Suppose a text formed by S complex sentences (state 
equations) and in their right hand (functions of flow) of 
each one of them, their simple sentence are formed by 
SLUNs or CLUNs, generated through the different 
generative grammars starting from ω  variables or 
different primitive symbols. Each primitive monoad 
generates an associative field whose number of elements 

(SLUNs) comes given by 
1 1

1

nm
m

+ −
−

being m the number of 

first-order monoads (determined by the modeler) and n the 
order of the monoad of same or superior order to 2. 
(Villacampa & Usó-Domènech, 1999). The number of 
possible different SLUNs for complex sentence in a text T 
write in L' will be 

 
1 11

1

n

CS
mQ

m
ω

+ −
= + 

−  
 (12) 

The number of possible different SLUNs for text T 
write in L' will be then: 
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1

n

T
mQ S

m
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Let T a text write in L', with N the number total of 
symbols and TQ  the number of differnt symbols, such as 

TN Q≥ . If it only exists one symbol in L', 1TQ N= =  
there is not any indetermination because the result is 
certain. If it exists two symbols, one very abundant 1n  in 
its apparition in all texts and the other very rare 2n , 

1 2 1 22 , ,TQ N n n N n n= < > = + , one has the big odds to 
get the first and the indetermination is weak. The 
indetermination will be maximal if there are two symbol 
even having relative abundance of apparition, because in 
this case, there not are not more of odds to apparition one 
that the other. If instead of two symbols having the equal 
relative abundances 1 2n n=  and therefore of the identical 
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apparition probabilities, the indetermination will be even 
bigger. It is therefore important to be able to encode the 
degree of indetermination. One will first consider the case 
of a text T understanding the same abundant symbols n. 
The structure of T is compliant to the following diagram: 

Present symbol in the text T 1 2 3, , ,..., QTs s s s  

Probabilities of apparition or relative 
frequencies N n= ∑  

1 1 1 1, , ,...,
n n n n

 

The indetermination on the result of an apparition must 
be an increasing function of N, because as well as it has 
been said before, more N are big more it is difficult to 
predict the result of an apparition. Besides, the function 
must annul himself for N = 1. We will write therefore: 
Indetermination = f(N) and f(1) = 0. To determine the 
shape of function f(N), it is necessary to impose a 
supplementary condition. If in a text two symbols 

1 2, ,s s appear, with 1 2n n n= = , the result of an apparition 
not influencing on the other, the double apparition has n.n 
possible and also likely compositions. The corresponding 

indetermination is therefore ( )2f n . One will impose to be 

as the sum of the indetermination on each of apparitions. 
It comes back to impose to function f(n) to satisfy to the 

condition ( )2 2 ( )f n f n= . One demonstrates that the only 

function that satisfies to these various conditions at a time 
is the logarithmic function. One will define the 
indetermination therefore by the logarithm of the number 
of possible and also likely cases, either for an apparition: 
Indetermination = logn. The indetermination will be 
expressed therefore in bits by the logarithm of basis 2 of 
possible cases and likely: 2det min logIn er ation n= . In 
one text T as the one considered all symbol play an 
equivalent role and one can say that each of the present 
symbols introduced an element or an equal 
indetermination part to the total indetermination divided 

by n, either
2

1
logn n

. This expression can write himself 

again 
2

1
1logn
n

− , this shape having the advantage to 

make only intervene the relative frequency of symbol 1
n

. 

The total indetermination in bits 2log n , will be as the 
sum of n elements of indetermination introduced by every 
symbol: 

 2
1 1det min logIn er ation
n n

= −∑  (14) 

Actually, the words of ours text T doesn't correspond to 
the considered previously simplistic diagram. In a text 
understanding TQ  different symbols, each has a relative 
abundance different of others and the diagram is the next 
one: 

Present symbol in the text T 1 2 3, , ,..., QTs s s s  

Probabilities of apparition or relative 
frequencies 1 2 3, , ,..., QTp p p p  

And 

 2
1

det min log
QT

i i
i

In er ation p p
=

= −∑  (15) 

or Shannon's formula. 
The maximal value corresponds to the theoretical case, 

impossible in ours theory, where all symbol of the text 
would even have relative abundance n. One recovers: 

2det min max logIn er ation imal n= . The minimal value 

would be gotten in the case of a text T with N symbols 
where 1TQ − symbols are represented by only one 
individual and a symbol by all other individuals. The 
probability of apparition of the abundant symbol would be 
very neighbor of 1 and the probability of others apparition 
very neighbor of zero. The indetermination would be a 
sum of 1TQ −  terms all neighbors of zero. Finally, to a 
text of composed diversity given N symbols corresponds a 
indetermination of which the value expressed in bits is 
understood between 0 and 2log N . Here, N is equivalent 
to text volume Λ  and the indetermination is between 0 
and 2log Λ . 

We consider a text T understanding N individuals 
distributed between TQ different symbols having some 
effectives 1 2, ,..., QTn n n  like a composed message of 

different TQ  signals and that brings certain information 
on the composition and the structure of the source of 
reality of which has been extracted. There is a deep 
analogy between the two notions of information and 
indetermination. It understands himself comfortably if one 
considers information as the difference between the 
indetermination on the composition of the message before 
and after that it is known. If the message has K possible 
and also likely compositions, the indetermination before is 
equal to 2log K . The indetermination a posteriori is 
hopeless since the message being known, there is not any 
uncertainty on its composition. The information is 

2 2log 0 logK K− = . 
In a text of known composition, it is considered the 

assignment of an individual to some symbol like an 
elementary signal and the problem is to value the number 
of compositions possible and also likely of the message. 
So each individual was identifiable and that one noted the 
order in which individuals appeared, the text would be 
assimilated to a composed message of TQ  different signs 
placed the one following others in a determined order. The 
number of possible and also likely arrangements that one 
can get as arranging N objects the some following others 
is given by N!. Therefore, the number of possible and also 
likely compositions K will be: 
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! !
! !... !

!
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QT i

N NK
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=

= =
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The total information in bits will be equal to: 

 2 2 2
1

log log ! log !
QT

i
i

K N n
=

= −∑  (17) 

In the text T, and fixed by their argument (Villacampa 
et al. 1999a), will come certain the number of state 
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equations (complex sentences). Therefore, the differential 
symbol can be considered as not movable. However, the 
SLUNs form part of the flow equation or sentence where 
the possibility of exchanges can exist. 

If we call ( ) , 1,...,if s i N=  to the frequencies of each 
one of the SLUNs or symbol, then the number of possible 
and equally probable compositions for complex sentence 
can be calculated using the equation (16) 

 
( ) ( ) ( ) ( )1 2

1 1

! !
! !... !

!
QTQT i

N NK
f s f s f s

f s
=
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∏
 (18) 

and (17) 

 ( )2 2 2
1

log log ! log !
QT

i
i

K N f s
=

= −∑  (19) 

When the effectives iq  are all big and in the measure 
where they are it, one can replace the factorial ( )!if s by 
values approached given by the formula of Stirling 

( )( )( )! 2 ( )
f sf sf s f s

e
π  =  

 
.And when strengths are all 

very big by 
( )( )( )!

f sf sf s
e

 =  
 

. One has then: 

 ( ) ( )
2 2 2

1
log log log

QT i
i

i

f sNK N f s
e e=

= −∑  (20) 

And as ( )
1

QT
i

i
f s N

=
=∑  one can write  
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One doesn't change in anything the value of 2log K  
while multiplying each of terms under the sign ∑  by 

N
N

 and putting N then in factor. One gets so the 

expression 

 ( ) ( )
2 2

1
log log

QT i i

i

f s f s
K N

N N=
= − ∑  (22) 

Under this shape, one notes that the total information 
offers, when all effectives iq  are very big, toward a value 
that only depends of the relative frequencies and the 
strength on total N. It is therefore logical, since one it is 
interested to the structure of the text not to consider any 
information total, 2log K  but the average information by 
individual 
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This average information expresses in bits and under 
reserve that all ( )if s  are sufficiently big and offer 

toward the value 
( ) ( )

2
1

log
QT i i

i

f s f s
N N=

−∑  that is not other 

that the formula of Shannon: 

 ( ) ( )
2

1
log

QT i i
SH

i

f s f s
I

N N=
= −∑  (24) 

The first term of the equation (23) is similar to  

 ( ) ( )
2 2

1

1 log log
QT i i

i

f q f q
K

N N N=
= −∑  (25) 

and as the second term is the index of diversity of 
Shannon (24), the formula (25) will be: 

 2
1 logSHI K
N

=  (26) 

after (23) the following index of diversity will appear 
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index of diversity that is equivalent to the one obtained by 
Margalef (1958) for the species of an animal population in 
an ecosystem. 

The average information by individual, gives by the 
formula (27), offers toward information given by the 
formula (26) when all strengths of symbol are sufficiently 
big. In the practice, the two formulas give the same 
appreciably value when samples are of large size, but 
values are much more different than samples which total 
effectives are weaker.  

4. Conclusions 
The index of diversity is again an evaluation of the 

diversity since its value offers toward the one of I when N 
increases, but it is a biased evaluation because values of 

TI  are always lower to those given by the formula (26). 
One can convince itself by the following reasoning: To 
pass of (27) has (26), is sufficient to replace the factorial 
by their approached values deducted of the formula of 
Stirling. However this one always drives to 
approximations by default, of as much less good than he is 
about the less elevated numbers. In the formula (27), some 
of numbers that represent to the denominator are rare 
symbol frequencies and are not in general very elevated. 
The formula of Stirling conducted in this case to an 
evaluation by default of the denominator and by excess of 
the logarithm. In other terms, the formula (26) gives a 
value in bits superior to the one given by the formula (27) 
and gaps are of as much bigger than the size of the text is 
weaker. The bias comes from that, in the calculation of 
information formulated by (27), one not only knows to the 
departure the relative different symbols frequencies in the 
text, but as the strength total N. When one calculates the 
information signal by signal, the first will have, whatever 
is the chosen order, the probability of apparition is equal 
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to relative frequency in the text, and will provide an equal 
information quantity to the one calculated by the formula 
(26). But for the following signals, probabilities will 
change by the fact of the previous signal knowledge. In 
particular, the last signal will provide hopeless 
information because it will perfectly be determined. The 
average information by signal decreases regularly the first 
at last and the general average will be weaker than the 
value given by the formula (26). 
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