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Abstract. Given integers b and d, with d > 1 and |b| > 1, we construct even

nonseparable compactly supported refinable functions with dilation factor b
that generate multiresolution analyses on L2(Rd). These refinable functions

are nonseparable, in the sense that they cannot be expressed as the product of
two functions defined on lower dimensions. We use these scaling functions and

a slight generalization of a theorem of Lai and Stöckler to construct smooth

compactly supported tight framelets. Both the refinable functions and the
framelets they generate can be made as smooth as desired. Estimates for the

supports of these refinable functions and framelets, are given.

1. Introduction

Tight wavelet frames have recently become the focus of increased interest because
they can be computed and applied just as easily as orthonormal wavelets, but are
easier to construct. Moreover, since frames may have redundant terms, they are
better suited for data transmission.

Multivariate wavelets obtained by tensor products, not being anisotropic, may
introduce distortions in the processing of images. The purpose of this paper is to
find nonseparable tight wavelet frames with properties that may make them better
suited for image processing and other applications.

Han [11], and independently Ron and Shen [23], found necessary and sufficient
conditions for translates and dilates of a set of functions to be a tight wavelet frame.
Ron and Shen also formulated what is known as the Unitary Extension Principle
(UEP), which, in addition to its other applications, allowed Gröchenig and Ron
to construct, for any dilation matrix, compactly supported tight wavelet frames
with any desired degree of smoothness (see [10]). Articles studying nonseparable
frames or orthogonal wavelets include Ayache [1, 2, 3, 4], Karoui [15], Kovac̆ević and
Vetterli [17], Lai [19], Li [21], and Yang and Xue [30]. A closed form representation

valid for MRA orthonormal wavelets in L2(Rd) was obtained by Zalik. It follows
from [31, Theorem 3] and [32, Theorem 3 and Theorem 9]. No such representation is
currently known for tight wavelet frames. We point out that there is a typographical
error in [31, Theorem 3 and Theorem 4]: where it says orthogonal matrix should say
unitary matrix. In addition to the well–known work of Daubechies, the construction
of compactly supported orthonormal wavelets was also studied by Lai [18] and
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2 SCALING FUNCTIONS AND TIGHT FRAMELETS

Yang and Xue [29]. The construction of orthonormal wavelets can be seen as a
matrix extension problem (see for example Han and Zhuang [12, 13] and references
thereof), and the present article can be interpreted as the solution of a matrix
extension problem for constructing compactly supported tight framelets.

With the definition of the Fourier transform that we shall adopt in the next
section, the UEP may be formulated as follows:

Theorem A. Let B ∈ Rd×d be a dilation matrix preserving the lattice Zd. Let
φ ∈ L2(Rd) be compactly supported and refinable, i.e.

φ̂(BT t) = P (t)φ̂(t),

where P (t) is a trigonometric polynomial. Assume moreover that φ̂(0) = 1, |φ̂(t)| ≤
C(1 + |t|)−α for some α > d/2, and that there are trigonometric polynomials or
rational functions Q`, ` = 1, · · · , N , that satisfy the condition

P (t)P (t + j) +

N∑
`=1

Q`(t)Q`(t + j)(1)

=

{
1 if j = 0, .

0 if j ∈
(

(BT )−1(Zd)/Zd
)
\ Zd.

If

ψ̂`(B
T t) := Q`(t)φ̂(t), ` = 1, . . . , N,

then Ψ = {ψ1, . . . , ψN} is a tight wavelet frame in L2(Rd) with frame constant equal
to 1.

This version of the UEP is a consequence of [8, Proposition 1.9], except for the
value of the frame constant which follows from, e.g. [23, Theorem 6.5].

In [20], Lai and Stöckler provided two methods for constructing compactly sup-

ported tight wavelet frames in L2(Rd) for the dilation matrix 2Id×d. The first
method is for refinable functions whose masks P are quadrature mirror filters,
whereas the second method is for masks that satisfy the so–called sub-QMF condi-
tion:
Theorem B. ([20, Theorem 3.4]) Let B = 2Id×d, suppose that P (x) is a polynomial
that satisfies the condition ∑

γ∈{0,1/2}d
|P (t + γ)|2 ≤ 1,

and assume that there are nonnegative polynomials P̃j(t), j = 1, · · · ,M , such that∑
γ∈{0,1/2}d

|P (t + γ)|2 +

M∑
j=1

|P̃j(2t)|2 = 1.

Then there exist 2d + M trigonometric polynomials Q`. ` = 1, · · · , 2d + M , such
that P and the polynomials Q` satisfy (1).

Lai and Stöckler also gave a number of examples using multivariate box splines.
Similar results for vector–valued frames were obtained by Charina, Chui and He
[6].
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In the present paper we use Theorem A and a generalization of Theorem B to
construct another family of tight wavelet frames with compact support, for systems
with dilation matrix bId×d. For all the members of this family, the frame generators
are nonseparable and their masks may be obtained by spectral factorization. Also,
estimates for their supports and degrees of smoothness are given. We should also
point out that all members of this family have the same number of generators
for each given dimension d: |b|d + 2d. Thus, in contrast to [24, 25], this number is
independent of the degree of smoothness of the frame generators. Since the number
of generators for orthonormal wavelets associated with an MRA with dilation matrix
bId×d is |b|d − 1, we see that |b|d + 2d is asymptotically close for large values of d.

The remainder of this paper is organized as follows. The next section summa-
rizes the notation and definitions that will be used. Section 3 is devoted to the
construction of compactly supported nonseparable smooth scaling functions in a
b-MRA in L2(Rd), d > 1. In Section 4 we construct smooth tight wavelet frames of
compactly supported functions with any dilation factor b, from the scaling functions
defined in Section 3.

2. Notation and Definitions

The sets of strictly positive integers, integers, and real numbers will be denoted
by N, Z and R respectively, and the set of complex numbers by C. Given c ∈ R and
x = (x1, x2, . . . , xd) ∈ Rd, we define cx := (cx1, cx2, . . . , cxd) and c(Z) := {ck : k ∈
Z}. Given m ∈ N, we will also use the following notation: ∆m := {0, 1, . . . ,m−1},
and Γm := {0, 1/m, . . . , (m−1)/m}. By ∆d

m we mean the d–fold cartesian product

of ∆m with itself, and Γdm is similarly defined; t = (t1, . . . , td), y = (y1, . . . , yd),

γ = (γ1, . . . , γd), and δ = (δ1, . . . , δd) will be vectors in Rd, z = (z1, . . . , zd) =

x + iy ∈ Cd, and 0 will denote the zero vector in Rd. In what follows, b will always
be an integer such that m := |b| > 1.

A function φ ∈ L2(Rd), d > 1 is said to be separable if there exist a ∈ N,

1 ≤ a < d, and two functions ϕ ∈ L2(Ra) and θ ∈ L2(Rd−a) such that φ can be
expressed as

(2) φ(x1, · · · , xa, xa+1, · · · , xd) = ϕ(x1, · · · , xa)θ(xa+1, · · · , xd)

If φ ∈ L2(Rd) is not a separable function, then it is called a nonseparable function.
A sequence {φn}∞n=1 of elements in a separable Hilbert space H is a frame for H

if there exist constants C1, C2 > 0 such that

C1‖h‖2 ≤
∞∑
n=1

|〈h, φn〉|2 ≤ C2‖h‖2, ∀h ∈ H,

where 〈·, ·〉 denotes the inner product on H. The constants C1 and C2 are called
frame bounds. The definition implies that a frame is a complete set of elements in
H. A frame {φn}∞n=1 is tight if we can choose C1 = C2.

If there are constants C1, C2 > 0 such that for any sequence {αk}k∈Zd ∈ l2(Zn)

C1

∑
k∈Zd

|αk|2 ≤‖
∑
k∈Zd

αkφk ‖2≤ C2

∑
k∈Zd

|αk|2,

then {φn}∞n=1 is called a Riesz sequence. It is a Riesz basis of the closure of its
linear span.



4 SCALING FUNCTIONS AND TIGHT FRAMELETS

Let B ∈ Rd×d be a dilation matrix preserving the lattice Zd. A multiresolution
analysis (MRA) in L2(Rd) (generated by B) is a sequence {Vj ; j ∈ Z} of closed

linear subspaces of L2(Rd) such that:
(i) Vj ⊂ Vj+1 for every j ∈ Z.
(ii) For every j ∈ Z, f(x) ∈ Vj if and only if f(Bx) ∈ Vj+1.

(iii)
⋃
j∈Z Vj is dense in L2(Rd).

(iv) There exists a function φ ∈ V0, called a scaling function, such that { φ(·−k); k ∈
Zd } is a Riesz basis for V0.

Let B ∈ Rd×d be a dilation matrix preserving the lattice Zd. A set of functions
Ψ = {ψ1, . . . , ψn} ⊂ L2(Rd) is called a wavelet frame, or framelet, if the system

{|detB|j/2ψ`(Bj ·+k); j ∈ Z,k ∈ Zd, 1 ≤ ` ≤ n}

is a frame for L2(Rd). If this system is a tight frame for L2(Rd) then Ψ is called a
tight framelet.

Let b ∈ Z and |b| > 1. By an MRA with dilation factor b, or a b–MRA, in
L2(Rd), we mean a multiresolution analysis with dilation matrix bId×d, where Id×d
denotes the identity matrix on Rd.

The simplest way to construct an MRA in L2(Rd) is by multiplying scaling
functions of lower dimensions: assume that ϕ is a scaling function for a b–MRA
in L2(Ra), 1 ≤ a < d, and that θ is a scaling function for a b–MRA in L2(Rd−a).
Then the function φ defined as in (2) is the scaling function of a b–MRA in L2(Rd).

If φ is a scaling function of an MRA in L2(Rd), then conditions (i), (ii) ad (iv)
imply that φ is refinable, i.e.,

(3) φ̂(BT t) = P (t)φ̂(t) a.e. on Rd,

where the low pass filter P (t) is a Zd-periodic essentially bounded function.
Conversely, if φ is a refinable function and we define

(4) Vj := span{|detB|j/2φ(Bjx− k); k ∈ Z}, j ∈ Z,

we see that conditions (i) and (ii) in the definition of MRA are satisfied. Thus, we

say that a refinable function φ ∈ L2(Rd) generates an MRA if {φ(· − k); k ∈ Zd} is
a Riesz sequence and the subspaces Vj satisfy condition (iii).

We normalize the Fourier transform as follows:

f̂(t) :=

∫
Rd

f(x)e−2πix·tdx.

3. Construction of smooth nonseparable scaling functions

In this section we construct smooth nonseparable compactly supported scaling
functions of a b-MRA in L2(Rd), d > 1. We begin with

Proposition 1. Let m ∈ N and

(5) p(t) :=
1

m

∑
δ∈∆m

e−2πiδt =
1

m

e−2πimt − 1

e−2πit − 1
,
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let n1, n2 ∈ N with n1 < n2, and let the trigonometric polynomial P (t) in Rd be
defined by

(6) P (t) :=
1− i

2

 d∏
j=1

|p(tj)|2n1 + i

d∏
j=1

|p(tj)|2n2

 .

Then
(7)∑
γ∈Γd

m

|P (t+γ)|2 =
1

2

d∏
j=1

 ∑
γ∈Γm

|p(tj + γ)|4n1

+
1

2

d∏
j=1

 ∑
γ∈Γm

|p(tj + γ)|4n2

 ≤ 1.

Moreover, ∑
γ∈Γd

m

|P (t + γ)|2 < 1,

except for a countable set of points.

Proof. Let γ = (γ1, . . . , γd) and γ̃ = (γ2, . . . , γd). We have

∑
γ∈Γd

m

|P (t + γ)|2 =
∑

γ∈Γd
m

1

2

 d∏
j=1

|p(tj + γj)|4n1 +

d∏
j=1

|p(tj + γj)|4n2


=
∑
γ∈Γm

|p(t1 + γ)|4n1

 ∑
γ̃∈Γd−1

m

1

2
(

d∏
j=2

|p(tj + γj)|4n1)


+
∑
γ∈Γm

|p(t1 + γ)|4n2

 ∑
γ̃∈Γd−1

m

1

2
(

d∏
j=2

|p(tj + γj)|4n2)

 .

Repeating this procedure a finite number of times we obtain the desired identity in
(7), and the inequality follows from (5).

Finally note that (5) also implies that p(t) = 1 if and only if t ∈ Z. This implies

that the left–hand side of (7) is strictly less than 1 if and only if t /∈ Zd. �

The following statement may be found in ([28, Appendix A.2]). The proof is
straightforward and will be omitted.

Lemma C. Let C0 be the class of continuous functions in L2(Rd), and let Cr,
r = 1, 2, . . . be the class of functions f such that all partial derivatives of f of order
not greater than r are continuous and in L2(Rd). If

|f̂(t)| ≤ C(1 + |t|)−N−ε

for some integer N ≥ d and ε > 0, then f is in CN−d.
We now prove.

Proposition 2. Let b ∈ Z, assume that m := |b| > 1, and let P be defined by
(6) with n1 < n2. Then the functional equation (3) has a solution φ that has

the following properties: it is even, continuous, and square–integrable on Rd; if
2n1 > d + 1 it is in the continuity class C2n1−d−1; it has support in [−n2, n2]d.

Moreover, φ̂(0) = 1 and { φ(· − k); k ∈ Zd } is a Riesz sequence.
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Proof. For the dyadic case, the existence of a solution of (3) such that φ̂(0) = 1
follows from [5, Corollary 5.1]. The proof for arbitrary b is similar and will be
omitted. That φ is even follows by observing that P (t) is even and

φ̂(t) =

∞∏
j=1

P (b−jt).

Thus φ̂ is even, which implies that also φ is even.
Let c(t) denote the characteristic function of the set [0, 1]. Then

ĉ(t) = e−πit
sinπt

πt
.

Since

[0, 1) =

m−1⋃
k=0

[
k

m
,
k + 1

m

)
,

we readily see that

ĉ(mt) = p(t)ĉ(t).

But |p(t)|2 is an even function; therefore

(8)

∞∏
j=1

|p(b−jt)|2n =

∞∏
j=1

|p(m−jt)|2n =

∣∣∣∣ sinπtπt

∣∣∣∣2n .
Since

|P (t)| ≤
d∏
j=1

|p(tj)|2n1 ,

we have

(9) |φ̂(t)| ≤
d∏
j=1

(
sinπtj
πtj

)2n1

≤ K(1 + |t|)−2n1 .

Thus Lemma C implies that φ is in the continuity class C2n1−d−1.
Let

v(t) :=

d∏
j=1

c(tj),

V (t) :=
∑
k∈Zd

|v̂(t + k)|2,

and

Φ(t) :=
∑
k∈Zd

|φ̂(t + k)|2.

Since { c(· − k); k ∈ Zd } is an orthonormal sequence, we know that V (t) = 1 a.e.;
but (9) implies that Φ(t) ≤ V (t). Thus, Φ(t) ≤ 1 a.e. (This also follows from [26,
p. 113]) .

On the other hand

|P (t)| ≥
d∏
j=1

|p(tj)|2n2 ,
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and from (8) we see that

(10) |φ̂(t)| ≥
d∏
j=1

(
sinπtj
πtj

)2n2

.

Therefore,

Φ(t) ≥ |φ̂(t)|2 ≥ C > 0, a.e. in [− 1
2 ,

1
2 ]d.

Since Φ(t) is Zd–periodic, the preceding inequality holds on Zd, and we have es-
tablished that { φ(·−k); k ∈ Zd } is a Riesz sequence. It remains to prove that the
support of φ is in [−n2, n2]d. We will use an argument of Wojtaszczyk [28, p. 79].

The definition of p(t) in Proposition 1 implies that

|p(t)|2 =
1

m2
(

m−1∑
l=0

e−2πilt)(

m−1∑
j=0

e2πijt) =

m−1∑
k=−(m−1)

ake
−2πikt, ak ∈ R.

This implies that if n ∈ N, then

|p(t)|2n =

n(m−1)∑
k=−n(m−1)

cke
−2πikt, ck ∈ R,

which readily yields

P (t) =
∑
k∈Ω

αke
−2πikt, αk ∈ C,

where Ω = [−n2(m− 1), n2(m− 1)]d
⋂

Zd.
Given N ∈ N , let

ΠN (t) =

N∏
j=1

P (b−jt),

and observe that ΠN may be written as

ΠN (t) =
∑

k(1),...,k(N);k(j)∈Ω

αk(1) · · ·αk(N)e2πit(
∑N

j=1 b
−jk(j)).

Since k(j) = (k
(j)
1 , · · · , k(j)

d ) ∈ Zd with |k(j)
s | ≤ n2(m − 1), s = 1, · · · , d, then

0 ≤
∑N
j=1 |b−jk

(j)
s | ≤ 2n2(m− 1)

∑∞
j=1m

−j = n2. Hence,

(11)

N∑
j=1

b−jk(j) ∈ [−n2, n2]d.

Assume now that f is a function in the Schwartz class of Rd such that f̂(t) = 0
for every t in [−n2, n2]d. Bearing in mind that |ΠN (t)| ≤ 1 for every t in Rd and
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using the Lebesgue Dominated Convergence Theorem, we obtain:∫
Rd
φ(t)f̂(t)dt =

∫
Rd
φ̂(t)f(t)dt = lim

N−→∞

∫
Rd

ΠN (t)f(t)dt

= lim
N−→∞

∑
k(1),...,k(N);k(j)∈Ω

αk(1) · · ·αk(N)

∫
Rd
e−2πit(

∑N
j=1 b

−jk(j))f(t)dt

= lim
N−→∞

∑
k(1),...,k(N);k(j)∈ Ω

αk(1) · · ·αk(N) f̂(

N∑
j=1

m−jk(j)) = 0,

and we conclude that the support of φ is in [−n2, n2]d.
�

Our estimate for the support of φ may also be obtained from (11) using the
Paley–Wiener Theorem for several complex variables ([27, Theorem 4.9]).

From, e.g. [16, Theorem J], we obtain the following multivariate version of a
result that is well–known for the single variable and dyadic dilation case ([14, p.
46]):

Proposition D. Let Vj, j ∈ Z, be a sequence of closed subspaces in L2(Rd) satisfy-
ing conditions (i), (ii) and (iv) of the definition of b–MRA. Assume moreover that

the scaling function φ is such that the origin is a point of continuity of |φ̂|. Then⋃
j∈Zn Vj = L2(Rd) if and only if φ̂(0) 6= 0.
We thus have:

Proposition 3. Let φ be a function that satisfies the properties described in Propo-
sition 2. Then φ generates a b-MRA with low pass filter P .

Proof. Proposition 2 implies that {φ(· − k) : k ∈ Zd} is a Riesz sequence and that
φ and the trigonometric polynomial P satisfy the refinement equation (3) with
B = bId×d. This implies that Vj ⊂ Vj+1, for every j ∈ Z, where the subspaces Vj
are defined by (4) with B = bId×d. It remains to prove that

⋃
j∈Z Vj is dense in

L2(Rd). This follows from Proposition 1 and Proposition D. �

Proposition 4. Let P be defined by (6) with m ∈ N and n1 < n2 . Then there
do not exist an integer a, 0 < a < d, and two functions f(t1) and g(t2) defined on

L2(Ra) and L2(Rd−a) respectively and continuous at the origin, such that f(t1) is

Za–periodic, g(t2) is Zd−a–periodic, and

P (t1, · · · , ta, ta+1, · · · , td) = f(t1, · · · , ta)g(ta+1, · · · , td) for (t1, · · · , td) ∈ Rd.

Proof. We will argue by contradiction. Assume that there is an integer a, 1 ≤ a < d,
and two functions f(t) and g(t) as described in the statement of the proposition.

Then, for t = (t1, · · · , td) ∈ Rd,

(12)

d∏
s=1

|p(ts)|4n1 +

d∏
s=1

|p(ts)|4n2 = 2f2(t1, · · · , ta)g2(ta+1. · · · , td).

If (t1, · · · , ta) = (t1, · · · , t1) and (ta+1, · · · , td) = (td, · · · , td), where t1, td ∈ R, we
have

|p(t1)|4n1a|p(td)|4n1(d−a) + |p(t1)|4n2a|p(td)|4n2(d−a) = 2f2(t1, · · · , t1)g2(td, · · · , td).
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In particular, if td = 0

|p(t1)|4n1a + |p(t1)|4n2a = 2f2(t1, · · · , t1)g2(0, · · · , 0).(13)

Observe that g(0, · · · , 0) 6= 0 because 1 = f(0, · · · , 0)g(0, · · · , 0). Thus, substitut-
ing (13) into (12),

g2(0, · · · , 0)
(
|p(t1)|4n1a|p(td)|4n1(d−a) + |p(t1)|4n2a|p(td)|4n2(d−a)

)
=

2
(
|p(t1)|4n1a + |p(t1)|4n2a

)
g2(td, · · · , td).

Therefore

(14) |p(t1)|4n1a
(
g2(0, · · · , 0)|p(td)|4n1(d−a) − 2g2(td, · · · , td)

)
=

|p(t1)|4n2a
(
g2(0, · · · , 0)|p(td)|4n2(d−a) − 2g2(td, · · · , td)

)
.

Since |p|4n1 and |p|4n2 are different continuous functions, then at least one of the
sets

S1 := { t ∈ R : g2(0, · · · , 0)|p(t)|4n1(d−a) − 2g2(td, · · · , td) 6= 0 }
or

S2 := { t ∈ R : g2(0, · · · , 0)|p(t)|4n2(d−a) − 2g2(td, · · · , td) 6= 0 }
must be nonempty. Without essential loss of generality we may assume that S1 is
nonempty. Define Sp := { t ∈ [−1/2, 1/2] : p(t) 6= 0 }, and observe that Sp may
differ from [−1/2, 1/2] in at most finite number of points.

Thus, if td ∈ S1 and t1 ∈ Sp, t1 6= td, (14) yields

(15) |p(t1)|4(n1−n2)a =
g2(0, · · · , 0)|p(td)|4n2(d−a) − 2g2(td, · · · , td)
g2(0, · · · , 0)|p(td)|4n1(d−a) − 2g2(td, · · · , td)

.

Since the variables in (15) are separated, we conclude that there is a constant C
such that

|p(t1)|4(n1−n2)a = C.

In fact, C = 1 because

lim
t→0,t∈Sq

|p(t)|4(n1−n2)a = |p(0)|4(n1−n2)a = 1.

We have thus reached a contradiction. �

Combining Propositions 2, 3, and 4 we obtain

Theorem 1. Let φ be a function that satisfies the properties described in Propo-
sition 2. Then { φ(· − k); k ∈ Zd } is a Riesz sequence, and φ has the following
properties: it is an even, continuous and square–integrable nonseparable scaling
function of a b-MRA, with lowpass filter P (t), and its support is in [−n2, n2]d.
Moreover, if 2n1 > d+ 1, then φ is in the continuity class C2n1−d−1.

Proof. The only thing that needs to be established is that φ is nonseparable: all
the other statements follow directly from Propositions 2 and 3. We proceed by
contradiction. Assume there exist a ∈ N, 1 ≤ a < d, and two functions ϕ ∈ L2(Ra)

and θ ∈ L2(Rd−a) such that

(16) φ(x1, · · · , xa, xa+1, · · · , xd) = ϕ(x1, · · · , xa)θ(xa+1, · · · , xd) a.e.
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Since φ is compactly supported, also ϕ and θ must be compactly supported.

Thus φ̂, ϕ̂ and θ̂ are continuous, and (16) implies that

φ̂(t1, · · · , ta, ta+1, · · · , td) = ϕ̂(t1, · · · , ta)θ̂(ta+1, · · · , td).

Since 1 = φ̂(0) = ϕ̂(0, · · · , 0)θ̂(0, · · · , 0), then

ϕ̂(t1, · · · , ta) = [θ̂(0)]−1φ̂(t1, · · · , ta, 0, · · · , 0)

and

θ̂(ta+1, · · · , td) = [ϕ̂(0)]−1φ̂(0, · · · , 0, ta+1, · · · , td).

Observe that P (t1, · · · , ta, 0, · · · , 0) and P (0, · · · , 0, ta+1, · · · , td) are continuous
functions. Thus,

P (t1, · · · , ta, ta+1, · · · , td)φ̂(t1, · · · , ta, ta+1, · · · , td)

= φ̂(bt1, · · · , bta, bta+1, · · · , btd)

= ϕ̂(bt1, · · · , bta)θ̂(bta+1, · · · , btd)

= P (t1, · · · , ta, 0, · · · , 0)P (0, · · · , 0, ta+1, · · · , td)ϕ̂(t1, · · · , ta)θ̂(ta+1, · · · , td).

But (10) implies that φ̂(t) 6= 0 a.e. By continuity, we therefore conclude that

P (t1, · · · , ta, ta+1, · · · , td) = P (t1, · · · , ta, 0, · · · , 0)P (0, · · · , 0, ta+1, · · · , td),

in contradiction of Proposition 4. �

4. Construction of compactly supported tight framelets

Note that the property that { φ(· − k); k ∈ Zd } is a Riesz sequence is not used
in this section.

Using the scaling functions that we obtained in the previous section, we now
construct tight framelets Ψ = {ψ1, . . . , ψn} in L2(Rd), d > 1, with any dilation
factor b, such that functions ψ`, ` = 1, . . . , n, are smooth and compactly supported.
For this purpose we use a generalization of Theorem B for any dilation factor b.
The proof is identical and will be omitted.

Theorem 2. Let b ∈ Z, assume that m := |b| > 1, let P (t) be a trigonometric
polynomial defined on Rd that satisfies the condition∑

γ∈Γd
m

|P (t + γ)|2 ≤ 1,

and suppose that there exist trigonometric polynomials P̃1, . . . , P̃M such that

∑
γ∈Γd

m

|P (t + γ)|2 +

M∑
j=1

|P̃j(bt)|2 = 1.

Then there exist md + M trigonometric polynomials Q`. ` = 1, · · · ,md + M such
that P and the polynomials Q` satisfy (1).
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The following algorithm for obtaining the polynomials Q` is implicitly in the
proof of Theorem 2:

Let

P(t) :=
(
P (t + γ);γ ∈ Γdm

)T
,

and let

(17) M(t) := m−d/2
(
ei2πδ·(t+γ);γ ∈ Γdm, δ ∈∆d

m

)
be the polyphase matrix, where γ denotes the row index and δ denotes the column
index. Let the md × 1 matrix function G(t) be defined by

(18) G(t) :=MT (t)P(t) =
(
Lδ(bt); δ ∈∆d

m

)T
,

let N := md +M and let the N × 1 matrix function G(t) be defined by

G(t) :=
(
Lδ(bt); δ ∈∆d

m, P̃j(bt); 1 ≤ j ≤M
)T

,

and

Q̃(t) := IN×N − G(t)GT (t).

Let H(t) denote the first md ×N block matrix of Q̃(t), and

Q(t) :=M(t)H(t).

Then the polynomials Q1(t), . . . , QN (t) are the first row of Q(t).

We now need an auxiliary proposition.
Let h and v be trigonometric polynomials on R such that

|h(bt)|2 = 1−
∑
γ∈Γm

|p(t+ γ)|4n1 and |v(bt)|2 = 1−
∑
γ∈Γm

|p(t+ γ)|4n2 .

To see that these polynomials exist note that, for example,

1−
∑
γ∈Γm

|p(t+ γ)|4n1 ≥ 0,

and the assertion follows applying a lemma of Riesz (cf., e.g., [7, Lemma 6.1.3]), [22,
Lemma 10, p. 102]). A similar argument shows that there exist two trigonometric
polynomials u and w on R, such that

|u(bt)|2 =
∑
γ∈Γm

|p(t+ γ)|4n1 and |w(bt)|2 =
∑
γ∈Γm

|p(t+ γ)|4n2 .

The coefficients of the polynomials h, v, u and w may be obtained by spectral
factorization ([9]).

We have

Proposition 5. Let b ∈ Z, assume that m := |b| > 1, let p, n1, n2 and P be as in
Proposition 1, let the trigonometric polynomials h, v, u and w be as described in
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the preceding paragraph, let the trigonometric polynomials P̃j be defined by

P̃j(t) :=

√
2

2
h(tj)

d∏
s=j+1

u(ts), j = 1, · · · , d− 1,

P̃d(t) :=

√
2

2
h(td)

P̃d+j(t) :=

√
2

2
v(tj)

d∏
s=j+1

w(ts), j = 1, · · · , d− 1,

P̃2d(t) :=

√
2

2
v(td),

and let the trigonometric polynomials Lδ(bt), δ ∈∆d
m be defined by (18). Then

∑
δ∈∆d

m

|Lδ(t)|2 +

2d∑
j=1

|P̃j(t)|2 = 1.

Proof. By Proposition 1 we know that

∑
γ∈Γd

m

|P (t + γ)|2 < 1,

except for a countable set of points. We also have

∑
γ∈Γd

m

|P (t + γ)|2 +

2d∑
j=1

|P̃j(bt)|2

=
1

2

d∏
s=1

 ∑
γ∈Γm

|p(ts + γ)|4n1

+
1

2

d∏
s=1

 ∑
γ∈Γm

|p(ts + γ)|4n2


+

1

2

d−1∑
j=1

|h(btj)|2
d∏
s=j

|u(bts)|2 +
1

2
|h(btd)|2

+
1

2

d−1∑
j=1

|v(btj)|2
d∏
s=j

|w(bts)|2 +
1

2
|v(btd)|2
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=
1

2
(|u(bt1)|2 + |h(bt1)|2)

d∏
s=2

|u(bts)|2 +
1

2
(|w(bt1)|2 + |v(bt1)|2)

d∏
s=2

|w(bts)|2

+
1

2

d−1∑
j=2

|h(btj)|2
d∏

s=j+1

|u(bts)|2 +
1

2
|h(btd)|2

+
1

2

d−1∑
j=2

|v(btj)|2
d∏

s=j+1

|w(bts)|2 +
1

2
|v(btd)|2

=
1

2

d∏
s=2

|u(bts)|2 +
1

2

d∏
s=2

|w(bts)|2 +
1

2

d−1∑
j=2

|h(btj)|2
d∏

s=j+1

|u(bts)|2 +
1

2
|h(btd)|2

+
1

2

d−1∑
j=2

|v(btj)|2
d∏

s=j+1

|w(bts)|2 +
1

2
|v(btd)|2.

Repeating this procedure a finite number of times, we finally obtain∑
(ρ1,··· ,ρd)∈Γd

m

|P (t1 + ρ1, . . . , td + ρd)|2 +

2d∑
j=1

|P̃ (bt1, . . . , btd)|2

=
1

2
|u(btd)|2 +

1

2
|w(btd)|2 +

1

2
|h(btd)|2 +

1

2
|v(btd)|2 = 1,

i.e., ∑
γ∈Γd

m

|P (t + γ)|2 +

2d∑
j=1

|P̃j(bt)|2 = 1.

Finally, note that, since M(t) defined by (17) is unitary,∑
δ∈∆d

m

|Lδ(bt)|2 = PT (t)M(t)MT (t)P(t) =
∑

γ∈Γd
m

|P (t + γ)|2.

�

The following theorem describes the construction of a tight smooth framelet of
compact support for any dilation factor b.

Theorem 3. Let b ∈ Z be such that m := |b| > 1, let n1, n2 ∈ N with n1 <
n2 and 2n1 > d + 1, let N := md + 2d, and let the trigonometric polynomials
Q1(t), . . . , QN (t) be obtained by the algorithm described in Theorem 2 with P (t)

defined by (6) and the trigonometric polynomials P̃j(t), j = 1, . . . , 2d defined as
in Proposition 5. Let φ be a function that satisfies the properties described in
Proposition 2,

ψ̂`(B
T t) := Q`(t)φ̂(t), ` = 1, . . . , N,

and let Ψ = {ψ1, . . . , ψN} be the set of inverse Fourier transforms of the functions

ψ̂` defined in the preceding displayed identity. Then Ψ is a tight framelet in L2(Rd)
with dilation factor b and frame constant equal to 1, and the functions ψ`(t) are
square–integrable on Rd, have support in [−mn2,mn2]d, and are in the continuity
class C2n1−d−1.
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Proof. That Ψ = {ψ1, . . . , ψN} is a tight framelet follows from Proposition 5, The-
orem 2 and Theorem A.

Since the functions Q` are trigonometric polynomials and therefore bounded on
Rd, the smoothness of the functions ψ` follows from (9) and Lemma C.

If

In := [−(m− 1)n2, (m− 1)n2]d ∩ Zd,
then (6) and (1) imply that the polynomials Q` have representations of the form

Q`(t) =
∑
k∈In

αke
−2πik·t.

This implies that

ψ̂`(t) =
∑
k∈In

αkφ(t− k),

and since the support of φ is in [−n2, n2]d, we conclude that the supports of the
functions ψ`(t) are in [−mn2,mn2]d. �
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[10] K. Gröchenig, A. Ron, Tight compactly supported wavelet frames of arbitrarily high smooth-
ness, Proc. Amer. Math. Soc. 126 (1998) 1101–1107.

[11] B. Han, On dual wavelet tight frames, Applied Comput. Harmon. Anal. 4 (1997) 380–413.
[12] B. Han and X. Zhuang, Matrix extension with symmetry and its application to symmetric

orthonormal multiwavelets, SIAM J. Math. Anal. 42 (5) (2010), 2297–2317.
[13] B. Han and X. Zhuang, Algorithms for matrix extension and orthogonal filter banks over

algebraic number fields, Math. Comp. 82 (2013), 459–490.
[14] E. Hernández, G. Weiss; A first course on Wavelets, CRC Press Inc., 1996.

[15] A. Karoui, A note on the construction of nonseparable wavelet bases and multiwavelet matrix
filters of L2(Rn), where n ≥ 2, Electron. Res. Announc. of the Amer. Math. Soc. 9 (2003),

32–39.
[16] K. S. Kazarian, A. San Antolin, Characterization of scaling functions in a frame multireso-

lution analysis in H2
G, L. De Carli, K. Kazarian and M. Milman (Eds.), Topics in classical

analysis and applications in honor of Daniel Waterman, 118–140, World Sci. Publ., Hacken-

sack, NJ, 2008.
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