
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-26-2019

Cloud Workload Allocation Approaches for Quality of Service Cloud Workload Allocation Approaches for Quality of Service

Guarantee and Cybersecurity Risk Management Guarantee and Cybersecurity Risk Management

soamar homsi
shoms001@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,

Information Security Commons, Numerical Analysis and Scientific Computing Commons, OS and

Networks Commons, Software Engineering Commons, Statistics and Probability Commons, and the

Theory and Algorithms Commons

Recommended Citation Recommended Citation
homsi, soamar, "Cloud Workload Allocation Approaches for Quality of Service Guarantee and
Cybersecurity Risk Management" (2019). FIU Electronic Theses and Dissertations. 4031.
https://digitalcommons.fiu.edu/etd/4031

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.fiu.edu%2Fetd%2F4031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.fiu.edu%2Fetd%2F4031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.fiu.edu%2Fetd%2F4031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.fiu.edu%2Fetd%2F4031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.fiu.edu%2Fetd%2F4031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.fiu.edu%2Fetd%2F4031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.fiu.edu%2Fetd%2F4031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.fiu.edu%2Fetd%2F4031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.fiu.edu%2Fetd%2F4031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4031?utm_source=digitalcommons.fiu.edu%2Fetd%2F4031&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

CLOUD WORKLOAD ALLOCATION FOR QUALITY OF SERVICE GUARANTEE

AND CYBERSECURITY RISK MANAGEMENT

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Soamar Homsi

2019

To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Soamar Homsi, and entitled Cloud Workload Allocation for
Quality of Service Guarantee and Cybersecurity Risk Management, having been approved
in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Kemal Akkaya

Arif Selcuk Uluagac

Hai Deng

Jason Liu

Gang Quan, Major Professor

Date of Defense: March 01, 2019

The dissertation of Soamar Homsi is approved.

Dean John L. Volakis
College of Engineering and Computing

Andrés G. Gil
Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2019

ii

c© Copyright 2019 by Soamar Homsi

All rights reserved.

iii

DEDICATION

To my son, Noah Homsi.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to my academic advisor, Dr. Gang Quan, for his

guidance, and support during the years of my Ph.D. program. I also want to thank my

Ph.D. committee members, Dr. Kemal Akkaya, Dr. Arif Selcuk Uluagac, Dr. Hai Deng,

and Dr. Jason Liu for their time and valuable insights that significantly improved the

quality of this dissertation.

Further, I would love to show my appreciation to my industrial mentor, Dr. Laurent

Njilla, from the Air Force Research Laboratory (AFRL), Department of Defense, for

inspiring me to explore new challenging research ideas. I want to extend my thanks to

Mrs. Tracy DiMeo, Dr. Timothy S. Kroecker, Mr. Steven D Farr, Chief Dr. Douglas

Wynne, Mr. Wladimir Tirenin, and Chief Mr. Jame Perreta from the AFRL for the

encouragement and commitment in helping me establish and pursue a career.

I would like to thank Ms. Juan Yang and my brother, Dr. Yazan Homsi, as well for their

considerable assistance in editing this dissertation. Moreover, my graduate studies

wound not have been the same without my colleague, Dr. Gustavo Chaparro-Baquero,

who never hesitated to extend a hand whenever I needed help, and without my other

colleagues Dr. Shuo Liu, Dr. Qiushi Han, Dr. Tianyi Wang, and Dr. Shi Sha.

I am, most importantly, deeply grateful to my parents, my sisters, Dr. Yara and Dr. Aya

Homsi, and my son, Noah, who always supported me with love and encouragement

throughout my academic endeavor. Furthermore, I am genuinely thankful and indebted

to my brother, Dr. Moetaz Homsi, my second mother, Mrs. Maria Eladia Almonte, and

her family, my loving aunt Dr. Rajaa Harfoosh, and my uncle Dr. Rami Arfoosh for their

love and support.

Finally, this work is supported in part by (1) The Summer Fellowship Program for

Students with the Cyber Assurance Branch of the Air Force Research Laboratory, U.S.

Department of Defense, Rome, NY; (2) The seed program from the Florida Center for

v

Cybersecurity; (3) The National Science Foundation (NSF) under grants CNS-1423137,

CNS-1551661, CNS-1565474, and ECCS-1610471.

vi

ABSTRACT OF THE DISSERTATION

CLOUD WORKLOAD ALLOCATION FOR QUALITY OF SERVICE GUARANTEE

AND CYBERSECURITY RISK MANAGEMENT

by

Soamar Homsi

Florida International University, 2019

Miami, Florida

Professor Gang Quan, Major Professor

It has become a dominant trend in the industry to adopt the cloud computing technology

– thanks to its unique advantages in flexibility, scalability, elasticity and cost efficiency

– for providing online cloud services over the internet using large-scale data centers. In

the meantime, the relentless increase in demand for affordable and high-quality cloud

services, for individuals and businesses, has led to tremendously high power consump-

tion and operating expense levels and, thus, has posed crucial challenges on cloud ser-

vice providers in finding efficient resource allocation policies. Allowing several services

or Virtual Machines (VMs) to commonly share the cloud’s infrastructure enables cloud

providers to optimize resource usage, power consumption, and operating expense. How-

ever, servers sharing among users and VMs causes performance degradation and results

in cybersecurity risks. Consequently, how to develop efficient and effective resource man-

agement policies that can make the appropriate decisions to optimize the trade-off among

resource usage, service quality, and cybersecurity loss plays a vital role in the sustainable

future of cloud computing.

In this dissertation, we focus on cloud workload allocation problems for resource us-

age optimization subject to Quality of Service (QoS) guarantee and cybersecurity risk

constraints. To facilitate our research, we first develop a cloud computing prototype that

we utilize to empirically validate the performance of different proposed cloud resource

vii

management schemes under a close to practical, but also isolated and well-controlled,

environment. Second, we research the resource management policies for time-sensitive

cloud services with QoS guarantee. Based on the queuing model with reneging, we es-

tablish and formally prove a series of fundamental principles, between the timing charac-

teristics of cloud services and their resource demands, and based on which we introduce

several novel resource management algorithms that statically guarantee the QoS require-

ments for cloud users.

Third, we study the problem of mitigating the cybersecurity risks and losses in cloud

data centers via proposing secure cloud resource management strategies. We employ the

Game theory to model the VM-to-VM interdependent cybersecurity risks in cloud clus-

ters. We conduct a thorough analysis based on our game-theoretic model and establish

several algorithms for cybersecurity risk management. Specifically, we start our cyberse-

curity research from a simple case with only two types of VMs. We next extend it to a

more general case with an arbitrary number of VM types. Our intensive numerical and

experimental results show that our novel algorithms can significantly outperform the ex-

isting methodologies for large-scale cloud data centers in terms of optimizing resource

usage, cybersecurity loss, and computational effectiveness.

viii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Cloud computing . 2
1.1.1 What exactly is cloud computing? . 2
1.1.2 The uniqueness of cloud computing and its market potential 7
1.1.3 Cloud computing challenges . 10
1.2 Cloud resource management . 13
1.2.1 What is cloud resource management? . 13
1.2.2 The need for cloud resource management to provide QoS guarantee 14
1.2.3 The need for cloud resource management to minimize cybersecurity risks . 16
1.3 Research problem . 17
1.4 Our contributions . 18
1.5 Organization . 21

2. BACKGROUND AND RELATED WORK 22
2.1 Real-time scheduling . 22
2.2 Scheduling time-sensitive services in cloud platforms 24
2.2.1 Power-aware cloud resource management 25
2.2.2 Cloud resource allocation with QoS-awareness 27
2.3 VM allocation in cloud platforms . 29
2.3.1 Vector Bin Packing (VBP) based cloud resource allocation 30
2.3.2 Game theory-based cloud resource management 31
2.3.3 Cloud cybersecurity countermeasures using the Game theory 33
2.3.4 Cybersecurity-aware cloud resource allocation 34
2.4 Summary . 36

3. THE GREEN CLOUD COMPUTING PROTOTYPE (GCCP) 37
3.1 Motivation . 37
3.2 Platform characteristic . 38
3.2.1 GCCP’s hardware components . 39
3.2.2 GCCP’s software components . 40
3.3 How to deploy and utilize GCCP with actual cloud clusters 45
3.4 List of cloud and virtualization benchmarks that are readily deployable over

GCCP . 49
3.5 Summary . 50

4. WORKLOAD CONSOLIDATION FOR CLOUD DATA CENTERS WITH
GUARANTEED QUALITY OF SERVICE USING REQUEST RENEGING . 52

4.1 Introduction to the research problem . 52
4.2 System model . 58
4.2.1 Service model . 59

ix

4.2.2 Power model . 60
4.2.3 Problem definition . 61
4.3 Preliminaries . 61
4.3.1 Processing rate minimization for QoS guarantee using request reneging . . 61
4.3.2 Request multiplexing . 64
4.3.3 Request packing . 68
4.4 The Green Workload Packing and Consolidation (GWPC) algorithm with sta-

tistical guarantee . 71
4.5 Experimental validation . 72
4.5.1 Performance with request reneging . 73
4.5.2 Multiplexed vs. split request processing 76
4.5.3 Performance under different service utilizations 77
4.5.4 Performance under different server capacities 82
4.5.5 Validation using cloud benchmarks . 84
4.6 Summary . 90

5. SECURE ALLOCATIONS OF CRITICAL VMS IN CLOUD DATA CENTERS
WITH RELAXED AND CONSTRAINED RESOURCE USAGE AND POWER
CONSUMPTION . 93

5.1 Introduction to the research problem . 93
5.2 Related work . 96
5.3 System models . 99
5.3.1 Cloud cluster model . 100
5.3.2 Cloud service model . 100
5.4 Problem definition . 105
5.5 Security-aware allocation with unconstrained resource usage 105
5.6 Security-aware allocation with resource usage and power consumption con-

straints . 122
5.6.1 The VM-to-VM Interdependent Cybersecurity (IC) risk’s bounds 123
5.7 Numerical results . 133
5.8 Summary . 136

6. GAME THEORETIC-BASED APPROACHES FOR CYBERSECURITY-
AWARE VIRTUAL MACHINE PLACEMENT IN CLOUD CLUSTERS . . . 138

6.1 Introduction to the research problem . 138
6.2 Related work . 141
6.3 Cloud system model . 145
6.4 The mathematical programming formulation of the VM allocation problems . 154
6.5 Finding the optimal VM allocation strategy using Nash Equilibrium (NE)

general search algorithms . 157
6.5.1 Obtaining the optimal VM allocation solution using the Minimax method . 161
6.5.2 MP-based implementation of the Support Testing and Enumerating (STE)

algorithm . 164

x

6.6 Game theoretical analysis of the security-aware VM allocation problems . . . 168
6.7 Game theoretic approaches for security-aware VM allocation strategies . . . 175
6.7.1 Nash Equilibrium-based VM (NEVM) allocation algorithm 175
6.7.2 The Primary VM-based bin-packing (PVM) algorithm 177
6.8 Experimental validation . 180
6.8.1 Simulation setup . 181
6.8.2 Studying the performance of the mathematical programs MPL and MPR . . 183
6.8.3 Studying the performance of the NEVM algorithm 184
6.8.4 Performance evaluation of PVM using clusters with small numbers of VMs

and servers . 187
6.8.5 Performance evaluation of PVM under clusters with moderate numbers of

VMs and servers . 189
6.8.6 Performance evaluation of PVM under clusters with a large number of VMs 195
6.9 Summary . 200

7. CONCLUSION AND FUTURE WORK . 202
7.1 Summary . 202
7.2 Future work . 205
7.3 Dynamic allocation strategies with QoS guarantee in heterogeneous cloud

platforms . 205
7.4 Cloud workload modeling and analysis . 207
7.5 Game-theoretical based VM live migration in cloud clusters with cybersecu-

rity awareness . 207

BIBLIOGRAPHY . 209

VITA . 227

xi

LIST OF TABLES

TABLE PAGE

4.1 Processing rate comparison with different requests packing strategies 68

4.2 Power-saving performance of GWPC with different server capacities 89

xii

LIST OF FIGURES

FIGURE PAGE

1.1 The characteristics of cloud computing [1]. This figure lists the five major
characteristics of cloud computing according to the National Institute of
Standards and Technology (NIST). 3

1.2 The cloud service models [2]. This figure illustrates the three cloud ser-
vice models, i.e., Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). 5

1.3 Examples of public cloud service providers [3] 6

1.4 Rapid growth of cloud computing [4]. This figure shows the average com-
pound growth of cloud computing between the years 2015 and 2020. . . 9

1.5 Data center’s IT spending according to the deployment type [5]. This figure
shows that the IT spending in cloud data centers has been increasing
by 15.3% each year and the total IT spending of cloud data centers is
expected to reach $41.7B in 2021 according to reports by IDC [5]. 10

3.1 High-level representation of the Green Cloud Computing Prototype (GCCP).
The cloud prototype consists of four functional modules that are imple-
mented in Java and running on management nodes. The system workflow
is automated and controlled using Python scripts at the system level, and
bash scripts at the operating system level. 39

3.2 Unified Workload Modeling Engine (UWME). UWME is essentially a server/
client model program that can generate workloads with different stress
levels. 41

3.3 Physical infrastructure specifications for a typical middle-size cloud cluster . 46

3.4 GCCP’s high availability deployment model. Deploying a cloud orchestra-
tor (e.g., OpenStack) using load balancing and controller redundancy as
recommended by Mirantis [6] and Rackspace [7]. 47

4.1 Service model . 62

4.2 Processing models . 65

4.3 The Green Workload Packing and Consolidation (GWPC) algorithm 72

4.4 Minimum required processing rates for guaranteed QoS using M/M/1 queue
model with and without reneging for (a) S1 and (b) S2 cloud service types 73

4.5 Response time comparison for guaranteed QoS using M/M/1 queue model
with and without reneging for (a) S1 and (b) S2 cloud service types 73

4.6 Performance of completion ratios between request multiplexing and splitting
using requests of (a) S1 and (b) S2 cloud service types 78

xiii

4.7 Performance of average response times between request multiplexing and
splitting using requests of (a) S1 and (b) S2 cloud service types 78

4.8 Power-saving performance normalized to that of SPT for S1 : 128× 128
MMUL service type with different deadline ranges 79

4.9 Power-saving performance normalized to that of SPT for S2 : 1×64 1-D FFT
service type with different deadline ranges 80

4.10 Processing rate performance normalized to that of SPT for S1 : 128× 128
MMUL service type with different deadline ranges 81

4.11 Processing rate performance normalized to that of SPT for S2 : 1× 64 1-D
FFT service type with different deadline ranges 82

4.12 Power-saving performance normalized to that of SPT for S1 : 128× 128
MMUL service type with different server capacities 85

4.13 Power-saving performance normalized to that of SPT for S1 : 1×64 1-D FFT
service type with different server capacities. 86

4.14 Processing rate performance normalized to that of SPT for S1 : 128× 128
MMUL service type with different server capacities 87

4.15 Processing rate performance normalized to that of SPT for S1 : 1× 64 1-D
FFT service type with different server capacities. 88

4.16 Get’s (a) and Set’s (b) average response times under different arrival rates
with and without request reneging . 90

4.17 Energy-saving performance of GWPC normalized to that of SPT using Get’s
and Set’s request classes under various QoS conditions 91

5.1 A cloud cluster model. The cluster consists of h hypervisors, each of which
is hosted on a physical server Si; i = 1,2, ...,h. A server has a processing
rate capacity Ci = C MIPS., utilization Ui, and power consumption Pi.
The cluster hosts n Non-critical VMs (e.g., NV M) and m Critical VM
(e.g., CV Ms), that is {NV M1, NV M2, ...,NV Mn} and {CV M1, CV M2,
...,CV Mm}, respectively. `T , qT , and cT are the maximum security loss
after a successful attack on a V MT , the security level, i.e., the success-
ful attack probability on a V MT , and the processing rate requirements of
V MT ; where V MT = NV M or V MT =CV M. qh is the probability of suc-
cessfully compromising any hypervisor after a successful direct attack on
any of its hosted VMs. 99

5.2 The zero-sum security game in normal form 106

5.3 The non-zero-sum security game in normal form 122

5.4 Trade-off optimization between cybersecurity risks and cost savings. 125

xiv

5.5 The provider’s payoff performance . 135

6.1 A cloud cluster. The cluster has n hypervisors that are hosted on the n phys-
ical servers Sr = {Si; i = 1,2, ...,n}. Each server has a maximum pro-
cessing rate capacity Ci = C in Million Instructions Per Second (MIPS),
a processing rate utilization Ui, power consumption Pi, and operating
expense Ei (e.g., server costs, security investment, maintenance, etc.).
The cluster hosts m VMs (e.g., M = {Vj; j = 1,2, ...,m}). A VM (e.g.,
Vj) is characterized by three parameters, i.e. (Vj = {c j,q j, ` j}); where
(c j ≤ C) is the processing rate required by Vj; q j is the probability that
Vj could be directly attacked and compromised; ` j is the provider’s max-
imum security loss if Vj is compromised. 146

6.2 Illustration of the different ways of consolidating three VMs onto a three-
server cloud cluster . 150

6.3 The size of the provider’s pure strategy support vector with the increase of
the numbers of VMs and servers . 151

6.4 Enumerating the different ways of allocating m = {1,2, ...,or16} different
VMs to n = {1,2, ..., or 16} servers . 153

6.5 The MPL algorithm . 154

6.6 The MPR algorithm . 156

6.7 MP-based implementation of the attacker’s maximin problem 163

6.8 MP-based implementation of the provider’s minimax problem 163

6.9 MP-based implementation of the STE algorithm 166

6.10 Calculating the provider’s best response uv 166

6.11 Calculating the attacker’s best response ua 167

6.12 Nash Equilibrium-based VM (NEVM) allocation algorithm 176

6.13 The Primary VM-based (PVM) bin-packing algorithm 178

6.14 The performance of the mathematical programs MPL and MPR 185

6.15 The performance of NEVM algorithm . 186

6.16 Performance evaluation of PVM with small number of VMs and servers . . . 190

6.17 Computation time performance of PVM with fair numbers of VMs and servers.
Vertical axis has logarithmic units in seconds 191

6.18 The WPC loss performance of PVM with fair numbers of VMs and servers . 192

xv

6.19 The overall loss and cost performance of PVM with fair number of servers
under different server’s capacities . 193

6.20 The performance of PVM with large numbers of VMs and servers 196

6.21 The performance of PVM in optimizing resource usage under different cy-
bersecurity thresholds . 197

6.22 The feasibility performance of PVM when optimizing resource usage under
different cybersecurity thresholds . 198

xvi

CHAPTER 1

INTRODUCTION

Joining cloud computing market [8–16] has recently become the dominant trend for small

and large companies to continuously deliver affordable and high-quality business services

over the internet. Cloud computing notably minimizes the Information Technology (IT)

infrastructure expense by eliminating the necessity for any additional hardware and soft-

ware purchases and maintenance cost [17]. Cloud computing supplies a commonly shared

pool of on-demand, scalable, and elastic IT resources and services using a pay-per-use

pricing model [18, 19]. In the meantime, the constant increase in desire for affordable

cloud services with stringent service qualities and high-security levels has posed critical

challenges on cloud service providers in finding efficient resource allocation policies ca-

pable of optimizing the trade-off among energy consumption, operating expense, quality

of service, and cybersecurity risks [20, 21]. One standard approach that cloud providers

adopt to maximize resource usage is Virtual Machine (VM) multiplexing in which they

pack several VMs on the same server. Allowing multiple applications and VMs, with

different resource and cybersecurity requirements, to share the same cloud infrastructure

components, notwithstanding, results in performance degradation of cloud services and

interdependent cybersecurity IC risks [20–23]. Cloud providers henceforth need efficient

resource allocation policies with multi-objective goals in order to thrive in such an ever-

expanding and competing cloud computing market [24].

In this chapter, we give a brief introduction about the cloud computing technology,

its unique characteristics, and its importance to each sector in our modern life. We then

discuss the urgent need of cloud service providers for efficient and effective resource man-

agement methods that can provide affordable and secure cloud services with guaranteed

Quality of Service (QoS) for cloud users. We define our research problem afterward and

1

summarize our contributions. Finally, we describe the organization of this dissertation at

the end of this chapter.

1.1 Cloud computing

Cloud computing offers a commonly shared pool of on-demand, scalable, and elastic

IT resources and services (e.g., processing, network, software, information, and storage)

via a pay-per-use pricing model [18, 19]. Cloud service providers make their services

available to cloud consumers using web-based applications, and accessible through a web

browser, as if those applications were locally installed on their own computers [25]. To-

day, cloud computing has grown as one of the most prominent and influencing computing

paradigms for managing and delivering services over the internet.

1.1.1 What exactly is cloud computing?

After years of work and more than fifteen drafts, the National Institute of Standards and

Technology’s (NIST) [18] eventually issued the sixteenth and final definition of the cloud

computing paradigm in 2011. The NIST defines cloud computing (e.g., NIST Special Pub-

lication 800-145)) as “a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications, and services) that can be rapidly provisioned and released with mini-

mal management effort or service provider interaction. This cloud model is composed of

five essential characteristics, three service models, and four deployment models.”

As Fig. 1.1 illustrates, the five unique characteristics of cloud computing, according

to NIST, are as follwos:

2

Figure 1.1: The characteristics of cloud computing [1]. This figure lists the five major characteris-
tics of cloud computing according to the National Institute of Standards and Technology (NIST).

• On-demand self-service

Cloud users can automatically provision as much computing resources as needed

without the service provider’s interaction [8, 26].

• Broad network access

Cloud services are made available over any network connected to the internet and

are accessible through any computing device, such as mobile devices, personal

computers, and servers [27].

• Resource pooling

Cloud service providers aggregate cloud computing physical and virtual resources

into resource pools. Providers subsequently assign or reassign each pool to a group

of cloud users, i.e., a multi-tenant model. Cloud users have no information about

the actual geographical location of their resource pools [28].

3

• Rapid elasticity

Service providers can resiliently allocate and release computing resources to ac-

commodate consumers’ fluctuating demands according to peak business hours. This

rapid provisioning process not only saves cloud users the need to invest in a private

IT infrastructure but also grants them access to a virtually unlimited amount of

computing resources anytime and anywhere [29].

• Measured service

Cloud providers implement online metering and pricing tools that are capable of

dynamically monitoring and measuring the usage of resources, i.e., a pay-per-use

pricing model. Such metering and pricing tools provide transparency for both ser-

vice providers and users about resource utilization and billing information, respec-

tively [30].

Cloud platforms can be classified according to its service model or according to its

deployment model. The major cloud service models, that are illustrated in Fig. 1.2, are:

• Infrastructure as a Service (IaaS)

Service providers offer businesses and individuals on-demand computing resources

(e.g., storage, processing, etc.) accessible over a network to optimize the IT costs

of cloud users [12].

• Platform as a Service (PaaS)

In the platform service model, cloud service providers grant cloud users access

to online development environments with powerful and capable supporting infras-

tructure. The PaaS services thus enable programmers and developers to affordably

produce and deliver quality software solutions, from their homes, without incurring

any powerful servers or costly software licenses [31].

4

Figure 1.2: The cloud service models [2]. This figure illustrates the three cloud service models,
i.e., Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS).

• Software as a Service (SaaS)

End-users can leverage the on-demand cloud services that are available via web

pages or through Application Program Interfaces (APIs) and are accessible over

the Internet [32].

In this dissertation, we concentrate on designing efficient and effective cloud allo-

cation strategies in order to optimize cloud resource usage while providing cloud ser-

vices for cloud users with guaranteed quality levels, regardless of the cloud deployment

model in-use. The NIST definition lists the following four general cloud deployment

models [18]:

• Public Clouds

A public cloud is an openly available cloud platform that is owned and operated

by a third-party [33]. Examples of public clouds include Amazon Elastic Com-

5

Figure 1.3: Examples of public cloud service providers [3]

pute (EC2) [31], IBM’s Blue Cloud, Sun Cloud, Google AppEngine, and Windows

Azure Services Platform, i.e., Fig. 1.3.

• Community Clouds

A community cloud is a public cloud, but its access is limited to a particular collec-

tion of cloud consumers [8].

• Private Clouds

A private cloud is a cloud platform that is owned and managed by a single organi-

zation. Access to private cloud services is limited to the employees and clients of

the organization that runs and owns the private cloud platform [34].

• Hybrid Clouds

A hybrid cloud is a platform that combines two or more different deployment mod-

els. For instance, an organization can store its sensitive data on its own cloud

platform, while it can offer its business services to its client using public cloud

platforms [17].

6

To understand the significant role of cloud computing in today’s IT-based market, we

should first examine the unique features of cloud computing as opposed to those from

other computing paradigms.

1.1.2 The uniqueness of cloud computing and its market potential

We have learned so far that cloud computing offers plenty of advantages for individuals

and organizations. Moreover, the unique features of cloud computing cause the annual

growth of the cloud computing market to continuously increase year after year compared

to the market of other computing paradigms [4].

Unlike the application-oriented-based supercomputing and cluster computing, cloud

computing is a service-oriented utility computing with virtualization technology [34].

Utility computing is a business model that attracts cloud customers using a pay-per-use

pricing model [35], [36]. Cloud computing, thus, supplies consumers with on-demand

computing resources similar to those services provided by public utilities, such as elec-

tricity [17,19]. Cloud providers hence equip each cloud cluster with innovative metering,

monitoring, and billing tools. Amazon, Sun, and IBM are examples of companies that

utilize their cloud infrastructure to offer Utility computing services publicly [34]. For

instance, Amazon, i.e., AWS, offers pay-by-hour utility compute services using EC2 and

utility pay-by-usage storage services using the Simple Storage Service (S3) [37].

Cloud consumers can quickly provision as much computing resources as needed with-

out the service provider’s direct intervention, knowledge about the infrastructure, or skills

to utilize cloud services [9, 34]. The process of allocating cloud resources to consumers

seems similar to hosting online applications using the service-oriented web hosting scheme

over distributed computing platforms [17]. However, distributed computing does not rely

on vastly scalable computing infrastructure that is spread across several countries or conti-

7

nents, as the cloud computing infrastructure that is supported by several large-scale cloud

data centers [17].

Several scholars argue that cloud computing emerged out of grid computing as a re-

sult of the transfer from the focus on providing physical computing resources with high

performance to the emphasis on delivering economy-based abstracted resources and ser-

vices [17]. Furthermore, grid computing is different from cloud computing in its founda-

tion and structure, i.e., the grid technology relies on standard, well-documented protocols,

and accessible interfaces to deliver notable qualities of computing service [38].

Resource sharing in cloud data centers significantly reduces energy cost and operating

expense for cloud consumers [19]. Governments and businesses replace their private

data centers with the cloud’s remote infrastructure [17]. The U.S. Office of Management

and Budget (OMB) has issued guidance to reduce the number of federal, private data

centers starting in 2010, as reported in [39]. The goal is to shift most of the critical and

non-critical IT workload to cloud data centers to save energy costs via the adoption of

proficient cloud resource management policies. Unwise workload allocation practices in

traditional data centers result in low server utilization and high power consumption per

consumer, compared to (65%) cloud’s server utilization and (84%) power consumption

per cloud’s consumer as reported by the Data Center Efficiency Assessment from the

Natural Resources Defense Council in 2014. Traditional data centers are “duplicative,

costly and complex”, as reported in [40], causing the annual electricity cost to increase by

2.5% each year over the last 20 years [41]. The scalable and flexible cloud infrastructure

optimizes resource usage and server utilization by adopting adequate resource-sharing

policies, such as server consolidation.

The scalable and elastic cloud infrastructure likewise reliably and affordably fulfills

the increasing demands for cloud users. For example, cloud computing provides small

8

Figure 1.4: Rapid growth of cloud computing [4]. This figure shows the average compound growth
of cloud computing between the years 2015 and 2020.

businesses with the tools required to compete with middle-sized and large-sized organi-

zations via saving them the cost of investing in a private IT infrastructure [34].

The unique features of cloud computing, which we described earlier, have been at-

tracting more and more businesses and organizations to make the transition to the cloud-

based flourishing market.

It is unsurprising, thereupon, that several studies predict major growth in the adoption

of cloud computing in the next several years. According to a study done by Forbes [4],

the cloud computing market is expected to reach $162B in 2020 attaining a Compound

Annual Growth Rate (CAGR) of 19% compared to the $67B in 2015 at 3% CARG, as

illustrated in Fig. 1.4.

On the other hand, the rapid growth of the cloud market calls for comparable expan-

sion in the size and spending of the cloud infrastructure. Fig. 1.5 illustrates data center’s

IT spending according to deployment type [5]. The IT spending in cloud data centers has

been increasing by 15.3% each year, and the total IT spending of cloud data centers is

expected to reach $41.7B in 2021, according to IDC [5].

9

Figure 1.5: Data center’s IT spending according to the deployment type [5]. This figure shows
that the IT spending in cloud data centers has been increasing by 15.3% each year and the total
IT spending of cloud data centers is expected to reach $41.7B in 2021 according to reports by
IDC [5].

Although cloud computing provides irresistible benefits, it raises many concerns in-

cluding high power consumption, low resource utilization, performance degradation as a

result of resource sharing, and cybersecurity risks. Those challenges arise as a result of

the continuous expansion of cloud data centers and the limitations of the current cloud

resource management policies, as we discuss in the next section [42–44]. Specifically,

we first define cloud resource management. We then argue the critical role of efficient

cloud workload allocation strategies in providing cloud services with QoS guarantee and

minimized cybersecurity risks.

1.1.3 Cloud computing challenges

To continue offering compelling advantages and cost-saving options for cloud users, cloud

service providers have to face the following major cloud computing’s challenges:

10

• Power consumption and energy cost

Excessive power consumption and energy cost are among the principal concerns

in cloud data centers. Cloud service providers endeavor to supply the markets with

more reliable, yet less costly, services to contribute to a modern world that demands

Everything as a Service (EaaS) [15]. Whereas the price of online services decreases

and the performance of computing systems increases at a fast rate, the performance-

per-watt of computing components increases at a much slower rate [45]. As an

example, in 2013, the annual electricity consumption of data centers in the United

States was close to 91 billion KiloWatt Hour (KWH), which is larger than the

annual amount of electrical power required by most countries [46]. Thereupon, ser-

vice providers are taxed by looming energy bills as they try to produce satisfactory

QoS guarantee. Such a consumption rate of electricity is not only a cost problem

but also a serious threat to the environment as a result of the large amounts of car-

bon dioxide emissions during powering and cooling cloud data centers [46]. It is

imperative thereupon for service cloud providers to adopt energy-aware resource

allocation strategies that minimize power consumption and electricity cost in cloud

data centers [47].

• IT-based operating expense

The provider’s IT operating spending in cloud data centers (e.g., servers, software,

licenses, network equipment, etc.) is expected to increase 15.3% each year, after

2017, to reach $41.7B in 2021, according to the Worldwide Cloud IT Infrastruc-

ture Market Forecast, as illustrated in Fig. 1.5. Server consolidation allows several

services or VMs to share the same server to optimize resource usage [48]. Shar-

ing the same resource type, among several applications and users, unfortunately,

causes performance degradation which affects the quality levels of cloud services

and results in IC risks [33].

11

• Service Level Agreement (SLA)

The cloud service provider and consumers negotiate preferred quality levels for

cloud services (i.e., QoS), under which their satisfaction is guaranteed. The nego-

tiation eventually ends in a Service Level Agreement (SLA) [49]. Therefore, the

cloud service provider must guarantee QoS conditions for his/her consumers, i.e.,

provides a QoS guarantee. Maintaining redundant computing resources cannot al-

ways ensure the QoS conditions for cloud users since it cannot adaptively scale up

or down according to the abrupt changes in the cloud workload arrival and execu-

tion rates [32,47,49]. It can also lead to tremendously high power consumption and

energy cost due to the low resource utilization [24]. Cloud service providers conse-

quently need sound resource management policies that can swiftly and judiciously

make allocation decisions while ensuring the QoS guarantee for cloud consumers.

• Low resource utilization

Low resource utilization [50] is a prevailing problem in cloud data centers, and is a

major leading factor to their high power consumption and increased operating cost

[45]. For example, the utilization of Google’s servers is less than 50% on average

[21]. Maximizing resource utilization becomes more critical when performance

must meet a defined satisfactory level of service given by QoS conditions. The

challenge is hence how to allocate the cloud’s workload in a way that maximizes

resource usage and guarantees the QoS requirements.

• Cybersecurity risks

Although cloud computing provides interesting solutions to individuals and orga-

nizations, cloud computing, like any other IT technology, is not completely safe

from cyber attacks. Precisely, the commonly shared infrastructure of the cloud

among VMs and users undeviatingly exposes cloud applications and VMs to sev-

12

eral cybersecurity risks, such as side-channel attacks [51–53] and VM-to-VM IC

risks [39].

Consequently, how to develop efficient and effective resource management policies to

face those challenges and optimize the trade-off among resource utilization, QoS guaran-

tee, and cybersecurity risks plays a vital role in the sustainable future of cloud computing.

1.2 Cloud resource management

The benefits of cloud computing enable businesses to compete and thrive by taking advan-

tage of the scalable and agile cloud computing platforms. In the meantime, the constant

increase in desire for affordable and high-quality cloud services has led to several sig-

nificant concerns that forced cloud service providers to find new efficient and effective

resource allocation policies.

1.2.1 What is cloud resource management?

Resource management is a fundamental process for any cloud platform. It is a core func-

tion which effectively and efficiently allocates and releases computing resource to meet

the demand of cloud users while providing them with satisfactory QoS [54]. Efficient re-

source management allows cloud service providers to share cloud resources among cloud

services and users with high availability and optimized utilization [20–22]. It is, yet, a

very complicated task for cloud service providers to provide all the required resources to

avoid SLA violations due to the limited capacities of available resources. On the contrary,

inefficient resource management drastically affects the performance and cost of a cloud

platform [23].

13

Cloud service providers need effective resource management strategies that quickly

and intelligently make allocation decisions without violating the SLA conditions between

the cloud service provider and cloud users [24]. Maintaining excessive computing re-

sources cannot adequately guarantee the QoS conditions for cloud users as it can lead to

tremendously high power consumption and low resource utilization [47]. Besides, allow-

ing several applications, VMs, and users to commonly share a pool of cloud resources

brings about many cybersecurity risks, such as the side-channel attacks [51, 52], and the

VM-to-VM IC risks [33, 55].

Next, we emphasize the crucial role of efficient and effective resource allocation poli-

cies to provide QoS guarantee and to minimize cybersecurity risks.

1.2.2 The need for cloud resource management to provide QoS guar-

antee

Cloud service providers offer cloud services to the cloud consumers who expect the cloud

system to operate without service interruption and to perform according to an SLA in

a cloud Service Oriented Architecture (SOA) [56]. However, It is difficult, for the cloud

service provider, to ensure the ideal satisfaction of all cloud consumers. The cloud service

provider, thus, negotiates a feasible balance with the consumers in the form of agreements.

These agreements are referred to as SLAs and evaluated based on QoS criteria. The term

QoS is a metric which measures the service performance, in terms of predefined criteria

that characterize specific attributes (e.g., processing rates [57], latency [58, 59], etc.) of

the cloud platform, to ensure the degree of cloud consumers’ satisfaction and to enforce

SLAs [60]. Providing QoS guarantees nonetheless is a challenging task when considering

the allocation of time-sensitive cloud services while aiming to optimize cloud resource

usage and to minimize the average response time to avoid SLA violations.

14

Hard real-time schedulers must always provide guarantees on preventing requests

from missing deadlines. Therefore, real-time requests must have deterministic and well-

defined parameters (e.g., arrival time, response time, etc.). On the other hand, the cloud

workload is random. Cloud interactive services [61], as online gaming [21] and multime-

dia streaming services [62], are described by soft-timely constraints [61]. Cloud service

providers must guarantee that a predefined percentage of them meet their deadlines, i.e.,

deadline miss ratio [63, 64]. The cloud service provider, otherwise, violates his/her SLA

with the cloud users [20]. Therefore, probabilistic or stochastic cloud allocation policies

are necessary to accommodate requests with random or statistical time parameters [65].

Furthermore, scheduling real-time requests in embedded system is either using a

single-core [66, 67] platform or multi-core platform [68–71]. On the other hand, a cloud

provider can schedule requests on a single server [72–74], on a cluster of servers [75,76],

on a single data center [77,78], or on a set of geographically distributed data centers [79].

The cloud service provider consequently has to consider other interference related param-

eters, in addition to the timing constraints, before making a scheduling decision, such as

network delay, communication contention, etc, [80], [81].

Ensuring the QoS of cloud services yet becomes a more challenging process when

several cloud consumers can have different SLA with various QoS attributes [82]. The

cloud service provider’s common practice has been to host requests with the same QoS

on the same VM to optimize resource usage [83]. Although this method simplifies the

resource allocation process, it does not provide QoS guarantees and it increases energy

cost and operating expense [26, 84].

Cloud service providers not only need to provide a competing and guaranteed QoS for

their cloud consumers but also have to minimize the energy cost and operating expense

to increase their profit. Power-saving techniques (e.g., Server consolidation [85], VM

migration [86], and server dynamic configuration [87]) usually, if not always, cause a

15

degraded computing performance and, as a result, SLA violations. Whereas resource over-

provisioning is a common and simple solution to avoid SLA violations, resource over-

provisioning is an expensive method by which resources are drastically underutilized,

and it cannot provide QoS guarantees under the fluctuating cloud workload [26, 84].

Cloud service providers, thus, need to develop efficient cloud resource management

policies with timing QoS guarantees that ensure the satisfaction of the cloud consumers

and optimize the energy cost and operating expense of cloud data centers.

1.2.3 The need for cloud resource management to minimize cyberse-

curity risks

Cybersecurity is the most crucial concern when adopting cloud computing [42, 44]. The

commonly shared infrastructure of the cloud among VMs and users, unfortunately, ex-

poses cloud workload and users to several cybersecurity risks, such as side-channel at-

tacks [51–53] and VM-to-VM IC risks [39].

The side-channel attacks are carried on using VM collocation. The successful collo-

cation, of the attacker’s VM with a victim VM, allows the attacker to build different kinds

of side channels to extract private information about the victim’s VM (e.g., workload’s

traffic rate [52], cryptographic keys [51], etc.) that eventually enables him/her to launch

a successful attack. Several software-based and hardware-based methods were proposed

to address this type of attack [88, 89].

Software-level methods are usually limited in their capabilities to the boundaries of

the hosting VM or are unable to keep up with all the new attack techniques proposed by

hackers [90]. On the other hand, hardware-level methods proposed to countermeasure

side-channel attacks are costly and impractical, as they required modifying the archi-

tecture of the cloud infrastructure [88, 89]. Furthermore, dynamic VM allocation can

16

significantly minimize the attacker chances of colocating his/her VM with the victim

VM [90, 91] and maximizes resource utilization [92] through live VM migrations. How-

ever, live migration comes with a migration overhead results in performance degradation

and SLA violations [49].

In the VM-to-VM IC attacks, an attacker can compromise the hypervisor after a suc-

cessful attack on one of its vulnerable VMs [33, 55]. He/she consequently can com-

promise all other coexisted secure VMs on that hypervisor. VM multiplexing methods,

which are extensively used in cloud data centers, expose VMs with sensitive data or high

value to IC risks. Those risks allow the attackers to bypass any security measures applied

to those critical VMs and to indirectly compromise them using a less secured colocated

VMs [33, 52]. While allocating VMs with different security requirements to different

servers incurs lower security risks, it exacerbates resource usage and energy cost. Hence,

the challenging question is –how can the providers optimize the trade-off between mini-

mizing the IC risks and improving the energy cost and operating expense? –.

In the next section, we introduce our research problem.

1.3 Research problem

In this dissertation, we study the research problem of developing efficient and effective

cloud resource management policies and techniques with the focus on optimizing the

trade-off among optimizing resource utilization, providing QoS assurance, and minimiz-

ing cybersecurity risks. Specifically, our research problem can be formulated as the fol-

lowing:

17

Given

• The performance characteristic of a cloud cluster,

- number of servers, resource performance, cybersecurity performance, power con-

sumption performance, etc.

• The specifications of a set of cloud services or a set of VMs,

- timing specifications, workload characteristics, QoS requirements, cybersecurity

specifications, etc.

• The design constraints,

- response time, deadline miss ratios, cybersecurity loss, power consumption, etc.

• The design objectives,

- optimize performance criteria, such as timing, cybersecurity, cost, etc.

Determine

where and how to allocate the requests or VMs so that the design objectives are opti-

mized.

1.4 Our contributions

Towards this research problem, we make the following contributions:

1. To facilitate our experiment and validation work, we first develop a cloud comput-

ing prototype that closely mirrors industry-compatible cloud platforms. Our proto-

type can provide cloud services as any middle-sized cloud service provider does.

The prototype generates and runs several general and cloud-specific benchmarks

under an isolated and well-controlled environment. We further incorporate new

18

workload scheduling, resource provisioning, and performance monitoring schemes

that we proposed in this dissertation into the platform.

2. Different from previous studies that employ separate VMs for hosting requests with

different QoS requirements, we develop a cloud service multiplexing method, based

on the queuing model with reneging, that enables requests of the same service type,

but with different QoS constraints, to share the same VM. To our best knowledge,

this is the first approach by which different requests with different QoS require-

ments can be hosted on a single node to increase resource utilization. We also de-

vise a novel methodology that correctly discards potential failure requests as soon as

possible to minimize processing rate demands, and to reduce total power consump-

tion with statistically guaranteed QoS. We introduce a packing and consolidation

algorithm that statistically ensures the QoS requirements of cloud requests in terms

of deadline miss ratios. In addition to the analytical validation of our proposed

methods, we experimentally verify them, under general and cloud-specific work-

loads, using our cloud platform. For example, we use the Data Caching benchmark

that emulates the behavior of a Twitter caching server and assumes strict quality

of service guarantees, such as, 95% of the request must finish within 200 ms. Ex-

tensive experimentation results show that our proposed methods widely outperform

existing approaches in terms of QoS satisfaction, power consumption efficiency,

resource demand minimization, and electricity cost saving.

3. A major limitation of consolidating VMs of different security requirements onto

a single server is that it can result in VM-to-VM interdependent cybersecurity IC

risks. For example, the odds of successfully compromising a secure critical VM

are high when an attacker compromises the hosting hypervisor after a successful

direct attack on one of its less secured, non-critical VMs. Therefore, we formulate

the allocation problem with cybersecurity awareness into a non-cooperative, zero-

19

sum theoretical game model between an attacker and the service cloud provider.

We develop a set of new conditions to identify the existence of an equilibrium

allocation strategy quickly. We mean by an –equilibrium– allocation strategy that

the allocation policy in which neither the provider nor the attacker can benefit from

unitarily deviating from their allocation or attack decisions, respectively. We then

incorporate several resource usage parameters into a non-zero-sum game model.

We identify the cases under which several static and dynamic equilibrium allocation

strategies exist. We also derive the lower-bound and upper-bound of the IC risks.

4. Finally, we extend our game models to include VMs with more general cybersecu-

rity and resource requirements. We focus on the static VM allocation problem to

study how to (1) minimize the provider’s worst potential cybersecurity loss under

constrained resource usage and how to (2) optimize cloud resource usage while en-

suring that the worst potential cybersecurity loss is always less than a given cyber-

security threshold. We show later in this dissertation that a constrained-allocation

problem is a typical NP-hard problem, and, thus, we formulate the security-constrained

and resource-constrained VM allocation problems using the Mathematical Pro-

gramming (MP) approach to obtain the optimal solutions, which will be used as

a comparison baseline against other proposed approaches in this dissertation and

when the problem size is small. We formally model the resource and security-

constrained allocation problems as a non-cooperative two-player zero-sum game.

We conduct a thorough analysis of the characteristics of the pure Nash Equilibrium

(NE) strategy profiles in our game model, which we formulate as a series of lemmas

and theorems. Based on the insights of our analysis, we develop several effective

and computationally efficient algorithms to allocate VMs, of different resource and

security requirements, with resource usage and security loss optimized. We have

implemented our algorithms and studied their efficiency and effectiveness. Our ex-

20

tensive simulation results show that our novel approaches are good trade-offs when

compared with the computational-intensive approaches, such as the ones based on

the MP approaches, the existing NE search methods, or the computationally effi-

cient multi-dimensional bin-packing methods.

1.5 Organization

We organize the rest of this dissertation as follows. Chapter 2 discusses the related works

to our research. Chapter 3 introduces our cloud computing platform which is used to

empirically validate our proposed methods and algorithms in this dissertation. Chapter 4

presents our research on workload consolidation for cloud data centers to optimize their

resource usage and electricity cost while providing guaranteed QoS for cloud users via

the early reneging of failed requests. Chapter 5 studies how to collocate critical VMs and

non-critical VMs onto cloud clusters with or without resource and energy constraints to

minimize the IC risks. Chapter 6 extends our game models and studies how to mitigate the

provider’s worst potential cybersecurity loss under constrained resource usage and how

to optimize cloud resource usage while guaranteeing that the worst possible cybersecurity

loss is always less than a given cybersecurity threshold. Finally, Chapter 7 concludes this

dissertation and discusses our future work.

21

CHAPTER 2

BACKGROUND AND RELATED WORK

We present the related works to our research in this chapter. We start by briefly describing

real-time scheduling and the differences between real-time request scheduling in embed-

ded systems and time-sensitive request scheduling in cloud platforms. We further discuss

the current research on time-sensitive requests scheduling in cloud platforms. We addi-

tionally describe the related work to VM allocation in cloud data centers, with and without

security awareness. Finally, we summarize our discussion at the end of the chapter.

2.1 Real-time scheduling

Real-time systems are usually reactive systems that must comply with deadlines. In the

real-time systems, the correctness of the execution of a task does not only depend on the

computational results, but also on completing the task before its deadline [93, 94].

A real-time system is a finite collection of independent or dependent services, each of

which generates a potentially infinite sequence of requests [95]. Each request is character-

ized by a Worst-Case Execution Time (WCET) requirement, an applicable deadline, and

a period. Each service generates a potentially infinite sequence of requests. Successive

requests arrive with a non-zero number of units of time apart.

Real-time scheduling is the process that decides where to allocate arriving requests

and when to start and/or stop the execution of every request so that the timing constraints

of all requests are met and other performance optimization criteria, if there exist any, are

also achieved.

Real-time system can be classified according the timing constraints into soft [96–98]

and hard real-time systems [63, 99]. Soft real-time systems allow requests to miss a few

deadlines. However, missing more than a certain number of request’s deadlines within

22

a specific period (e.g., deadline miss ratio) degrades the performance of the soft real-

time system. On the other hand, catastrophic effects may occur when violating a single

deadline in hard real-time systems, such as a nuclear reactor monitoring system or traffic

control software [63, 64].

Scholars also classify real-time scheduling, according to the time at which the schedul-

ing decisions are made, into static [70,100] and dynamic [101–103] real-time scheduling.

Static real-time scheduling algorithms make the scheduling decisions offline, according

to the timing constraints of requests (e.g., arrival time, deadline, response time, etc.).

The static scheduling decisions never change until all requests complete their executions.

Rate Monotonic Scheduling (RMS) is an example of static real-time scheduling methods.

On the other hand, dynamic scheduling approaches make the scheduling decisions on-

line according to changes in the request’s run-time information (e.g., earliest deadline,

most recent arrivals, etc.) An example of this type of real-time scheduling is the Earliest

Deadline First (EDF).

In the non-preemptive scheduling, high priority requests cannot interrupt lower prior-

ity requests until the last finishes its execution. Static real-time scheduling policies are,

thereupon, non-preemptive [74, 104]. Dynamic real-time scheduling, on the other hand,

can be non-preemptive [74, 104] or preemptive [105, 106].

Real-time schedulers can be a single-core [66, 67] or on a multi-core [68–71]. A

single-core scheduler has to decide the sequence of requests execution. On the other

hand, a multi-core scheduler has to decide where to allocate each request and when each

request is to be executed.

Regardless of the type of the real-time scheduler, It must always guarantee the timing

constraints of the real-time tasks to improve the predictability of the system, which could

result in performance degradation and a low throughput [107]. It is, thus, necessary to

ensure that sufficient resources are available for each real-time request all the time [108].

23

2.2 Scheduling time-sensitive services in cloud platforms

Although cloud platforms are capable of delivering real-time services [109, 110], service

scheduling in cloud platforms is different from real-time scheduling in embedded systems

due to several factors, such as the nature of cloud workload, type of cloud platforms, and

the design objectives.

• Cloud workload

Real-time requests should have deterministic and well-defined parameters (e.g., ar-

rival time, response time, etc.) so that hard real-time schedulers can assure that no

request will miss its deadline. On the contrary, cloud workload arrival and execution

times are often characterized by general distributions and hence cloud services need

probabilistic or stochastic schedulers to accommodate cloud requests with random

or statistical time requirements [65].

• Cloud platforms

Scheduling real-time requests in embedded systems occurs on a single core’s level

[66,67] or on a multi-core platform’s level [68–71]. On the other hand, cloud sched-

ulers can schedule requests onto a single server [72–74], a cluster of servers [75,76],

a single data center [77,78], or a set of geographically distributed data centers [79].

The cloud service provider accordingly has to consider other external parameters

before making a scheduling decision, such as network delay, communication cost,

power consumption, etc.

• Design objectives

Real-time scheduling relies on the worst-case analysis to avoid missing any dead-

line which could be catastrophic in several systems, e.g., missing a deadline in an

automatic braking system in modern cars. Contrarily, cloud scheduling aims to

provide statistical guarantees (e.g., 95% of cloud requests must complete before

24

a deadline). Moreover, regardless of the type of scheduler adopted in a real-time

system, all schedulers must guarantee the timing constraints to improve the pre-

dictability of the system even if the scheduling decision results in performance

degradation [107]. On the contrary, the goal of cloud schedulers is to optimize

the utilization and other performance metrics of the whole system as the system

throughput and average response time [48, 111].

Next, we discuss the research on the power-aware scheduling of time-sensitive re-

quests in the cloud. We categorize those types of research into power-aware cloud re-

source management and cloud resource allocation with QoS-awareness.

2.2.1 Power-aware cloud resource management

Countless efforts have been made to reduce power and energy consumption in service-

oriented computing systems [112]. We can categorize those researches into different

abstraction levels and/or according to different criteria. For example, according to the

scale/type of the computing systems, Cai et al. in [50] categorized the energy-aware

techniques applicable for servers [68, 113], clusters [57, 59, 114], data centers [45, 115]

and the cloud [116].

Power/energy aware approaches can also be classified according to the different re-

source types, such as CPUs [45, 117], memory [84], storage devices [118], and/or net-

work [30]. Since CPUs usually acquire the highest power consumption among all re-

source types [115], we focus on reviewing the works that focus on improving power

consumption and energy cost of CPUs in cloud data centers using techniques including

Dynamic Voltage Scaling and Dynamic Frequency Scaling (DV S/DFS), virtualization,

and server consolidation [119].

25

Dynamic Voltage Scaling and Dynamic Frequency Scaling (DVS/DFS)

Dynamic Voltage Scaling and Dynamic Frequency Scaling (DV S/DFS) has been a pow-

erful conventional technique for adaptive performance and power dissipation adjustment

to achieve power efficiency [57, 114]. Hwang et al. showed that the maximum energy

savings in virtualized multi-core servers can be achieved when combining the DVS/DFS

methods and the consolidation algorithms [68]. Beloglazov et al. [116] introduced a

global-and-local layer approach to make virtualized servers more power-efficient by ad-

justing the frequency and voltage of processors according to VM’s utilization. Likewise,

Kim et al. [114] proposed DVFS-enabled, with both time-shared and space-shared, clus-

ter scheduling policies for a bag of tasks to reduce power consumption and to meet the

deadline requirements of end-users.

Although many researchers and engineers acknowledge that DVFS scheduling algo-

rithms are robust and energy-saving solutions on the server’s level, they cause many chal-

lenges in the current cloud data centers. For instance, DVFS are architecture-dependent

and they may not achieve their best power/energy-saving when applied to the current

heterogeneous cloud data centers.

Virtualization and VM migration

As virtualization technology evolved as a norm in today’s data centers to amplify resource

usage through running multiple VMs on a single server, VM migration has been widely

employed to optimize server utilization and to reduce power consumption [29]. In [120],

Mastroianni et al. statistically modeled and analyzed the effects of VMs allocation and

migration on minimizing the number of powered-on servers, and on reducing power con-

sumption in data centers. Zhen et al. [29] introduced the concept of skewness to measure

the unevenness in the servers’ multidimensional-resource utilization.

26

VM live migration, nonetheless, requires a delay and service interruption that can

degrade the overall system performance and availability, and consequently leads to SLA

violations [121].

Server consolidation

In conjunction with VM migration, server consolidation is of a special interest among

efficient resource allocation policies [85]. Server consolidation, comparatively to DVFS,

improves resource utilization without demanding excessive hardware resources, and it is

easy to implement and to deploy [120].

Now that, server power consumption is not exactly proportional to its utilization, and

a server may waste a substantial amount of power even when it is idle [120], server con-

solidation methods pack running VMs on a smaller number of physical servers and/or

turn off the rest, to minimize the total power consumed by those servers [58, 113, 120].

In [113], Verma et al. presented a two-dimensional, i.e., memory-based and CPU-based,

consolidation strategy in which decisions are made based on the correlation among differ-

ent workloads. In [113], Pinheiro presented an algorithm to dynamically turn servers on

and off according to the imposed load in computing clusters. Chase et al. [122] reduced

the energy consumption of server clusters by degrading services according to their SLA,

when power consumption or thermal dissipation exceeds a certain limit.

Next, we discuss the works related to cloud resource allocation with QoS-awareness.

2.2.2 Cloud resource allocation with QoS-awareness

Whereas saving power/energy is important, service providers must also ensure that their

services can satisfy the QoS requirements of cloud users, such as response time and/or

deadline miss ratios. For instance, a recent report has found that a 100ms extra delay

27

costs Amazon 1% of sales revenue [123]. The problem becomes more challenging with

interactive workload types [61] like online gaming [21] and multimedia streaming ser-

vices [62]. These online interactive services have soft-timely constraints [61], in that ser-

vice providers must guarantee that a predefined percentage of them meet their deadlines.

Otherwise, service providers fail to keep up with their SLA [20].

VM placement methods with performance-interference awareness were introduced

in [124] to improve the performance of VMs and the utilization of servers. Resource over-

booking, i.e., allocating more resources than the actual available capacity to raise service

provider profit, with different real-time constraints is presented in [61]. Energy-aware

resource allocations with response time and end-to-end time guarantees were introduced

in [58] and [59], respectively. Greenberg et al. [30] studied the costs of cloud data centers

and recommended developing new management systems within and across geographi-

cally distributed data centers with the focus on network agility to improve their efficiency

and end-to-end performance.

SLA-aware workload consolidation methods have been proposed to achieve higher

dynamic power efficiency and to overcome the under-utilization problems resulting from

applying the over-provisioning policies [86]. Lee et al. [125] developed a pricing model,

based on the queue model M/M/1/PS, and used it to establish profit-driven scheduling

algorithms with SLA for the cloud-dependent services.

To assure the QoS requirements of cloud services with requests from different classes

of QoS demands, it has been a common approach (e.g., [59]) to serve requests with the

same QoS requirements on the same VM. When all requests on the same machine have the

same QoS requirement, different types of QoS can be captured by a single variable, such

as provisioned resources (e.g., [113] [120] [116]), required processing speed (e.g., [57]),

or latency (e.g., [58] [59]). Although this approach simplifies the resource management

problem to guarantee one specified QoS criteria, it excludes requests that can share re-

28

sources, and the overall resource usage can be rather inefficient, as illustrated later in this

dissertation.

Almost all previously mentioned works implicitly assumed that all accepted requests

must receive service, even if they do not meet their QoS conditions. We show in this

dissertation that if we can judiciously discard the requests that are likely to miss their

deadlines, we can significantly improve resource usage without compromising QoS con-

ditions.

Next, we discuss the related works to VM allocation in cloud platforms with and

without security awareness.

2.3 VM allocation in cloud platforms

As cloud services entered in each sector of our personal and professional lives, maxi-

mizing resource usage and minimizing power consumption in cloud data centers using

efficient allocation policies became a necessity. Many allocation approaches, based either

on traditional optimization methods (e.g., Mathematical Programming (MP) [126], evo-

lutionary programming method [127], and fuzzy control [128]) or on a variety of different

heuristics (e.g., [129]), have been proposed for resource allocation in cloud platforms for

applications with different characteristics, requirements, and optimization goals. For ex-

ample, Beloglazov et al. [126] suggested several VM migration algorithms to improve

CPU utilization. When a server has a CPU usage below a predefined threshold, all VMs

hosted on that server must be migrated to other servers. They also introduced several more

algorithms to minimize the number of VM migrations using upper utilization thresholds

as the Minimization of Migrations (MM) policy, the Highest Potential Growth (HPG)

policy, and the Random Choice (RC) policy. Their experimental validation showed that

increasing the lower-utilization thresholds, increases the SLA violations, while reducing

29

the server’s energy consumption. Proposing VM consolidating policies that optimize re-

source usage is vital for cloud providers, yet those allocation policies are hypothetical

because they ignore the cybersecurity effects of the consolidation decisions.

In this section, we review the research related to VM allocation methodologies in

cloud platforms. We can classify those related works into four major categories that

are directly related to our research focus in this dissertation: Vector Bin Packing (VBP)

based cloud resource allocation, game theory-based cloud resource management, cloud

cybersecurity countermeasures using the Game theory, and security-aware cloud resource

allocation approaches.

2.3.1 Vector Bin Packing (VBP) based cloud resource allocation

The VM allocation problem is a well-known NP-hard problem, as we show later on, and

hence heuristics, such as Vector Bin Packing (VBP), have been adopted heavily to solve

similar problems with multiple optimization goals [130]. In a VBP heuristic, there is a

weight function applied to the items so that each item is assigned a single scalar, based on

which, the standard bin packing can be used to sort those items. Wood et al. [92] intro-

duced a multi-dimensional First Fit Decreasing (FFD) approach to lively migrate VMs

out of overloaded servers. Their approach considers multiple CPU, memory, and net-

work resource demands of each VM. Panigrahy et al. [131] proposed several VBP-based

methods for VM allocation with different resource demands and optimization goals. Bel-

oglazov et al. [126] suggested several VM migration algorithms to improve CPU utiliza-

tion and demonstrated that increasing the lower-utilization threshold increases the Ser-

vice Level Agreement (SLA) violations while reduces the server’s energy consumption.

In [128], the authors used combinatorial and multi-objective optimizations to optimize

resource usage in a two-level control system that allocates workloads from virtual to

30

physical resources. Using a local and a global fuzzy controller, they tried to minimize

power consumption, thermal dissipation, and a peak temperature of the system. In [132],

the authors introduced an application placement controller that consolidates applications

according to the ratio of their CPU to memory demands. Microsoft’s Virtual Machine

Manager used in Azure applies the Dot-Product and Norm-based Greedy heuristics [133].

The authors in [133] proposed new geometric heuristics that run nearly as fast as FFD.

We are, however, not aware of any prior work that employs VBP to deal with security

requirements during a VM allocation process.

2.3.2 Game theory-based cloud resource management

Researchers use the Game theory to study and understand the interaction among eco-

nomic, social, or military entities. The goal is to find a stable pair of static (e.g., pure)

or mixed (e.g., dynamic) strategies which are called a Nash Equilibrium (NE) strategy

profile. We mean by –stable– is that none of the entities involved in the game has any in-

centive to deviate from its equilibrium strategy. According to Nash 1950 [134], any game

with a limited number of strategies must have at least one such equilibrium. The Game

theory thereupon can be used to formulate VM allocation problems into a non-cooperative

two-player game framework. Our rationale is that the Game theory offers “mathematical

models of conflict and cooperation between cooperative and noncooperative intelligent

rational decision-makers”, [135]. Although the Game theory is a theoretical approach in

the sense that it assumes the attacker has a comprehensive knowledge about all the infor-

mation related to the infrastructure that helps him/her maximize his/her cyber gain (e.g.,

informative game), we can positively use it to model the scenarios in which the worst

potential cyber-attack occurs on the clusters of cloud providers.

31

The three essential criteria to consider when designing an equilibrium-based VM con-

solidation algorithm are soundness, completeness, and computational efficiency [136].

First, the algorithm is sound if any solution it returns is, in fact, a solution. The algorithm

is complete if there exists only a single solution; the algorithm finds it [137]. The third

essential criteria for our VM consolidation problem is computational efficiency; that is

the algorithm’s worst-case computation time is polynomial for any number of VMs and

servers.

Several works employed the Game theory to model the resource optimization problem

in cloud platforms [127, 129, 138]. Wei et al. [127] adopted the Game theory to solve a

QoS constrained resource allocation problem across a cloud-based network. Kunsemoller

et al. [129] elaborated on cloud economics benefits for businesses using a game-based

cloud model of an IaaS economy including the dynamics of pricing and usage. Pillai

et al. [139] proposed a VM allocation policy onto cloud platforms, based on the prin-

ciples of coalition formation and the uncertainty principle of the Game theory. They

illustrated that the coalition-formation of the VMs leads to higher resource utilization and

higher request satisfaction. Teng et al. [140] suggested a new Bayesian pure NE-based

resource management policy assumes heterogeneous and distributed resources, cognitive

behaviors of cloud consumers, non-perfect information, and dynamic successive alloca-

tion. They proved that the resource price would converge to the optimal rate at the end

of the gambling sequence. Jalaparti et al. [138] similarly employed the Game theory

to optimize resource efficiency, and pricing policies by modeling the client-provider and

client-client interactions, respectively. They introduced multiple heuristic algorithms with

near-optimal allocation and pricing policies compared to the fixed-pricing strategies used

today by cloud providers, such as in Amazon EC2. However, all the above ignored the

cybersecurity effects of their allocation methods.

32

2.3.3 Cloud cybersecurity countermeasures using the Game theory

As more and more organizations, companies, and private users move their computing

facility to cloud data centers, there have been increasing interests and concerns in the

cybersecurity problem in the cloud (e.g., [90, 141]).

Several works focused only on studying the types of cybersecurity attacks that are re-

sulted from the commonly shared infrastructure of the cloud among several applications

and users. Side-channel attacks are one of the most popular types of cybersecurity at-

tacks on cloud infrastructure. Several countermeasures were proposed in the literature to

mitigate or prevent side-channel attacks [51–53]. The proposed methods include modify-

ing or tuning up the infrastructure to prevent hackers from extracting information about

private keys (i.e., secret key extraction attack [51]), preventing attackers from verifying

co-residence with the victim’s VM [52], or introducing a new infrastructure design (e.g.,

mitigate the threat of timing channels by eliminating high-resolution clocks [142], or

adding latency to potentially malicious operations [52, 142]).

Kamhoua et al. [33] used a non-zero-sum game framework to model the VM-to-VM

interdependent cybersecurity risks between an attacker and two users in the cloud. They

showed that the existence of NE strategy profiles depends on the probability that the hy-

pervisor is compromised, after a successful attack on one of the users, and the total cost of

the user’s security investments. They also irrationally concluded that there exists no NE

strategy profile when all the users in the cloud fully invest in cybersecurity countermea-

sures. Et al. Kwiat [55] applied the same cybersecurity model introduced by Kamhoua

to a different allocation problem. They considered a game between an attacker and three

users. The first user never invests in security and is always allocated to the first insecure

hypervisor. The second user invests in security countermeasures and is always assigned

to the second secure hypervisor. In this dissertation, we use a zero-sum game frame-

33

work between an attacker and a provider to model and analyze the VM-to-VM mutual

interdependent cybersecurity risks in cloud data centers.

Unlike [33, 55], wherein the defender strategies are to invest or not to invest, we as-

sume that all VMs have different resource requirements and cybersecurity countermea-

sures installed. The provider’s strategy is to choose the allocation policy that minimizes

his/her loss under a worst-case cybersecurity attack on a cloud cluster with a limited set

of resources.

2.3.4 Cybersecurity-aware cloud resource allocation

Cybersecurity is the most critical concern when adopting cloud computing [42, 44]. The

commonly shared infrastructure of the cloud among VMs and users, unfortunately, ex-

poses cloud workloads to several cybersecurity risks, such as side-channel attacks [51–53]

and VM-to-VM interdependent cybersecurity risks [39].

The side-channel attacks occur using virtual machine collocation. The successful col-

location allows the attacker to build different kinds of side channels to extract private

information about the victim’s VMs (e.g., the victim’s workload, traffic rate [52], cryp-

tographic keys [51], etc.) that eventually enables him/her to launch a successful attack.

Several software-based and hardware-based methods were proposed to address this type

of attacks [88, 89]. Software level methods are usually limited in their capabilities to

boundaries of the hosting VM or unable to keep up with all the new attack techniques

proposed by hackers [90]. Rao et al. [143] used the Game theory to search the ability of a

cloud computing provider to guarantee a given capacity C with a particular probability P

given a physical or cybersecurity attack on his/her data center. They proposed the use of

reinforcement strategies to decrease the attacker’s utility. While many works focused on

VM migration to maximize resource utilization and minimize power consumption, et al.

34

Zhang [90] is the first to develop a formal and quantified migration strategy in the cloud

to improve cybersecurity against collocation attacks and with accepted costs.

[141] used the Game theory to model the co-location attack between attackers and a

provider. The attackers try to collocate their VMs with target VMs on the same physical

server and exploit side-channel attacks to extract private information from the VMs of

victims. The provider aims to minimize the attackers’ possibility of collocating their VMs

with the target VMs while maintaining a satisfactory workload balance and low power

consumption for the system. The provider strategy is to choose among four different

allocation policies: servers with the least number of VMs, servers with the most number

of VMs, random, and round-robin.

Hardware-level methods proposed to face side-channel attacks are costly and imprac-

tical as they required modifying the architecture of the cloud infrastructure [88, 89]. Fur-

thermore, dynamic VM allocation, i.e., VM live migration, can significantly minimize

the attacker chances of colocating his/her VM with the victim VM [90, 91]. Although

dynamic VM allocation maximizes resource utilization [92] and minimizes cybersecurity

risks resulted from side-channel attacks [51] through live VM migrations, it brings about

a migration overhead results in performance degradation and SLA violations [49].

In the VM-to-VM Interdependent Cybersecurity (IC) attacks, an attacker can com-

promise the hypervisor after a successful attack on one of its vulnerable VMs [33, 55].

He/she consequently can compromise all other coexisted secure VMs on that hypervi-

sor. VM multiplexing methods, which are extensively used in cloud data centers, expose

VMs with sensitive data or high values to interdependent cybersecurity risks which allow

the attackers to bypass any security measures applied to those critical VMs by indirectly

compromising them using a less secured colocated VMs [33, 52]. While allocating VMs

with different security requirements to different servers incurs lower security risks, it ex-

acerbates resource usage and energy cost. The challenging question accordingly is –how

35

can the providers optimize the trade-off between minimizing the IC risks and improving

his/her energy cost and operating expense?–.

2.4 Summary

In this section, we discuss the difference between real-time and cloud scheduling for

time-sensitive requests. We also discuss the works about the power-aware scheduling of

time-sensitive cloud requests which we categorize into cloud resource management with-

out assuring QoS guarantees and cloud resource allocation with QoS-awareness. Finally,

we review the research about our VM allocation methodologies in cloud platforms. We

further classify those works into Vector Bin Packing (VBP) based cloud resource allo-

cation, game theoretic-based cloud resource management, cloud cybersecurity measures

using the Game theory, and security-aware cloud resource allocation approaches.

In the next section, we describe our cloud prototype which we designed and imple-

mented to validate our findings in this dissertation.

36

CHAPTER 3

THE GREEN CLOUD COMPUTING PROTOTYPE (GCCP)

In this section, we first state our motivation and shed light on the importance of building

an experimental cloud platform. We then describe the hardware and software components

of the platform. Second, we show how to use our platform in analyzing the performance

of actual cloud clusters. Finally, we list various types of open-source benchmarks that the

platform can run and conclude the chapter.

3.1 Motivation

Purely theoretical analysis and study of the performance of cloud platforms and the be-

havior of virtualized systems undergo numerous challenges that prevent scholars from

providing realistic and applicable conclusions [144]. Variations in Virtual Machine (VM)

Managers, hypervisors, virtualization scenarios, and cloud workload types makes it al-

most impossible to develop a single universal benchmark tool that can carry out perfor-

mance testing tasks on any cloud platform. Furthermore, new simulation models were

developed to study cloud data centers. However, those models fall short in considering

the performance interference and interdependence among hosting hypervisors, VMs, and

applications that compete over the shared resources (e.g., processing, memory, storage,

and network). Furthermore, simulation develops a margin of errors that contribute to

inaccurate validation results.

We hence realize the need to build an experimental validation platform that allows us

to generate synthetic or to import open-source cloud-specific benchmarks when validating

our proposed resource management schemes.

37

3.2 Platform characteristic

In this section, we introduce the Green Cloud Computing Prototype (GCCP) that con-

forms to the industrial standards applied in practice. Fig. 3.1 shows the different com-

ponents of which the GCCP consists. We built GCCP so that it can have the following

characteristics:

• Industry compatibility

The architecture model of GCCP conforms to the model introduced by IBM in [25],

whereas the organization of its infrastructure model conforms to the well-known

cloud providers, such as Google Compute Engine, Amazon EC2, Rackspace, and

Microsoft Windows Azure. The prototype can import and integrate any of the

industrial-compatible cloud software or benchmarks (e.g., the cloud orchestrator

OpenStack, different hypervisors, Memchashed benchmarks, etc.) as we illustrate

later in this chapter.

• Modularity

Our cloud prototype consists of individual functional modules that are implemented

in Java and running on management nodes.

• Full automation for better usability

The system workflow is fully automated and controlled using Python scripts at the

system level, and bash scripts at the operating system level which makes using the

prototype easy for users from any background.

• Versatility

The prototype is equipped with a dedicated workload submodule that is capable

of generating cloud or general-purpose workload with different characteristics and

functionality allowing it to be used for several purposes.

38

Figure 3.1: High-level representation of the Green Cloud Computing Prototype (GCCP). The
cloud prototype consists of four functional modules that are implemented in Java and running on
management nodes. The system workflow is automated and controlled using Python scripts at the
system level, and bash scripts at the operating system level.

• Scalability

In this chapter we show how to deploy GCCP software components over several

personal desktop computers inside a small classroom or over a typical cloud cluster,

which consists of several powerful rack servers, exists in a server room or actual

data center.

We describe each of the hardware and software components of GCCP next.

3.2.1 GCCP’s hardware components

GCCP consists of two management and two compute physical machines. The two man-

agement nodes (e.g., VMs) are launched using the open-source Kernel Virtual Machine

(KV M) hypervisor and managed using the open-source Webvirtmgr. KVM hypervisor is

39

hosted onto two Dell Precision T1500 machines with Quad-Core Intel i-5 CPU, 16 GB,

1333 MHz DDR3 memory, and a 300 GB SATA Disk Drive. The management VMs run

Ubuntu Server Linux 12.04.5 LTS Precise Pangolin release with a kernel version 3.2.0.76.

We installed Citrix XenServer 6.5 platform, which is based on the hypervisor Xen

[145], to manage the physical resources onto two compute nodes. Each compute node is

an HP Workstation Z800 with two Intel Xeon Six-Core E5645 (2.40 GHz, 12 MB cache),

1333 MHz DDR3 memory of size (32 GB), and 1 TB disk space.

3.2.2 GCCP’s software components

GCCP consists of four functional modules implemented in Java and running on manage-

ment nodes. The system workflow is automated and controlled using Python scripts at the

system level, and bash scripts at the Linux nodes level.

Next, we describe each of the functional modules in detail.

User input module

The UserInput module allows users to define service types having request classes with

different QoS requirements. The synthetic request classes imitate the requests of a cloud

broker under different Service Level Agreements SLAs via the Service and SLA Input sub-

module. On the other hand, the submodule Unified Workload Modeling Engine (UWME)

models and generates request instances of a specific service type and class according to

parameters and QoS constraints defined in the Service and SLA Input submodule. Specif-

ically, UWME is a Java tool that generates workloads with desired timing, functional and

computational characteristics. As shown in Fig. 3.2, UWME is essentially a server/client

model program that can generate workloads with different stress levels, which can be

identified by the number of processes to be launched at a specified VM. The UWME

40

Figure 3.2: Unified Workload Modeling Engine (UWME). UWME is essentially a server/
client model program that can generate workloads with different stress levels.

server is a VM residing in a management compute node and contains four main modules,

i.e., Modeling Manager, Producers, Consumer, and Database.

All the submodules in the user input module run on allocated VMs that enable poten-

tial failure reneging and allow results logging.

In the following chapters, we employ UWME to generate several scientific and cloud

workloads. For example, we utilize UWME to generate memory-intensive cloud ser-

vices, which is a Matrix MULtiplication (MMUL) Java application, using the open source

lightweight Apache Common Mathematics Library [146]. We also employ UWME to pro-

duce CPU-intensive cloud services, shaped with a one-dimensional Fast Fourier Trans-

form (1-D FFT) Java application, using the open source multi-threaded (FFT) library

Jtransforms [147].

41

In addition to our newly developed synthetic workloads, we employ UWME to incor-

porate cloud-specific cloud benchmarks. As we discuss later in this dissertation, we use

the UWME submodule’s server and clients to mimic the behavior of a Memcached server

and clients. A Memcached server is a distributed memory object caching system that

speeds up dynamic web applications by alleviating the delay of a single database worker

(e.g., a single execution queue) that is capable of producing the data caching requests, i.e.,

Get or Set. The Memcached clients receive the caching requests to schedule and process

them according to our proposed scheduling algorithms. The Performance Monitoring

Module then collects the results on all VMs.

Service management module

The ServiceManagement module accepts inputs from the User Input Module and sched-

ules/dispatches cloud workloads onto the available computing resources using the Sched-

uler and Resource Allocator/Request Dispatcher submodules. Different resource pro-

visioning and workload scheduling algorithms can run in the Scheduler and Resource

Allocator sub-module.

Infrastructure management module

The In f rastructureManagement module is responsible for operating the hardware and

software computing resources of the cloud cluster. We employ Citrix XenServer 6.5 plat-

form, which is based on the hypervisor Xen [145], to manage the physical resources on

both HP Workstations Z800 with two Intel Xeon Six-Core E5645 with a 2.40 GHz and

12 MB cache CPU, 1333 MHz DDR3 memory of size 32 GB, and 1 TB disk space. We

also developed a Cloud Orchestrator submodule that communicates with the Scheduler

and Resource Allocator and XenServer to automate the processes of creating VMs, pro-

42

visioning VMs, configuration VMs, and to make VMs available online for the Request

Dispatcher onto which requests are forwarded from the UWME submodule.

Performance monitoring module

The Per f ormanceMonitoring module monitors the performance of the cloud cluster, col-

lects performance statistics, and measures resource usage and power consumption via

three major submodules (e.g., the Power Metering, Resource Metering, and Run-time

statistic collection sub-modules).

The Power Metering submodule measures the static and dynamic power consumption

of the server pool under different configurations and running conditions. To measure the

actual power consumption, we used an AC/DC Fluke i410 current clamp meter with an

output of 1 mVolts(mV)/Amps(A), connected to an Agilent 34401, which is a multimeter

with a resolution of +/- 120 mWatts (mW). The Power Metering submodule automates

the power reading process using a C program running within Ubuntu Linux 12.04.5 LTS

on a dedicated Dell desktop that communicates with the multimeter through a serial cable

to automatically record electrical current readings.

Consider a server pool SPi = {V Mi,1, ...,V Mi,mi} allocated to physical cores {PCPUi,1, ...,PCPUi,mi},

respectively. Recall that a single workstation in GCCP has at most 10 available physical

cores –Note that we reserve 2 cores for Xen’s Domain-0–. SPi must be hosted by dmi
10e

workstations, and the power consumption for SPi is the total power consumption of these

workstations. Now assume that mi ≤ 10. The power consumption Pi consumed by SPi

can be formulated as

Pi =
mi

∑
j=1

(Pd
i, jϕi, j)+Ps

i , (3.1)

where Pd
i, j is the dynamic power when each core is 100% utilized, ϕi, j is the utilization

of V Mi, j, and Ps
i is the static power of the HP workstation when mi physical cores are

allocated to the VMs.

43

To calculate Ps
i , we measured the drawn AC current by the workstation, i.e, Is, when

all mi VMs are idle. The corresponding static power consequently is Ps
i = Is×120V .

To calculate Pd
i, j, we used the UWME submodule to generate enough request instances

such that all VMs were kept busy and achieved 100% utilization, and we afterward mea-

sured the drawn AC current by the workstation to calculate the total power consumption,

i.e., static and dynamic power. The difference accordingly, between the full and static

measured power, is the overall dynamic power consumption of mi cores with 100% uti-

lization.

We further assume that the cores that are hosting the same service type (e.g., Si) with

the same capacity size (e.g., Ci) consume the same amount of dynamic power. We there-

upon divide the total dynamic power by the number of cores mi to get Pd
i, j. As an illustra-

tion, let a server pool with a single VM. We measured its static power as 186W . It’s dy-

namic power consumption when running memory-intensive workload and CPU-intensive

workload on a fully utilized core are 16.8W and 18W , respectively.

The Resource Metering submodule leverages the available system tools and our newly

developed user-level tools to collect and measure the computing resource usage. For ex-

ample, to measure the amount of CPU usage, i.e., the processing rate of a CPU, consumed

by each VM in MegaHertz (MHz), we can use the command xentop. To measure the CPU

usage in Instruction Per Second (IPS), we can use our newly developed scripts that parse

the run-time logs generated by the Run-time Statistic Collection submodule.

The Run-time statistic collection submodule collects and stores run-time statistics of

the dispatched request instances in log files based on the light-weight RAM Filesystem

(Ram f s). Information obtained by this submodule includes IDs of service types, request

classes, instances and hosting VMs, along with with the instances start times, finish times,

QoS violations, completion ratios, and so on.

44

In Fig. 3.1, steps one to five illustrate the processes of initiating a new service and its

request classes (step one), running a packing and allocation algorithm (step two), spawn-

ing and configuring VMs (step three), returning the IDs of a VMs to the ServiceManager

module to be available to the server the request instances (steps four and five). Further-

more, steps a, b and c illustrate the processes of generating instances of a request type,

dispatching them to the allocated VMs, and collecting the system performance readings

upon their completion.

3.3 How to deploy and utilize GCCP with actual cloud clusters

In this section, we show how to extend the usage of GCCP to include analyzing the

performance of actual cloud clusters. Specifically, we will replace the four physical nodes

used in the implementation of GCCP with real rack servers used in cloud clusters. We will

further replace our cloud orchestrator with the open-source cloud orchestrator OpenStack,

which is adopted heavily in cloud data centers [148].

We can replace the four nodes used in GCCP with seven or nine rack servers (e.g.,

five controller nodes, two or four compute nodes, and two storage nodes), and a Juniper

EX2200 Ethernet Switch [149]. The cluster should be moved to one of FIU’s server

rooms where reliable power source and cooling are provided. Fig. 3.3 shows the physical

specification and the role of each server. There are five controller nodes (e.g., two compute

nodes, a block storage node, and an object storage node [148]).

There are five different networks configured over the cluster [6,7,148]. First, a public

network connects all nodes in the cluster. Second, an internal private network serves the

VMs and Quantum plugins control it. Third, a management network connects all Open-

Stack components [148]. Fourth, an object storage network connects the object storage

node to the server running the load balancer (HAproxy) [150]. Finally, a block storage

45

Figure 3.3: Physical infrastructure specifications for a typical middle-size cloud cluster

network that connects compute nodes to the block storage node. Controller, compute and

block storage nodes are connected to the management and the public networks via two

bonded (10) Gigabit Ethernet interfaces.

Each controller node has a single 6-core CPU, (16) MB of RAM and two (1) TB hard

disks with Redundant Array of Inexpensive Disks (RAID) controller uses a RAID-5 level.

the compute nodes use a RAID-5 level too. They, however, have twice the memory and

the storage capacity that the controller nods have. Object and block storage nodes share

the same physical specifications of a single 6-core CPU, (64) MB of RAM, and eight (1)

TB hard disks. Nevertheless, the object storage node uses a RAID-10 level for better data

transfer rates, while the object storage node uses a RAID-1 level.

We can replace the GCCP’s cloud orchestrator with the open-source cloud orchestra-

tor, OpenStack, and deploy it on the controller nodes. OpenStack [14, 15, 148] is a fully-

modular, open-source software architecture helps to provide on-demand processing, stor-

age, memory, and network bandwidth resources [148] over cloud clusters. OpenStack can

dynamically scale up and down to meet service requirements, while accordingly adapt-

ing to intensive workload situations [6, 7]. OpenStack consists of several individuals, yet

integrated, and distributed software projects (e.g., Horizon, Keystone, Nova, Quantum,

Cinder, Glance, and Swift [148]).

46

Figure 3.4: GCCP’s high availability deployment model. Deploying a cloud orchestrator (e.g.,
OpenStack) using load balancing and controller redundancy as recommended by Mirantis [6] and
Rackspace [7].

• OpenStack dashboard (Horizon)

Horizon is the OpenStack dashboard which provides a web user interface to manage

OpenStack services.

• OpenStack Identity (Keystone)

Keystone is the identity and authentication project that provides identity, token, and

catalog for OpenStack services.

• OpenStack compute (Nova)

Nova is the OpenStack compute project. Nova provides Infrastructure as a Ser-

vice (IaaS) by provisioning VMs. Nova also manages OpenStack VMs using

Nova worker called (Nova-compute) via hypervisor’s API’s, such as XenAPI for

XenServer [145], libvirt for KVM or QEMU [151], and VMwareAPI for VMware

[152]. Nova consists of Nova RESTful API (nova-api), Nova-database (nova-db),

47

message queue (RabbitMQ), Nova scheduler (nova-scheduler), Nova conductor

(nova-conductor), and Nova compute (nova-compute) processes.

• OpenStack networking (Quantum)

Quantum manages OpenStack network topology. It provides Network as a Service

(NaaS) for OpenStack services and for the VMs operated by Nova. Quantum con-

sists of Quantum server (quantum-server), Quantum plugins and agents (quantum-

dhcp-agent and quantum-openvswitch-agent), and quantum database (quantum-db)

processes.

• OpenStack block storage (Cinder)

Cinder manages the volumes attached to the VMs in OpenStack. Cinder consists

of Cinder API (cinder-api), Cinder scheduler (cinder-scheduler), Cinder database

(cinder-db), Cinder volume (cinder-volume), and message queue (RabbitMQ) worker

services.

• OpenStack image service (Glance)

Glance is an image repository that discovers, registers, stores, deletes and retrieves

all virtual images in OpenStack. Glance contains Glance API (glance-api), Glance

database (glance-db), and Glance registry (glance-registry) processes.

• OpenStack object storage (Swift)

Swift is a redundant object storage tool developed by Rackspace [7]. It offers a

methodology for storing and retrieving large scale of data objects through API web

services.

The two compute nodes in GCCP can run two different hypervisors: KVM [151] and

Xen [145] respectively. Both compute nodes host the VMs that are being launched by

OpenStack compute services. OpenStack modules and KVM hypervisor run on top of

Ubuntu Linux Precise release with kernel version 3.12-4. Object storage services, such

48

as Swift and Ceph, can run on the object storage node, while block storage services,

such as Cinder, Ceph or iSCSI, can run on the block storage node. Fig 3.4 shows our

high availability cloud deployment model of the OpenStack using load balancing and

controllers redundancy based on industrial standards [6, 7, 148].

Next, we review several open-source cloud benchmarks that are readily deployable

over GCCP.

3.4 List of cloud and virtualization benchmarks that are readily de-

ployable over GCCP

The following open-source cloud and virtualization benchmarks and tools can be easily

modified and deployed over GCCP to conduct experiments under different orchestrated

scenarios.

• BenchVM:

BenchVM [153] is an open-source virtualization benchmark suite. It was originally

developed to help perform automated testing and comparison between KVM and

Xen Hypervisors in terms of the overall performance, performance isolation and

scalability [144].

• Virtbench:

Virtbench is a set of smaller benchmarks [154]. It is designed to help developers and

engineers optimize hypervisors. Virtbench launches four VMs, install the Virtbench

client on each one, then runs various tests and collects the results.

• vConsolidate:

The vConsolidate benchmark was developed mainly by Intel. It measures the per-

formance of aggregated servers in different consolidation scenarios. It spawns up

49

four parallel VMs with separate workloads running a Java server, a Web server,

a mail server, and a database server. Those VMs along with their workloads are

called Consolidation Stack Unit (CSU), and they are used to model the performance

of each application in different server consolidation scenarios.

• SPEC Benchmark Suit:

The Standard Performance Evaluation Corporation (SPEC) is a non-profit orga-

nization that concerns with developing High-Performance Computing benchmarks

[155]. For example, SPECpower ss j2008 is the first industry-standard power bench-

mark. It evaluates the power parameters in a single server or over a cluster of

multiple servers. Other benchmarks that were developed by SPEC for power-

performance analysis are SPECvirt sc2013, SPECvirt sc2010, SPECweb2009 and

SPEC OMP 2012.

• Rally:

Rally is a member of OpenStack projects family [156]. Rally or Benchmark as a

Service combines multiple components that cooperate to perform automated and

reproducible tests over different deployment scenarios.

There are a large number of other testing and monitoring tools and related projects

that can perform the benchmarking task with our GCCP. For example, Autotest is a fully

automated framework for testing the Linux kernel that can be used to perform several

virtualization testing tasks [157]. Sensu [158] and Najios [159] likewise are open source

monitoring frameworks that can evaluate the performance of any virtualized system.

3.5 Summary

In this chapter, we introduce the Green Cloud Computing Prototype GCCP which is

equipped with workload generator tools based on open source cloud software (e.g., [148]),

50

and closely mirrors industry-compatible cloud platforms. We also show how to extend the

functionality of GCCP to actual cloud clusters. Finally, we list many general and cloud-

specific benchmarks that GCCP can utilize.

In the next chapter, we discuss our contribution for power-aware cloud workload con-

solidation with QoS guarantees and describe how we employed GCCP to validate our

proposed algorithms using in-house synthetic and open-source cloud-specific workloads.

51

CHAPTER 4

WORKLOAD CONSOLIDATION FOR CLOUD DATA CENTERS WITH

GUARANTEED QUALITY OF SERVICE USING REQUEST RENEGING

Cloud data centers are widely employed to offer reliable cloud services. However, low

resource utilization and high power consumption have been considerable challenges for

cloud providers. The accelerated rise in need for affordable cloud services magnifies the

obstacles for proficient resource management policies. In this chapter, we investigate

how to improve resource utilization and power consumption in cloud data centers when

delivering services with statistically guaranteed Quality of Service (QoS). We assume

that the cloud service provider allocates different types of services, each of which has re-

quest classes with different QoS requirements. Different from the traditional approaches

that distribute workloads with different QoS levels on different Virtual Machines (VMs),

we introduce a method to pack requests of the same service type, even with different

QoS requirements, into the same VM, and to remove potential failure requests in time to

improve resource usage and energy cost. We formally prove that our algorithm can sta-

tistically guarantee QoS conditions in terms of deadline miss ratios. We develop a cloud

prototype to validate our proposed methods and algorithm empirically. Our intensive

experimental results confirm that our approach can significantly outperform other tradi-

tional approaches in terms of QoS guarantees, power consumption, resource demand, and

electricity cost.

4.1 Introduction to the research problem

Cloud computing [15] has recently become the dominant trend for the continuous deliv-

ery of online services over the internet using large-scale data centers. In the meantime,

the relentless increase in demand for different services [20, 21], in both personal and

52

professional life sectors with high Service Level Agreements (SLAs), has posed critical

challenges on cloud service providers. Maintaining excessive computing resources won’t

effectively address this problem, as it can lead to tremendously high power consumption

rates and energy costs.

Exorbitant power consumption rates and energy costs are among the main concerns in

cloud infrastructure facilities. Cloud service providers strive to enrich competing markets

with more reliable, yet less costly, services to a modern world handles Everything as a

Service (EaaS) [15]. Whereas the price for online services decreases and the performance

of computing systems increases at almost the same rate as Moore predicted five decades

ago, the performance-per-watt of computing components increases at a much slower pace

than what Moore has anticipated [45]. As an example, in 2013, the annual electricity

consumption of data centers only in the United States was close to 91 billion KiloWatt

Hour (KWH), which is larger than the annual amount of electrical power required by

most countries [46]. Thereupon, service providers are taxed by intimidating energy bills

as they try to provide adequate Quality-of-Service (QoS) guarantees. Such a consump-

tion rate of electricity is not only a cost-and-profit problem but also a severe threat to the

environment as a result of the massive amounts of carbon dioxide emissions during pow-

ering and cooling those data centers [46]. As a result, proficient power-aware resource

management policies become a necessity and a critical infrastructure component for any

agile, consolidated and dynamically scalable cloud’s data center that provides affordable

and reliable high-quality services.

On the other hand, power-saving techniques tend to, if not always, cause a degraded

computing performance. The QoS is the key to clients’ satisfaction, and service providers

normally provide multiple (SLAs) regarding different QoS kinds. For example, a database

may be queried internally by a company’s employees or externally by a company’s cus-

tomers, who may have a higher or a lower priority than that of the employees [82]. Cloud

53

service providers need to provide a competing and guaranteed QoS, but with fewer energy

costs. Whereas over-provisioning is a common and simple solution to avoid SLA viola-

tions, resource over-provisioning is an expensive method by which resources are drasti-

cally underutilized, particularly under the unpredictably fluctuating cloud workloads [84].

Low resource utilization [50] is a prevailing problem in virtualized data centers, and

is a major leading factor to their high power consumption and increased operational

costs [45]. For example, while Google service provider makes its data centers greener by

benefiting from wind and solar energy sources, and operating recycling cooling systems,

the utilization of Google’s servers is less than 50% on average [21]. Maximizing resource

utilization becomes more crucial when performance must meet a defined satisfactory level

of service given by QoS conditions. The challenge is then how to allocate the cloud’s

workloads in a way that maximizes resource usage and guarantees the QoS requirements.

In this chapter, we propose and investigate new power-aware cloud workload allocation

policies to minimize the processing power demand of cloud’s services in cloud’s data

centers, and to reduce energy consumption, with statistically guaranteed QoS for users.

We assume that clustered data centers can accommodate different types of services, each

of which can have request classes with different QoS requirements. Our main contribu-

tions in this research are (1) Different from previous studies that employ separate Virtual

Machines (VMs) for requests with different QoS requirements, we develop a workload

multiplexing method that enables requests of the same service type, but with various QoS

constraints, to share the same VM. To our best knowledge, this is the first approach by

which different requests with different QoS guarantees are assigned to a single node to

increase resource utilization. (2) We also devise a novel methodology that correctly dis-

cards potential failure requests as soon as possible to minimize processing rate demands,

and to reduce total power consumption with statistically guaranteed QoS. We introduce a

packing and consolidation algorithm, called Green Workload Packing and Consolidation

54

algorithm (GWPC) that statistically ensures the QoS requirements of service requests in

terms of deadline miss ratios. (3) In addition to the analytical validation of our proposed

methods, we experimentally verify them, under general and cloud-specific workloads in

one of our designed cloud platforms (e.g., Green Cloud Computing Prototype (GCCP)),

described in Chapter 3. For example, we used the Data Caching Benchmark that emu-

lates the behavior of a Twitter caching server and assumes the strict quality of service

guarantees, such as 95% of the request must finish within 200 ms. Extensive experimen-

tation results show that GWPC widely outperforms existing approaches in terms of QoS

satisfaction, power consumption efficacy, resource demand minimization, and electric-

ity cost saving. Extensive experimentation results show that GWPC outperforms current

methods widely in terms of QoS satisfaction, power consumption efficacy, resource de-

mand minimization, and electricity cost saving. We use the words VM, node, and server

interchangeably throughout the chapter.

Numerous efforts have been made to reduce power and energy consumption in service-

oriented computing systems. We can categorize those researches into different abstraction

levels and/or according to different criteria. For example, according to the scale/type of

the computing systems, Cai et al. in [50] categorized the energy-aware techniques appli-

cable for servers [68,113], clusters [57,59,114], data centers [45,115] and the cloud [116].

Power/energy aware approaches can also be classified according to the different resource

types, such as CPUs [45, 117], memory [84], storage devices [118], and/or network [30].

However, since CPUs usually acquire the highest power consumption among all resource

types [115], we focus on improving power/energy efficiency of CPUs in cloud data centers

using techniques such as virtualization, workload consolidation, and scheduling [119].

Dynamic Voltage Scaling and Dynamic Frequency Scaling (DV S/DFS) have been

powerful conventional methods for adaptive performance and power dissipation adjust-

ment to achieve power efficiency [57, 114]. Hwang et al. showed that the maximum

55

energy savings in virtualized multi-core servers could be achieved when combining the

DV S/DFS methods and the consolidation algorithms [68]. Beloglazov et al. intro-

duced in [116] a global-and-local layer approach to make virtualized servers more power-

efficient by adjusting the frequency and voltage of processors according to VMs’ uti-

lization. Likewise, Kim et al. [114] proposed DV FS-enabled, with both time-shared and

space-shared, cluster scheduling policies for a bag of tasks to reduce power consumption

and to meet end-users’ deadline requirements. Although many researchers and engineers

acknowledge that DV FS scheduling algorithms are powerful energy-saving solutions on

the server’s level, there are many challenges when they are applied in the current vir-

tualized data centers; for instance, they are architecture dependent, hence they may not

achieve their best power/energy-saving when used to the current heterogeneous cloud data

centers.

As virtualization technology evolved as a norm in today’s data centers to amplify

resource usage through running multiple VMs on a single server, VM migration has been

widely employed to optimize server utilization and to reduce power consumption [29]. In

[120], Mastroianni et al. statistically modeled and analyzed the effects of VMs allocation

and migration on minimizing the number of powered-on servers, and on reducing power

consumption in data centers. Zhen et al. [29] introduced the concept of skewness to

measure the unevenness in the servers’ multidimensional-resource utilization. However,

VM live migration requires a delay that can degrade the overall system performance and

availability and consequently leads to SLA violations [121].

In conjunction with VM migration, server consolidation is of particular interest among

efficient resource allocation policies [85]. Server consolidation, comparatively to DV FS,

improves resource utilization without demanding excessive hardware resources, and it is

easy to implement and to deploy [120]. Now that, server power consumption is not ex-

actly proportional to its utilization, and a server may waste a non-trivial amount of power

56

even if it is shut down [120], server consolidation methods pack running VMs on a smaller

number of physical servers and/or turn off the rest, to minimize the total power consumed

by those servers [58, 113, 120]. In [113], Verma et al. presented a two-dimensional, i.e.,

memory-based and CPU-based, consolidation strategy in which decisions are based on

the correlation among different workloads. In [113], Pinheiro presented an algorithm to

dynamically turn servers on and off according to the imposed load in computing clusters.

Chase et al. [122] reduced the energy consumption of server clusters by degrading ser-

vices according to their SLAs, when power consumption or thermal dissipation exceeds

certain limits.

Whereas saving power/energy is important, service providers must also ensure that

their services can satisfy users’ QoS requirements, such as response time and/or deadline

miss ratios. For instance, a recent report has found that a 100ms extra delay costs Ama-

zon 1% of sales revenue [123]. The problem becomes more challenging with interactive

workload types [61], such as online gaming [21] and multimedia streaming services [62],

whose response times are crucial. These online interactive services are defined by soft-

timely constraints [61], in that service providers must guarantee that a predefined percent-

age of them meet their deadlines. Otherwise, service providers fail to keep up with their

SLAs [20].

VM placement methods with performance-interference awareness were introduced

in [124] to improve the performance of VMs and the utilization of physical machines.

Resource overbooking, i.e., allocating more resources than the actual available capacity

to raise service provider profit, with different real-time constraints is presented in [61].

Energy-aware resource allocations with response time and end-to-end time guarantees

were introduced in [58] and [59], respectively. Greenberg et al. [30] studied the costs

of cloud data centers and recommended to developing new management systems within

57

and across geographically distributed data centers with the focus on network agility to

improve their efficiency and end-to-end performance.

SLA-aware workload consolidation had been proposed to achieve higher dynamic

power efficiency and to overcome the under-utilization problems resulting from applying

the over-provisioning policies [86]. Lee et al. [125] developed a pricing model, based on

the queue model M/M/1/PS, and used it to produce a profit-driven scheduling algorithm

with SLA for the cloud’s dependent services.

To guarantee service requests with different classes of QoS requirements, it has been

a common approach (e.g., [59]) to serve requests with the same QoS requirements on the

same VM. Now that, all requests on the same machine have the same QoS requirements,

different types of QoS can be captured by a single variable, such as provisioned resources

(e.g., [113] [120] [116]), required processing speed (e.g., [57]) or latency (e.g., [58] [59]).

Although this approach simplifies the resource management problem to guarantee one

specified QoS criteria, it excludes requests that can share resources, and the overall re-

source usage can be rather inefficient, as illustrated later in this research. Additionally,

almost all previous works implicitly assumed that all accepted requests must be served,

even if they do not meet their QoS conditions. We show in this chapter that if we can ju-

diciously discard the requests that are likely to miss their deadlines, we can significantly

improve resource usages without compromising QoS conditions.

4.2 System model

In this section, we describe our proposed system model and formulate the problem.

58

4.2.1 Service model

We assume that a cloud data center consists of several cloud computer clusters, each of

which consists of two or more physical machines, and has its own service manager that is

analogous to the cluster schedulers in Google’s clustered data centers [82]. Each cloud’s

cluster has a cloud orchestrator (such as, OpenStack) and a virtualization hypervisor (such

as, Xen [145]) that work together to create VMs with different types and capacities for

hosted services, and to make them available online for customers who submitted requests

with different QoS requirements. We assume that a service provider provides n different

types of services based on their application purpose S = {S1, ...,Sn}. Each type of service

(e.g., Si) can accommodate different classes of service requests Γi = {τi, j, j = 1, . . . ,ri},

i.e., requests under different SLAs. Each class of requests (e.g., τi, j) has its own QoS

requirements (e.g., Qi, j). We assume that different types of services must be hosted on

different VMs, but different classes of requests of the same type can be potentially hosted

in the same VM. We assume that there are n types of VMs {V M1, ...,V Mn}with capacities

of {C1, ...,Cn} supporting n different types of services {S1, ...,Sn}, respectively. VMs with

the same service type Si are logically grouped together into a single server pool SPi. A

server pool SPi may contain up to mi VMs. Each VM {V Mi,k,k = 1, . . . ,mi} within a

server pool SPi can require a different processing rate {Ui,k,k = 1, . . . ,mi}. Our service

model is illustrated in Fig. 4.1. We can see that different request classes of the same

service type can share the same VM (e.g., τ11 and τ14 share V M12, and τ12 and τ13 share

V M11). Contrarily, {τ21,τ2m} are hosted separately on {V M21, ...,V M2m}, respectively.

As long as both waiting and average response times distributions of industrial work-

loads’ requests have variances with small coefficients, we assume that request arrival

patterns follow the Poisson distribution, and their response times follow the exponential

distribution [160], as they approximate the actual corresponding distributions with accept-

able precision [161]. Different request classes of the same service type may have different

59

arrival times, deadlines, and completion ratios. Specifically, a request is modeled with a

3-tuple, i.e., τi j = {λi, j,Di, j,Ri, j}; where λi, j is the arrival rate of j-class requests in ser-

vice Si, Di, j is the deadline of j-class requests in Si, and Ri, j is the required completion

ratio of j-class requests in Si. The QoS requirement Qi, j of a request τi, j is defined by

{Di, j,Ri, j}, meaning that at least Ri, j percent of τi, j requests have to be served no later

than Di, j as in [69]; for example, CloudSuite [162], a benchmark suite for cloud services,

describes the QoS constraints of web search requests by a latency of D = 500 ms and

completion ratio of R = 90% [163].

4.2.2 Power model

Considering that the allocation of processing units in cloud data centers generally occurs

at levels of whole core(s) [69,164], we assume that each VM is allocated to an individual

processing core on a physical server, and, thus, we adopt a power model similar to that

in [120] to model the power consumption of a VM, as shown in (4.1):

P = Pd
ϕ+Ps (4.1)

where; Ps is the static power, Pd is the dynamic power, and ϕ is the utilization of a

processing core. ϕ is defined as ϕ = U
C ; where U is the processing rate for a VM, and C is

the capacity limit of the core allocated to it (i.e., the maximum processing rate available).

We calculate Pd and Ps empirically, as explained later on in section 3.2.2, and we assume

that they are constant and the same for each set of mi cores hosting the same service

type Si. This model can be easily extended to the scenarios wherein a VM is mapped to

multiple cores.

60

4.2.3 Problem definition

With the system model defined above, the problem we are to address can be formulated

as follows.

Problem 4.1. Given service requests Γ = {τi, j : j = 1, ...,ri; i = 1, . . . ,n}, determine the

server pools SP = {SPi : i = 1, . . . ,n}; where SPi = {V Mi,k : k = 1, ...,mi}, the corre-

sponding processing rate {Ui, j : i = 1, ...,n; j = 1, ...,mi} for each VM (e.g., V Mi, j), and

the allocation of Γ to the VMs within each server pool in SP, such that the QoS re-

quirements of the requests {Qi, j, i = 1, ...,n; j = 1, ...,ri} are guaranteed, and the power

consumption of each server pool is minimized.

This problem involves two intertwined problems: (a) how to judiciously pack service

requests to a VM, (b) and how to determine the proper service rate to minimize the power

consumption while guaranteeing the QoS for all classes of request types. Next, we discuss

our analytical results for this problem, and then present our algorithm in details.

4.3 Preliminaries

This section presents several key analysis results with regard to QoS guarantees, requests

multiplexing, and requests packing. These results form the basis of our approach.

4.3.1 Processing rate minimization for QoS guarantee using request

reneging

Traditionally, M/M/1 queue [160] has commonly been adopted to represent the request

processing procedure [20], as shown in Fig. 4.2a. Service requests arrive with a rate λ,

wait in a queue with an infinite size, and are processed with a rate µ. Accordingly, the

61

Figure 4.1: Service model

Probability Density Function (PDF), and the Cumulative Distribution Function (CDF) of

the response time can be formulated as:

f (t) = (µ−λ)e−(µ−λ)t (4.2)

F(t) = 1− e−tµ(1− λ

µ) (4.3)

with a mean response time:

E[t] =
1

µ−λ
(4.4)

The q-percentile of the response time tq (i.e., tq is larger than q% of all response times)

has the following relationship:

1− e−tqµ(1− λ

µ) =
q

100
(4.5)

To this end, given a request τi, j’s arrival rate λi, j, deadline Di, j, and completion ratio

requirements Ri, j. In order to guarantee Qi, j, the required service rate µi, j (when τi, j is

62

hosted alone) is:

µi, j =
ln[1

1−Ri, j
]

Di, j
+λi, j (4.6)

The µi, j defined above can guarantee Qi, j, i.e., no more than (1−Ri, j)% of the requests

can miss their deadlines.

It is rational to drop a request if it is a potential failure in terms of missing its deadline

so that we can save the precious resource for requests that are more likely to successfully

complete in time. The problem nevertheless is how to discard these requests without

compromising the QoS. To this end, we employ the M/M/1 queue with the reneging

model [165], as illustrated in Fig. 4.2b.

As shown in Fig. 4.2b, according to the reneging model, each request is associated

with a deadline. If a request is not fully served by its deadline, it is removed from the sys-

tem. According to this model, there exists a provocative relationship among the request’s

deadline miss probability Pmiss, arrival rate λ, processing rate µ, and deadline D, which

can be formulated as [165]:

Pmiss =
(1−ρ)eµD(ρ−1)

1−ρeµD(ρ−1)
(4.7)

where ρ = λ

µ . Accordingly, for a given λi, j, Ri, j, and Di, j of request τi, j, we can derive µ∗i, j

that guarantees Qi, j:

1−Ri, j ≤
(1− λi, j

µ∗i, j
)e

µ∗i, jDi, j(
λi, j
µ∗i, j
−1)

1− λi, j
µ∗i, j

e
µ∗i, jDi, j(

λi, j
µ∗i, j
−1)

(4.8)

By judiciously removing the requests from the queue, we can guarantee the same QoS

with lower processing rates. This conclusion is formally formulated in Theorem 4.1.

Theorem 4.1. A service request τ = {λ,D,R}; where λ,D, and R refer to its arrival rate,

deadline, and completion ratio requirement, respectively. Let µ∗ and µ be the processing

rates to satisfy R based on the M/M/1 queue model with and without request reneging,

respectively. Then µ≥ µ∗.

63

Proof. From (4.6), we have

µ =
ln[1

1−R]

D
+λ (4.9)

If we apply the same processing rate for requests of the same service type with reneging,

and let the result completion ratio be R∗, then based on Equation 4.8 we have

R∗ = 1−Pmiss

=
1− e(λD−µD)

1− λ

µ e(λD−µD)

(4.10)

Then with (4.9), we have

R∗ =
1− e[λD−(

ln[1
1−R]

D +λ)D]

1− λ

µ e[λD−(
ln[1

1−R]

D +λ)D]

=
R

1− λ

ln[1
1−R]

D +λ

(1−R)

(4.11)

Since (1− λ

ln[1
1−R]

D +λ

(1−R))< 1, we have:

R∗ =
R

1− λ

ln[1
1−R]

D +λ

(1−R)
> R (4.12)

Equation 4.12 indicates that the processing rate µ based on the M/M/1 queue can lead to

a larger completion ratio R∗, if request reneging is allowed. Therefore, to obtain the same

completion ratio (e.g., R), we have µ∗ ≤ µ.

4.3.2 Request multiplexing

When a service Si has multiple request classes {τi, j, j = 1, ...,ri}, a common approach is

to host each request class on a single VM {V Mi, j, j = 1, ...,ri}, respectively. The Ri, j-th

percentile response time tRi, j of τi, j can be formulated as:

tRi, j =
1

µi, j−λi, j
ln[

1
1−Ri, j

]. (4.13)

64

(a) M/M/1 queue model

(b) M/M/1 model with request reneging

Figure 4.2: Processing models

When hosting each request class τi, j individually on V Mi, j, let the server pool SPi

= {V Mi, j, ...,V Mi,ri} has the processing rates {Ui,1 = µi,1, ...,Ui,ri = µi,ri}, respectively.

Then to satisfy each Qi, j, the processing rates can be calculated according to Equation

4.6:

µi, j =
ln[1

1−Ri, j
]

Di, j
+λi, j (4.14)

A better approach, withal, is to host multiple request classes in a single VM with a

processing rate U that satisfies the QoS requirements of all hosted classes. We formulated

this essential finding in Theorem 4.2.

Theorem 4.2. For the i-type service requests {τi, j, j = 1, ...,ri} hosted in a single node

ˆV M, let the processing rate of ˆV M be Û and let

Ui, j = µi, j +
ri

∑
q=1,q6= j

λi,q. (4.15)

Then the QoS requirements for {τi, j, j = 1, . . . ,ri} can be satisfied if Û ≥maxri
j=1Ui, j.

65

Proof. When all classes of requests are hosted together in a single node (e.g., ˆV M =

V Mi,1), the processing rate of V Mi,1, i.e., Ui,1, has to satisfy the QoS

Ui,1 = µi,1−λi,1 +
ri

∑
j=1

λi, j (4.16)

= µi,1 +
ri

∑
j=2, j 6=1

λi, j. (4.17)

We can equivalently derive the required processing rates for any V Mi,l , i.e., Ui,l; where

i ∈ [1− ri], according to the QoS requirements of τi,l as follows:

Ui,l = µi,l +
ri

∑
j=1, j 6=l

λi, j, (4.18)

Therefore, when {τi,1, ..., τi,ri} are hosted together in ˆV M =V Mi,l , in order to satisfy the

QoS requirements for all classes of requests

Û = max{Ui,1, ...,Ui,ri}. (4.19)

From Theorem 4.2, when multiple classes of service requests are multiplexed in a sin-

gle VM, the processing rate can be easily identified to ensure the QoS conditions for these

requests. In the meantime, we show that request multiplexing helps improve resource uti-

lization, as implied in the Theorem 4.3. Let us first define the processing rate Ω(SPi) of a

server pool SPi.

Definition 4.1. The processing rate of a server pool, denoted as Ω(SPi); where SPi =

{V Mi,1, ...,V Mi,ri}, is the sum of all VMs’ required processing rates {Ui,1, ...,Uri} in that

server pool:

Ω(SPi) =
ri

∑
j=1

µi, j =
ri

∑
j=1

[
ln[1

1−Ri, j
]

Di, j
+λi, j] (4.20)

66

Theorem 4.3. Given the i-type service requests {τi,1, . . . , τi,ri}, let SPi = {V Mi,1, . . . ,

V Mi,ri} be all VMs, when each class of requests, τi, j, is served separately with a dedi-

cated V Mi, j, and let ˆSPi = { ˆV Mi,1} be a server pool with a single VM that serves all the

requests simultaneously. Let Ω(SPi) (Ω(ˆSPi)) be the processing rate of the server pool SPi

(ˆSPi, resp.) such that the QoS requirements for all {τi, j, j = 1, ...,ri} are satisfied. Then

Ω(SPi)≥Ω(ˆSPi).

Proof. When each class of requests is served separately with a dedicated VM, we have

from Definition 4.1:

Ω(SPi) =
ri

∑
j=1

µi, j =
ri

∑
j=1

[
ln[1

1−Ri, j
]

Di, j
+λi, j]. (4.21)

When all requests are served by a single VM, we have from Theorem 4.2:

Ω(ˆSPi) =
rimax

j=1
Ûi, j (4.22)

where Ûi, j = µi, j +∑
ri
q=1,q6= j λi,q is the required processing rate of V Mi, j to meet Qi, j.

Because µi, j ≥ λi, j for all j ∈ [1,ri], we have

Ω(SPi)

Ω(ˆSPi)
≥ 1, (4.23)

or, equivalently, Ω(SPi)≥Ω(ˆSPi).

Theorem 4.3 indicates that multiplexing different request classes on a single V Mi, j

can result in a smaller processing rate for the server pool, provided that the processing

rate is feasible on V Mi, j; i.e., required processing rate must not exceed the VM’s max-

imum capacity Ci, j. If only one VM cannot accommodate all service requests without

compromising their QoS requirements, we will need more than one VM. How can we

allocate service requests to VMs while optimizing the processing rate utilization of the

hosting servers utilization? We address this question next.

67

Table 4.1: Processing rate comparison with different requests packing strategies

Packing Strategy 1 Packing Strategy 2
VM1 VM2 VM’1 VM’2

τi = {τ1,τ2} τi = {τ3,τ4} τi = {τ1,τ4} τi = {τ2,τ3}
U1 = 160 U2 = 140 U ′1 = 150 U ′2 = 130

4.3.3 Request packing

From the discussions above, clustering multiple classes of requests into the same VM

helps improve the resource usage. When more than one VM is needed, the question then

becomes how to group different classes of requests into each VM to minimize the server

pool processing rate Ω=∑i ∑k Ui,k, and to maximize the overall resource usage efficiency.

Consider the following example with four request classes of the same type {τ1,τ2,τ3,τ4},

with λ = {60,40,50,20} request’ Instances Per Second (IPS), and µ = {120,80,70,90}

IPS, respectively. µi is the minimum processing rate of request τi to satisfy its QoS, when

it is allocated individually to a VM. To guarantee all the QoS requirements, two request-

grouping strategies are shown in Table 4.1. The server pool’s processing rates using

both strategies are Ω(V1,V2) = 300 and Ω(V ′1,V
′
2) = 280, respectively (derived based on

Theorem 4.2). This example clearly shows that different requests’ allocation strategies

lead to server pools with different processing rates and, thus, utilizations.

We show in Theorem 4.6 that the general packing problem is NP-hard in nature. Sub-

sequently, we focus on the development of an effective and efficient heuristic solution for

this problem. Specifically, we have made several crucial observations, based on a service

allocation onto two servers, which we formulate in the following theorems.

Theorem 4.4. Let Γ1 = Γ1,p
⋃

Γ1,q; where Γ1,p = {τ1,p1 , τ1,p2, ...,τ1,ps}, Γ1,q = {τ1,q1,

τ1,q2, ...,τ1,qs}, and Γ1,p
⋂

Γ1,q = /0. Assume Γ1,p and Γ1,q are mapped to two VMs with

the same capacity, V M1,p and V M1,q, respectively. For each τi, j, let

φi, j = µi, j−λi, j. (4.24)

68

Let U1,p (U1,q, resp.) denote the minimum processing rate for V M1,p (V M1,q, resp.) that

guarantees the QoS requirements of Γ1,p (Γ1,q, resp.). Then the processing rate for the

server pool SP = {V M1,p,V M1,q}, i.e., Ω(SP) =U1,p +U1,q, is minimized if the quantity

given in Equation 4.25 is minimized:

Φ = max
τ1,p∈Γ1,p

φ1,p + max
τ1,q∈Γ1,q

φ1,q. (4.25)

Proof. From Theorem 4.2, we know that

u1,p ≥ max
τ1,p∈Γ1,p

{µ1,p +
ps

∑
j=p1, j 6=p

λ1, j} (4.26)

= max
τ1,p∈Γ1,p

φ1,p +
ps

∑
j=p1

λ1, j (4.27)

comparatively,

u1,q ≥ max
τ1,q∈Γ1,q

{µ1,q +
qs

∑
j=q1, j 6=q

λ1, j} (4.28)

= max
τ1,q∈Γ1,q

φ1,q +
qs

∑
j=q1

λ1, j (4.29)

Thusly, Ω(V) = U1,p +U1,q is minimized if Φ = maxτ1,p∈Γ1,p φ1,p +maxτ1,q∈Γ1,q φ1,q is

minimized.

Theorem 4.4 means that to minimize the processing rate for a server pool SPi, we

need to minimize the sum of maximum φi, j (defined in Equation 4.24) for the services

allocated to each node. A simple heuristic is, hence, to sort all requests classes {τi, j, j =

1, ...,ri} according to their {φi, j, j = 1, ...,ri}, and allocate as many high-ranking classes

as possible on the same VM. Specifically, we have the following theorem.

Theorem 4.5. Let Γi = {τi,1,τi,2, ...,τi,ri} be mapped to two VMs with the same capacity,

V Mi,p and V Mi,q. Let τi,k ∈ Γi and let

Γ
h
i,k = {τi, j ∈ Γi|φi, j > φi,k}. (4.30)

69

Then the processing rate for the server pool SPi = {V Mi,p,V Mi,q}, i.e., Ω(SPi) = Ui,p +

Ui,q, is minimized if τi,k is the one with the smallest φi,k such:

• Γh
i,k are feasibly allocated to one server (e.g., V Mi,p);

• Γh
i,k+{τi,k} cannot be feasibly allocated to the same server (V Mi,p) simultaneously;

• τi,k is feasibly allocated to another server (e.g., V Mi,q).

Proof. From Theorem 4.4, to minimize Ω(SPi) we only need to minimize Φ = maxτi,p

∈ Γi,p φi,p+ maxτi,q ∈ Γi,qφi,q. Without loss of generality, assume that τi,α ∈ Γi is the one

with the largest value of φ, and is allocated to V Mi,p. Then to optimize Ω(SPi) we only

need to optimize maxτi,q∈Γi,q φi,q. Note that any τi, j ∈ Γh
i,k allocated to V Mi,q will lead to

a larger maxτi,q∈Γi,q φi,q than it is when all Γh
i,k are allocated to V Mi,p. But, Γh

i,k + {τi,k}

cannot be feasibly allocated to the same node V Mi,p simultaneously, and, thus, τi,k has to

be allocated to V Mi,q. For the rest of τi, j, their allocations do not affect the optimality of

Ω(SPi) as shown in Theorem 4.4.

Note that Theorem 4.5 helps to identify the optimal service packing solution for two

VMs. However, if there are more than two VMs, finding the optimal solution becomes

substantially more complicated due to the trade-off between minimizing the maximum

value of φ for a VM, and the total number of needed VMs. In Theorem 4.6, we show that

the service packing problem involving more than two VMs is NP-hard.

Theorem 4.6. Let SPi = {V Mi,1,V Mi,2, . . . ,V Mi,mi} be a server pool with m≥ 3, hosts a

set of requests Γi = {τi,1,τi,2, ...,τi,ri} from the same service type Si, but with different QoS

constraints. Assume that all VMs in SPi have the same capacity C. Then packing the re-

quest set Γi in the server pool SPi such that the server pool processing rate Ωi = ∑
mi
j=1Ui, j

is minimized is NP-hard.

70

4.4 The Green Workload Packing and Consolidation (GWPC) algo-

rithm with statistical guarantee

We are now ready to discuss our approach for power consumption minimization in cloud

data centers with guaranteed QoS. Inasmuch as the overall power consumption of a server

pool depends on both the processing rates of its VMs, and the static power consumption

of the physical servers hosting those VMs (see Equation 4.1), to solve Problem 4.1, we

need to minimize the number of VMs, and their processing rates. Thus, we develop

an algorithm, called Green Workload Packing and Consolidation algorithm (GWPC) to

allocate VMs and map service requests onto them.

First, GWPC intends to consolidate multiple request classes to the same VM. As

shown in Theorem 4.2, when various classes are hosted in the same VM, the total process-

ing rate of a server pool reduces, which helps to minimize the dynamic power consump-

tion of the physical cores on which VMs run. Moreover, consolidating multiple request

classes in a single VM reduces the total number of needed VMs, which in turn minimizes

the total number of hosting physical machines and their static power. Second, GWPC

adopts the reneging model to judiciously expunge service requests. Specifically, in Fig.

4.3, the required processing rate (e.g., µ j) for each class of requests (e.g., τ j) is calculated

based on the reneging model (line 1). We then sort all requests based on φ j = µ j−λ j in

a decreasing order (line 2), and pack the requests from the list to VMs with the capacity

(i.e., the maximum processing rate) of C (line 3 to 13). Theorem 4.6 clearly demonstrates

that Problem 4.1 is NP-hard, so we resort to the traditional first-fit bin-packing algorithm

to pack the requests, and minimize the number of VMs. This helps reduce the static power

consumption of the server pool. Sorting the requests according to the value of φ is a good

heuristic with a basis presented in Theorem 4.5. It helps minimize the processing rate of

71

Figure 4.3: The Green Workload Packing and Consolidation (GWPC) algorithm

each VM, and, thus, it also help minimize the dynamic power consumption of the server

pool.

In what follows, we present the experiments and results we obtained based using the

GCCP cloud platform, that we described in the previous chapter.

4.5 Experimental validation

In this section, we use experiments to validate our analytical findings and to test the

performance of the GWPC algorithm using the GCCP platform, described in Chapter 3.

To investigate the performance of our approach, we implemented the following work-

load mapping and scheduling algorithms, which also employ failure reneging: (1) Split

(denoted as (SPT)): the traditional method by which each request class is hosted in a

separate VM [113], [166]; (2) Random (denoted as (RND)): the method that fills mul-

72

(a) S1 : 256×256 MMUL (b) S2 : 1×256 1-D FFT

Figure 4.4: Minimum required processing rates for guaranteed QoS using M/M/1 queue model
with and without reneging for (a) S1 and (b) S2 cloud service types

(a) S1 : 256×256 MMUL (b) S2 : 1×256 1-D FFT

Figure 4.5: Response time comparison for guaranteed QoS using M/M/1 queue model with and
without reneging for (a) S1 and (b) S2 cloud service types

tiple request classes randomly into a VM; (3) First-Fit-Decreasing (denoted as FFD):

the bin-packing method [167] with service classes combined based on the decreasing or-

der of their required processing rates; (4) Green Workload Packing and Consolidation

(denoted as (GWPC): our proposed method.

4.5.1 Performance with request reneging

We first empirically study the advantages of request reneging on minimizing the required

processing rates and average response times with QoS guarantees. We also compare the

73

performance of the system with and without request reneging using two different service

types; i.e., memory-intensive (e.g., S1) and CPU-intensive (e.g., S2) types.

We generated two sets of classes with six different request classes each {τi, j : i = 1,

2; j = 1, ...,6}, with the first set from (S1 : 256×256 MMUL), and the second set from

(S2 : 1×256 1-D FFT). Request classes from both types were set to have average arrival

rates of {λi,1 = 50, λi,2 = 100, ...,λi,6 = 300; where i = 1,2}, completion ratios of Ri, j =

95%, and deadlines randomly generated following a uniform distribution in the ranges

[5− 15]× 102µs and [2− 6]× 102µs for S1 and S2 classes, respectively. All parameters

and their values were arbitrarily chosen.

We generated 105 Instances Per Request class (IPR), and request instances of each

class were executed in a VM with and without reneging. The capacity of the VM was

set to 1800 IPS and 6000 IPS for S1 and S2, respectively. In each run, we calibrated

the maximum processing rate of each VM by assigning a cap to each VM’s Virtual CPU

(VCPU) that limits the maximum amount of processing rates a VM receives from its

allocated physical core. We then applied the traditional binary search method to find the

minimum required processing rates that can meet the given QoS conditions. We repeated

the experiment for each setting 104 times, and the average results are shown in Fig. 4.4

and Fig. 4.16.

Fig. 4.4 compares the minimum required processing rates with and without reneging

under different arrival rates and QoS settings. We see that for both S1 and S2 requests,

the minimum required processing rates with reneging are much lower than those without

reneging. For example, when the arrival rate is 200 IPS, the minimum required process-

ing rates with reneging for S1’s and S2’s are 1000 IPS and 4800 IPS, respectively. If

no requests have reneged, the minimum required processing rates become 1600 IPS and

5600 IPS, respectively. The increase in the processing rate thus is 60% and 16.7% over

its counterparts. The minimum required processing rates unsurprisingly increase with

74

the increment of arrival rates. Nonetheless, the minimum required processing rates with

reneging increase at a much slower rate, as clearly shown in Fig. 4.4. In average, the min-

imum required processing rates with reneging for S1 and S2 are 62% and 58% lower than

those without reneging, respectively. These results evidently conform to the theoretical

conclusion formulated in Theorem 4.1 that request reneging helps reduce the processing

rates while guaranteeing the same QoS requirements.

We can also observe that request reneging helps lower service response times. As

shown in Fig. 4.5a and Fig. 4.5b, the average response times of S1 and S2 classes without

reneging are always longer than those with reneging. On average, the average response

times of S1’s and S2’s are 225% and 409% longer than those with reneging. As the arrival

rates increase, the minimum required processing rates must increase to ensure the same

QoS requirement. As a result, response times are reduced. While response times for re-

quests without reneging change dramatically, as arrival rates increase, the response times

for requests with reneging do not vary as significantly, which implies that requests with

reneging can deliver service more stable in terms of response time variations. When com-

paring the response time improvement with reneging for the memory-intensive service S1

and the CPU-intensive service S2, we can see that S1 benefits more than S2 in term of the

improvement for the minimum required processing rates and response times, as shown in

Fig. 4.4 and Fig. 4.16. We conjecture that this is because S1 requests require longer I/O-

related operations, and cannot be easily terminated for request reneging, which negatively

affects their response times when compared with the CPU-intensive requests.

Request reneging to a great extent not only reduces processing rate requirements to

guarantee the same QoS requirements like the one without reneging, but also results in

lower and more stable average response times, and is, therefore, a promising approach to

achieve reliable and predictable performance.

75

4.5.2 Multiplexed vs. split request processing

Having validated the performance improvement of request reneging, we now compare

the completion ratios and average response times when serving requests in a multiplexed

manner (e.g., GWPC) and a split manner (e.g., SPT).

We generated two types of services, S1 (128×128 MMUL) and S2(1×64 1-D FFT).

We randomly generated six testing groups of request classes from each service type, with

the number of classes in each group varying from r = 5 to r = 10, i.e., {τi, j; i = 1,2;

j = 1, . . . , r}. The arrival rates and deadlines in each request class were randomly gen-

erated with the average following a uniform distribution in the ranges [20−120] IPS and

[5−6] ×102µs, respectively. We set 90% and 95% completion ratios for S1 and S2, re-

spectively. In each test, we generated 105 IPR for each of S1 and S2 classes, separately

applied the GWPC and SPT methods on those instances using VMs with a capacity set

to 104 IPS, and calculated the achieved completion ratios and average response times in

each run for each request class. All these parameters and their values were arbitrarily

chosen. We repeated the experiment for each setting 104 times, and the average results

are shown in Fig. 4.6 and Fig. 4.7.

Fig. 4.6 compares the completion ratios achieved by the multiplexed and split ap-

proaches under different experiment settings. As shown, both methods successfully guar-

antee the required completion ratios for S1 and S2. Nonetheless, GWPC can achieve a

much higher average completion ratios than SPT. Note that, for the test cases when there

are eight different request classes (i.e., r = 8), GWPC achieves a completion ratio of 94%

for S1 and 97.5% for S2, in comparison with 90.2% for S1 and 95.8% for S2 achieved by

SPT. Those results comply with the conclusion in Theorem 4.3 that request multiplexing

helps reduce required processing rates without compromising QoS requirements. When

all VMs have the same capacity, GWPC can unsurprisingly lead to better completion

ratios in all test cases. GWPC can on average achieve an average completion ratios of

76

93.87% for for S1 and 97.2% for S2, whereas SPT can only achieve 90.18% and 95.92%

for S1 and S2, respectively.

Request multiplexing also results in less average response times than those in SPT,

as shown in Fig. 4.7. The average response times in the multiplexed approach outper-

form those in SPT in all test cases. The reason for such improvement is that GWPC can

efficiently utilize computing resources among different request classes, as a result of re-

quest reneging and multiplexing. Moreover, allocating a smaller number of VMs reduces

the overhead on the VM Manager (V MM). For example, the hypervisor, especially with

memory-intensive workloads, which demand more privileged operations, such as mem-

ory accesses, context switches, system calls and interrupts [168]. For instance, in Fig.

4.7, when the number of classes is r = 10, GWPC results in an average response time that

is 2.26µs less than those in SPT for S1 classes, but for S2 and with the same number of

request classes r = 10, GWPC shows only 0.06µs better average response time than that

of the SPT.

Overall, our experiments show that request multiplexing not only guarantees QoS

requirements, but can also achieve higher completion ratios than required. It can better

utilize computing resources than SPT does, especially with the memory-intensive service

types.

4.5.3 Performance under different service utilizations

In this section, we analyze the performance of GWPC in terms of power consumption and

processing rate demand, compared with SPT, FFD, and RND.

We generated five groups of test cases, each of which has a different number of request

classes {τi, j : i = 1,2; j = 1, ...,ri}; where ri = 10,20, ...,50, from two service types, i.e.,

(S1 : 128×128 MMUL) and (S2 : 1×64 1-D FFT). The arrival rates and completion ratios

77

(a) S1 : 128×128 MMUL (b) S2 : 1×64 1-D FFT

Figure 4.6: Performance of completion ratios between request multiplexing and splitting using
requests of (a) S1 and (b) S2 cloud service types

(a) S1 : 128×128 MMUL (b) S2 : 1×64 1-D FFT

Figure 4.7: Performance of average response times between request multiplexing and splitting
using requests of (a) S1 and (b) S2 cloud service types

were randomly generated with the average following uniform distributions in the ranges

[20−500] IPS and [90%−95%], respectively. We recall that, from Equation (4.8), when

the arrival rate is a constant value, the smaller the deadline, the higher the required pro-

cessing rate is. Thence, as the deadline reduces, the processing rate µi, j increases, and

then the service utilization increases. We accordingly varied request utilization by chang-

ing the intervals from which we randomly picked the deadlines. For each set of request

classes, we varied the deadline range among four intervals, starting from 500 µs and

600 µs with interval length of 50µs and 100µs for S1 and S2, respectively.

78

(a) D1, j ∈ [500−550]µs (b) D1, j ∈ [550−600]µs

(c) D1, j ∈ [600−650]µs (d) D1, j ∈ [650−700]µs

Figure 4.8: Power-saving performance normalized to that of SPT for S1 : 128×128 MMUL service
type with different deadline ranges

GWPC, SPT, FFD, and RND were tested using the same test cases. In each run, we

generated 105 IPR with reneging on the VMs V Mi, j; i = 1,2; j = 1,2, ...,mi. We repeated

each run 104 times, calculated the average results, normalized them to the results by SPT,

and presented them in Fig. 4.8 to Fig.4.11. Specifically, Fig. 4.8 and Fig. 4.9 show the

power consumption of different approaches, and Fig 4.10 and Fig. 4.11 compare the total

minimum processing rates required by each server pool (i.e., Ω(SPi)) to satisfy the given

QoS constraints. From Fig. 4.8 and Fig. 4.9, we can immediately observe that GWPC

outperforms the other three approaches under the different testing condition. For exam-

ple, for S1’s request in Fig. 4.8, and when the deadlines are within the range of [50 - 550]

µs, and the number of classes is 30, the power consumption by GWPC is about 46% of

that by SPT. Whereas it is about 52% and 58% for FFD and RND of that by SPT, respec-

79

(a) D2, j ∈ [6−7] ×102µs (b) D2, j ∈ [700−800]µs

(c) D2, j ∈ [800−900]µs (d) D2, j ∈ [900−1000]µs

Figure 4.9: Power-saving performance normalized to that of SPT for S2 : 1×64 1-D FFT service
type with different deadline ranges

tively. We can also see that GWPC’s power-saving performance increases with increasing

the number of classes, as well as with increasing the tightness of their deadline ranges. As

the number of classes increases and the solution space to map requests to different VMs

increases, GWPC can henceforth take advantage of the bigger solution space, and achieve

better power-saving performance. Correspondingly, when the deadlines are long, or the

workload intensity is light, the differences among packing approaches become smaller,

and hence the power consumption patterns become similar. As the deadlines become

larger and larger, the workload becomes heavier and heavier, and like this GWPC can

greatly benefit from its effective request reneging and packing methods, and can conse-

quently achieve higher and higher power-saving performance. For example, from Fig.

4.9(d) and Fig. 4.9(a), the power consumption ratios achieved by GWPC increase from

80

(a) D1, j ∈ [500−550]µs (b) D1, j ∈ [550−600]µs

(c) D1, j ∈ [600−650]µs (d) D1, j ∈ [650−700]µs

Figure 4.10: Processing rate performance normalized to that of SPT for S1 : 128× 128 MMUL
service type with different deadline ranges

61% to 82.8% as request utilizations decrease (e.g., the deadline range changed from

[650−700]µs to [500−550] ×102µs).

The behaviors of the minimum required processing rates and power consumption rates

are closely related. Thus, it is not unforeseen to observe the similar phenomena, when

studying our experimental results in terms of the minimum processing rates of the server

pools. The total processing rates required by GWPC are lower than those required by

the other three approaches for both types of services and under different testing cases,

as shown in Fig. 4.10 and Fig. 4.11. We can also notice, from the same figures, that

the improvement of GWPC over the other three approaches increases, when the class

number for each service type increases, as well as when the tightness of the deadline

ranges increase. Recall that, in Theorem 4.6, we prove that request packing is an NP-hard

81

(a) D2, j ∈ [600−700]µs (b) D2, j ∈ [700−800]µs

(c) D2, j ∈ [800−900]µs (d) D2, j ∈ [900−1000]µs

Figure 4.11: Processing rate performance normalized to that of SPT for S2 : 1× 64 1-D FFT
service type with different deadline ranges

problem [169], when a server pool SPi needs more than two VMs. Yet, our experimental

results clearly show that the heuristic proposed in GWPC, i.e., packing requests ordered

by φi, j (see Equation 4.24) is much more effective than the one (i.e., FFD) that packs

requests ordered by their individual processing rates (e.g., µi, j) only. For example, in Fig.

4.11 for S2 classes, when the class number is 30, the average total processing rate by

GWPC is about 85% of that by FFD.

4.5.4 Performance under different server capacities

Different server capacities affect how many requests can be accommodated in a single

server, and how many servers are needed to ensure the QoS requirements for a given

82

set of service requests. In this section, we investigate how the performance of different

allocation and packing approaches varies with different server’s capacities, (e.g. Ci, j).

We generated two types of services, S1 (128×128 MMUL) and S2 (1×64 1-D FFT),

with five testing groups of requests from each service type, and with each group has

a different number of classes {τi, j; i = 1,2; j = 1, ...,r;r = 10,20, ...,50}. The average

arrival rates were randomly varied with the average following a uniform distribution in

the range of [20− 500] IPS and [500− 1500] IPS for S1’s requests and S2’s requests,

respectively. The deadlines of the requests were chosen randomly from the interval [500−

600]µs. We varied the server’s capacities from 6000 IPS to 6750 IPS, and from 6000 IPS

to 12000 IPS for S1 and S2, respectively. We configured each VM with 2 GB memory, 20

GB disk storage, and a dedicated physical core with an adjustable maximum processing

rate, i.e., capacity, according to a given value (e.g., Ci, j) using Xen’s credit scheduler

[145]. For example, to pin a VCPU to a single physical core, i.e., CPU, we can use xl

vcpupin VM Name VCPU ID CPU ID. Then to adjust the processing rate of a VCPU

in a VM according to a given capacity Ci, j in terms of RPS, we can use Xen Credit

scheduler that assigns a Cap to the VCPU of a VM, which limits the maximum amount

of the physical CPU that VCPU can use. For example, a VM with a 100 Cap means

that the VM can consume up to a 100% of its CPU’s maximum processing rate: xlsched

-credit -d VM Name -c Cap Value. The arbitrarily chosen parameters and their values

are summarized in Table 4.2(a), Table 4.2(b), and Table 4.2(c). For each experimental

setting, we repeated each run 104 times, collected the total power consumption and the

total minimum processing rates, and presented the average results normalized to those by

SPT in Fig. 4.12 to Fig. 4.15.

Fig. 4.12 and Fig. 4.13 show how power consumption of different approaches vary

with different capacities, and Fig. 4.14 and Fig. 4.15 show how total required processing

rates change with different capacities. From the results, we can see that GWPC outper-

83

forms others in terms of both power consumption rates and total processing rate demands

under different server capacities. As shown in the figures, when the VMs’ capacities

increase from 6500 IPS (Fig. 4.12(a)) and from 6500 IPS (Fig.4.13(a)) to 6750 IPS

(Fig.4.12(d)) and to 12000 IPS (Fig.4.13(d)), the improvement of GWPC over RND and

FFD diminishes for S1 (S2) service types. This is because when the VMs’ capacities

increase, more request classes can be hosted together in the same VM, and, thus, all

multiplexing approaches show similar performance. Nevertheless, we can see that the

performance improvement of power-saving and the processing rate demands by the mul-

tiplexing approaches over SPT approach continue to improve as the server’s capacities

grow larger. For example, in Fig. 4.12(a), when server capacity is 6000 IPS and the num-

ber of classes is 30, the power consumption by GWPC is about 53% of that by SPT. In

Fig.4.12(d), when the server capacity is 6750 IPS and the number of classes is 30, the

power consumption by GWPC becomes about 24% of that by SPT. This again conforms

to theoretical conclusion in Theorem 4.3.

4.5.5 Validation using cloud benchmarks

We further evaluate our methods using the Data Caching Benchmark, i.e., a benchmark

that emulates the behavior of a Twitter caching server, from the benchmark suite of cloud

services, CloudSuite [162]. The benchmark assumes the strict quality of service guaran-

tees such as 95% of the request must finish within 200 ms.

We exploited the GCCP platform, described in Chapter 3, to bootstrapped two VMs

with 10 GB memory capacity, and a single VCPU pinned to a single physical core in each

VM. We then implemented a Memcached server—a distributed memory object caching

system that speeds up dynamic web applications by alleviating a database’s delay—on

the first VM with a single worker (e.g., a single execution queue) to process the data

84

(a) C1 = 6000IPS (b) C1 = 6250IPS

(c) C1 = 6500IPS (d) C1 = 6750IPS

Figure 4.12: Power-saving performance normalized to that of SPT for S1 : 128× 128 MMUL
service type with different server capacities

caching requests, i.e., Get or Set. The caching requests are generated by a Memcached

client implemented within the workload engine UWME, and the Memcached server pro-

cesses those requests. The UWME replicates those requests, and forward them to the

second Memcached server running on the second VM with reneging. The Performance

Monitoring Module collects the results on both servers.

We considered two main service types generated by the UWME; i.e., Get (e.g., S1),

and Set (e.g., S2). We generated one set of request with nine classes each from each

service type, {τi, j : i = 1,2; j = 1, ...,9}, with arrival rates following the exponential dis-

tribution and averages of {1000,2000, ...,9000} RPS. The completion ratios were set to

be Ri, j = 95%. The deadlines in both sets were set such that the maximum achieved

85

(a) C2 = 6000IPS (b) C2 = 8000IPS

(c) C2 = 10000IPS (d) C2 = 12000IPS

Figure 4.13: Power-saving performance normalized to that of SPT for S1 : 1×64 1-D FFT service
type with different server capacities.

throughput does not violate the target QoS requirements when the requests are served

with the Memcached server without reneging.

Data caching workload with request reneging

We first compare the average response times under QoS guarantees with and without

request reneging. We generated 107 IPR, and processed these instances on both V M1 and

V M2. The average results are shown in Figs. 4.16.

Our experimental results clearly show that request reneging can significantly reduce

service response times. As shown in Fig. 4.16(a), the average response times of Get and

Set classes without reneging are always longer than those with reneging. On average,

the average response times of Get requests are 8%, 14%, and 17%, longer than those

86

(a) C1 = 6000IPS (b) C1 = 6250IPS

(c) C1 = 6500IPS (d) C1 = 6750IPS

Figure 4.14: Processing rate performance normalized to that of SPT for S1 : 128× 128 MMUL
service type with different server capacities

with reneging for Get requests classes with the arrival rates {λ1,1 = 1000, λ1,5 = 5000,

λ1,9 = 9000} RPS, respectively. We also observe a similar trend in Fig. 4.16(b), where the

average response time of Set requests is on average 14% longer than those with reneging.

When the arrival rates increase for S1’s and S2’s requests, the minimum required process-

ing rates must increase to guarantee the same QoS requirement, as the waiting times of

requests increased. From Fig. 4.16(a), and Fig. 4.16(b), we can also observe that the

response time improvement by the reneging over non-reneging server increases with the

arrival rate of the requests. For example, in Fig. 4.16(b), and when the arrival rate of Set

requests is 5000 RPS, the response time by the reneging server is 14% shorter than the

non-reneging server, and it becomes 19% when the arrival rate increases to 9000 RPS.

87

(a) C2 = 6000IPS (b) C2 = 8000IPS

(c) C2 = 10000IPS (d) C2 = 12000IPS

Figure 4.15: Processing rate performance normalized to that of SPT for S1 : 1× 64 1-D FFT
service type with different server capacities.

Energy-saving performance of data caching workload with request reneging

To study the potential electricity cost savings of our approach, we tested GWPC, SPT,

FFD, and RND, using the same test cases defended above, with different request classes

each time ranging from 10 to 50. We also varied the completion ratio for each class

randomly from the interval of [90%,99%]. We assume that each HP workstation with a

total memory capacity of 32GB can hold up to 3 Memcached servers. We generated 105

IPR for each request class and repeated each run 104 times with and without reneging.

The results are taken among different completion ratios, and service utilization averaged

and normalized to the results by SPT and presented them in Fig. 4.17. More details about

power measurement and electricity cost calculation can be found in Section 3.2.2.

88

Table 4.2: Power-saving performance of GWPC with different server capacities

(a) Services and Nodes Specifications

Si SPi ’s Size (mi Nodes) Ci textbf(IPS)
S1 : 128×128 MMUL m1 = {10,20,30,40,50} C1 = (6,6.25,6.50,6.75) ×103

S2 : 1×64 1-D FFT m2 = {10,20,30,40,50} C2 = (6,8,10,12) ×103

(b) Requests Specifications for S1 and S2

τi, j λi, j (IPS) Vi,j Ci,j (IPS)) Run ID
(τ1,1 . . .τ1,r1) [20−500] V1,1 . . .V1,m1 6×103 (0 to 4)
(τ1,1 . . .τ1,r1) [20−500] V1,1 . . .V1,m1 8×103 (5 to 9)
(τ1,1 . . .τ1,r1) [20−500] V1,1 . . .V1,m1 10×103 (10 to 14)
(τ1,1 . . .τ1,r1) [20−500] V1,1 . . .V1,m1 12×103 (15 to 19)
(τ2,1 . . .τ2,r2) [500−1500] V2,2 . . .V2,m2 6×103 (20 to 24)
(τ2,1 . . .τ2,r2) [500−1500] V2,2 . . .V2,m2 8×103 (25 to 29)
(τ2,1 . . .τ2,r2) [500−1500] V2,2 . . .V2,m2 10×103 (30 to 34)
(τ2,1 . . .τ2,r2) [500−1500] V2,2 . . .V2,m2 12×103 (35 to 39)

(c) Shared Parameters among Requests

Ri,j (%) IPRi,j Run Repetition ri Di,j(102µs)
[90−95] 105 104 (10,20,30,40,50) [5−6]

The annual electricity cost-saving performance of GWPC follows a similar pattern

of the power-saving performance, and total processing rate as our experimental results

showed before. First, compared with SPT, all three request multiplexing approach (i.e.,

GWPC, SPT, and RND), by sharing servers and reneging requests, can improve the pro-

cessing efficiency and reduce the electricity cost significantly. In addition, as the number

of classes increases, the improvement becomes more significant. For example, when the

number of classes increases from 10 to 50, the annual electricity cost ratios over SPT by

GWPC, FFD and RND decrease from 38 (35, resp.), 39 (36, resp.), and 40 (36, resp.)

to 19 (16, resp.), 21 (17, resp.), and 25 (20, resp.) for S1 (and S2, resp.), respectively.

Moreover, we can see that GWPC outperforms FFD and RND. According to Fig. 4.17(a)

89

(a) Get’s Request Classes (b) Set’s Request Classes

Figure 4.16: Get’s (a) and Set’s (b) average response times under different arrival rates with and
without request reneging

and Fig. 4.17(b), GWPC on average saves around 4% and 3% more than FFD and 12%

and 10% more than RND for S1’s and S2’s requests, respectively. Furthermore, such an

improvement increases while the number of classes increases. For example, when the

number of classes is 10, the relative improvement of GWPC over FFD and RND is 2.6%

(2.8%, resp.) and 5.3% (2.8%, resp.) for S1 (S2, resp.) requests, respectively. When the

number of classes is 50, the relative improvement of GWPC over FFD and RND becomes

10.5% (6.25%, resp.) and 31.6% (25.0%, resp.) for S1 (S2, resp.) requests, respec-

tively. This is because that when the number of classes increases, the solution space to

map requests to different VMs increases, and GWPC consequently can take advantage

of the bigger solution space, and achieve better power-saving performance. Overall, our

experimental results have clearly demonstrated that request reneging with data caching

workload results in lower average response times, and less energy costs comparing to its

counterpart. GWPC is therefore a promising approach that should be studied and applied

to more complicated cloud workloads.

4.6 Summary

In this chapter, we discuss our novel approach that can be applied in virtualized data

centers to optimize resource usage and to minimize power consumption when delivering

90

(a) Get’s Request Classes (b) Set’s Request Classes

Figure 4.17: Energy-saving performance of GWPC normalized to that of SPT using Get’s and
Set’s request classes under various QoS conditions

cloud services with statistically guaranteed QoS. The effectiveness and efficiency of our

novel methodology are rooted in two facts. First, our approach can effectively remove

potential failure requests as soon as possible to improve resources usage. Second, our

approach allows requests with different QoS requirements to be served on the same VM.

To the best of our knowledge, this is the first approach by which different requests with

different QoS guarantees can be hosted on a single node to increase resource utilization

further and to reduce power consumption. We present several interesting characteristics

of our proposed approach with formal proofs. We also present the GWPC algorithm that

allocates services on the same VMs and reneges potential failure request while statistically

guarantees QoS constraints in terms of deadline miss ratios. We also design the GCCP

cloud prototype to validated the GWPC algorithm, and our experimental results confirm

that our approach can significantly outperform other traditional approaches in terms of

guaranteed QoS levels, power consumption, resource demands, as well as electricity costs.

For the future work, we will extend this work to platforms with heterogeneous servers

having different power consumption and processing rates characteristics. We also plan

to study the effects of interferences among different service types on the performance of

cloud data centers modeled by exploiting different queue models with request reneging.

91

Next, we study how to securely collocate critical VMs and non-critical VMs onto

cloud clusters.

92

CHAPTER 5

SECURE ALLOCATIONS OF CRITICAL VMS IN CLOUD DATA CENTERS

WITH RELAXED AND CONSTRAINED RESOURCE USAGE AND POWER

CONSUMPTION

Virtual Machine (VM) multiplexing in the cloud optimizes resource usage and power

consumption. However, consolidating VMs of different security requirements on a single

server results in cybersecurity threats, such as the VM-to-VM Interdependent Cyberse-

curity (IC) risks. For example, the odds of successfully compromising a secure Critical

VM (CV M) are high when an attacker, i.e., a hacker, compromises the hosting hypervisor

after a successful direct attack on one of its less secured, Non-critical VMs (NV Ms).

In this chapter, we study how to securely and efficiently allocate Critical and Non-

critical VM types (e.g., CV Ms and NV Ms) onto a cloud cluster. Specifically, we formulate

the allocation problem using non-cooperative zero-sum and non-zero-sum game models,

between a cloud service provider and an attacker, under relaxed and constrained resource

usage and power consumption constraints. Our analysis completely characterizes the

existence of all the static and dynamic Equilibrium strategies of the provider. We mean

by an –Equilibrium– strategy that neither the provider nor the attacker can gain more if

the provider deviates from that Equilibrium strategy.

5.1 Introduction to the research problem

Cloud service providers usually allow several users and applications to share the resources

of the cloud infrastructure to maximize resource utilization and minimize energy costs.

Packing several VMs on a single server reduces the total number of allocated servers

which, in turn, minimizes the power consumption and operating expense (e.g., software

licenses, cybersecurity investment, etc.) of cloud clusters [126], [170]. Nevertheless,

93

consolidating VMs with different security requirements (e.g., CV Ms and NV Ms) impose

security risks on both types of VMs. We refer to those risks as VM-to-VM Interdependent

Cybersecurity (IC) risks [33], and we call the attack in which an attacker can compromise

the hypervisor, after a successful direct attack on one of its hosted VMs, and eventually

can compromise all its hosted CV Ms and NV Ms as an IC attack.

Compromising critical applications could result in a complete functional failure of a

whole system (e.g., mission-critical applications, like space navigation systems), could

lead to a financial crisis (e.g., business-critical applications, like banking systems), could

have a catastrophic impact on the environment or human lives (e.g., safety-critical, like

nuclear reactor safety system), or could result in a leakage of classified data (e.g., security-

critical, like hospital storage systems). VMs that host critical applications, in conse-

quence, are Critical VMs (CV Ms) and must be highly secured and must run in safe envi-

ronments that reduce technology cost.

Cloud data centers are primarily built with global scalability and are profoundly re-

silient to optimizing the costs of cloud service providers. According to an article pub-

lished in The Business of Data Centers [171], many agencies, which operate critical work-

loads, are yet reluctant to make the transition to the cloud due to cybersecurity concerns.

According to the Datacenter Dynamic [40], the U.S. federal CIO started the Government-

wide Data Center Consolidation and IT Modernization Program in 2010. This program

shut down thousands of national, private data centers and enforced the adoption of effi-

cient resource management policies pushing most agencies to outsource their IT infras-

tructure to the cloud. Any general online search quickly reveals numerous examples of

cloud providers hosting critical workloads (e.g., Microsoft Azure government cloud com-

puting [172] and the Hybrid Critical Cloud by Virtustream and VMware [173]).

Cloud providers permit their clients to have full control over the security settings

and policies of their critical workloads, as reported by several cloud providers (e.g., the

94

Mission Critical Cloud [174]). VM multiplexing methods are extensively used in cloud

data centers to maximize server sharing among VMs, applications, and users. Resource

sharing, unfortunately, exposes CV Ms to IC risks resulted from the coexistence with other

vulnerable or less secured VMs, such as NV Ms [33, 52].

On the contrary, the Split allocation policy, which allocates CV Ms and NV Ms to sepa-

rate servers, incurs lower cybersecurity risks. It, however, exacerbates resource usage and

energy costs. The challenging question therefrom is – How can cloud service providers

optimize the tradeoff between minimizing the IC risks and optimizing energy costs and

operating expense of cloud clusters?– Our problem is, thus, a Multi-Objective Optimiza-

tion (MOO) problem with conflicting goals and non-cooperative decision-makers.

Although MOO methods (e.g., Mathematical Programming (MP) and Evolutionary

Multi-objective Optimization (EMO)) are useful methods in solving problems with mul-

tiple conflicting objectives [175, 176], we choose the Game theory to formulate our VM

allocation problem. Our rationale is that the Game theory offers “mathematical models of

conflict and cooperation between cooperative and non-cooperative intelligent, rational

decision-makers” [135]. Furthermore, non-cooperative games model all the procedural

details of the game, unlike MOO methods which only describe the structure, strategies,

and payoffs of coalitions. For example, non-cooperative games can provide a socially

optimal way to deal with the different behaviors of cybersecurity attackers [177].

In this chapter, we study how to allocate two types of VMs (e.g., CV Ms and NV Ms)

onto a cloud cluster so that the provider’s Worst-case Potential Cybersecurity (WPC) loss

is minimized, while the overall energy costs and operating expense of the cloud cluster are

optimized. First, we formulate the VM allocation problem with cybersecurity awareness

using a non-cooperative, zero-sum game model between an attacker and a service cloud

provider. Second, we incorporate the processing rate utilization, power consumption,

energy costs, and operating expense of the cluster into a non-zero-sum game model. Our

95

analysis completely characterizes the existence of all the static and dynamic Equilibrium

strategy profiles with relaxed and constrained resource usage and cost. We mean by an

–Equilibrium– profile that a pair of an attacker strategy and a provider strategy in which

neither the provider nor the attacker can gain more from unitarily deviating from his/her

strategy. We also derive the lower-bound and upper-bound of the IC risks.

5.2 Related work

We can divide the most related literature works to our problem into three major cate-

gories, i.e., cloud resource allocation without considering cybersecurity risks, cloud secu-

rity without focusing on resource usage optimization, and security-aware cloud resource

allocation. Each of those categories can further be divided into approaches that use game-

theoretic based models or use other types of models.

Cloud online services entered in each sector of our lives. Accordingly, optimizing

resource utilization and power consumption became a necessity for providers who are

always eager to attract more customers and survive in the competing cloud-based service

market. Numerous heuristics and meta-heuristics (e.g., genetic algorithm, fuzzy logic,

etc.) have been used in the literature to model cloud resources and IoT services over the

cloud [126, 170, 175, 176]. Makhlouf et al. [175] suggested using a linear integer pro-

gram to optimize the partitioning of the cloud workload among the federation members,

while dynamically optimizing the provider’s prices to achieve the highest revenue. Gai et

al. [176] proposed a Cost-Aware Heterogeneous Cloud Memory Model (CAHCM) to pro-

vision a high-performance cloud-based memory service offering. Their model depends

on a Dynamic Data Allocation Advance (2DA) Algorithm that employs genetic program-

ming to allocate data to cloud-based memories efficiently. As heuristic and meta-heuristic

methods tend to include external resources of uncertainties into the MOO model, they in-

96

crease the complexity of the problem [178]. In addition to the complexity, all previously

mentioned approaches analyze the tradeoffs among local objectives in isolation of the

dynamic of the different running scenarios of the optimization problem. Even if several

cases are taken into consideration, those approaches cannot simultaneously optimize mul-

tiple objectives from several actors. Such interaction, fortunately, can be captured using

the Game theory, which is crucial in predicting the attacker’s behavior when modeling

multi-objective security models.

Game theory-based approaches applied in cloud resource management were proposed

in [127, 129, 138]. Wei et al. [127] suggested improving the efficiency of cloud resources

by proposing two, non-multiplexing and multiplexing, resource assignments using an

evolutionary game model. Jalaparti et al. [138] introduced multiple heuristic algorithms

with near-optimal allocation and pricing policies, modeling the client-provider and client-

client interactions, compared to the fixed-pricing methodologies used today by cloud

providers, such as in Amazon EC2. While all such methodologies effectively optimize

resource utilization and/or cost savings, none of them consider the cybersecurity risks

implications of their allocation algorithms.

Server sharing results in challenging security threats, such as the side-channel attacks

[51, 52], and the IC risks [33, 55]. In the side-channel attacks, an attacker can build

different kinds of side channels to extract private information about the victim’s VM (e.g.,

the victim’s workload, traffic rate [52], cryptographic keys [51], etc.,) that eventually

enables him/her to launch a successful attack.

On the other hand, the authors in [33, 55] used a non-zero-sum game model to study

how to minimize the security expense of the cloud users. They assumed that users could

either allocate their VMs to a secure server, i.e., users invest in cybersecurity counter-

measures, or to an insecure server to save in the cybersecurity-related expense. They

focused on minimizing the cybersecurity risks for a targeted user while reducing his/her

97

cybersecurity related-expense. Whereas it is unrealistic to assume that a service cloud

provider would operate a cloud cluster with servers openly vulnerable to cyber attacks,

we presume, in this chapter, that a provider always secures all servers and VMs but with

different security levels. To the best of our knowledge, our work is the first to model the

IC risks, processing rate utilization, energy costs, and operating expense in cloud data

centers using the Game theory. Our goal is to ensure that the provider’s resource usage

and cybersecurity loss are optimized.

Security-aware resource allocation techniques were introduced in [90,141,179]. Zhang

et al. [90] are the first to develop a formal and quantified migration strategy to improve

the security against collocation attacks and with acceptable cost. Han et al. [141] used the

Game theory to model the cybersecurity between an attacker and a cloud provider. The

provider aims to minimize the attacker’s possibility of collocating his/her VMs with the

target VMs while maintaining a satisfactory workload balance and low power consump-

tion. Using a game-solver software, they concluded that rather than adopting a single

allocation policy, a provider should have a pool of VM allocation policies. In [179], the

authors considered both direct and side-channel attacks on hypervisors. They developed

VM migration-based techniques to reduce the security risks considering the connection

cost among VMs while improving the survivability of the system. Rao et al. [143] used

the Game theory to study the ability of a cloud provider to guarantee the survivability of

predefined resource capacity and with a certain probability after a physical or cybersecu-

rity attack on his/her data center. They proposed the usage of reinforcement strategies to

decrease an attacker’s utility. To this end, we assume that a provider secures CV Ms and

NV Ms using two different types of cyber protection measures. We aim to model the IC

risks and resource usage in cloud clusters using zero and non-zero sum game to investigate

how to allocate CV Ms and NV Ms to a two-server cluster so that the IC risks are mitigated,

and the overall energy costs, operating expense, and the WPC loss are minimized.

98

Cloud Cluster of h servers

Virtualized server Si

Physical resources

…

Hypervisor Hi

NVM1

APN11

CVM1

APC11

APC12

…

APCm2

CVMm

APCm1

APCm3

Mission-critical
applications

Business-critical
applications

Non-critical
applications

CVM

NVM

Critical VM

Non-critical VM

Security-aware resource manager

Successful direct attack

Unsuccessful direct attack

Successful indirect attack

APNn1

NVMn

…

Cloud Provider

Attacker

Figure 5.1: A cloud cluster model. The cluster consists of h hypervisors, each of which is hosted
on a physical server Si; i = 1,2, ...,h. A server has a processing rate capacity Ci = C MIPS., uti-
lization Ui, and power consumption Pi. The cluster hosts n Non-critical VMs (e.g., NV M) and m
Critical VM (e.g., CV Ms), that is {NV M1, NV M2, ...,NV Mn} and {CV M1, CV M2, ...,CV Mm},
respectively. `T , qT , and cT are the maximum security loss after a successful attack on a V MT ,
the security level, i.e., the successful attack probability on a V MT , and the processing rate re-
quirements of V MT ; where V MT = NV M or V MT =CV M. qh is the probability of successfully
compromising any hypervisor after a successful direct attack on any of its hosted VMs.

5.3 System models

In this section, we introduce our system models.

99

5.3.1 Cloud cluster model

Cloud data centers usually consist of hundreds or thousands of clusters. Fig. 5.1 il-

lustrates a virtualized cloud cluster with h hypervisors, each of which is hosted on a

physical server Si. Each server has a processing rate capacity C MIPS, utilization Ui.

The cluster hosts n Non-critical VMs and a m CV Ms, e.g.,{NV M1,NV M2, ...,NV Mn}

and {CV M1,CV M2, ...,NV Mm}, respectively. `T , qT , and cT are the maximum potential

security losses after a successful attack on V MT , the security level of V MT , and the pro-

cessing rate requirements of V MT ; where T =C for the CV Ms and T = N for the NV Ms.

qh is the probability of successfully compromising any hypervisor after a successful direct

attack on any of its hosted VMs first.

5.3.2 Cloud service model

In this section, we model the VM allocation problem with cybersecurity and resource us-

age awareness using game-theoretic model between an attacker RA and the cloud service

provider RV . We assume that both players are reasonable, have a full understanding of

the cloud platform, and can only take the actions that maximize their potential payoffs.

RA’s goal is to indirectly compromise a hypervisor and all its hosted VMs after suc-

cessfully and directly attacking one of its hosted VMs. We assume that RA has just enough

time to compromise one server. We accept the fact that RA is capable of indirectly compro-

mising a hypervisor via one of its directly compromised VMs, as proven experimentally

in [52]. Once RA has full control over the hypervisor, he/she can easily compromise all

VMs hosted on that hypervisor [179]. Specifically, RA’s strategies identify the VM on

which he/she launches his/her initial direct attack to use it later in compromising its host-

ing hypervisor and all its coexisting VMs. Therefore, RA can either directly attack an

100

NV M, i.e., a strategy we denote as N, or directly attack a CV M, i.e., a strategy we denote

as C.

RV can either allocate the VMs using the Split (e.g., S) allocation, in which different

types of VMs are allocated separately to a single server or using the multiplexing (e.g.,

X) allocation in which both types are hosted on a single server. The goal of a provider is

to select the allocation strategy that minimizes his/her potential cybersecurity Loss (e.g.,

L) assuming RA is capable of attacking any VM in the cluster that maximizes his/her

potential Gain (e.g., G). Therefore, this loss represents the provider’s Worst-case Potential

Loss (e.g., WPC) loss under a given VM allocation strategy.

Equation 5.1 shows the set of the four possible strategy profiles for RA and RV .

Possible Strategy Pro f iles = {(N,X),(N,S),(C,X),(C,S)} (5.1)

For example, the strategy profile (C,S) implies that RA attacks a CV M when RV chooses

the S allocation policy. We assume that the relative importance of a VM is determined

by the potential expected loss for RV if that VM is compromised. Each strategy profile

results in a different payoff to RV and RA.

We denote RA’s or RV ’s cybersecurity gain or loss if RA successfully compromises an

NV M, or a CV M, as `N and `C. Further, it is rational to assume that:

`N < `C (5.2)

This implies that RV will suffer more loss if RA successfully compromises a CV M instead

of an NV M. Therefore, CV Ms require higher security levels, i.e., security measures and

cost, than those of the NV Ms to be protected against any direct cybersecurity attack.

We can define the security level of a VM as follows:

Definition 5.1. The Security Level of a VM is the probability of a direct and successful

attack on that VM. If the success probability is substantial (e.g., q→ 1), the VM is said to

101

have a low-security level. If the success probability is tiny (e.g., q→ 0), the VM is said to

have a high-security level.

For example, the security levels of an NV M and CV M are denoted as qN and qC,

respectively. It is consequently rational to assume that:

0 < qC < qN < 1 (5.3)

The probability of a successful attack on any hypervisor after one of its VMs has been

compromised by RA is denoted as:

0 < qh < 1 (5.4)

High-security levels, nonetheless, do not protect VMs from other indirect cybersecu-

rity attacks (e.g., an IC attack) that can occur when they coexist with vulnerable VMs on

the same hypervisor. We can define the indirect cybersecurity attack as follows:

Definition 5.2. The indirect cybersecurity attack is an attack on a hypervisor via one

of its directly compromised VMs, or an attack on another VM using that compromised

hypervisor to bypass any security measure applied to them.

For example, RA is unable to launch a successful direct attack on any of the CV Ms

when they have high-security levels, as illustrated in Fig. 5.1. RA can rather indirectly

compromise them by launching an indirect attack involving any of the NV Ms and the

hypervisor. We call such an indirect attack on the CV Ms an IC attack and call such

cybersecurity risks IC risks.

Definition 5.3. The Interdependent Cybersecurity (e.g., IC) attack is an indirect cyber-

security attack on targeted VMs, usually with high-security levels, in which RA involves

another VM, usually with a low-security level, and the hosting hypervisor to bypass any

sound security levels applied to those targeted VMs.

102

Definition 5.4. The IC risks imposed on a V Mi is RV ’s potential security loss due to a

successful IC attack on that V Mi, after a successful and direct attack on another coexist-

ing V M j, with a security level q j, and followed by an indirect attack on the hypervisor

hosting both VMs with a success probability qh. Consequently, the IC risks imposed on

V Mi by V M j are q jqh`i.

When an IC attack on any VM under a given allocation strategy is optimal in terms of

maximizing RA’s potential cybersecurity gain, we call this attack the Worst-case Potential

Cybersecurity WPC attack from RV ’s perspective.

Using those previously introduced definitions, we can now define the Equilibrium

strategy.

Definition 5.5. The allocation strategy is a static or dynamic Equilibrium strategy if it

optimally minimizes RV ’s WPC loss

In other words, the static Equilibrium allocation strategy corresponds to a pure Nash

Equilibrium (NE) strategy profile at which neither RV nor RA can improve their payoffs

by unitarily deviating to another strategy.

Let E(X) and E(S) be RV ’s operating expense under the allocation policies X and

S, respectively. Operating expense includes the cost of renting or purchasing servers,

security investment, hardware/software upgrade, licenses, etc. The operating cost of X

and S allocation strategies, according to Fig. 5.3 are:

E(X) = EX (5.5)

E(S) = 2×EX (5.6)

We see that it costs RV an extra EX units when using the S strategy compared to using

the X strategy, in which RV acquires fewer servers.

103

Let P(X) and P(S) be the cluster’s total, static and dynamic, power consumption under

the allocation policies X and S, respectively. For instance, when CV Ms and NV Ms coexist

on a single server, i.e., the X allocation strategy, the static power consumption of the

cluster is minimized due to reducing the number of utilized servers. Equation 6.7 models

the total power consumption consumed by a cloud cluster, as in the previous chapter:

P(X or S) = (DP ·Utz)+SP (5.7)

DP is the maximum dynamic power consumed by all servers in the cluster; Utz is

the utilization of all servers (e.g., Utz = ∑
h
i=1Ui; where {i = 1,2, ...,h}). SP is the static

power of the non-idle servers in the cluster. The total power consumption for the X and S

allocation strategies are given in Equation 5.8 and Equation 5.12, respectively.

P(X) = DP× (UtzX)+SP (5.8)

P(S) = 2× (DP× (UtzS)+SP) (5.9)

Let:

Psvg = P(S)−P(X) (5.10)

Where (Psvg > 0) represents the savings in the cluster’s total power consumption when

switching from the allocation strategy S to the strategy X . For ease of representation, we

will write the power equations as:

P(X) = PX (5.11)

P(S) = PX +Psvg (5.12)

In this chapter, we ignore the VM-to-hypervisor IC risks, i.e., RA cannot directly

attack a hypervisor. Next, we introduce our research problem.

104

5.4 Problem definition

With the system and service models defined above, we can define our allocation problem

as follows:

Problem 5.1. Given the cloud cluster described in Section 5.3 with h = 2 servers, (n≥ 1)

NV Ms and (m ≥ 1) CV Ms. Determine if RV should multiplex both types of VMs onto a

single server (e.g., the X allocation strategy), or if RV should split them off across two

separate servers (e.g., the S allocation strategy) so that RV ’s WPC loss is minimized and

the overall power consumption and operating expense is optimized.

5.5 Security-aware allocation with unconstrained resource usage

We first analyze our VM allocation problem assuming no resource usage and power con-

sumption constraints via formulating it into a zero-sum game model. The normal form of

the game model is illustrated in Fig. 5.2.

We denote RA’s and RV ’s Gain and Loss as G and L, respectively. As illustrated in

Fig. 5.2, the strategy profile G(N,X) denotes RA’s gain when directly attacking an NV M

under the multiplexing allocation strategy, i.e., (N,X). RA’s gain at this strategy profile

is, thus, equal to the probability of a successful attack on an NV M (e.g., qN) times the

maximum security gain from attacking that NV M (e.g., `N). Because both NV Ms and

CV Ms, are packed on the same server (e.g., the X strategy), RA can indirectly attack the

hypervisor and eventually compromise all its VMs. Therefore, the potential security loss

for RV if RA compromises the rest (n− 1) VMs upon compromising the hypervisor is

((n−1)×qh×qN× `N). Similarly, the potential security loss from compromising all m

CV Ms via launching an IC attack on them is (m×qh×qN× `C).

105

Figure 5.2: The zero-sum security game in normal form

Similar reasoning is applied to calculate RA’s gain at other strategy profiles. We can

see that while RA is trying to maximize his/her gain, RV is trying to minimize his/her

expected loss. Therefore, RV ’s loss is L =−G, i.e., a zero-sum game.

RV wishes to minimize his/her cybersecurity loss assuming that RA can attack the VM

that maximizes his/her potential cybersecurity gain, i.e., RV wants to minimize his/her

WPC loss. Therefore, we need to find the strategy profiles at which no player has an

advantage in deviating from his/her current decision after considering all the opponent’s

possible choices. We call such strategy profile an NE [135].Our allocation problem is for

this reason a problem of identifying the NE strategy profile of our game model.

In order to identify the existence of the NE strategy profiles, we first have to analyze

RA’s attack preferences under X and S allocation policies using the following lemmas and

theorems.

Lemma 5.1. RA always and directly attacks a CV M under the allocation X if:

qh < qh0 (5.13)

qC`C > qN`N (5.14)

where qh is defined in Equation 5.15.

qh0 = (
((qN−qC)(n`N +m`C)

(qC`C−qN`N))
)−1 (5.15)

Proof. RA prefers the strategy profile (C,X) over (N,X), if:

G(C,X)> G(N,X) (5.16)

106

qC`C +(m−1)qhqC`C +nqhqC`N > qN`N +(n−1)qhqN`N +mqhqN`C (5.17)

qC`C−qN`N > (n−1)qhqN`N +mqhqN`C− (m−1)qhqC`C−nqhqC`N (5.18)

qC`C−qN`N > nqhqN`N−nqhqC`N +mqhqN`C−mqhqC`C +qhqC`C−qhqN`N (5.19)

qC`C−qN`N > qh(n`N(qN−qC)+m`C(qN−qC)+(qC`C−qN`N)) (5.20)

qC`C−qN`N > qh((n`N +m`C)(qN−qC)+(qC`C−qN`N)) (5.21)

Note that:

qh((n`N +m`C)(qN−qC)+(qC`C−qN`N))> 0 (5.22)

because if

qh((n`N +m`C)(qN−qC)+(qC`C−qN`N))< 0 (5.23)

then using simple transformation, we get:

qN

qC
<

(n`N +m`C− `C)

(n`N +m`C− `N)
(5.24)

but qN > qC, and `C > `N according to Equation 5.3 and Equation 5.2, respectively. There-

fore:
qN

qC
>

(n`N +m`C− `C)

(n`N +m`C− `N)
(5.25)

or

((n`N +m`C)(qN−qC)+(qC`C−qN`N))> 0 (5.26)

then

(
((qN−qC)(n`N +m`C)

(qC`C−qN`N))
)
−1

> qh (5.27)

which is Equation 5.17.

We can rewrite qh0 as:

qh0 = qC`C−qN`N/(n`N(qN−qC)+m`C(qN−qC)+(qC`C−qN`N)) (5.28)

107

and since 0 < qh < 1, and from Equation 5.26, we find that if qh < qh0 then:

qh0 > 0 (5.29)

and therefore:

qC`C > qN`N (5.30)

Lemma 5.1 implies that securing the hypervisor can significantly reduce the IC risks

imposed on the CV Ms under the X allocation strategy. When qh is small enough (e.g.,

qh < qh0), the IC risks imposed on any of the CV Ms are small as well, i.e., qNqh`C.

According to Equation 5.14, RA’s gain from attacking a CV M is larger than the gain from

attacking an NV M. RA consequently prefers to directly attack a CV M. Moreover, when

qh is large enough (e.g., qh > qh0), the IC risks imposed on CV Ms are maximized, and RA

benefits more from launching an IC attack on the CV Ms.

Whereas Lemma 5.1 shows that the number of VMs has no effect on RA’s decision

under the X allocation strategy, Lemma 5.2 states that RA’s preferences under the S al-

location strategy not only depend on the value of qh, but also depend on the number of

CV Ms and NV Ms per server.

Lemma 5.2. • RA always and directly attacks a CV M under the S allocation strategy

if all the conditions in any of the following cases hold:

Case 1-1

(qC`C > qN`N) (5.31)

m≥ n; ∀n > 0 (5.32)

Case 1-2

qC`C > qN`N (5.33)

108

m < n; ∀m≥ 1 (5.34)

n−1
m−1

<
qC`C

qN`N
(5.35)

Case 1-3

qC`C > qN`N (5.36)

n−1
m−1

>
qC`C

qN`N
; ∀ m≥ 2, ∀ n≥ 2 (5.37)

Case 1-4

qC`C < qN`N (5.38)

n−1
m−1

<
qC`C

qN`N
;∀m≥ 2,∀n≥ 2 (5.39)

qh > qh1 > 0 (5.40)

• RA always and directly attacks an NV M under the S allocation strategy if all the

conditions in any of the following cases hold:

Case 2-1

qC`C > qN`N (5.41)

n−1
m−1

>
qC`C

qN`N
;∀m≥ 2,∀n≥ 2 (5.42)

1 > qh > qh1 > 0 (5.43)

Case 2-2

qN`N > qC`C (5.44)

n≥ m;∀m > 0 (5.45)

109

Case 2-3

qC`C < qN`N (5.46)

n−1
m−1

>
qC`C

qN`N
;∀m≥ 2,∀n≥ 2 (5.47)

Case 2-4

qC`C < qN`N (5.48)

n−1
m−1

<
qC`C

qN`N
;∀m≥ 2,∀n≥ 2 (5.49)

0 < qh < qh1 < 1 (5.50)

where (n≥ 2), (m≥ 2), and qh1 is defined in Equation 5.51.

qh1 =
(qC`C−qN`N)

(n−1)qN`N− (m−1)qC`C
(5.51)

The proof of Lemma 5.2 can be easily verified using Fig. 5.2. Lemma 5.2 lists all

the cases when any of the CV Ms or NV Ms are the direct target of RA’s attack under the

S allocation strategy. When there are no IC risks, RA’s preferences are determined by the

value of qh, the potential gain of attacking each VM type, and the number of CV Ms and

NV Ms per server.

After understanding RA’s preferences under different cybersecurity requirements and

allocation strategies, we can now identify RV ’s Equilibrium strategies assuming a worst-

case attack scenario, i.e., the VM allocation strategy that corresponds to an NE strategy

profile.

Theorem 5.1. If all conditions in any of the following cases hold, RV ’s static Equilibrium

strategy is the S allocation strategy in which one of the CV Ms is a direct target for RA,

110

i.e., the allocation game model admits the strategy profile (C,S) as a pure NE strategy

profile.

Case 1

qC`C > qN`N (5.52)

m≥ n; ∀ n≥ 1 (5.53)

0 < qh < qh0 (5.54)

Case 2

qC`C > qN`N (5.55)

m≤ n; ∀m≥ 1 (5.56)

0 < qh < qh0 (5.57)

n−1
m−1

<
qC`C

qN`N
(5.58)

Case 3

qC`C > qN`N (5.59)

(n−1)/(m−1)> (qC`C)/(qN`N); ∀ m≥ 2, ∀ n≥ 2 (5.60)

n−1
m−1

>
qC`C

qN`N
; ∀ m≥ 1, ∀ n≥ 1 (5.61)

0 < qh < qh1 < qh0 (5.62)

Case 4

qC`C > qN`N (5.63)

n−1
m−1

>
qC`C

qN`N
;∀m≥ 2,∀n≥ 2 (5.64)

n
m

<
qN`C

(qC`N
; ∀ m≥ 1, ∀ n≥ 1 (5.65)

0 < qh < qh0 < qh1 (5.66)

111

Proof. When Case 2-1 from Lemma 5.1 holds, and when Case 1-1, Case 1-2 with qh1

< qh0 , or Case 1-3 with qh1 > qh0 from Lemma 5.2 hold, we get the conditions listed in

Cases 1 to 4 from Theorem 5.1, respectively.

We use the Minimax method [180] to prove Theorem 5.1. RA is trying to maximize

his/her expected gain (e.g., G) after a successful attack on an NV M or CV M. On the other

hand, RV is trying to minimize his/her potential loss by choosing the best allocation policy

(e.g., S or X) to mitigate RA’s expected gain L =−G.

RA chooses to attack the VM that maximizes his/her gain, i.e., RA seeks to maximize

his/her minimum gain causing RV ’s a WPC loss.

Let min(G(N)), and min(G(C)) represent RA’s minimum expected payoffs when suc-

cessfully attacking an NV M and a CV M under both X and S policies. From Fig. 5.2, we

can write:

min(G(N,X),G(N,S)) = G(N,S) (5.67)

min(G(C,X),G(C,S)) = G(C,S) (5.68)

RA, hence, chooses to attack the VM with the maximum minimum payoff, and ac-

cording to Lemma 5.2:

a = max(min(G(N,X),G(N,S)),min(G(C,X),G(C,S))) = G(C,S) (5.69)

Therefore, RA’s prefers to attack a CV M under the allocation S, i.e., the strategy profile

(C,S).

On the other hand, RV seeks to minimize his/her worst maximum loss assuming that

the attacker is capable of successfully attacking any VM in the cluster (e.g., minimize

his/her maximum loss).

According to Lemma 5.1, Case 2-1, we can write:

max(G(N,X),G(C,X)) = G(C,X) (5.70)

112

Based on Case 1-1, Case 1-2, Case 1-3 when qh1 < qh0 , and Case 1-3 when qh1 > qh0 in

Lemma 5.2, we can see that the following is true when Case 1, Case 2, Case 3, and Case

4 in Theorem 5.1 hold:

max(G(N,S),G(C,S)) = G(C,S) (5.71)

RV as a result chooses the allocation strategy with the minimum potential loss assum-

ing that the attacker can launch a successful attack on the VM that maximizes his/her gain

under the S and X allocation strategies. That is:

v = min(max(G(N,X),G(C,X)),max(G(N,S),G(C,S))) = G(C,S) (5.72)

From Equation 5.69 and Equation 5.72, we see that a = v. Further, from [180], we

find that the preferred strategies for both RA and RV are that for RA to attack a CV M when

RV chooses the allocation strategy S if any of the cases in Theorem 5.1 holds. Using the

Game theory terminology, we can say that the game admits the pure strategy profile (C,S)

as a pure NE strategy profile when the conditions stated in any of the cases of Theorem

5.1 holds because RV and RA cannot increase their payoffs by unilateral deviation from

the strategy profile (C,S)

Theorem 5.2. The CV Ms are the targets of IC attacks under the X allocation strategy and

the targets of direct attacks under the S allocation strategy. Moreover, the Equilibrium

strategy of RV is the S allocation (e.g., the game admits the strategy profile (C,S) as a

pure NE strategy profile, If all the conditions in any of the following cases hold.)

Case 1

qC`C > qN`N (5.73)

m≥ n;∀n≥ 1 (5.74)

0 < qh0 < qh (5.75)

113

Case 2

qC`C > qN`N (5.76)

m≤ n;∀m≥ 1 (5.77)

n−1
m−1

<
qC`C

qN`N
;∀m≥ 2,∀n≥ 2 (5.78)

0 < qh0 < qh (5.79)

Case 3

qC`C > qN`N (5.80)

n−1
m−1

>
qC`C

qN`N
;∀m≥ 2,∀n≥ 2 (5.81)

n
m

<
qN`C

(qC`N
;∀m≥ 1,∀n≥ 1 (5.82)

0 < qh0 < qh << qh1 (5.83)

Case 4

qC`C < qN`N (5.84)

n−1
m−1

<
qC`C

qN`N
;∀m≥ 2,∀n≥ 2 (5.85)

0 < qh < qh1 (5.86)

Proof. When Case 2-1 from Lemma 5.1 and Case 2-1, Case 2-2, or Case 2-3 from Lemma

5.2 hold simultaneously, or when Case 2-2 from Lemma 5.1 and Case 2-4 from Lemma

5.2 hold simultaneously, we get the conditions listed in Cases 1 to 4 in Theorem 5.2,

respectively.

To this end, we use the Minimax method [180] to prove Theorem 5.2. RA is trying to

maximize his/her expected gain by attacking a CV M or an NV M. RV is trying to minimize

his/her WPC loss, by choosing the S or X allocation policy.

Using the minima method [180], RA considers the minimum gains after attacking an

NV M and a CV M under the S and X policies. RA next chooses to attack the VM with the

maximum minimum gain. In other words, RA seeks to maximize his/her minimum gain.

114

min(G(N,X),G(N,S)) = G(N,S) (5.87)

min(G(C,X),G(C,S)) = G(C,S) (5.88)

RA thus chooses the strategy profile with the maximum gain from the strategies with the

minimum payoffs at each row of the payoff matrix in Fig. 5.2, and according to Lemma

5.2:

a = max(min(G(N,X),G(N,S)),min(G(C,X),G(C,S))) = G(C,S) (5.89)

Therefore, RA’s strategy profile with the maximin gain is (C,S).

On the other hand, RV seeks to minimize his/her worst maximum loss at each column

of the payoff matrix in Fig. 5.2, i.e, the minimax payoff. From Lemma 5.1, Case 2-2, we

have:

max(G(N,X),G(C,X)) = G(N,X) (5.90)

and from Case 1-1, Case 1-2, Case 1-3 and Case 1-4 in Lemma 5.2, we can see that in

Case 2-1, Case 2-2, Case 2-3, and Case 2-4 in Theorem 5.2, respectively:

max(G(N,S),G(C,S)) = G(C,S) (5.91)

RV hence chooses the strategy profile with the minimum potential payoff out of the strate-

gies with the maximum potential payoff at each column of the payoff matrix in Fig. 5.2.

According to Lemma 5.1, we have:

G(C,X)< G(N,X) (5.92)

but G(C,X)> G(C,S), therefore:

v = min(max(G(N,X),G(C,X)),max(G(N,S),G(C,S))) = G(C,S) (5.93)

From Equation 5.89 and Equation 5.93, we see that a = v and according to [180], we

find that the game admits the pure strategy profile (C,S) as an NE when the conditions

stated in any of the cases stated in Theorem 5.1 hold.

115

Theorem 5.1 and Theorem 5.2 identify all the conditions under which RV always

prefers the split allocation policy to minimize his/her WPC loss when RA prefers to di-

rectly attack a CV M. Both Theorems also imply that when RA always takes advantage

of the IC risks exists in the X allocation to indirectly compromise CV Ms, RV ’s best re-

sponse to minimize his/her WPC loss is to choose the allocation strategy S. On the other

hand, Theorem 5.3 helps identify RV ’s Equilibrium strategy when RA always prefers to

use direct attacks under either available allocation strategies.

Theorem 5.3. If all the conditions in any of the following cases hold, the CV Ms are al-

ways the primary targets of a direct attack under the X allocation strategy, and the NV Ms

are the primary target of a direct attack under the S allocation strategy. Moreover, the

Equilibrium strategy is the S allocation strategy (e.g., the game admits the strategy profile

(NV M,S) as a pure NE strategy profile.)

qC`C > qN`N (5.94)

n−1
m−1

>
qC`C

qN`N
;∀m≥ 2,∀n≥ 2 (5.95)

0 < qh1 < qh < qh0 (5.96)

n
m

>
qN`C

qC`N
;∀m≥ 1,∀n≥ 1 (5.97)

Proof. When Case 1-1 from Lemma 5.1 and Case 2-1 from Lemma 5.2 hold simultane-

ously, we get the conditions listed in Theorem 5.3, respectively.

We use the Minimax method [180] to prove Theorem 5.3. RA is trying to maximize

his/her expected gain by launching an attack on a CV M or on an NV M. On the contrary,

RV is trying to minimize his/her WPC loss, by choosing between the S and X allocation

policies to mitigate RA’s expected gain L =−G.

RA considers the possible strategies at each row of the payoff matrix in Fig. 5.2,

determines the profiles with the worst payoffs if he/she plays that row, and chooses the

116

profile at which his/her payoff is best, among those with the worst payoffs, i.e., RA seeks

to maximize his/her minimum payoffs.

min(G(N,X),G(N,S)) = G(N,S) (5.98)

min(G(C,X),G(C,S)) = G(C,S) (5.99)

RA thus chooses the strategy profile with the maximum payoff from the strategies with

the minimum payoffs at each row of the payoff matrix, illustrated in Fig. 5.2, and from

Lemma 5.2, we have:

a = max(min(G(N,X),G(N,S)),min(G(C,X),G(C,S))) = G(C,S) (5.100)

Therefore, RA’s strategy profile with the maximin payoff is (C,S).

On the other hand, RV seeks to minimize his/her WPC loss at each column of the

payoff matrix in Fig. 5.2, i.e, the minimax payoff.

According to Lemma 5.1, Case 1-1:

max(G(N,X),G(C,X)) = G(C,X) (5.101)

According to Lemma 5.2, we can see:

max(G(N,S),G(C,S)) = G(N,S) (5.102)

RV then chooses the strategy profile with the minimum potential payoff out of the strate-

gies with the maximum potential payoff at each column of the payoff matrix, illustrated

in Fig. 5.2. From Case 1-1 in Lemma 5.1, we have:

G(C,X)> G(N,X) (5.103)

but G(N,X)> G(N,S), therefore:

v = min(G(C,X),G(N,S)) = G(N,S) (5.104)

117

From Equation 5.100 and Equation 5.104, we see that a = v and according to [180],

we find that the game admits the pure strategy profile (N,S) as an NE when the conditions

stated in Theorem 5.3 hold true.

On the contrary to Theorem 5.2, Theorem 5.3 lists the conditions by which the IC

risks, imposed on the CV Ms, are minimized under the X allocation strategy.

Theorem 5.4. If all the conditions in any of the following cases hold, then the NV Ms are

always the primary target of a direct attack under both the X and S policies. Moreover, the

Equilibrium strategy is the S allocation policy (e.g., the game admits the strategy profile

(NV M,S) as a pure NE strategy profile.)

Case 01:

qC`C > qN`N (5.105)

n−1
m−1

>
qC`C

qN`N
;∀m≥ 2,∀n≥ 2 (5.106)

n
m

>
qN`C

qC`N
;∀m≥ 1,∀n≥ 1 (5.107)

0 < qh < qh1 < qh0 (5.108)

Case 02:

qC`C > qN`N (5.109)

n−1
m−1

>
qC`C

qN`N
;∀m≥ 2,∀n≥ 2 (5.110)

n
m

<
qN`C

qC`N
;∀m≥ 1,∀n≥ 1 (5.111)

0 < qh < qh0 < qh1 (5.112)

Case 03:

qC`C < qN`N (5.113)

m≥ n;∀n≥ 1 (5.114)

118

Case 04:

qC`C < qN`N (5.115)

m > n; ∀ n≥ 1 (5.116)

Case 05:
n−1
m−1

<
qC`C

qN`N
;∀ m≥ 2,∀n≥ 2 (5.117)

qh < qh1 (5.118)

Proof. When Case 2-1 from Lemma 5.1 and Case 2-1, when qh1 < qh0 , or Case 2-2, when

qh1 > qh0 from Lemma 5.2 hold, or when Case 2-2 from Lemma 5.1 and Case 2-2, Case

2-3 or Case 2-4 from Lemma 5.2 hold simultaneously, we get the conditions listed in

Case1 to Case 5 from Theorem 5.4, respectively.

We use the Minimax method [180] to proof Theorem 5.4. RA is trying to maximize

his/her expected payoff, G, after a successful attack on NV M or CV M, and RV is trying

to minimize his/her potential loss, by choosing between the S and X allocation policies to

mitigate RA’s expected gain L =−G.

RA considers the possible strategies at each row of the payoff matrix in Fig. 5.2,

determines the profiles with the worst payoffs if he/she plays that row, and chooses the

profile at which his/her payoff is best, among those with the worst payoffs, i.e., RA seeks

to maximize his/her minimum payoffs.

min(G(N,X),G(N,S)) = G(N,S) (5.119)

min(G(C,X),G(C,S)) = G(C,S) (5.120)

RA chooses the strategy profile with the maximum payoff from the strategies with the

minimum payoffs at each row of the payoff matrix, illustrated in Fig. 5.2, and from

Lemma 5.2, we have:

a = max(G(N,S),G(C,S)) = G(N,S) (5.121)

119

Therefore, RA’s strategy profile with the maximin gain is (N,S).

On the other hand, RV seeks to minimize his/her WPC loss at each column of the

payoff matrix, illustrated in Fig. 5.2, i.e, the minimax payoff. From Lemma 5.1, Case

2-2, we have:

max(G(N,X),G(C,X)) = G(N,X) (5.122)

and from Case 1, when qh1 < qh0 , or from Case 2, 3, 4, or 5 in Theorem 5.4, we have:

max(G(N,S),G(C,S)) = G(N,S) (5.123)

RV selects the strategy profile with the minimum potential payoff out of the strategies

with the maximum potential payoff at each column of the payoff matrix in Fig. 5.2:

v = min(G(N,X),G(N,S)) = G(N,S) (5.124)

From Equation 5.121 and Equation 5.124, we see that a = v and according to [180],

we find that the game admits the pure strategy profile (N,S) as a pure NE strategy profile

when the conditions stated in any of the cases in Theorem 5.4 hold.

The reason why the S allocation strategy is always the Equilibrium strategy of RV is

that the zero-sum game does not incorporate resource usage in its model. This results in

the fact that the zero-sum game does not have a mixed NE strategy profile. In other words,

the Equilibrium allocation strategy of RV is always the static VM allocation strategy S.

Theorem 5.5. The zero-sum security game model, described in Fig. 5.2 does not accept

a mixed NE strategy profile, i.e., there is no Equilibrium dynamic VM allocation strategy.

Proof. At the mixed NE strategy profile, both RA and RV are indifferent in choosing their

strategies. For example, RA must randomize in such a way that RV does not care which

VM is to be attacked, i.e., GX = G(N,X)) = G(S,X) and GS = G(N,S)) = G(S,S). Let

120

(0 < β < 1) be the probability that RA attacks an NV M, then:

GX = β(qN`N +(n−1)qhqN`N +mqhqN`C)

+(1−β)(qC`C +(m−1)qhqC`C +nqhqC`N)

(5.125)

GS = β(qN`N +(n−1)qhqN`N)+(1−β)(qC`C +(m−1)qhqC`C) (5.126)

In the context of attacker randomizing, in order to find β, we must equalize Equation

5.125 and Equation 5.126 and solve them. This eventually gives:

β =
−nqC`N

(mqN`C)− (nqC`N)
(5.127)

or

β =
1

(mqN`C)/(−nqC`N)+1
(5.128)

if |(mqN`C)/(−nqC`N)|> 1 then β < 0, and if |(mqN`C)/(−nqC`N)|< 1 then β > 1. But

this contradicts the fact that β is a probability, i.e., 0 < β < 1. Therefore, we conclude

that there is no mixed NE strategy profile for the zero-sum security game.

We can so far draw several conclusions from our analysis to the zero-sum game model

under no resource usage and power consumption constraints. First, the Equilibrium strat-

egy that solves Problem 5.4 under different cybersecurity requirements, which are detailed

in Theorem 1 to Theorem 4, is always the static VM allocation strategy S, under which

there are no IC risks imposed on the CV Ms. Second, the existence of the IC risks under

the X allocation strategy primarily depends on the probability of indirectly compromising

the hypervisor. Third, there are no Equilibrium dynamic allocation strategies. We show

in Section 5.6 that the mixed NE strategy profiles are of great importance in optimizing

RV ’s loss and cost.

Although minimizing the potential cybersecurity loss is important, RV also aims to op-

timize cloud resource usage and related expense to strive in the competing cloud market.

In the next section, we extend our cybersecurity-aware zero-sum game model to include

resource usage and power consumption constraints.

121

Figure 5.3: The non-zero-sum security game in normal form

5.6 Security-aware allocation with resource usage and power con-

sumption constraints

In this section, we formulate our allocation problem using a non-zero-sum game model

taking into consideration energy costs and operating expense. Fig 5.3 shows the game in

its normal form. Whereas RA’s payoff matrix is the same as the payoff matrix described

earlier in Fig. 5.2, RV ’s payoff, in this case, is calculated using the utility function illus-

trated in Equation 5.129. We can see that Equation 5.129 consists of three sub-utility func-

tions, L,P, and E), that are multiplied by three coefficients, w1,w2, and (1−w1−w2),

respectively. Those coefficients reflect the relative importance of the sub-utility functions

to RV :

L(V M,A) =−w1 ·G(V M,A)−w2 ·P(A)− (1−w1−w2) ·E(A) (5.129)

where

V M ∈ {N,C} (5.130)

A ∈ {S,X} (5.131)

0 < w1,w2 < 1 (5.132)

L(V M,A) is RV ’s loss after a successful attack on an NV M or a CV M and under the

allocation policy A = X or A = S. P(T) and E(T) are the cluster’s total energy and

operating cost under the allocation strategy A = X or A = S, as described in Section 5.3.2.

122

RA aims to attack the VM that maximizes his/her security gain. RV , on the other hand,

wishes to allocate the VMs so that the overall cybersecurity loss and cost is always at its

minimum, i.e., multiplexing all VMs on the fewest number of servers while minimizing

the WPC loss. However, collocating CV Ms with other NV Ms on a single server maxi-

mizes RV ’s WPC loss. Therefore, we need to analyze the tradeoffs between cost savings

optimization and cybersecurity loss minimization.

5.6.1 The VM-to-VM Interdependent Cybersecurity (IC) risk’s bounds

In the following Theorem, we define the IC risk’s bounds.

Theorem 5.6. RV ’s possible cost savings when selecting the S VM allocation strategy is

constrained by the following upper and lower IC risk bounds.

mqhqN`C >Cost Savings > nqhqC`N (5.133)

Proof. Equation 5.12 and Equation 5.6 show that RV can minimize his/her energy costs

and operating expense by choosing the X strategy. Therefore, if RA prefers a direct attack

on a CV M, i.e., Lemma 5.1, a rational provider should always choose the X allocation

strategy in which there are no IC risks are imposed on the CV Ms. In the game model, this

translates to L(C,X)> L(C,S), which can be simplified to:

E +Psvg > nqhqC`N (5.134)

Equation 5.134 represents the IC risk’s Lower Bound (LB). This bound quantifies the

relationship between RV ’s energy costs and operating expense and the IC risks that the

CV Ms impose on the NV Ms under the X strategy. In other words, Equation 5.134 implies

that RV ’s minimum cost savings must always be larger than any IC risks imposed on the

NV Ms.

123

Moreover, RV aims to minimize the IC risks imposed on any CV M by the NV Ms.

RV , thus, should use extra resources to prevent RA from indirectly attacking one of the

CV Ms. However, the question is –when is it justified, for RV , to use extra resources to

minimize his/her cybersecurity loss that is resulted from an IC attack, and how many extra

resources are needed?– For example, RV can eliminate the IC risks imposed on the CV Ms

(e.g., the strategy profile (N,X)) by using the S strategy (e.g., switching to the strategy

profile (N,S)), if RV ’s overall loss and cost under the S strategy is less than the overall

loss and cost under the X allocation strategy. That is, L(AC,X)< L(AC,S), or:

mqhqN`C > EX +Psvg (5.135)

Equation 5.135 represents the Upper Bound (UB) of the IC risks. This bound quan-

tifies the tradeoff between minimizing the IC risks that the NV Ms impose on the CV Ms

under the X strategy and between optimization the cost savings by switching to the S strat-

egy. This IC risks’ limit sets the resource usage threshold over which RV is not allowed

to exceed when using the S allocation to minimize the IC risks. It is rational that when

the cost of the extra resources used to mitigate the IC risks exceed the cybersecurity loss,

RV chooses the X strategy, (e.g., the strategy profile (C,X)) to minimize his/her overall

potential loss and cost.

To this end, we can see that from Equation 5.134 and Equation 5.135 that RV ’s feasible

cost savings are bounded by the lower and upper bounds of the IC risks. We can merge

the previous two inequalities into a single inequality (e.g., Equation 5.136), and call it the

Cyber-constrained cost Savings Range (CSR):

mqhqN`C > EX +Psvg > nqhqC`N (5.136)

Both IC risk’s lower and upper bounds are illustrated in Fig. 5.4(a) and Fig. 5.4(b),

respectively. We assume a single CMV and a single NV M (Other experiment setup and

124

0

0.2

0.4

0.6

0.8

1

1.2

Potential	security	loss	ratios Operationsl	saving	ratios

Ra
tio

s	n
or
m
al
ize

d	
to
	th

os
e	
of
	(S
)

Multiplexing	Allocation	X	(Prefered) Split	Allocation	(S)

The	Lower	Bound	
of	the	IC	risks	is	
only	5%	of	the	
provider’s	worst	
potential	security	
loss	under	the	X	
allocation	policy

The	provider’s	energy	
and	operating	cost	

savings	are	improved	
by	almost	50%	under	
the	X	allocation	policy

(a) The Lower Bound (LB) of the IC risks

(b) The Upper Bound (UB) of the IC risks

Figure 5.4: Trade-off optimization between cybersecurity risks and cost savings.

values are detailed in Section 5.7). Fig. 5.4(a) shows that RV can improve his/her cost

savings by almost 50% while incurring less than a 5% increase in the WPC loss, due

to the IC risks imposed on the NV Ms, by multiplexing both types of VMs on the same

server. On the other hand, when one of the CV Ms is the target of an IC attack, RV can

minimize his/her WPC loss by more than five times when allocating the CV Ms and NV Ms

to separate servers, as illustrated in Fig. 5.4(b).

125

Next, we will identify RV ’s Equilibrium strategies that solve Problem 5.4 under dif-

ferent attack scenarios.

Theorem 5.7. If any of the cases in Theorem 5.1 hold, and if the LB inequality (e.g.,

Equation 5.134) holds, the X strategy is RV ’s static Equilibrium strategy (e.g., the non-

zero-sum game admits the strategy profile (C,X) as a pure NE strategy profile). However,

if the LB inequality does not hold, i.e.

EX +Psvg < qhqC`N (5.137)

then the S strategy is RV ’s static Equilibrium strategy (e.g., non-zero-sum game admits

the strategy profile (C,S) as a pure NE strategy profile).

Proof. If any of the cases in Theorem 5.1 hold, then according to Lemmas (5.1) and (5.2)

RA prefers to directly attack a CV M when RV chooses the allocation policy X or S.

On the other hand, if the lower bound inequality (e.g., Equation 5.134) holds, then

L(C,X)> L(C,S), and RV consequently prefers the X strategy (e.g., the strategy profile

(C,X)), the non-zero-sum game admits the pure strategy profile (C,X) as an NE. How-

ever, if Equation 5.137 holds, i.e., L(C,X)< L(C,S), and the non-zero-sum game admits

the pure strategy profile (C,S) as an NE because no player can increase his/her payoff by

unilateral deviation from the strategy profile (C,S).

Theorem 5.7 reflects the important role of the LB inequality in optimizing RV ’s cost

savings performance. RV can multiplex both types of VMs to save in his/her cost, while

imposing no IC risks on the CV Ms. Nonetheless, RV allows CV Ms to impose minimal IC

risks on NV Ms. However, if the potential cyber security loss, assuming that the shared

server is compromised, exceeds the total cost savings, RV should switch to the S alloca-

tion. Although, the second scenario is almost impossible, as `N is negligible in front of

`C, and qC is very small, i.e., Equation 5.134. Next, we will use the UB to help identify

RV ’s Equilibrium strategies using Theorem 5.8.

126

Theorem 5.8. If any of the cases in Theorem 5.4 hold, and if Equation 5.135 holds, the S

allocation strategy is RV ’s static Equilibrium strategy in which the NV Ms are the direct

target of RA (e.g., the non-zero-sum game admits the strategy profile (N,S) as a pure NE

strategy profile). However, if any of the cases in Theorem 5.4 hold true, and if Equation

5.135 does not hold, i.e.

E +Psvg > qhqN`C (5.138)

then the X allocation strategy is RV ’s static Equilibrium strategy in which the CV Ms are

the direct target of RA, (e.g., the non-zero-sum game admits the strategy profile (N,X) as

a pure NE strategy profile).

Proof. If any of the cases in Theorem 5.4 hold, then according to Lemma 5.1 and Lemma

5.2, RA always prefers to attack an NV M (e.g., both players prefer the profile strategies

(N,X), and (N,S)).

On the other hand, if Equation 5.135 holds, i.e., L(N,S)> L(N,X), RV consequently

prefers the strategy profile (N,S), and the non-zero-sum game admits the pure strategy

profile (N,S) as an NE. However, if Equation 5.138 holds, i.e., L(N,S)< L(N,X), the

non-zero-sum game admits the pure strategy profile (N,X) as an NE because no player

can increase his/her payoff by unilateral deviation from the strategy profile (N,X).

Theorem 5.8 implies that RV can judiciously acquire more resources to minimize the

IC risks imposed on the CV Ms under the X strategy (e.g., the strategy profile (N,S) is a

pure NE strategy profile). However, if the cost of the newly allocated resources exceeds

the WPC loss under the X allocation, RV should switch from S to X (e.g., the strategy

profile (N,X) is a pure NE strategy profile).

So far, all RV ’s Equilibrium allocation strategies that we can identify are static. In

other words, all the provider’s optimal allocation strategies correspond to pure NE strat-

egy profiles. The following two theorems discuss the cases, according to which, the

127

provider optimal allocation strategy is dynamic (e.g., the non-zero-sum game accepts

mixed NE strategy profiles).

Theorem 5.9. If all of the conditions stated in Theorem 5.2 hold and if Equation 5.136

holds, RV ’s Equilibrium strategy is a dynamic allocation that involves both X and S strate-

gies (e.g., the non-zero-sum game admits a mixed NE strategy profile). However, if Equa-

tion 5.136 does not hold and Equation 5.137 holds, the S strategy is RV ’s static Equilib-

rium strategy in which the CV Ms are the target of a direct attack (e.g., non-zero-sum game

admits the strategy profile (C,S) as a pure NE strategy profile). Moreover, if Equation

5.136 does not hold and if Equation 5.138 holds, the X strategy is RV ’s static Equilibrium

strategy in which the NV Ms are the target of a direct attack (e.g., the non-zero-sum game

then admits the strategy profile (N,X) as a pure NE strategy profile).

Proof. If all the conditions stated in Theorem 5.2 hold, according to Lemma 5.1 and

Lemma 5.2, RA and RV prefers the strategy profiles (N,X) and (C,S).

On the other hand, if Equation 5.136 holds, RV prefers the strategies (X), and (S) when

RA prefers to directly attack an NV M and a CV M, respectively. Thus, when RV chooses

the X strategy, RA directly strikes a VM of type NV M (e.g., the strategy profile (N,X)).

RV then switches to the X allocation strategy to minimize the IC risks imposed on the

CV Ms by the NV Ms (e.g., the strategy profile (N,S)). However, according to Theorem

5.3, RA can now gain more by directly attacking a CV M (e.g., the strategy profile (C,S)).

Further, RV can save in resource usage by switching to the X strategy (e.g., the strategy

profile (C,X)), and the game continues similarly in an infinite loop. In other words, there

is no pure NE strategy profile for the game described in Fig. 5.3, because there is no

strategy at which both players cannot make unilateral changes to improve their payoffs.

However, if Equation 5.134 and/or Equation 5.135 do not hold, and if Equation 5.134

and/or Equation 5.135 hold, RV prefers the strategy profiles (C,X) and/or (N,S) because

L(C,X)> L(C,S) and/or L(N,S)> L(N,X) when RA chooses to directly attack a VM

128

of types CV M and/or NV M, respectively. Consequently, the game admits the strategy

profiles (N,X) and/or (C,S) as pure NE strategy profiles, respectively.

In the mixed NE strategy profile, described in Theorem 5.9, when RV selects the S

allocation, RA gains more by directly attacking a CV M (e.g., the strategy profile (C,S)).

However, Theorem 5.9 shows that RV can optimize his/her payoff by switching to the X

allocation (e.g., the strategy profile (C,X).) This decision is justified and quantified based

on Equation 5.134. However, RA can now utilize the IC risks that the NV Ms impose on

the CV Ms by switching to the X strategy (e.g., the strategy profile (N,X)). Again, RV can

minimize the IC risks by spending extra resources and switching to the strategy S (e.g.,

the strategy profile (N,S)). This decision is also justified and quantified according to

Equation 5.135. This scenario continues as players continue switching from one strategy

to another.

Theorem 5.10. If any of the cases stated in Theorem 5.3 holds and if Equation 5.137,

and/or if Equation 5.138 hold, RV ’s Equilibrium strategy is a dynamic allocation strategy

that involves both the X and S strategies (e.g., the non-zero-sum game admits a mixed

NE strategy profile). However, if Equation 5.136 holds, both the X and S are RV ’s static

Equilibrium strategies (e.g., the non-zero-sum game admits the strategy profiles (C,X)

and (N,S) as pure NEs strategy profiles).

Proof. If any of the cases stated in Theorem 5.3 hold, according to Lemma 5.1 and

Lemma 5.2, RA prefers to attack a CV M and an NV M (e.g., the strategy profiles (C,X)

and (N,S)) when RV chooses the X and S strategy, respectively.

On the other hand, if Equation 5.136 holds, according to Theorem 5.9, RV prefers the

strategies X and S (e.g, the strategy profiles (C,X) and (N,S)) when RA prefers to directly

attack an NV M and CV M, respectively. The non-zero-sum game, described in Fig. 5.3,

thus admits the strategy profiles (C,X) and (N,S) as pure strategy NE strategy profiles.

129

Nonetheless, if the lower and upper bounds given in Equation 5.134 and Equation

5.135 do not hold, then RV prefers the strategies S and X (e.g., strategy profiles (C,S)

and (N,X)) since L(C,X) < L(C,S) and L(N,S) < L(N,X) when RA chooses to directly

attack CV Ms and NV Ms, respectively. The game hence admits (N,X) as a mixed NE

strategy profile and/or (C,S) as a pure NE strategy profile, respectively.

In the mixed NE strategy profile, discussed in Theorem 5.10, when RV selects the

S allocation, RA gains more by directly attacking the NV Ms (e.g., the strategy profile

(N,S)). This case is possible when the number of NV Ms is substantial, or the probability

of directly attacking an NV M or the hypervisor is very high. Theorem 5.10 shows that

RV can optimize his/her payoff by switching to the X allocation (e.g., the strategy profile

(N,X)). This decision is justified and quantified based on Equation 5.137. However,

RA can now exploit the IC risks that the CV Ms imposed on the NV Ms by switching to

the strategy profile (C,X). Again, RV minimizes the IC risks imposed on the NV Ms by

switching to the profile (C,S), i.e., Equation 5.138. The scenario continues as players

continue switching from one strategy to another.

When RV and RA randomize in such a way that the other player does not care which

strategy the first player selects, i.e., G(VN) = G(VC) and L(N) = L(C), the game reaches

a dynamic Equilibrium state, i.e., a mixed NE strategy profile. In Theorem 5.11, we show

how to calculate the probabilities by which every player randomly selects many strategies

resulting in uncertainty and unpredictability to the other player.

Whereas Theorem 5.10 and Theorem 5.9 identify the conditions at which RV can use

VM migrations to optimally minimize the overall WPC loss and costs, Theorem 5.11

calculates the percentage according to which RV should wait at each allocation strategy

before migrating the VMs and switching to another allocation strategy.

130

Theorem 5.11. If all of the conditions stated in Theorem 5.2 hold, if Equation 5.136

holds, if RV assigns a probability weight α to choosing the X strategy and a probability

weight (1−α) to choosing the S strategy, and if RA assigns a probability weight β to

directly attacking an NV M and a probability weight (1−β) to directly attacking a CV M,

then:

1. The game admits the optimal dynamic Equilibrium state (e.g., a mixed NE strategy

profile) in which a player’s response to the other player is his/her best response.

2. RV ensures that the IC risks imposed on the CV Ms by the NV Ms under the X

strategy are minimized by (1−β%); where:

α =
G(C,S)−G(N,S)

G(N,S)+G(C,S)−G(N,S)−G(C,X)
(5.139)

β =
L(C,S)−L(C,X)

L(N,X)+L(C,S)−L(N,S)−L(C,X)
(5.140)

Proof. First, according to Nash, An Equilibrium point is an n-tuple so that a player’s

mixed strategy maximizes his/her payoff if the strategies of the others are held fixed.

Thus, each player’s strategy is optimal against those of the others, which induces that RA

is indifferent in choosing the target which in turn significantly affects the cluster security.

Suppose that RV assigns probability weight α to choosing the X strategy and a proba-

bility weight (1−α) to the S strategy. RA’s expected gain, then, from attacking an NV M

is:

G(N) = αG(N,X)+(1−α)G(N,S) (5.141)

and RA’s expected gain from attacking a CV M:

G(C) = αG(C,X)+(1−α)G(C,S) (5.142)

RV wants to randomize so that RA has no preference in which VM types to attack, i.e.,

G(N) = G(C):

αG(N,X)+(1−α)G(N,S) = αG(C,X)+(1−α)G(C,S) (5.143)

131

which can be simplified to Equation 5.139:

α =
G(C,S)−G(N,S)

G(N,S)+G(C,S)−G(N,S)−G(C,X)
(5.144)

Now suppose that RA assigns a probability weight β to attack an NV M, and a proba-

bility weight (1−β) to attack a CV M. U

sing a similar argument, we find that RA must randomize in such a way that RV does

not prefer an allocation policy over the other, L(X) = L(S):

βL(N,X)+(1−β)L(C,X) = βL(N,S)+(1−β)L(C,S) (5.145)

which can be simplified to Equation 5.140:

β = L(C,S)−L(C,X)/L(N,X)+L(C,S)−L(N,S)−L(C,X) (5.146)

We can easily observe from equations 5.139 and 5.140 that:

0≤ α,β≤ 1 (5.147)

and according to [181] and [182] the game admits an optimal NE strategy profile.

Second, RV ’s overall cybersecurity loss and cost expected from choosing the X strat-

egy, assuming that RA attacks an NV M and a CV M with probabilities β and 1−β is:

L(X) = βL(N,X)+(1−β)L(C,X) (5.148)

We can see from Equation 5.148 that the IC risks imposed on the CV Ms by the NV Ms

under the optimal mixed NE strategy profile are minimized by 1−β%, i.e., β × m × qh

× qN × `C

Next, we discuss our experimental setup and present our numerical results.

132

5.7 Numerical results

We used Matlab to numerically analyze the existence of NE strategy profiles of the non-

zero-sum game using different values of qC,qN , and qh.

In each simulation, we varied a specific parameter and studied the effect of that pa-

rameter on RV ’s WPC loss under the pure and mixed NE strategy profiles. Without loss

of generality, we assumed the following values to illustrate some of the non-intuitive

implications of findings: `C = 20, `N = 5, qC = 0.1, qN = 0.6, qh = 0.3, n = 3,m = 1,

EX = 0.5, and ES = 1. We used the Green Cloud Computing Prototype (GCCP) described

in [170] to measure the processing rate utilization and power consumption under every

allocation strategies, and we found that PS = 1, and PX = 0.6514 when the power con-

sumption is normalized to the S.

The provider’s payoff performance with the change in qC

We varied qC from 0.001 to qN − 0.001 while measuring RV ’s payoff, as shown in Fig.

5.5(a). We observe that RV ’s payoff is maximized when qC is very small. For instance,

according to Theorem 5.3 and Case 03 of Lemma 5.2, when qC is small (e.g., qC < 0.24),

we can see that qC`C < qN`N and accordingly the game admits the strategy profile (N,S)

as a pure NE strategy profile.

When (0.24 < qC < 0.3070) and according to Lemma 5.2, Case 03, RA’s payoff at

the strategy profile (CV M,S) becomes larger than his/her payoff at the profile (NV M,S).

But because the LB inequality holds true (Equation 5.134), RV changes from the S to

the X strategy. On the other hand, qh0 < qh and RA, thus, can gain more by directly

attacking a CV M (e.g., the strategy profile (N,X)) according to Lemma 5.1. However,

0 < qh0 < qh < qh1 < 1 and n/m < (qN`C/qC`N). Therefore, according to Theorem 5.9,

133

RV switch back again to the S allocation policy, and the players continue like this as the

game admits a mixed NE strategy profile.

When (0.3070 < qC < 0.5660), the LB inequality (e.g., Equation 5.134) holds, and

according to Theorem 5.8, the game admits the strategy profile (C,X) as a pure NE strat-

egy profile since no player can unilaterally improve his/her payoffs by changing to another

profile.

On the other hand, when qC is relatively very large,(0.5660 < qC) and almost equal

to qN , the IC risks the CV M imposes on the NV Ms become larger than the cost sav-

ings achieved from choosing the X allocation strategy (e.g., the profile (C,X)), and RV

switches to the S strategy (e.g., the strategy profile (CV M,S)) i.e., the LB inequality does

not hold anymore. Moreover, G(C,S) = 4.8 < G(N,S) = 11.32, and according to The-

orem 5.11, the game admits the profile (C,S) as a pure NE strategy profile.

The provider’s payoff performance with the change in qN

We varied qN from qC to 1 and measured RV ’s payoff accordingly, as shown in Fig.

5.5(b). We notice that when qN is very small (e.g.,qN < 0.1960), RA prefers to attack a

CV M under either allocation policy, i.e., Theorem 5.1. Furthermore, since the LB holds

(e.g., Equation 5.134), the game admits the strategy profile (C,X) as a pure NE strategy

profile, i.e., Theorem 5.9.

When (0.1960 < qN < 0.2510), we get qh0 = 0.2982 < qh < qh1 = 0.5204 and n/m

< (qN `C/qC `N)), therefore, the CSR inequality holds (e.g., Equation 5.136,) and accord-

ing to Theorem 5.9, the game admits a mixed NE strategy profile. As qN increases (e.g.,

qN > 0.2510), RA prefers to directly attack an NV M under both strategies, i.e., Theorem

5.4. However, qh > qh1 = 0.2968 and n/m < (qN`C/qC`N) = 251, and because the UB

inequality holds, the game admits the strategy profile (C,S) as a pure NE strategy profile,

i.e., Theorem 5.9.

134

(a) The provider’s payoff performance with the change in qC

(b) The provider’s payoff performance with the change in qN

(c) The provider’s payoff performance with the change in qh

Figure 5.5: The provider’s payoff performance

135

The provider’s performance with the change in qh

We varied qh from 0.001 to 1 and measured RV ’s payoff accordingly, as shown in Fig.

5.5(c). When 0 < qh < 0.0710, the IC risks that the NV Ms impose on the CV M are min-

imized. Therefore, RA always launches an IC attack on the CV M under either allocation

policies, i.e., Theorem 5.4. On the other hand, the UB inequality does not hold, (e.g.,

Equation 5.138), as qh is very small, and RV consequently can minimize his/her energy

costs and operating expense by choosing the X allocation strategy, and the game admits

the strategy profile (C,X) as a pure NE strategy profile, i.e., Theorem 5.10.

As qh increases, 0.0710 < qh < 1, the IC risks imposed on the CV M also increase, and

the UB inequality holds. On the other hand, RA’s payoff from attacking the CV M under

the S allocation strategy (e.g., qC`C = 2) is smaller than his/her payoff from attacking an

NV M at the S strateg, i.e., (qN`N +2qhqN`N) = 3.4260, thus and according to Theorem

(5.10), the game admits the strategy profile (C,S) as a pure NE strategy profile.

5.8 Summary

In this chapter, we analyze the VM-to-VM Interdependent Cybersecurity IC risks im-

posed on VMs of different criticality when they coexist together on the same hypervisor.

We also investigate how to optimize the efficiency of resource usage and energy costs

while minimizing the provider’s WPC loss. Specifically, we study how to securely and

efficiently allocate critical and Non-critical VM types (e.g., CV Ms and NV Ms) onto a

cloud cluster so that the provider’s WPC loss is minimized. We formulate the alloca-

tion problem using non-cooperative zero-sum and non-zero-sum game models, between a

cloud service provider and an attacker, under relaxed and constrained resource usage and

power consumption. Our analysis completely characterizes the existence of all the static

and dynamic Equilibrium strategies.

136

Next, we extend our cybersecurity models, presented in this chapter, to include VMs

with any levels of cybersecurity and resource requirements.

137

CHAPTER 6

GAME THEORETIC-BASED APPROACHES FOR CYBERSECURITY-

AWARE VIRTUAL MACHINE PLACEMENT IN CLOUD CLUSTERS

Allocating several Virtual Machines (VMs) onto a single server helps to increase cloud

resource utilization and to reduce its operating expense. However, multiplexing VMs

with different security levels onto a single server gives rise to significant VM-to-VM cy-

bersecurity interdependent risks. In this chapter, we address the problem of the static VM

allocation with cybersecurity loss awareness by modeling it as a two-player zero-sum

game between an attacker and a cloud provider. We first obtain the optimal solutions by

employing the mathematical programming approach. We then seek to find the optimal

solutions by quickly identifying the equilibrium allocation strategies in our formulated

zero-sum game. We mean by –equilibrium– that none of the provider nor the attacker has

any incentive to deviate from one’s chosen strategy. Specifically, we study the charac-

teristics of the game model, based on which, to develop effective and efficient allocation

algorithms. Simulation results show that our proposed cybersecurity-aware consolida-

tion algorithms can significantly outperform the commonly used multi-dimensional bin

packing approaches for large-scale cloud data centers.

6.1 Introduction to the research problem

Private data center managers should always configure servers to operate at high utiliza-

tion rates. However, unwise workload allocation practices in private data centers result

in low server utilization (e.g., 12% to 18%) and high power consumption per customer

compared to (65%) cloud’s server utilization and (84%) power consumption per cloud’s

consumer, as reported by the Data Center Efficiency Assessment from the Natural Re-

sources Defense Council in 2014. Traditional data centers are duplicative, costly and

138

complex [40] causing the annual electricity cost to increase by 2.5% each year over the

last 20 years [41]. The scalable and elastic public cloud infrastructure maximizes resource

usage and server utilization by adopting efficient workload multiplexing policies, such as

VM consolidation. Therefore, the U.S. Office of Management and Budget (OMB) has

issued guidance to reduce the number of federal, private data centers starting in 2010 as

reported in [39]. The goal is to shift most of the critical and non-critical IT workload to

public cloud data centers to save energy and operating costs.

The commonly shared infrastructure of public clouds among VMs and users, unfor-

tunately, exposes cloud workload to several cybersecurity risks, such as side-channel at-

tacks [51–53] and VM-to-VM Interdependent Cybersecurity (IC) risks. Packing several

VMs on a single server minimizes the total number of allocated servers, which in turn

minimizes power consumption and operating expense. For example, cloud clients require

(77%) fewer servers than what they need on-premises [31], assuming (15%) on-premises

utilization. However, when the consolidated VMs are of different security levels, the less

secure VMs impose security risks on the more secure VMs. An attacker can compromise

the hypervisor after a successful attack on one of its vulnerable VMs, and consequently,

he/she could compromise all other coexisted secure VMs.

We intend to investigate the static allocation problem of VMs with different cyberse-

curity and resource requirements in cloud clusters. The dynamic VM allocation is flexible,

adaptive and potentially more effective in a highly dynamic environment. On the other

hand, static VM allocation has many unique advantages (e.g., low overhead, reliable pre-

dictability, performance guarantee) and thus the study of static VM allocation not only

has solid theoretical values but is also useful and applicable in many practical scenarios.

For instance, static allocation is ideal for batch workload allocation during each epoch,

as they are usually well documented and characterized by predictable performance and

intensive computation time.

139

We use the Game theory to formulate the static VM allocation problem into a non-

cooperative two-player game [135]. Game theory is an appealing approach that of-

fers mathematical models of conflict between non-cooperative intelligent and rational

decision-makers, such as cloud providers and cyber attackers [135]. The game-based al-

location model can help recognize the provider’s static VM allocation strategies which

optimally minimize his/her worst potential cybersecurity loss when an attacker can suc-

cessfully compromise any VM in the cluster. We show later that the static VM allocation

strategy is optimal if a cloud provider and an attacker reach an Equilibrium state [183].

We mean by –Equilibrium– that none of the provider nor the attacker has any incentive to

deviate from one’s chosen strategy.

We have made the following contributions in this chapter:

(1) A constrained-allocation problem is a typical NP-hard problem, and thus we for-

mulate the security-constrained and resource-constrained VM allocation problems using

the Mathematical Programming (MP) approach to obtain the optimal solutions, which

will be used as a comparison baseline against other proposed methods in this chapter

when the problem size is small;

(2) We formally formulate the resource and cybersecurity constrained VM allocation

problems as non-cooperative two-player zero-sum game models. We conduct a thorough

analysis of the characteristics of the pure Nash Equilibrium (NE) in our game model,

which is formulated as a series of lemmas and theorems;

(3) Based on our analysis insights, we have developed several effective and computa-

tionally efficient algorithms to allocate VMs, of different resource and security require-

ments, with resource usage and cybersecurity loss optimized;

(4) We have implemented our algorithms and studied their effectiveness and effi-

ciency. Our extensive simulation results show that our novel approaches are good trade-

offs when compared with the computational-intensive approaches, such as MP based-

140

approaches and existing NE search methods, or with the computational-efficient multi-

dimensional bin-packing methods.

6.2 Related work

As cloud online services entered in each sector of our personal and professional lives,

maximizing resource usage and minimizing power consumption in cloud data centers us-

ing efficient allocation policies have become a necessity. Many allocation approaches,

based either on traditional optimization methods (e.g., MP [126], evolutionary program-

ming method [127], fuzzy control [128]) or on a variety of different heuristics (e.g.,

[129]), have been proposed for applications and VMs with different characteristics, re-

quirements, and optimization goals in cloud platforms.

In this section, we review the research about VM allocation in cloud platforms. We

can classify those related works on cloud computing into four significant categories di-

rectly related to our research focus in this dissertation, i.e., Vector Bin Packing (VBP)

based cloud resource allocation, game theory-based cloud resource management, cloud

cybersecurity measures using the Game theory, and security-aware cloud resource alloca-

tion approaches.

The VM allocation problem is a well-known NP-hard problem, as we show later on,

and hence heuristics, such as Vector Bin Packing (VBP), have been adopted heavily to

solve similar problems with multiple optimization goals [130]. In a VBP heuristic, there

is a weight function applied to the items so that each item is assigned a single scalar,

based on which, the standard bin packing can be used to sort those items. Wood et

al. [92] introduced a multi-dimensional First Fit Decreasing (FFD) approach to lively

migrate VMs out of overloaded servers. Their approach considers multiple CPU, mem-

ory, and network resource demands of each VM. Panigrahy et al. [131] proposed sev-

141

eral VBP-based methods for VM allocation with different resource demands and opti-

mization goals. Beloglazov et al. [126] suggested several VM migration algorithms to

improve CPU utilization and demonstrated that increasing the lower-utilization threshold

increases the Service Level Agreement (SLA) violations while reduces the server’s energy

consumption. In [128], the authors used combinatorial and multi-objective optimizations

to optimize resource usage in a two-level control system that allocates workloads from

virtual to physical resources. Using a local and a global fuzzy controller, they tried to

minimize power consumption, thermal dissipation, and a peak temperature of the system.

In [132], the authors introduced an application placement controller that consolidates ap-

plications according to the ratio of their CPU to memory demands. Microsoft’s Virtual

Machine Manager used in Azure applies the Dot-Product and Norm-based Greedy heuris-

tics [133]. The authors in [133] proposed new geometric heuristics that run nearly as fast

as FFD. We are, however, not aware of any prior work that employs VBP to deal with

security requirements during a VM allocation process.

Several works employed the Game theory to model the resource optimization problem

in cloud platforms [127, 129, 138]. Wei et al. [127] adopted the Game theory to solve a

QoS constrained resource allocation problem across a cloud-based network. Kunsemoller

et al. [129] elaborated on cloud economics benefits for businesses using a game-based

cloud model of an IaaS economy including the dynamics of pricing and usage. Pillai

et al. [139] proposed a VM allocation policy onto cloud platforms, based on the prin-

ciples of coalition formation and the uncertainty principle of the Game theory. They

illustrated that the coalition-formation of the VMs leads to higher resource utilization and

higher request satisfaction. Teng et al. [140] suggested a new Bayesian pure NE-based

resource management policy assumes heterogeneous and distributed resources, cognitive

behaviors of cloud consumers, non-perfect information, and dynamic successive alloca-

tion. They proved that the resource price would converge to the optimal rate at the end

142

of the gambling sequence. Jalaparti et al. [138] similarly employed the Game theory

to optimize resource efficiency, and pricing policies by modeling the client-provider and

client-client interactions, respectively. They introduced multiple heuristic algorithms with

near-optimal allocation and pricing policies compared to the fixed-pricing strategies used

today by cloud providers, such as in Amazon EC2. However, all the above ignored the

cybersecurity effects of their allocation methods.

As more and more enterprises, companies, and private users move their computing

facility to public cloud data centers, there have been increasing interests and concerns

in the security problem in the cloud (e.g., [90, 141]). Several works focused only on

studying the types of cybersecurity attacks result from the commonly shared infrastructure

of public clouds among several applications and users.

Side-channel attacks are one of the most popular types of cybersecurity attacks on

cloud infrastructure. Several countermeasures were proposed in the literature to mitigate

or prevent side-channel attacks [51–53]. The proposed methods include modifying or

tuning up the infrastructure to prevent hackers from extracting information about private

keys (e.g., secret key extraction attack, [51]), preventing attackers from verifying co-

residence with the victim’s VM [52], or introducing a new infrastructure design (e.g.,

mitigate the threat of timing channels by eliminating high-resolution clocks [142], or

adding latency to potentially malicious operations [52, 142]).

Kamhoua et al. [33] used a non-zero-sum game framework to model the VM-to-VM

interdependent cybersecurity risks between an attacker and two users in the cloud. They

showed that the existence of NE strategy profiles depends on the probability that the hy-

pervisor is compromised given a successful attack on one of the users and the total cost

of the user’s security investments. They also irrationally concluded that there is no NE

strategy profile in which all the users in the public cloud fully invest in cybersecurity mea-

sures. Et al. Kwiat [55] applied the same cybersecurity model introduced by Kamhoua

143

to a different allocation problem. They considered a game between an attacker and three

users. The first user never invests in security and is always allocated to the first insecure

hypervisor. The second user invests in security countermeasures and his VM is always

assigned to the second secure hypervisor.Unlike [33,55], wherein the defenders’ strategy

is to invest or not invest, we assume that all VMs have different resource requirements

and cybersecurity counter-measurements. The provider’s strategy is to choose the alloca-

tion policy that minimizes his/her loss under a worst-case cybersecurity attack on a cloud

cluster with a limited set of resources.

Secure-aware resource allocation methods were introduced in [90, 141, 143]. Rao et

al. [143] used the Game theory to search the ability of a cloud computing provider to

guarantee a given capacity C with a particular probability P given a physical or cyberse-

curity attack on his/her data center. They proposed the use of reinforcement strategies to

decrease the attacker’s utility. While many works focused on VM migration to maximize

resource utilization and minimize power consumption, et al. Zhang [90] is the first to

develop a formal and quantified migration strategy of clouds to improve security against

collocation attack and with accepted costs.

On the other hand, [141] used the Game theory to model the collocation attack be-

tween attackers and a provider. The attackers try to collocate their VMs with target VMs

on the same physical server and exploit side-channel attacks to extract private informa-

tion from the victims’ VMs. The provider aims to minimize the attackers’ possibility

of co-locating their VMs with the target VMs while maintaining a satisfactory workload

balance and low power consumption for the system. Specifically, the provider strategies

are to choose among a pool of allocation strategies.

In this chapter, we are more interested in studying the problem on how to optimize

the provider’s potential security loss or the provider’s resource usage when allocating

several VMs with different resource usage requirements and security vulnerabilities on a

144

resource-constrained or security-constrained cloud cluster, respectively. In what follows,

we first introduce our game model and formally define our problem. We then present our

VM allocation approach in more detail.

6.3 Cloud system model

In this section, We formulate our cybersecurity-aware VM consolidation problems as non-

cooperative zero-sum game models between an attacker and a provider [135]. A zero-sum

game model is a game in which the players share no common interests [135]. We assume

a game with perfect information. That is both players are rational, have full knowledge

about the strategies of each other, and have the means to optimize their payoffs.

According to Nash [183], there is at least one best way, i.e., that corresponds to an NE

strategy profile, by which both players simultaneously choose the best strategy for any

limited number of strategies. The best policy for the provider, nonetheless, does not allow

the provider to win but allows him/her to minimize his/her potential loss. However, there

may not exist a pure NE strategy profile, and it is not always possible for players to find

it in a polynomial time due to the large sizes of the pure strategy profiles of the provider

and attacker.

A public cloud data center usually consists of hundreds or thousands of clusters, and

we are interested in the static VM allocation policy for each cluster. We assume that a

cloud cluster has n hypervisors that are hosted on the n physical servers Sr = {Si; i =

1,2, ...,n}. Each server has a maximum processing rate capacity Ci = C in Million In-

structions Per Second (MIPS), a processing rate utilization Ui, power consumption Pi,

and operating expense Ei (e.g., server costs, security investment, maintenance, etc.).

The cluster hosts m VMs (e.g., M = {Vj; j = 1,2, ...,m}). A VM (e.g., Vj) is charac-

terized by three parameters, i.e. (Vj = {c j,q j, ` j}); where (c j ≤ C) is the processing rate

145

Figure 6.1: A cloud cluster. The cluster has n hypervisors that are hosted on the n physical
servers Sr = {Si; i = 1,2, ...,n}. Each server has a maximum processing rate capacity Ci = C
in Million Instructions Per Second (MIPS), a processing rate utilization Ui, power consumption
Pi, and operating expense Ei (e.g., server costs, security investment, maintenance, etc.). The
cluster hosts m VMs (e.g., M = {Vj; j = 1,2, ...,m}). A VM (e.g., Vj) is characterized by three
parameters, i.e. (Vj = {c j,q j, ` j}); where (c j ≤ C) is the processing rate required by Vj; q j is
the probability that Vj could be directly attacked and compromised; ` j is the provider’s maximum
security loss if Vj is compromised.

146

required by Vj; q j is the probability that Vj could be directly attacked and compromised;

` j is the provider’s maximum security loss if Vj is compromised (e.g., Fig. 6.1) .

We further assume that (` j ≥ `k) if (q j ≤ qk) implying that the VM with the higher

criticality level (e.g., Vj) has a smaller probability to be compromised. Moreover, we

accept the fact that an attacker is capable of indirectly compromising a hypervisor, via

one of its compromised VM (e.g., V Mm in Fig 6.1). Once an attacker has full control over

the hypervisor, he/she can easily compromise all its VMs (e.g., Vi; i = {1,2, ...m− 1} in

Fig 6.1).

We denote the probability of a successful attack on a hypervisor after one of its VMs

has been compromised as qh. Furthermore, we assume that the possibility that an attacker

successfully and directly attacks multiple VMs or a hypervisor is close to zero, and can

thus be ignored.

Commonly sharing the infrastructure of a cloud data center, among applications, VMs,

and users results in several cybersecurity risks, such as IC risks. For instance, an attacker

can compromise the hypervisor after a successful attack on one of its vulnerable VMs. An

attacker consequently can compromise all other coexisting secure VMs on that hypervisor.

In this chapter, we are interested in identifying the VM static allocation strategy that can

minimize the provider’s Worst-case Potential Cybersecurity (WPC) loss, resulted from

IC risks among coexisting VMs on a single server. The provider’s potential loss under

the zth allocation strategy is the cybersecurity loss that the provider suffers if an attacker

successfully and indirectly attacks a hypervisor, via one of its hosted VM that has been

directly compromised earlier by the attacker, and thereafter compromises all other hosted

VMs onto that hypervisor. If the attacker directly compromises the VM that maximizes

his/her gain, after indirectly compromising its hypervisor and all its other hosted VMs,

the provider’s potential loss is then called the (WPC) loss under the zth allocation strategy.

147

We can formally formulate the provider’s WPC loss by first modeling the cybersecurity-

aware VM allocation problem as a non-cooperative two-player zero-sum game defined by

the 3-tuple (decision-makers, strategy profiles, payoffs) [135].

The decision-makers are a cloud service provider, RV , and an attacker, RA, who share

no shared goals, i.e., a non-cooperative game model. RA tries to maximize his/her gain by

directly attacking one of the m VMs and potentially all other collocated VMs on the same

server by attacking the underlying hypervisor [52,179]. RV defends by trying to minimize

his/her security loss by choosing an allocation strategy that reduces the attacker’s gain.

RA has the pure strategy spaces M from which RA can choose to attack any VM

(e.g., Vj) as a strategy to maximize his/her profit. On the other hand, RV wishes to

allocate all VMs onto the available servers to minimize his/her WPC loss. Let Γ =

{Az;z = 1,2, ...,ζ} be RV ’s set of all possible allocations of m VMs to n servers. Specif-

ically, Γ is a (1×ζ) vector where each element, Az, is an (n×m allocation matrix; i.e.,

{Az = {az
i j; i = 1,2, ...,n; j = 1,2, ...,m}; where:

az
i j =

1; i f Vj is allocated to Si under Az

0; otherwise
(6.1)

Thus, Γ represents RV ’s pure strategy space. In this chapter, we focus on static VM

allocation strategies, therefore we assume that RV and RA can only choose one allocation

strategy from their strategy spaces.

Choosing different strategies leads to different payoffs for RV and RA. Assume that

RV chooses the strategy Az in which Vj is allocated to Si (e.g., (az
i j = 1)), and assume

that RA chooses to attack Vj directly. We denote the corresponding RV ’s potential cyber-

security loss or RA’s potential cybersecurity gain by (l(Vj,Az) = l jz) or (g(Vj,Az) = g jz),

respectively; where (l jz =−g jz) as this is a zero-sum game. Then we have:

g jz = az
i j(Σ

m
k=1(a

z
ikqhq j`k)+q j(` j−qh` j)) (6.2)

148

where m is the total number of VMs; az
i j = 1. We can consequently model RV ’s and RA’s

potential cybersecurity potential losses and gains as (m×ζ) payoff matrices L and G, in

which each column represents a single RV ’s allocation strategy (e.g., Az) and each row

represents a single RA’s attack strategy (e.g., Vj). That is:

L = {l jz : j = {1,2, ...,m};z = {1,2, ...,ζ}}; L =−G (6.3)

Specifically, we denote L∗z as the WPC loss when RV chooses strategy Az; where:

L∗z =−G∗z =− max
∀ j∈{1,2,...,m}

g jz (6.4)

Our zero-sum allocation game thereupon is defined by the 3-tuple ({RA,RV}, {M,Γ},{G,L}).

Let Eop be a (1× ζ) vector representing RV ’s total operating expense under the al-

location strategies Az;z = 1,2, ...,ζ. Operating expense includes the cost of renting or

purchasing servers, security investment, hardware/software upgrades, maintenance, etc.

For example, the operating expense of a cloud cluster under allocation AZ is given by

Equation 6.5.

Eopz = Σ
n
i=1ez

i εi (6.5)

where εi is the operating expense of the non-idle server Si under allocation Az. That is:

ez
i =

1; i f Σm

j=1az
i j ≥ 1

0; otherwise
(6.6)

Let Eeng be a (1×ζ) vector represents the cluster’s total energy cost under the allo-

cation strategies Az;z = 1,2, ...,ζ when the cluster consumes a total, static and dynamic,

power Pz. Equation 6.7 models the total power WATT consumed by a cloud cluster under

allocation AZ .

Pz = Σ
n
i=1(e

z
i DPi(Σ

m
j=1((a

z
i jc j)/C))+ ez

i SPi) (6.7)

149

Figure 6.2: Illustration of the different ways of consolidating three VMs onto a three-server cloud
cluster

where DPi is the maximum dynamic power consumed by the server Si when it is fully

utilized; c j is the processing rate requirements of Vj measured by MIPS; C is the maxi-

mum processing rate capacity of server Si measured by MIPS. SPi is the total static power

consumed by server Si.

Therefore, the (1× ζ) vector TC represents the Total energy Cost and operating ex-

pense (TC) of RV under an allocation strategy Az. That is:

TCz = Eopz +Eengz (6.8)

On the other hand, RV ’s Overall WPC Loss and total energy Costs and operating

expense (OLC) under an allocation strategy Az is represented by the (1×ζ) vector OLC.

RV ’s overall loss and costs under an allocation Az is then modeled using Equation 6.9.

OLCz = TCz +L∗z (6.9)

Fig. 6.2 shows that when a three-server cloud cluster hosts three VMs (e.g., {V1,V2,

V3}), RV has five possible static VM consolidation strategies to allocate those VMs to the

three servers {S1,S2,S3}. In the first allocation strategy, RV allocates one VM per server.

150

1
10

100
1000

10000
100000

1000000
10000000

100000000
1E+09
1E+10
1E+11
1E+12
1E+13
1E+14

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 n=11 n=12n=13n=14n=15n=16n=17n=18n=19n=20

T
he

 to
ta

l n
um

be
r

of
 p

os
si

bl
e

al
lo

ca
tio

ns

ex
pr

es
se

d
us

in
g

th
e

lo
ga

ri
th

m
 sc

al
e

Number of VMs (n)

The number of different ways to allocate n
distinguishable VMs to S= {1, 2, …, or n}

indistinguishable servers

Figure 6.3: The size of the provider’s pure strategy support vector with the increase of the numbers
of VMs and servers

In the second, third, and forth allocation strategies, RV consolidates two VMs on a single

server and allocates the third VM to a second server. In the fifth allocation strategy, RV

multiplexes all three VMS on a single server S1.

The first strategy allocates one VM per server which eliminates any IC risks, but it

worsens the server’s utilization and operating expense as it involves three servers rather

than one server as opposed to the fifth strategy. Fig. 6.3 enumerates the different ways of

allocating m≤ 20 different VMs to n≤ 20 different servers.

Whereas the size of RA’s pure strategy space is bounded by the total number of VMs

(e.g., m), the size of RV ’s strategy space, i.e. the number of columns in the payoff matrices

L and G, is a function rapidly increasing with the increase of the numbers of VMs and

available servers. To this end, Fig. 6.3 shows how the total number of different ways of

allocating m VMs to n servers exponentially increases with the increases of n and m.

Assuming all allocation strategies are feasible, the total number of RV ’s possible allo-

cation strategies can be formulated as:

ζ = Σ
n
i=1ST N(m, i) (6.10)

151

where ST N(m, i) is the Stirling numbers of 2nd kind representing the total number of

different ways to allocate m distinguishable VMs to exactly (i≤ n) non-idle servers [184].

That is:

ST N(m, i) = (
1
i!
)Σi

i0=0(−1)i0

(
i0
i

)
(i− i0)m (6.11)

Consequently, to enumerate all possible ways of allocating the m VMs to n servers, we

can rewrite Equation 6.11 as the recurrence equality given in Equation 6.12 [184]

ST N(m, i) = ST N(m−1, i−1)+ i×ST N(m−1, i) (6.12)

For example, ST N(1,1) = 1 because there is just one way to allocate a single VM to

a single server. We suppose that we know the number of ways to allocate (m−1) VMs

to (i ≤ n) identical servers and that we know the number of ways to allocate (m−1)

VMs onto (i−1) identical servers. To this end, if we want to allocate one more VM and

use i servers. We can either start with any of the ST N(m−1, i−1) combinations and

allocate the mth VMs to a new empty server, or we can start with any of the ST N(m−1, i)

combinations and allocate the mth VM to a non-empty server. In other words, for each of

the ST N(m−1, i−1) combinations, there is just one way to add the new VM to a new

server. However, for each of the ST N(m−1, i) combinations, there are i ways to allocate

the new VM to a non-empty server. Thus the number of different ways to allocate m VMs

to n servers (e.g., ST N(m, i)) is the sum of ST N(m−1, i−1) and i×ST N(m−1, i).

Fig. 6.4 shows the number of ways of allocating m = {1,2, ...,16} labeled VMs to

{n = 1,2, ...,or16} identical empty or non-empty servers. It is clear that as the number

of VMs increases, the total number of RV ’s possible allocation strategies exponentially

increases. For instance, when the number of VMs is (m = 16), there are more than (10)

billion possible allocation strategies when using n = 16 servers (e.g., Fig. 6.4).

Based on our system models, we can formulate our research problems as follows.

152

Figure 6.4: Enumerating the different ways of allocating m = {1,2, ...,or16} different VMs to
n = {1,2, ..., or 16} servers

Problem 6.1. Given the virtualized cloud cluster with n servers and m VMs that is defined

above, determine the static feasible allocation policy so that RV ’s WPC loss (e.g., L∗) is

minimized;

Problem 6.2. Given the virtualized cloud cluster with n servers and m VMs that is defined

above, and given RV ’s WPC loss threshold (e.g., T hrsh), determine the static feasible

allocation policy so that RV ’s overall loss and total energy cost and operating expense

(e.g., OLC) is optimized while RV ’s WPC loss is guaranteed to be less than the given

threshold, i.e. L∗ ≤ T hrsh.

In what follows, we first identify the optimal solutions for our VM allocation prob-

lems using the MP approach for comparison purposes, when RV ’s pure strategy space is

small. Second, we present our approaches by taking advantage of the game-theoretical

techniques to solve problems with much larger sizes as in practical scenarios.

153

Figure 6.5: The MPL algorithm

6.4 The mathematical programming formulation of the VM alloca-

tion problems

Fig. 6.5 describes the Mathematical Program for Loss minimization (MPL) to solve Prob-

lem 1 in which the decision variables are defined as follows:

di j =

1; i f Vj is allocated to Si

0; otherwise
(6.13)

For example, the first allocation strategy in Fig. 6.2 is represented by the decision

matrix:
1 0 0

0 1 0

0 0 1

in which V1, V2, and V3 are allocated to S1, S2, and S3, respectively.

MPL minimizes RV ’s worst potential security loss by finding the allocation strategy

that minimizes RA’s best potential gain G∗ (e.g., Equation 6.4). The attacker’s best gain

is larger than or equal to the gain of attacking any Vj (e.g., Fig. 6.5, Line (1)) when it

is allocated to any server Si (e.g., Fig. 6.5, Line (2)). The potential security gain of RA

when attacking Vj on Si is gi j (Line (3)). Further, a Vj can be allocated to no more than

a single server (e.g., Fig. 6.5, Line (4)), and the total processing rate requirements of all

VMs allocated to a server Si cannot exceed the server’s capacity (Fig. 6.5, Line (5)).

154

According to the MPL program, the optimal solution to Problem 6.1 which minimizes

RV ’s worst potential security loss given a worst case cybersecurity attack is the first allo-

cation strategy in Fig. 6.2:

Asv(1) =

1 0 0

0 1 0

0 0 1

For example, let the virtual machines V1,V2,V3, illustrated in Fig. 6.2, have a security-

level’s vector {0.4,0.4,0.9}, a loss-value’s vector {−99.63,−66.198,−36.685}× $103,

and resource-requirement’s vector {1,4,3}× 103 MIPS, respectively. If RV has three

servers S1,S2,S3 each of which with the capacity C = 8×$103MIPS, he/she can allocate

the VMs using the five allocation strategies given in Fig. 6.2. To this end, in order to un-

derstand the solution of the mathematical program illustrated above, let’s construct RV ’s

loss payoff matrix L that represents RV ’s potential cybersecurity loss given a successful

attack on Vi under the allocation strategy Az.

L =

Vj/Ai A1 A2 A3 A5 A4

V1 39.852 39.852 44.254 47.795 52.198

V2 26.479 30.881 26.479 38.434 42.837

V3 33.016 50.890 59.916 33.016 77.790

×$−103

RV ’s worst losses under each allocation Az are then:

L∗z =

Vj/Ai A1 A2 A3 A5 A4

V1 39.8520 � � 47.7958 �

V2 � � � � �

V3 � 50.8900 59.9166 � 77.7901

×$−103

Consequently, the optimal WPC is equal to L∗1 = −39.8520. In other words, the best

option for RV is to choose the first allocation policy in which he/she would optimally

minimize his/her WPC loss.

155

Figure 6.6: The MPR algorithm

Similarly, Fig. 6.6 describes the Mathematical Program for Resource usage maxi-

mization (MPR) to solve Problem 2. MPR minimizes RV ’s total energy costs and operat-

ing expense (e.g., Fig. 6.6, lines (1 and 2)), while keeping RV ’s WPC less than a given

loss threshold (e.g., Fig. 6.6, lines (2-7)).

Using the same previous example with the three VMs, we see that the average resource

utilization under all different five possible allocation policies illustrated in Fig. 6.2 are:

U = {1
3 ,

2
3 ,

2
3 ,

2
3 ,1}. Moreover, if we set the cybersecurity loss threshold to T hrsh = 80×

103, the optimal solution of Problem 2 is the fifth allocation strategy in Fig. 6.2 with an

average resource utilization that is equal to 1.

Although both MPL and MPR solve Problem 1 and Problem 2, both mathematical

programs have their limitations. The computation times of both algorithms are exponen-

tial in the increasing number of VMs. For example, in Section 6.8.2, we show that the

average computation time of both MPL and MPR using 25 servers and 50 VMs increases

by roughly 8000 times when increasing the number of servers and VMs to 250 servers

and 500 VMs. Therefore, in the next section, we explore more computationally efficient

methods to solve our allocation problems because such MP methods are not applicable in

today’s cloud data centers in which a single rack can have up to 1000 VMs [185].

156

6.5 Finding the optimal VM allocation strategy using Nash Equilib-

rium (NE) general search algorithms

In this chapter, we explain how to use NE general search methods to solve our allocation

problems, after discussing several limitations of those methods.

Researchers use the Game theory to study and understand the interaction among eco-

nomic, social, or military entities. We use Game theory in this chapter to analyze and

understand the interaction between RV and RA. The goal is to find a stable pair of static

strategies, i.e., NE [183], at which neither RV nor RA has any incentive to deviate from

their decisions. In other words, at the NE strategy profile, neither RV nor RA can further

minimize or maximize his/her potential cybersecurity loss or gain, respectively.

Theorem 6.1 shows that RA’s allocation strategy that corresponds to a pure NE strat-

egy profile is an optimal solution for Problem 1.

Theorem 6.1. If the strategy profile (V ∗,A∗) is a pure NE strategy profile, RV ’s static VM

allocation strategy A∗ is optimal to minimize his/her WPC loss.

Proof. According to the Minimax method [180, 186] in a two-player zero-sum game, the

strategy profile (Vj∗,Az∗) is a pure NE strategy profile if:

max(min(GT)) = min(max(G)) = G∗ (6.14)

where G is RA’s (m×ζ) payoff matrix.

RA’s maximin gain (e.g., max(min(GT))) is the highest potential security gain that

he/she can be sure to get without knowing the VM allocation strategy chosen by RV . On

the other hand, RV ’s minimax loss (e.g.,min(max(G))) is the smallest potential cyber-

security loss that RV can be sure to get without knowing the targeted VM by RA. In a

zero-sum game, if the maximin and minimax payoffs are equal in the absolute value (e.g.,

Equation 6.14), the strategy profile solution of the maximin and minimax is the same as

157

the pure NE strategy profile of the game. Moreover, according to [187], a necessary and

sufficient condition for a saddle point, i.e., an NE strategy profile, to exist is the presence

of a payoff matrix element which is both a minimum of its rows and a maximum of its

columns, i.e., G∗. Therefore, the NE strategy profile is the optimal solution for both RV

and RA given that each of them knows the other opponent well.

Theorem 6.1 implies that we can transform Problem 1, into a pure NE strategy profile

search problem, and thus existing NE searching algorithms can be readily applied to our

game model. However, we have two major problems when using those algorithms.

First, there may be no pure NE strategy profile in existence at all. For instance, let the

(m = 3×ζ = 2) payoff matrix of RA be defined as follows:

G =

Vj/Ai A1 A2

V1 0.375 0.530

V2 0.250 0.625

V3 0.156 0.756

According to the Minimax method [180,186], RA seeks maximizing his/her minimum

gain. The minimum potential gain of attacking any VM under all allocation policies is

the minimum of each row in the payoff matrix G. That is:

G =

Vj/Ai A1 A2

V1 0.375 �

V2 0.250 �

V3 0.156 �

Consequently, to maximize his/her minimum potential gain, RA should attack the first

VM and gain G11 = min{0.375,0.250,0.156}= 0.3750.

158

Similarly, RV wishes to minimize his/her maximum potential loss at each allocation

strategy or column of the payoff matrix G. That is:

G =

Vj/Ai A1 A2

V1 0.375 �

V2 � �

V3 � 0.756

As a result, RV should choose the first allocation strategy such that his/her WPC loss

is minimized, i.e. G = min{0.3750,0.7560}= 0.3750. Therefore, the strategy profile

(V1,A1) is an NE strategy profile because none of RV nor RA can improve one’s payoff by

making a unitarily changing toward another strategy. Therefore, RV ’s optimal allocation

strategy in terms of minimizing the WPC loss is A1.

Now consider this example in which there is no pure NE strategy profile. Fig. 6.2

is an illustration of the different ways of allocating (V1 = {c1 = 30 MIPS, q1 = 0.2,

`1 = 87.295}), (V2 = {c2 = 20 MIPS, q2 = 0.4, `2 = 76.803}), and (V3 = {c3 = 30 MIPS,

q3 = 0.6, `3 = 50.06}) onto a three-server cloud cluster with capacity C = 800 MIPS. We

can see that RV has five possible static VM allocation strategies. RA’s gain under those

allocation strategies are given in the payoff matrix G as follows:

G =

Vj/Az A1 A2 A3 A4 A5

V1 17.4590 17.4590 20.4626 22.0672 25.0708

V2 30.7212 36.7284 30.7212 41.1966 47.2038

V3 30.0360 43.8605 45.7491 30.0360 59.5736

If the number of servers is reduced to n = 2 and the capacity of each server is reduced

to C = 5×103 MIPS, the allocation strategies {A j; j = 1,3,5}) are not feasible anymore.

The only feasible allocations now are A2 and A4 in which either V1 or V3 is hosted alone.

159

RA’s (m = 3×ζ = 2) payoff matrix G is then defined as follows:

G =

Vj/Az A1 A2 A3 A4 A5

V1 � 17.4590 � 22.0672 �

V2 � 36.7284 � 41.1966 �

V3 � 43.8605 � 30.0360 �

If RV chooses the allocation strategy A4, RA will directly attack V2 because it maxi-

mizes his/her gain (e.g., G∗4 = g24 = 41.1966). Note that V2 imposes security risks (e.g.,

qh×q2× `1) on V1. However, RV can minimize his/her WPC loss from L∗4 =−41.1966

to l22 = −36.7284 by switching to the strategy A2. RA now can improve his/her gain

by attacking V3, i.e. G∗2 = g32 = 43.8605. To this end, RV can minimize his/her loss

from L∗3 = l32 = −43.8605 to l34 = −30.0360 by switching to the strategy A4. This at-

tack/defend scenario goes on. As we can see, RV and RA constantly change their strategies

and cannot reach stable decisions, i.e. they cannot reach the pure NE strategy profile.

Therefore, before we apply existing NE search algorithms, we need to study if a pure

NE strategy profile exists at all for a given problem setting. Later on in this chapter, we

will introduce several lemmas and theorems that characterize the existence of a pure NE

strategy profile .

Second, even though the commonly used NE search algorithms, such as the Minimax

method [180,186], take polynomial time concerning the size of strategy spaces of players,

RV ’s strategy space increases rapidly with the numbers of VMs and servers (e.g., see Fig.

6.4). which increases the time and space complexities of NE algorithms. It is, thus, nec-

essary to study the characteristics of the game model and develop more computationally

efficient algorithms to solve this problem.

In the next section, we implement two common NE search algorithms, for comparison

reasons, using the MP approach to find the NE strategy profiles at which RV ’s WPC loss

is minimized.

160

6.5.1 Obtaining the optimal VM allocation solution using the Mini-

max method

We first use the MP approach to implementing the Minimax method [180,186] to find the

pure NE strategy profile of our VM allocation game model. The Minimax method was

introduced by John Von Neumann [135]. The name of this method refers to the way it

searches for the NE strategy profiles of a game.

The maximin payoff value of RA is the highest potential cybersecurity gain that he/she

can be sure to get without knowing the allocation strategy of RV . On the other hand, the

minimax payoff value of RV is the smallest potential cybersecurity loss that RV can be

sure to get without knowing the targeted VM by RA. In a zero-sum game, if the maximin

and minimax payoffs are equal, the strategy profile solution of the maximin and minimax

is the same as the NE strategy profile of the game model. The NE strategy profile is the

optimal solution for both RV and RA given that each of them knows the other opponent

well. Same as our notion of a pure strategy with an excellent worst-case bound.

Using the game terminology, we need to find RA’s and RV ’s pure strategy probability

vectors (e.g., Y = {y1,y2, ...,ym}T and X = {x1,x2, ...,xζ}; where Σm
j=1y(j) = 1; Σ

ζ

j=1x(j)

= 1; and Y and X are integer vectors) such that the pair ((Y,X) = (y j,xz); j ∈ {1,2, ...,m};

z ∈ {1,2, ...,ζ}) is a pure NE strategy profile at which neither of RV nor EA can improve

his/her payoff by unitarily deviating to another strategy.

If RA successfully attacks a VM (e.g., Vj) given that RV chooses an allocation strategy

(e.g., Az). RV ’s potential loss is L(j,z) = −G(j,z), i.e. a zero-sum game. RV selects the

allocation strategy Az with a probability of xz = 1. RA attacks the VM that maximizes

his/her payoff under the allocation Az with probability y j = 1. RV ’s and RA’s pure strat-

egy vectors {X = {x1,x2, ...,xζ} and Y = {y1,y2, ...,ym}T are consequently zero vectors

except at the zth and jth positions where they have ones. Therefore, we can imply that

161

RV and RA can only choose one deterministic strategy at a time, i.e., they cannot choose

multiple strategies with different probabilities and dynamically switch among them.

Let Y ∗ denote RA’s pure strategy solution to his/her maximin problem. Let X∗ denote

RV ’s solution to his/her minimax problem. Based on the Minimax method [135], if Equa-

tion 6.15 holds, the strategy profile (V ∗,A∗) that has the payoff G(Vj∗,Az∗) = Y ∗T ×G×X∗T))

is a pure NE strategy profile and the deterministic allocation strategy Az∗ optimally mini-

mizes RV ’s WPC; where xz∗ = y j∗ = 1.

max
∀ j∈{1,2,...,m}

min
∀z∈{1,2,...,ζ}

Y ∗T G XT =

min
∀z∈{1,2,...,ζ}

max
∀ j∈{1,2,...,m}

Y T G X∗T =

Y ∗T ×G×X∗T = G(Vi∗,Az∗)

(6.15)

Therefore, to solve Problem 1, we have to find the solution vectors Y ∗ and X∗.

The attacker’s maximin solution

If RV uses a strategy X and RA uses a strategy Y , then RA’s expected payoff given RV ’s

selected strategy is:

Σ
ζ

z=1Σ
m
j=1y j×G jz× xz = Y T ×G×XT (6.16)

Let Fx denotes the (1×ζ) vector that is all zeros except for a one in the z∗th position, i.e.,

a deterministic strategy. The inner optimization is given by:

min
∀z∈ {1,2,...,ζ}

Y T ×G×XT = min
∀z∈{1,2,...,ζ}

Y T ×G×FxT (6.17)

Now, if we introduce a scalar variable ua representing the value of the inner minimization,

we can express the maximin problem of RA as an integer linear programming problem

given in Fig. 6.7.

162

Figure 6.7: MP-based implementation of the attacker’s maximin problem

Figure 6.8: MP-based implementation of the provider’s minimax problem

The provider’s minimax problem

Using similar reasoning we see that RV selects the strategy X that leads to:

min
∀z∈{1,2,...,ζ}

max
∀ j∈{1,2,...,m}

Y T G XT (6.18)

and the MP formulation of the Minimax method of RV is given in Fig. 6.8.

Where Fy denotes the vector that is all zeros except for a one in the j∗th position.

For example, let G=[0.375 , 0.530 ; 0.25 , 0.625; 0.156 , 0.756]. RA seeks maximizing

his/her minimum gain. The minimum potential gain of attacking any VM is the minimum

of each row, i.e. {min [0.375 , 0.530] ; min [0.25 , 0.625], min [0.156 , 0.756]} = {0.3750

; 0.2500 ; 0.1560}. Consequently, to maximize his/her minim potential gain, RA should

attack the first VM and thus Gain = max (min ({0.3750 ; 0.2500 ; 0.1560})) = 0.3750.

Similarly, RV wishes to minimize his/her maximum potential loss at each allocation strat-

egy (column), i.e. {max {0.3750 ; 0.2500 ; 0.1560}, max {0.5300 ; 0.6250 ; 0.7560}}=

163

{0.3750 , 0.7560}. As a result, RV should choose the first allocation strategy such that the

maximum loss is minimized, i.e. L = min (max {0.3750 , 0.7560})=0.3750. Therefore,

the strategy profile (x=1,y=1) in which RA attacks the first VM given that RV chooses the

first allocation is a pure NE strategy profile because none of the players can improve one’s

payoff by making a unitarily change to another strategy.

The Minimax method [135] returns a single NE strategy profile that optimally min-

imizes RV ’s WPC loss and solves Problem 1. However, this method only works with

zero-sum game models. Additionally, there might exist several pure NE strategy profiles

with the same WPC loss (e.g., multiple saddle points [186, 187]), and with different en-

ergy and operating costs. However, the Minimax method, unfortunately, cannot identify

all feasible solutions to choose the best among them (e.g., it does not solve Problem 2.).

Moreover, calculating the maximin and minimax values of RA and RV is done in a worst-

case approach. Therefore, when the number of VMs increases, the sizes of the payoff

matrices quickly increase, and the algorithm cannot find the solution in a practically short

time.

We implement a general-sum NE search algorithm next. This algorithm is based on

searching the pure strategy support vectors of equal sizes to find the best responses of RA

to RV and vice versa [181].

6.5.2 MP-based implementation of the Support Testing and Enumer-

ating (STE) algorithm

In this section, we use the MP approach to implement the Bimatrix best response (e.g.,

we call it in this chapter the Support Testing and Enumerating (STE) algorithm) [181] to

find RV ’s optimal VM allocation strategies that correspond to a pure NE strategy profile.

164

Let the pure strategy support vectors of RA and RV be M = {V1,V2, ...,V Mm} and

A = {A1,A2, ...,Aζ}, respectively. M comprises all possible attack strategies for RA, and

A enumerates all RV ’s different ways to allocate m distinguishable VMs to n identical

servers. Let (G, L=-G) be a Bimatrix game, where G and L are (m×ζ) matrices repre-

senting the payoffs of RA and RV , respectively (e.g., zero-sum game). Let the (1×m)

column vector Y and the (1×ζ) row vector X be the pure strategy vectors of for choosing

a single VM to attack and a unique VM allocation strategy by RA and RV , respectively.

The STE algorithm depends on the best response condition in finding all NE strategy

profiles. Lemma 6.1 restates the best response proposition presented in [181].

Lemma 6.1. A pure strategy X of RV is the best response to a pure strategy Y of RA if and

only if:

∀ j ∈ {1,2, ...,m}; if r = Y T ×G and Xz > 0 =⇒ r j = a = max∀ j∈{1,2,...,m}{r j}

and vice versa for RA.

For example, the best response to the pure strategy Y > 0 of RA is a pure strategy

X > 0 that minimizes RV ’s expected security loss (e.g., X×L×Y T). Similarly, the best

response to the pure strategy x > 0 of RV is a pure strategy Y > 0 that maximizes RA’s

potential security gain (e.g., Y T ×G×X).

According to the Lemma 6.1, a pure NE strategy profile is a strategy profile (Yi∗,Xz∗)

in which each of the strategies is the best response to the other strategy. According to

Nisan [181], Lemma 6.1 implies that if RV ’s payoff (X×L×Y T) is linear in X , and if it

is maximized on a face of the simplex of RV ’s mixed strategies, it is also optimized on

any vertex, i.e., pure strategy, of that face. Moreover, if it is optimized on a set of vertices,

then it is also maximized on any convex combination of them.

This implication is significant because it states a finite condition about finding all pure

strategies rather than using the infinite set of all mixed policies. Fig. 6.9 shows how to find

165

Figure 6.9: MP-based implementation of the STE algorithm

Figure 6.10: Calculating the provider’s best response uv

all pure NE strategy profiles for the security allocation game based on the best response

condition [181].

For only finding pure NE strategy profiles, we can set k to 1. For example, Xz∗ is the

best response to Yj∗ , and Yj∗ is the best response to Xz∗ if there exists uv = ua for the same

i∗ and z∗, such that uv is the solution to the optimization program in Fig. 6.10.

For example, using the same payoff matrix from the previous example, L=-G=[-0.375

-0.530; -0.25 -0.625; -0.156 -0.756]. The best response to x1 = 1 or to X = (1,0) is y1 = 1

or Y = {[1,0,0]T} because max∀i∈{1,2,3}{[100]∗G}= G11 = 3.75.

166

Figure 6.11: Calculating the attacker’s best response ua

The pure strategy y j > 0 is the best response to Xz > 0 if and only if ua is the solution

to the optimization program given in Fig. 6.11.

Similarly, y1 is the best response to x1 because max∀z∈{1,2}G∗ [10]T = G11 = 0.375.

Therefore, (x1,y1) is a pure NE strategy profile.

The general-sum STE algorithm can find all the pure NE strategy profiles of our game

model which optimally solves Problem 1. Moreover, we can use RV ’s OLC instead of the

loss matrix L to solve Problem 2. Nonetheless, STE has a worst-case execution time as the

numbers of VMs and servers increase. Chen and Deng [188] proved that finding an NE

strategy profile is PPAD complete. PPAD problems are a class of hard decision problems,

but they are weaker than NP problems. However, according to Chen and Deng [188],

while the question of whether an optimal solution exists for a given game model cannot

be NP because the answer is always –yes–, the question of whether a second solution

exists is NP-hard.

One common approach to solve Problem 1 and Problem 2 with the manageable com-

putational cost is to employ bin-packing algorithms [92, 131]. The problem is how to

167

integrate the characteristics unique to the problem itself to improve the effectiveness and

efficiency of the bin-packing approach.

In what follows, we analyze the game model and present our interesting finding, based

on which, we then develop several effective and efficient allocation algorithms that out-

perform the commonly adopted allocation methods in cloud data centers.

6.6 Game theoretical analysis of the security-aware VM allocation

problems

In this section, we present some interesting properties of the security-aware VM allocation

problem and its game model. For ease of our presentation, we first introduce the following

definitions:

Definition 6.1. The allocation strategy Az is a Static Equilibrium (SE) allocation strategy

(e.g., A∗) if the strategy profile (Vj,Az) is a pure NE strategy profile (e.g., (V ∗,A∗)).

Definition 6.2. A VM (e.g., V ◦ = {c◦,q◦, `◦}) is a Primary VM (e.g., PrV M) if it has the

highest potential cybersecurity loss when it is successfully and directly attacked. i.e.:

q◦× `◦ ≥ q j× ` j;∀ j ∈ {1,2, ...,m} (6.19)

Now we can present some interesting properties for the security-aware VM allocation

problems. We start by introducing Theorem 6.2 which studies how the number of VMs

or servers affects the RV ’s WPC loss in cloud clusters.

Theorem 6.2. Let A1 and A2 be two different allocation strategies with WPC losses (L∗1)

and (L∗2), sets of VMs (M1 = {Vj; j = 1,2, ..., m1}) and (M2 = {Vj; j = 1,2, ..., m1, ...,

m2}), and number of idle servers (n′1 ≤ n1) and (n′2 ≤ n2), respectively. (G∗1 ≤ G∗2) if one

of the following is true:

168

1. M1 ⊆M2 and n′1 = n′2;

2. n′1 ≥ n′2 and M1 = M2;

Proof. First, RV ’s worst potential cybersecurity losses are L∗1 =−G∗1 and L∗2 =−G∗2 under

A1 and A2 in which RA attacks Vj and Vk when they are allocated to Si1 and Si2 . If M1⊆M2

and n′1 = n′2, we have m1 ≤ m2. From Equations 6.2 and 6.4 we can write:

G∗1 = max
∀ j∈{1,2,...,m1}

g j1 (6.20)

G∗2 = max(G∗j1, max
∀ j∈{1,2,...,m2}

g j2) (6.21)

Therefore, G∗1 ≤ G∗2, and consequently (1) is correct.

Second, if n′1 ≥ n′2 and M1 = M2, the average number of VMs per server under A1 is

less than the number of VMs under A2. Consequently from Equation 6.2

g j1 ≤ g j2;∀ j ∈ {1,2, ...,m1 = m2} (6.22)

From Equation 6.22 and Equation 6.4, we conclude that G∗1 ≤ G∗2 when n′1 ≥ n′2 and

M1 = M2

According to Theorem 6.2, the WPC loss increases as the number of VMs increases or

as the number of non-idle servers decreases. In the next Lemma, we identify RV ’s WPC

loss upper and lower bounds.

Lemma 6.2. The provider’s WPC losses (L∗z ∈ [LB,UB];z = 1,2, ...,ζ); where the Lower-

Bound (LB) and Upper-Bound (UB) are RV ’s minimum and maximum WPC losses and

defined as follows.

LB = q◦× `◦;where (V ◦ : {c◦,q◦, `◦}) is a primary V M. (6.23)

UB = max
∀ j∈{1,2,...,m}

(q j× ` j +q j×qh×Σ
m
k=1,k 6= j`k) (6.24)

169

Proof. According to Theorem 6.2, the more the number of available servers is, the larger

RV ’s WPC loss. In other words, RV suffers the most loss under the allocation strategies

with the minimum number of non-empty servers and vice versa. That is:

LB = q◦× `◦ (6.25)

where all the primary VMs (e.g., (V ◦ : {c◦,q◦, `◦})) and all other non-primary VMs are

allocated alone to separate servers. Moreover, when all VMs are allocated to a single

server, RA directly attacks the VMs that maximizes his/her gain, i.e., Equation 6.24.

As mentioned before, it is important to investigate the existence of a pure NE strategy

profile in our game model before we develop efficient pure NE search algorithms. A

pure NE strategy profile [183] is a pair of allocation and attack Equilibrium strategies.

However, RV may or may not have a possible optimal VM allocation strategy [183]. In

this regard, Lemma 6.3 states that when the number of servers is larger than the number

of VMs, there always exists at least a single pure NE strategy profile.

Lemma 6.3. A strategy profile (V ∗,A∗) is a pure NE strategy profile if RA’s selected

strategy is to attack a PrV M (e.g., V ∗ =V ◦) and if RV ’s selected allocation strategy (e.g.,

A∗ = Az∗) is to allocate each VM alone to a separate server when feasible.

Proof. If the allocation policy Az∗ , in which RV statically allocates a single VM to each

server, is feasible (e.g., (n≥ m)), we find according to the Minimax method [135] that:

G∗ = max
∀ j∈{1,2,...,m}

(min
∀z∈{1,2,...,ζ}

g jz) =

max{g1z∗,g2z∗, ...,gmz∗]
T}

(6.26)

where Az∗ is RV ’s selected strategy in which RV allocates each VM separately.

Moreover, from Equations 6.4 and Equation 6.19, we can write:

G∗ = G∗z∗ = q◦`◦ (6.27)

170

where (V ◦ : {c◦,q◦, `◦})) is one of the primary VMs. That is, RV ’s WPC loss (e.g., L∗ =

−G∗) is equal to the WPC loss under the allocation strategy Az∗ when RA’s attacks a

PrV M (e.g., V ◦).

We have based on Equations 6.19:

min
∀z∈{1,2,...,ζ}

(max
∀ j∈{1,2,..., j}

g jz) = G∗z∗ = q◦`◦ (6.28)

From Equations 6.19, Equation 6.26, and Equation 6.28, we see that:

G∗ = max
∀ j∈{1,2,...,m}

(min
∀z∈{1,2,...,ζ}

g jz)

= min
∀z∈{1,2,...,ζ}

(max
∀ j∈{1,2,..., j}

g jz) = G∗z∗ = q◦`◦
(6.29)

From Equations 6.29 and Equation 6.28 and according to the Minimax method [135], the

strategy profile (V ◦,Az∗) is a pure NE strategy profile.

Note that there may be multiple pure NE strategy profiles, i.e. multiple SE allocation

strategies with the same minimum WPC loss for RV , [186,187], even though not all VMs

are hosted separately. For example, when RV allocates each PrV M alone to a separate

server but multiplexes other non-primary VMs on the rest of servers (e.g., Az∗), and when

RA’s gain from attacking any primary VM, i.e. V ◦, is better than his/her gain from attack-

ing other non-primary VMs, (V ◦,Az∗) is a pure NE strategy profile. This conclusion is

formulated in Lemma 6.4 as follows:

Lemma 6.4. A strategy profile (V ◦,A∗) is a pure NE strategy profile if:

1. RV ’s selected allocation strategy is (A∗ = Az∗) in which all PrV Ms are hosted alone

is feasible;

2. RA’s strategy that maximizes his/her gain is to attack a PrV M (e.g., (V ◦)); i.e.

(G∗z∗ = q◦`◦)≥ g jz;∀ j ∈ {1,2, ...,m} (6.30)

171

Proof. For a general two-player zero-sum game, a necessary and sufficient condition for

a Saddle Point, i.e. a pure NE strategy profile (V ∗,Az∗), to exist is the presence of a payoff

value G∗z∗ so that: G∗z∗ = q j∗` j∗ which satisfies the following [186]:

max
∀ j∈{1,2,...,m}

min
∀zin{1,2,...,ζ}

g jz =

min
∀zin{1,2,...,ζ}

max
∀ j∈{1,2,...,m}

g jz = G∗z∗
(6.31)

Moreover, several saddle points may exist with the same worst potential loss [187].

First, if RV statically allocates all primary VMs alone to individual servers and if the

rest of the servers’ total capacity can accommodate the rest of the VMs, i.e.,:

Σ
m
j=1; j 6= j∗(a

z
i j× c j)≤ Σ

n
i=1;i6=i∗C (6.32)

C =
Σm

j=1; j 6={k1,k2,...kψ}(a
z
i j× c j)

n−ψ
(6.33)

where {V ◦k ;k ∈ {k1,k2, ...kψ}} is the set of all primary VMs.

Second, if Equation 6.33 and Equation 6.30 hold, we find that:

max
∀ j∈{1,2,...,m}

min
∀z∈{1,2,...,ζ}

g jz =

G∗z′ = q j◦` j◦;z′ ∈ {1,2, ...,ζ′};ζ
′ < ζ

(6.34)

From Equations 6.30, we have:

min
∀z∈{1,2,...,ζ}

max
∀ j∈{1,2,..., j}

g jz =

G∗z′ = q j◦` j◦;z′ ∈ {1,2, ...,ζ′};ζ
′ < ζ

(6.35)

From Equations 6.34 and Equation 6.35 and according to the Minimax method [135], the

strategy profile (V ◦,Az∗) is a pure NE strategy profile.

When any PrV M is collocated with other VMs, Lemma 6.3 and Lemma 6.4 won’t

help to find the pure NE strategy profiles. Theorem 6.3, on the other hand, helps to

quickly identify the existence of a pure NE strategy profile by searching only a subset of

RV ’s strategy space.

172

Theorem 6.3. Given our system model with m VMs and n servers (m ≥ n), assume that

there exists at least one SE allocation strategy (e.g., A∗), then there is at least one alloca-

tion strategy Az∗ = A∗, such that all available servers are non-idle.

Proof. Let the augmented payoff matrices AugG be a sub-matrix from G,i.e., AugΓ =

{A1′,A2′, ...,Aζ′;ζ′ = S2nd(m,n)� ζ}, that only includes the allocation strategies which

has zero non-empty servers.

The sufficiency condition: If the game ({RA,RV},{M,AugΓ},{AugG,−AugG}) admits

(Vj∗ ,Az∗) as a pure NE strategy profile (e.g., the strategy Az∗ is an SE strategy), the game

({RA,RV},{M,Γ},{G,L =−G}) also admits (Vj∗,Az∗) as a a pure NE strategy profile.

If the game ({RA,RV}, {M,AugΓ}, {AugG,−AugG}) has a pure NE strategy profile

(Vj∗ ,Az∗), and according to the Minimax method [135]:

max
∀ j∈{1,2,...,m}

min
∀z∈{1,2,...,ζ′};ζ′<ζ

g jz =

min
∀z∈{1,2,...,ζ′};ζ′<ζ

max
∀ j∈{1,2,...,m}

g jz = G∗z∗
(6.36)

From Theorem 6.2, each row element in the augmented payoff matrix AugG is less than or

equal to any row element in the payoff matrix G because the number of servers utilized in

each of the allocation strategies in AugΓ = {A1′,A2′, ...,Aζ′ ;ζ′ = S2nd(m,n)� ζ is larger

than or equal to the number of servers used in each of the allocation strategies Γ= {Az;z=

1,2, ...,ζ}; where Γ is the set of RV ’s all possible allocation strategies of m VMs to n

server. Therefore:

max
∀ j∈{1,2,...,m}

min
∀z∈{1,2,...,ζ′};ζ′<ζ

g jz

max
∀ j∈{1,2,...,m}

min
∀z∈{1,2,...,ζ}

g jz = G∗z∗
(6.37)

and

min
∀z∈{1,2,...,ζ′};ζ′<ζ

max
∀ j∈{1,2,...,m}

g jz =

min
∀z∈{1,2,...,ζ}

max
∀ j∈{1,2,...,m}

g jz = G∗z∗
(6.38)

173

From Equation 6.37 and Equation 6.38 we see that if the strategy profile (Vj∗,Az∗) is a

pure NE strategy profile for game ({RA,RV},{M,AugΓ},{AugG,−AugG}) (e.g., the al-

location strategy Az∗ is an SE), then based on the Minimax method [135], (Vj∗,Az∗) must

be a pure NE strategy profile as well for the game ({RA,RV},{M,Γ},{G,L}).

The necessity condition: If the game ({RA,RV},{M,AugΓ},{AugG,−AugG}) does

not admit a pure NE strategy profile (e.g., there is no SE strategy), the game ({RA,RV},

{M,Γ}, {G,L =−G}) also does not admit a a pure NE strategy profile.

Assume that the game ({RA,RV}, {M,AugΓ}, {AugG,AugL}) has no NE strategy

profile (e.g., SE) strategy profile. If the game ({RA,RV}, {M,Γ},{G,L = −G}) has a

pure NE strategy profile (Vj∗,Az∗), according the Minimax method [135] we have:

max
∀ j∈{1,2,...,m}

min
∀z∈{1,2,...,ζ}

g jz =

min
∀z∈{1,2,...,ζ}

max
∀ j∈{1,2,...,m}

g jz = G∗z∗
(6.39)

From Theorem 6.2, each row element in the augmented payoff matrix AugG is less

than or equal to any row element in the payoff matrix G. Therefore, from Equation

6.39 and Theorem 6.2, we conclude that Az∗ ∈ AugΓ. Consequently, the payoff ele-

ment G∗z∗ ∈ AugG and the strategy profile (Vj∗,Az∗) is a pure NE strategy profile (e.g.,

SE) to the game ({RA,RV},{M,AugΓ},{AugG,−AugG}). However, this contradicts

our assumption that the game ({RA,RV},{M,AugΓ},{AugG,−AugG}) has no pure NE

strategy profile. Consequently, when the game ({RA,RV},{M,AugΓ},{AugG,−AugG})

has no pure NE strategy profile (e.g., there exists no SE allocation strategy), the game

({RA,RV},{M,Γ},{G,L =−G}) also has no pure NE strategy profile.

Next, we propose two equilibrium-based VM allocation heuristics based on our anal-

ysis insight.

174

6.7 Game theoretic approaches for security-aware VM allocation strate-

gies

In this section, we present two game-base security-aware VM allocation algorithms. The

first approach, called Nash Equilibrium-based VM (NEV M) allocation algorithm, tries

to identify all the possible pure NE strategy profile and, thus, the optimal static VM al-

location (e.g., SE) policies according to the game model presented in Section 6.6. The

second approach, called the Primary VM-based (PV M) bin-packing algorithm, is a vari-

ation of the vector bin-packing method centering around the allocation of the PrV Ms.

More details about these two approaches are described next.

6.7.1 Nash Equilibrium-based VM (NEVM) allocation algorithm

The key to the success of this approach is to identify the pure NE strategy profiles if they

exist. Recall that, as discussed in Section 6.6, even though the NE searching strategies

take polynomial time, the strategy space of RV exponentially increases with the increas-

ing numbers of VMs and servers. In the meantime, the NE strategy profile properties

presented earlier make it possible to significantly reduce the strategy space for RV , and

may make it possible to find the optimal allocation strategies in a reasonable time frame.

Our first algorithm, i.e. NEV M, is illustrated in Fig. 6.16. First, NEV M identifies

all the primary VMs (e.g., line 1). According to Lemma 6.3 and Lemma 6.4, NEV M

should only search for SE policies among those allocations when all primary VMs are

hosted alone (e.g., lines [2-9]). This can significantly reduce the size of the strategy

space (e.g., (ζ0 = ST N(m−m0,n−m0))). Note that NEV M uses the recursive function,

i.e. Equation 6.12 in Section 6.3, to reduce the space complexity when generating those

allocation strategies (e.g., lines [3-10]).

175

Figure 6.12: Nash Equilibrium-based VM (NEVM) allocation algorithm

If it is not feasible to host all the primary VMs alone, based on Theorem 6.3, NEV M

constructs the (m×ζ1) payoff matrix G in which only the allocation strategies, i.e. Γ1 =

{Az;z = 1,2, ...,ζ1}, that have no idle servers are generated (e.g., line 11). As a result, the

strategy space for RV can be significantly reduced (e.g., (ζ1 = ST N(m,n))). For example,

Fig. 6.4 shows that when the numbers of VMs and servers are n = m = 15, the number of

RV ’s pure strategies, based on Equation 6.12, is large (e.g., ζ = 1.3830e+09). However,

NEV M can cut down the total number of those strategies to ζ1 = 190899322, which

is more than 85% reduction for RV ’s original pure strategy space. After RV ’s reduced

strategy space is generated, we can employ the existing NE search approaches (such as

the Minimax method [135] which take only computational complexity of O(mζ)) to find

176

the pure NE strategy profiles, if they exist (e.g., line 12). If there exists any pure NE

with an optimal WPC loss (L∗ = −G∗), NEV M generates and returns its corresponding

allocation strategy in which the WPC loss is equal to G∗ (e.g., lines [13-14]). If a pure

NE strategy profile does not exist, NEV M returns empty set (e.g., Line 17).

Besides significantly reducing the size of RV ’s strategy space, one unique advantage

of using NEV M is that it can identify all possible pure NE strategy profiles (if they exist)

which share the same WPC loss and solve Problem 1. We can then further optimize the

allocation policies according to other criteria (e.g., energy costs and operating expenses)

to solve Problem 2. Nonetheless, NEV M has a computation complexity, i.e., time and

space, that increases exponentially with the increasing numbers of VMs and servers. Also,

as discussed before, there may exist no pure NE strategy profile at all for some game

models. In what follows, we develop another bin-packing-based approach, which can

work for more massive cloud clusters.

6.7.2 The Primary VM-based bin-packing (PVM) algorithm

The VM allocation problem we address here is, in general, a resource management prob-

lem with multiple optimization criteria, i.e., energy/operating expense and cybersecurity

loss. Traditionally, it is a common practice to transform this problem into a VBP prob-

lem. While typical VBP approaches (e.g., [131]) are available, the key to the success of

the solution is how to incorporate the problem properties into the bin-packing heuristics

to improve their effectiveness and efficiency. In Section 6.6, our research has shown the

significant role that PrV Ms may play in the security-aware VM allocation. In what fol-

lows, we discuss The Primary VM-based bin-packing (PV M) algorithm to identify the

optimized VM allocation policies, as shown in Fig 6.13.

177

Figure 6.13: The Primary VM-based (PVM) bin-packing algorithm

178

PV M in general consists of two phases, i.e., Phase I (lines [1-13]) and Phase II (e.g.,

lines [13-32]). During Phase I, PV M sorts VMs based on their WPC loss and individually

allocates each PrV M to a primary server, if possible, (e.g., lines 1-9). The rest of the VMs

are sorted and assigned, based on a variation of the FFD-based VBP methods [131], to

the rest of the servers with the most significant security loss no more than those when

directly attacking a PrV M, (e.g., lines 10-13). If all VMs are successfully allocated,

based on Lemma 6.4, the algorithm has identified a pure NE strategy profile that optimally

minimizes RV ’s WPC loss. If not, the algorithm enters the second phase in which primary

servers are allowed to host non-primary VMs as well.

Specifically, we sort the rest of VMs in M based on the number of servers, the

WPC loss, and capacity requirements of VMs (e.g., line 7). Specifically, for a VM

Vj : {c j,q j, ` j,}, we define the scalar that combines both optimization criteria as Wj such

that:

Wj = (aL×q j× ` j)+(ac× c j) (6.40)

where aL and ac are the averaged sum of the cybersecurity loss and resource requirements

normalized to the total number of servers. They allow us to combine the demands of each

VM across both the security and resource dimensions according to the importance of each

VM’s demand. We calculate aL and ac as follows.

aL =
1
n

Σ
m
j=1q j× ` j (6.41)

ac =
1
n

Σ
m
j=1c j (6.42)

PV M sorts the servers by placing the servers hosting the primary VMs (e.g., primary

servers) at the end of the queue of servers (e.g., line 15). PV M then allocates the rest of

the non-primary VMs using FFD based on Wj to the servers with no primary VMs, if it

is feasible, and if the WPC loss is always less than the Loss Capacity (LC) (e.g., lines

179

[16-19]). The algorithm bounds the value of LC by the cybersecurity loss threshold, i.e.,

LC <= T hresh. When PV M is used to solve Problem 1, T hrsh can be set to the WPC

loss’s upper bound (e.g., T hrsh = UB, i.e. LB ≤ T hrsh ≤ UB). If there are no more

feasible servers with no existing primary VMs, PV M allocates a non-primary VM to one

of the primary servers, increases LC as long it does not exceed the value of T hrsh, and

moves that server to the end of the queue (e.g., lines [20-26]). This process judiciously

load-balances resource requirements and potential cybersecurity losses across all servers.

PV M continues until no VM can be further allocated, indicating that there is not enough

computing capacity to hold any of the rest VMs, or all VMs have been successfully allo-

cated (e.g., lines [27-32]).

Algorithm PV M has a computational complexity of O(max(mn,m logm)) during Phase

I, and O(max(m2n,m2 logm)) during Phase II, which is much smaller than NEV M. How-

ever, it is worth mentioning that NEV M returns all optimal solutions in terms of mini-

mizing RV ’s WPC loss (if there exists any pure NE strategy profile). PV M, on the other

hand, returns only one solution, which may or may not be optimal.

In the next section, we use simulation to study the effectiveness and efficiency of our

proposed approaches.

6.8 Experimental validation

In this section, we evaluate the performance of the VM allocation approaches we pro-

posed earlier in this chapter. First, we describe the simulation setup and the methods we

implemented, against which, to compare the performance of our proposed algorithms.

Second, we study the performance of the mathematical programs MPL and MPR, which

we developed in Section 6.4, under different numbers of VMs and servers and using dif-

ferent server’s capacity. Third, we analyze the performance of the NE-based allocation

180

algorithm (e.g., NEV M). Finally, we evaluate the performance of our proposed heuristic

PV M under cloud clusters with small, moderate and large sizes.

6.8.1 Simulation setup

We randomly generated the numbers of servers and VMs. A server could have a process-

ing rate capacity (C) in the range ([5, 25]×103 MIPS). The operating expense Eopz of

the cluster under an allocation Az is calculated using Equation 6.5 where the operating

expense of each server ez
i is randomly generated so that it is correlated to the server’s

capacity. The processing rate requirements of a VM were randomly generated out of

the five sizes {1, 2, ..., or, 5}× 103 MIPS. The following values were also generated

randomly and uniformly in the associated ranges: (q j ∈ [0.1, 0.9], qh ∈ [0.3, 0.5], and

` j ∈ [$10, $100]×103).

We ran all experiments on an HP Workstation Z800 with two Intel Xeon Six-Core

E5645 2.40 GHz, 12 MB cache, 1333 MHz DDR3 memory of size 32 GB, and 1 TB disk

space.

We model the server’s power (Watt) usage Per Hour (WPH) as in Equation 6.7. The

maximum WPH for each server per hour is proportional to its capacity (e.g., between

[500,2500] WPH).

Now, to calculate a cluster’s energy cost under an allocation Az over a year, we use

Equation 6.43:

Ez = (
Operating Hours(i.e.,24×365)× (Power Consumption WPH)

1000
)

× Electricity cost per KWH (i.e., 0.116 per KWH in FL)
(6.43)

The Total energy Cost and operating expense (TCz) of RV under an allocation Az over a

year is then calculated using Equation 6.8. RV ’s Overall WPC Loss and total energy Cost

181

and operating expense (OLCz) under an allocation Az is then calculated using Equation

6.9.

We implemented the MPL and MPR approaches, described in Section 6.4, using the

package JuMP [189]. JuMP is a domain-specific modeling language for mathematical op-

timization embedded in Julia. JuMP uses a generic solver-independent interface provided

by the MathProgBase package [189]. JuMP allowed us to adopt the Gurobi Optimizer as

a solver [190]. We parallelized the run of the mathematical program instances over 12

cores.

We also implemented the Minimax method [135] and STE [181] discussed in Section

6.5.

Moreover, we implemented the following FFD-based VBP heuristics that are com-

monly used for VM placement in data centers and cloud clusters:

• AvgSum: This algorithm is an implementation of the FDD-based average sums of

the VM’s potential cybersecurity loss and cybersecurity [191]. The weight of a Vi

is calculated as follows:

Wj = a1× (` j×q j)+a2× c j; j ∈ {1,2, ...,m} (6.44)

and the weights of the demands are calculated as follows:

a1 =
1
m

Σ
m
j=1` j×q j (6.45)

a2 =
1
m

Σ
m
j=1c j (6.46)

• Prod: This algorithm is a variant of the First Fit Decreasing based Production

(FFDProd) algorithm [131] that calculates the weight of a VM (e.g., Vj) by multi-

plying its potential cybersecurity value (e.g., ` j×q j) by its processing rate require-

ment (e.g., c j). That is:

Wj = ` j×q j× c j; j ∈ {1,2, ...,m} (6.47)

182

• Probabilistic Weighing with Norm-based FFD (PWN): This heuristic uses the Ge-

ometric DotProduct [133]. It sorts all VMs after each allocation according to the

FFD bin packing method and based on the weight of VMs that are defined as fol-

lows:

Wj = a1× (` j×qi× (T hrsh−g jz))+a2× c(i)× (C−Σ
m
k=1ck) (6.48)

where j ∈ {1,2, ...,m}; g jz is the potential cybersecurity loss given an attack on Vj

(e.g., Equation 6.2).

a1 =
1
m

Σ
m
i=1` j×qi (6.49)

a2 =
1
m

Σ
m
i=1ci (6.50)

When there are no security constraints (e.g., Problem 1), the value of T hrsh can be

set to the WPC loss’ upper bound given in Equation 6.24, i.e. T hrsh =UB.

In the next section, we study the performance of the mathematical programs MPL and

MPR, which we developed in Section 6.4, under different numbers of VMs and servers

and using different server’s capacity.

6.8.2 Studying the performance of the mathematical programs MPL

and MPR

In this section, we study the computation performance of the mathematical programs,

MPL, and MPR.

MPL and MPR computation performances under different number of servers and

VMs

First, we study the computation time performance of MPL and MPR. In Fig. 6.14(a), we

varied the number of servers and VMs from 25 servers and 50 VMs to 250 servers and

183

500 VMs by increasing the number of VMs and servers two times at each run. We ran

MPL and MPR 10 times for each setting and averaged the results. Fig. 6.14(a) shows

the final results of both programs divided by two as both mathematical programs have

similar computation performances. We observe that the average computation time of

MPL and MPR exponentially increases when the number of VMs and servers increase.

For example, the average computation time when using 25 servers and 50 VMs increases

by roughly 8000 times when increasing the number of servers and VMs to 250 servers

and 500 VMs, respectively.

Fig. 6.14(c) shows RV ’s WPC performance using MPL under different server’s capac-

ities. We set the number of VMs to a 100 VMs and the number of servers to 30 servers.

We varied the server’s capacities from 5×103 MIPS to 25×103 by adding 5000 MIPS

each time, ran the simulation a 100 times, and averaged the results. Fig. 6.14(c) shows

that as the server’s capacity increases, RV ’s WPC loss increases because the loss upper

bound UB increases (e.g., Equation 6.24). Moreover, a larger server’s capacity means

that more and more VMs can be possibly multiplexed together on a single server, which

decreases the average computation time of the MPL and MPR programs. For example,

Fig. 6.14 (b) shows that as the capacity increases by five times, the average computation

time of MPL and MPR decreases by almost 600%.

Next, we study the performance of the NEV M algorithm.

6.8.3 Studying the performance of the NEVM algorithm

In this section, we evaluate the performance of our NEV M algorithm in terms of minimiz-

ing RV ’s and RA’ strategy spaces and in terms of optimizing the NE search time compared

to the Minimax and STE NE search methods.

184

(a) Average computation time of MPL and MPR
under variable number of servers (n) and VMs
(m = 2×n)

(b) Average computation time of MPL and MPR
under different server’s capacities

(c) The minimum worst potential cybersecurity
loss of MPL under different server’s capacities

Figure 6.14: The performance of the mathematical programs MPL and MPR

Fig. 6.15(b) illustrates the average performance for NEV M algorithm in minimizing

the size of RV ’s pure allocation strategy support-vector. The number of VMs (m) and

185

11%

89%

Potentially Optimal
Strategies
Eliminated
Strategies

(a) NEVM performance in minimizing the size of the provider’s pure allocation
strategy space

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

n=2 n=3 n=4 n=5 n=6 n=7 n=8

Number of VMs (n) and servers (m=n)

A
ve

ra
ge

 c
om

pu
ta

tio
n

tim
e

no
rm

al
iz

ed
 to

 th
e

ST
E

’s
 (s

)

Minimax USESNEVM

(b) Computation time comparison of NEVM against the Minimax and STE al-
gorithms

Figure 6.15: The performance of NEVM algorithm

servers (n) were randomly generated in the range [2,20]. The capacity of the servers was

randomly generated in the range [5,25]×103 MIPS. Unlike the STE and Minimax meth-

ods that always search all the pure strategy spaces of RA and RV , NEV M only searches the

allocation strategies that are potentially optimal, as discussed in Lemma 6.4 and Theorem

186

6.3. For example, based on Theorem 6.3, NEV M only searches 11% of RV ’s total possible

allocation strategies in order to identify all SE allocation strategies. Such minimization in

the total number of the allocation strategies significantly optimizes the computation time

of NEV M compared to the computation times of the Minimax and STE, as illustrated in

Fig. 6.15(b). The last figure compares the computation time of the NEV M and Minimax

normalized to the execution time consumed by the STE algorithm. We can see that as the

number of VMs increases from n = 2 to n = 8, the computation time ratio of Minimax

increases from almost 70% to 95 % of NEV M’s computation time.

Next, we evaluate the performance of our proposed heuristic PV M under small cloud

clusters.

6.8.4 Performance evaluation of PVM using clusters with small num-

bers of VMs and servers

One major limitation of the NEV M algorithm is the space complexity, i.e., O(mζ), related

to generating the payoff matrices G and L. This complexity makes it infeasible to test

NEV M with large numbers of VMs and servers. Therefore, in Fig. 6.16(a), we test

the computation time performance of PV M compared to NEV M and other methods with

number of VMs ranging from (m = 2) VMs to (m = 8) VMs and with random number

of servers (n ≤ m). We assumed that T hrsh = UB, i.e., we used MPL instead of MPR.

Moreover, since PV M, AvgSum, Prod, PWN, and MPL returns a single solution, we used

Minimax method rather than the STE that returns all possible solutions to Problem 1. We

ran the simulation a 1000 times for each setting, averaged the results, and presented them

in Fig. 6.16(a).

As the figure shows, the NE search time of NEV M is roughly 50%, on average, better

than the search time of Minimax, but it is at least a thousand times smaller than the

187

computation time of MPL. We observe that the search time exponentially increases for

Minimax and MPL algorithms with the increase of the numbers of VMs and servers, i.e.,

the computation times of Minimax and MPL increased by 18% and 93% as the number

of VMs increases from 2 to 8. On the other hand, NEV M’s computation time grows

at a much slower pace when increasing the number of VMs due to the minimization in

RV ’s and RA’s strategy spaces (e.g., NEV M only increases 10% as the number of VMs

increases from 2 to 8).

It is unsurprising to notice that all the VBP-based heuristics have better computation

times than the NE search approaches and a much slower computation time increase rates

with the increase in the numbers of VMs and servers compared to NEV M, Minimax,

and MPL. It is also worth mentioning that the computation time performance of PV M

is the worst among AvgSum, Prod, and PWN because PV M consists of two phases in

which it may have to sort and allocate VMs twice compared to other VBP heuristics.

On the contrary, AvgSum has the best computation time performance compared to the

Prod and PWN which execute a larger number of operations at each run compared to

the AvgSum. Although PWN dynamically sorts all VMs every time it tries to allocate

a new VM, the sorting criteria PWN uses to maximize the loss and resource capacity

speeds up its allocation process compared to the offline sort and allocation of the Prod

method [131].

The feasibility performance of PV M under the same simulation setup is illustrated in

Fig. 6.16(b). We see that MPL can always obtain the optimal results when it can complete

its computation times in polynomial time. On the other hand, NEV M returns no pure NE

strategy profile solutions 26% of the time, i.e., when the available resources are tight as

explained in Theorem 6.2 and Theorem 6.3. Although the VBP-based heuristics have

better feasibility performances than NEV M, they are not guaranteed to return optimal

solutions. The worst feasibility performance is for PWN at 25% failure percentage in

188

successfully allocating all VMs. Although AvgSum has a better average computation time

than Prod, the last method, in fact, exceeds AvgSum in the allocation feasibility by 2%.

The reason is that Prod outperforms AvgSum in terms of minimizing the total number

of allocated servers which in turn increases the allocation feasibility [131, 133, 191]. On

the other hand, having two phases of FFD bin packing based allocation allowed PV M to

outperform AvgSum,Prod, and PWN by 6%,4%, and 22%, respectively.

We evaluate the performance of PV M under medium cloud clusters next.

6.8.5 Performance evaluation of PVM under clusters with moderate

numbers of VMs and servers

In this section, we study the performance of PV M under medium-sized cloud clusters

with no more than 500 VMs and no more than 250 servers. We excluded NEV M from

this simulation as it is infeasible to generate its payoff matrices with such numbers of

VMs and servers.

We first study the computation time performances of PV M and MPL under variable

numbers of VMs and servers ranging from a (m = 100) and (n = 50) to (m = 500) and

(n = 250) VMs and servers. We ran MPL and PV M 100 times for each configuration

and averaged the results. As shown in Fig. 6.17, the computation time of MPL is rapidly

increasing with the increasing numbers of VMs and servers. For example, the average

computation time of MPL, using a 100 VMs, increases by roughly 10000 times when

increasing the number of VMs to 500 VMs. On the other hand, the average computation

time of PV M slowly increases when increasing the number of VMs and servers which

justifies the need for using heuristics in the VM allocation problem with cybersecurity

awareness.

189

(a) Computation time performance

11
(b) Feasibility performance

Figure 6.16: Performance evaluation of PVM with small number of VMs and servers

190

00

Figure 6.17: Computation time performance of PVM with fair numbers of VMs and servers.
Vertical axis has logarithmic units in seconds

In Fig. 6.18, we study the performance of PV M in minimizing RV ’s WPC loss com-

pared to the optimal solutions obtained by MPL. The number of VMs was randomly

generated in the range [50,100]. We varied the numbers of servers from n = 25% to

n = 50% of the total number of the randomly generated VMs. The server’s capacity was

randomly generated between 5×103 MIPS and 25×103 MIPS. The figure shows that

the worst approach in minimizing RV ’s WPC loss is the Prod VBP method which best

minimizes the number of servers [131]. Prod hence maximizes RV ’s WPC loss according

to Theorem 6.2. On the contrary, PV M either allocates the VMs so that an SE allocation

strategy is reached under the first phase, or averages the WPC loss, given a successful

attack on any VM, across all the servers which minimizes RV ’s WPC loss compared to

AvgSum,Prod, and PWN. For example, when the number of servers is bounded by 25%

of the total number of VMs, PV M is 4 times worse than the optimal solution obtained by

MPL, but is 0.2%, 100%, and 0.42%, better than AvgSum,Prod, and PWN, respectively.

Both AvgSum and PWN outperform Prod in minimizing RV ’s WPC because they both

load balance the WPC across the servers. However, PWN outperforms all other VBP

191

Figure 6.18: The WPC loss performance of PVM with fair numbers of VMs and servers

heuristics for the two-dimensional case (e.g., cybersecurity loss and resource require-

ments) as concluded in [133].

When the number of servers increases to 50% of the total number of the randomly

generated VMs, RV ’s WPC loss decreases under all methods, as stated in Theorem 6.2.

Moreover, PV M is still the best after the mathematical program MPL since it increases the

chances of reaching a pure NE strategy profile according to Lemma 6.4. For example, the

WPC loss of PV M decreases by more than 100% when the number of servers increases

twice. Nonetheless, the MPL algorithm only reduces RV ’s WPC by less than 1% for the

same increase in the number of servers. The reason is that, in both cases, the number of

servers is relatively large enough to hosting all the primary VMs individually on separate

servers which increases the chances of reaching an SE allocation, according to Lemma

6.4. Moreover, from Theorem 6.3, RV ’s WPC under the first and second case is almost

the same as if the resource requirements of VMs are small enough.

Fig. 6.19(a) and Fig. 6.19(b) show the performance of the PV M in optimizing re-

source usage, under cybersecurity constraints, compared to the optimal solutions obtained

via MPR. The cybersecurity threshold was randomly generated between the lower and

192

(a) Server’s capacity C =10000$ MIPS

(b) Server’s capacity C =25000$ MIPS

Figure 6.19: The overall loss and cost performance of PVM with fair number of servers under
different server’s capacities

193

upper loss bounds (e.g., LB ≤ T hrsh ≤UB). The number of VMs and servers were ran-

domly generated in the ranges [50, 100] and [10%, 90%] of the total number of VMs. We

varied the server’s capacity from 15× 103 MIPS to 25× 103 MIPS, ran the simulation

1000 times for each configuration, and averaged the results.

There are several important observations one can draw from Fig. 6.19(a) and Fig.

6.19(b). Whereas PV M still outperforms other VBP-based heuristics in minimizing RV ’s

WPC loss via allocating the primary VMs to individual servers to reach a pure NE strat-

egy profile, it has the worst performance among AvgSum,Prod, and PWN in optimizing

resource usage as it underutilizes those primary servers. Nonetheless, PV M’s overall per-

formance in optimizing the WPC loss and energy and operating costs is the best since the

WPC loss usually is more critical than resource usage. For example, PV M outperforms

AvgSum,Prod, and PWN by 20%, 27%, and 10% when server’s capacity is 15× 103

MIPS, and by 16%, 18%, and 5% when server’s capacity increases to 15× 103 MIPS.

Increasing the capacity of servers allows RV to allocate more VMs to the same server,

which in turn increases the WPC loss for all heuristics by almost 10% compared to only

1% increase of MPR (e.g., Theorem 6.2).

It is also worth mentioning that PWN illustrates the best performance in terms of min-

imizing RV ’s total WPC loss, energy costs, and operating expense, compared to AvgSum

and Prod, which conforms with conclusions about PWN performance when considering

two dimensions in the FFD-based bin packing [133].

Next, we study the performance of PV M under cloud clusters with more than 500

VMs.

194

6.8.6 Performance evaluation of PVM under clusters with a large

number of VMs

In this section, we first study the scalability, worst cybersecurity loss minimization, and

feasibility performances of PV M under clusters with a number of VMs ranging from 100

to 900 VMs. The capacity of the servers was randomly generated between 5×103 MIPS

and 25×103 MIPS. The total number of servers was randomly generated between (10%)

and (90%) of the total number of VMs. We repeated each run 1000 times and averaged

the results.

Fig. 6.20(a) shows PV M’s performance in minimizing the WPC loss of RV compared

to other VBP-based heuristics. Similar to what we observed in small and medium cloud

clusters, PV M outperforms AvgSum,Prod, and PWN, respectively. As we stated earlier

in Theorem 6.2, Fig. 6.20(a) shows that increasing the number of VMs increases RV ’s

WPC loss under all heuristics by at least 100 times when increasing the number of VMs

from 100 to 900 VMs. Moreover, according to Lemma 6.4, PV M allocates VMs in a way

that increases the chances of reaching a pure NE strategy profile to minimize RV ’s WPC

loss even with a large number of VMs. For example, RV ’s WPC loss using PV M is, on

average, 30%,50%, and 26% better than the WPC loss obtained using AvgSum, Prod and

PWN.

On the other hand, Fig. 6.20(b) shows that PV M outperforms other heuristics in terms

of the allocation feasibility. We noticed that Prod performance is very close to PV M (e.g.,

less than 1% difference). The reason is that Prod uses the FFDProd which performs

better than other heuristics in minimizing the number of servers with a large number of

VMs, as discussed in [131]. On the other hand, PWN is on average 2%-3% less than the

first two methods. Further, we can see that increasing the number of VMs and servers

generally improves the feasibility performance of all approaches.

195

(a) The WPC loss minimization performance of PVM

(b) Scheduling feasibility of PVM

Figure 6.20: The performance of PVM with large numbers of VMs and servers

196

(a) Thrsh = 2× LB

(b) Thrsh = 6× LB

Figure 6.21: The performance of PVM in optimizing resource usage under different cybersecurity
thresholds

197

(a) Thrsh = 2× LB

(b) Thrsh = 6× LB

Figure 6.22: The feasibility performance of PVM when optimizing resource usage under different
cybersecurity thresholds

198

Now, we move on to study the performance of PV M in maximizing the resource us-

age while guaranteeing that the WPC loss does not exceed a given cybersecurity loss

threshold (e.g., T hrsh). We compared the performance of PV M to the performances

of AvgSum,Prod, and PWN under several loss thresholds. In Fig. 6.21(a) and Fig.

6.21(b), we set the cybersecurity thresholds to (2×LB) and (6×LB), respectively; where

(LB = q∗×L∗) is the Lower-Bound (LB) of RV ’s cybersecurity loss (e.g., Equation 6.23).

The server’s capacity, number of servers, and number of VMs were set to 15×103 MIPS,

200 servers, and 500 VMs. We ran the simulation 1000 times for each threshold setting

and averaged the results.

Fig. 6.21(a) shows that when T hrsh = 2×LB, PV M,AvgSum, and Prod roughly have

the same WPC loss, whereas PWN outperforms all the rest in less than 1%. On the other

hand, PV M outperforms AvgSum,Prod, and PWN in minimizing RV ’s overall loss and

cost by 2%,12%, and 9%, respectively. Moreover, PV M’s computation time is less than

AvgSum,Prod, and PWN by 1,2, and 4 seconds. The reason is that the PV M allocates all

primary VMs within the first allocation phase which minimizes the allocation times for

the rest of the VM under a very strict cybersecurity threshold and improves its allocation

feasibility. For example, Fig. 6.22(a) shows that when T hrsh = 2×LB, PV M allocation

feasibility is 9%,24%, and 20% more than the feasibilities of AvgSum,Prod, and PWN.

Although increasing the cybersecurity threshold from T hrsh = 2× LB to T hrsh =

6× LB (e.g., Fig. 6.22(b)), improves the allocation feasibility of all approaches, PV M

still outperforms other approaches by at least 1% in the allocation feasibility. It is also

expected that PV M’s computation time performance is almost the same under different

cybersecurity threshold because PV M is bounded by the potential cybersecurity loss given

an attack on any primary VM (e.g., V ◦; where q◦× `◦ = LB < T hrsh). Nonetheless, the

computation times of other approaches improve significantly, outperforming the compu-

199

tation time of PV M by 6 seconds on average, when the cybersecurity threshold increases

from T hrsh = 2×LB to T hrsh = 6×LB.

Moreover, based on Theorem 6.2, the increase in the cybersecurity threshold causes all

methods to increase their WPC loss to maximize resource utilization and minimize RV ’s

overall loss and cost by almost 50%, compared to the first case in which T hrsh = 2×

LB. Although increasing the cybersecurity threshold improves RV ’s energy and operating

costs, it causes RV ’s overall loss and cost to increase by 27%,32%,29%, and 0.26% under

PV M,AvgSum,Prod, and PWN due to the decrease in the number of the allocated servers

(e.g., Theorem 6.2).

6.9 Summary

In this chapter, we address the problems of static VM allocation with resource and cy-

bersecurity loss constraints that are well-known NP-hard problems. We first formulate

them as quadratic programming problems that are solvable only for small size cloud clus-

ters. We then model the problems as a two-player zero-sum game. We showed that NE

search approaches (e.g., Minimax and STE) can be applied to solve our VM allocation

problems. For example, they take polynomial time concerning a given size of the strategy

spaces. Unfortunately, the computation complexities of those NE search approaches be-

come non-polynomial as the strategy space of the provider grows exponentially with the

increase of the numbers of VMs and servers. This motivates us to study the characteristics

of the pure NE strategy profile and, based on which, to develop computationally efficient

heuristics. Intensive simulation results show that our proposed allocation algorithms out-

perform the commonly used VBP heuristics in solving similar allocation problems. Our

future work aims to investigate dynamic allocation strategies based on mixed-strategy NE

200

strategy profiles considering several optimization criteria, such as performance, cyberse-

curity, and costs.

201

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this chapter, we summarize the contributions that we present in this dissertation and

discuss the possible directions for our future research work.

7.1 Summary

As adopting cloud computing has recently become the dominant trend for continuously

delivering online services for individual and organizations over the internet, successful

and well-planned resource management policies supporting those services became a criti-

cal component for any agile, consolidated and dynamically scalable cloud data center that

provides valuable and high-quality cloud services with efficient power consumption.

In this dissertation, we study the research problem of developing efficient and effective

cloud resource management policies and techniques. Our goal is to help cloud service

providers optimize the trade-offs among several performance and cybersecurity criteria.

1. To facilitate our experiment and validation work, we first develop a cloud comput-

ing prototype that closely mirrors industry-compatible cloud platforms. Our proto-

type can provide cloud services as any middle-sized cloud service provider does.

The prototype generates and runs several general and cloud-specific benchmarks

under an isolated and well-controlled environment. We further incorporate new

workload scheduling, resource provisioning, and performance monitoring schemes

that we proposed in this dissertation into the platform.

2. Different from previous studies that employ separate VMs for hosting requests with

different QoS requirements, we develop a cloud service multiplexing method, based

on the queuing model with reneging, that enables requests of the same service type,

202

but with different QoS constraints, to share the same VM. To our best knowledge,

this is the first approach by which different requests with different QoS require-

ments can be hosted on a single node to increase resource utilization. We also de-

vise a novel methodology that correctly discards potential failure requests as soon as

possible to minimize processing rate demands, and to reduce total power consump-

tion with statistically guaranteed QoS. We introduce a packing and consolidation

algorithm that statistically ensures the QoS requirements of cloud requests in terms

of deadline miss ratios. In addition to the analytical validation of our proposed

methods, we experimentally verify them, under general and cloud-specific work-

loads, using our cloud platform. For example, we use the Data Caching benchmark

that emulates the behavior of a Twitter caching server and assumes strict quality

of service guarantees, such as, 95% of the request must finish within 200 ms. Ex-

tensive experimentation results show that our proposed methods widely outperform

existing approaches in terms of QoS satisfaction, power consumption efficiency,

resource demand minimization, and electricity cost saving.

3. A major limitation of consolidating VMs of different security requirements onto

a single server is that it can result in VM-to-VM interdependent cybersecurity IC

risks. For example, the odds of successfully compromising a secure critical VM

are high when an attacker compromises the hosting hypervisor after a successful

direct attack on one of its less secured, non-critical VMs. Therefore, we formulate

the allocation problem with cybersecurity awareness into a non-cooperative, zero-

sum theoretical game model between an attacker and the service cloud provider.

We develop a set of new conditions to identify the existence of an equilibrium

allocation strategy quickly. We mean by an –equilibrium– allocation strategy that

the allocation policy in which neither the provider nor the attacker can benefit from

unitarily deviating from their allocation or attack decisions, respectively. We then

203

incorporate several resource usage parameters into a non-zero-sum game model.

We identify the cases under which several static and dynamic equilibrium allocation

strategies exist. We also derive the lower-bound and upper-bound of the IC risks.

4. Finally, we extend our game models to include VMs with more general cybersecu-

rity and resource requirements. We focus on the static VM allocation problem to

study how to (1) minimize the provider’s worst potential cybersecurity loss under

constrained resource usage and how to (2) optimize cloud resource usage while en-

suring that the worst potential cybersecurity loss is always less than a given cyber-

security threshold. We show later in this dissertation that a constrained-allocation

problem is a typical NP-hard problem, and, thus, we formulate the security-constrained

and resource-constrained VM allocation problems using the Mathematical Pro-

gramming (MP) approach to obtain the optimal solutions, which will be used as

a comparison baseline against other proposed approaches in this dissertation and

when the problem size is small. We formally model the resource and security-

constrained allocation problems as a non-cooperative two-player zero-sum game.

We conduct a thorough analysis of the characteristics of the pure Nash Equilibrium

(NE) strategy profiles in our game model, which we formulate as a series of lemmas

and theorems. Based on the insights of our analysis, we develop several effective

and computationally efficient algorithms to allocate VMs, of different resource and

security requirements, with resource usage and security loss optimized. We have

implemented our algorithms and studied their efficiency and effectiveness. Our ex-

tensive simulation results show that our novel approaches are good trade-offs when

compared with the computational-intensive approaches, such as the ones based on

the MP approaches, the existing NE search methods, or the computationally effi-

cient multi-dimensional bin-packing methods.

204

7.2 Future work

In this dissertation, we primarily focus on developing static resource allocation mecha-

nisms for time-sensitive cloud services and VMs under resource, quality, and cybersecu-

rity constraints.Static resource allocation methods simplify the process of cloud resource

management. The study of static VM allocation not only has solid theoretical values but

is also useful and applicable in many practical scenarios. For instance, static VM al-

location does not cause service interruption for cloud services and hosting VMs due to

the VM live migration, and, hence, it can provide time-related QoS guarantees. Further-

more, static allocation approaches are ideal for batch cloud workload during each epoch,

because batch cloud workloads are completed detailed and characterized by predictable

performance and intensive computation time.

Although static VM allocation has many unique advantages (e.g., low overhead and

reliable predictability), dynamic VM allocation methods are more flexible, adaptive, and

potentially more effective in a highly dynamic environment in terms of optimizing cloud

resource usage and performance. Therefore, dynamic resource allocation with perfor-

mance and cybersecurity awareness will be the focus of our future research following the

work presented in this dissertation.

Specifically, in our future work, we plan to focus on the following problems.

7.3 Dynamic allocation strategies with QoS guarantee in heteroge-

neous cloud platforms

We can extend our set of static scheduling mechanisms, proposed in Chapter 4, for cloud

services with guaranteed QoS to include allocation strategies based on VM live migration.

205

Dynamic VM allocation maximizes resource utilization [92] and minimizes cybersecurity

risks resulted from colocation attacks [51].

However, VM migration comes with a migration overhead that results in service in-

terruption, performance degradation, and consequently Service Level Agreements SLAs

violations [192]. The first challenge we have to address when adopting dynamic cloud

resource allocation methodologies is how to timely and efficiently adapt to the fluctuat-

ing cloud workloads while ensuring a guaranteed QoS for cloud users. It is consequently

crucial to study the timing and spatial characteristics of cloud workload to improve the

predictability of the dynamically changing cloud environments.

What makes dynamic allocation problems with guaranteed QoS even more compli-

cated problem is that current cloud data centers host a large number of service types

with several resources, timing, and cybersecurity requirements. Moreover, those data

centers offer different implementation requirements and styles (e.g., varying degrees of

parallelism, as in Google data centers [82, 193].) For energy-efficient computing, differ-

ent service types are allocated to servers with different architectures, i.e., heterogeneous

servers [194–197]. We also intend to extend our work in Chapter 4 to include time-

sensitive cloud services hosted on heterogeneous platforms with different power require-

ments, cybersecurity levels, and resource usage criteria (e.g., CPU, memory, storage, and

network) while ensuring the QoS of those cloud services. In other words, we are inter-

ested in identifying the minimum required multi-dimensional resource demand vector for

each service type when hosted alone and when hosted with different service types onto

heterogeneous servers with QoS constraints and cybersecurity requirements. We are also

interested in studying how to allocate cloud services with guaranteed QoS requirements

and cybersecurity conditions onto heterogeneous servers with power consumption and

operating expense constraints.

206

7.4 Cloud workload modeling and analysis

Modeling and analyzing cloud workloads are vital when developing efficient and effec-

tive dynamic resource allocation policies that optimize resource usage while assuring an

adequate quality level for cloud users.

Although both industry and academia have developed several benchmarks and simula-

tion tools to mimic actual cloud workloads [48,76,163], those tools are limited to specific

application or cloud platform types, such as EC2 low-level workloads [198] and scientific

workloads [199]. The limitation and inadequacy of workload studies and models are due

to the underlying complexity of cloud systems [200], variety in types of workloads [111],

and need for more cloud traces to be analyzed and studied [82, 193].

Studying the timing and spatial features of cloud workloads can help scholars predict

the timing performance and resource demands of cloud requests under different stress

levels and cloud platforms. We hope that our studies help accurately identify the factors

that contribute to optimize and degrade the performance of cloud service, and thereupon

provide vital insight to developing efficient and effective dynamic cloud resource alloca-

tions [166].

7.5 Game-theoretical based VM live migration in cloud clusters with

cybersecurity awareness

One major limitation of any server consolidation algorithm is the interdependent cyberse-

curity risks. In Chapter 5 and Chapter 6, we proposed game-theoretical based static VM

allocation strategies to minimize the provider’s worst potential cybersecurity loss while

optimizing the cloud provider’s power consumption and operating costs. In the future,

we plan to consider the dynamic allocation case based on the mixed NE strategy profiles,

207

in where VMs can migrate from one server to another to minimize the chances of a suc-

cessful attack on any of the VMs. We assume that a successful attack requires more time

than the time between two successive migrations. The challenging question, nonetheless,

is – what is the minimum allowed number of migrations within a certain period and be-

tween predefined or random allocation strategies and what are the optimal time intervals

between every two consecutive migrations so that the cybersecurity risks, power consum-

mation, and operating expense are minimized?–. Meanwhile, we also should guarantee

that the performance degradation and service interruption due to VM the live migration

are mitigated.

208

BIBLIOGRAPHY

[1] “Slideplayer,” https://slideplayer.com.

[2] “Smechannel,” https://smechannels.com.

[3] “Wordpress,” https://wordpress.com.

[4] “Forbes,” https://www.forbes.com.

[5] “Worldwide cloud it infrastructure revenues continue to grow by double digits in
the first quarter of 2018 as public cloud expands, according to idc,” 2018.

[6] “Cloud deployment materials i: Mirantis,” http://www.mirantis.com/.

[7] “Cloud deployment materials ii: Rackspace,” http://www.rackspace.com/.

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud computing,” Communi-
cations of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[9] A. Weiss, “Computing in the clouds,” networker, vol. 11, no. 4, pp. 16–25, 2007.

[10] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility,” Future Generation computer systems, vol. 25, no. 6, pp. 599–616,
2009.

[11] D. A. Patterson, “The data center is the computer,” Communications of the ACM,
vol. 51, no. 1, pp. 105–105, 2008.

[12] D. Schneider and Q. Hardy, “Under the hood at google and facebook,” Spectrum,
IEEE, vol. 48, no. 6, pp. 63–67, June 2011.

[13] P. Banerjee, R. Friedrich, C. Bash, P. Goldsack, B. Huberman, J. Manley, C. Pa-
tel, P. Ranganathan, and A. Veitch, “Everything as a service: Powering the new
information economy,” Computer, no. 3, pp. 36–43, 2011.

[14] Y. Duan, “Value modeling and calculation for everything as a service (xaas) based
on reuse,” in Software Engineering, Artificial Intelligence, Networking and Parallel
& Distributed Computing (SNPD), 2012 13th ACIS International Conference on.
IEEE, 2012, pp. 162–167.

209

 https://slideplayer.com
 https://smechannels.com
 https://wordpress.com
https://www.forbes.com
http://www.mirantis.com/
http://www.rackspace.com/

[15] J. Spillner and A. Schill, “A versatile and scalable everything-as-a-service registry
and discovery.” in CLOSER, 2013, pp. 175–183.

[16] G. Li and M. Wei, “Everything-as-a-service platform for on-demand virtual enter-
prises,” Information Systems Frontiers, vol. 16, no. 3, pp. 435–452, 2014.

[17] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing 360-
degree compared,” in Grid Computing Environments Workshop, 2008. GCE’08.
Ieee, 2008, pp. 1–10.

[18] P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011.

[19] M. Carroll, A. Van Der Merwe, and P. Kotze, “Secure cloud computing: Benefits,
risks and controls,” in Information Security South Africa (ISSA), 2011. IEEE,
2011, pp. 1–9.

[20] M. Zivkovic, J. Bosman, J. Van den Berg, R. D. van der Mei, H. B. Meeuwissen,
and R. Nunez-Queija, “Dynamic profit optimization of composite web services
with slas,” in 2011 IEEE Global Telecommunications Conference-GLOBECOM
2011. IEEE, 2011, pp. 1–6.

[21] “Pocket gems on google cloud platform,” http://cloud.google.com/customers/
pocketgems/.

[22] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, “A
performance analysis of ec2 cloud computing services for scientific computing,” in
International Conference on Cloud Computing. Springer, 2009, pp. 115–131.

[23] “Sony music on google cloud platform,” http://cloud.google.com/customers/
sony-music/.

[24] W. Zhao, D. Olshefski, and H. G. Schulzrinne, “Internet quality of service: An
overview,” 2000.

[25] M. Dodani, “Cloud architecture.” Journal of Object Technology, vol. 8, no. 7, pp.
35–44, 2009.

[26] L. Tomás and J. Tordsson, “Improving cloud infrastructure utilization through over-
booking,” in Proceedings of the 2013 ACM Cloud and Autonomic Computing Con-
ference, 2013, p. 5.

210

http://cloud.google.com/customers/pocketgems/
http://cloud.google.com/customers/pocketgems/
http://cloud.google.com/customers/sony-music/
http://cloud.google.com/customers/sony-music/

[27] P. Ghumre, J. Li, M. Kesavan, A. Gavrilovska, and K. Schwan, “Evaluating the
need for complexity in energy-aware management for cloud platforms,” ACM SIG-
METRICS Performance Evaluation Review, vol. 40, no. 3, pp. 23–27, 2012.

[28] A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya et al., “A taxonomy and survey of
energy-efficient data centers and cloud computing systems,” Advances in comput-
ers, vol. 82, no. 2, pp. 47–111, 2011.

[29] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using virtual ma-
chines for cloud computing environment,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 24, no. 6, pp. 1107–1117, 2013.

[30] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: research
problems in data center networks,” ACM SIGCOMM computer communication re-
view, vol. 39, no. 1, pp. 68–73, 2008.

[31] Cloud Computing, Server Utilization, & the Envi-
ronment. [Online]. Available: https://aws.amazon.com/blogs/aws/
cloud-computing-server-utilization-the-environment/

[32] I. Kumara, H. Jun, A. Colman, and M. Kapuruge, “Software-defined service net-
working: Performance differentiation in shared multi-tenant cloud applications,”
IEEE Transactions on Services Computing, 2016.

[33] C. A. Kamhoua, L. Kwiat, K. A. Kwiat, J. S. Park, M. Zhao, and M. Rodriguez,
“Game theoretic modeling of security and interdependency in a public cloud,” in
Cloud Computing (CLOUD), 2014 IEEE 7th International Conference on. IEEE,
2014, p. 514–521.

[34] E. Knorr and G. Gruman, “What cloud computing really means,” InfoWorld, vol. 7,
pp. 20–20, 2008.

[35] T. Wang, G. Quan, S. Ren, and M. Qiu, “Topology virtualization for throughput
maximization on many-core platforms,” in Parallel and Distributed Systems (IC-
PADS), 2012 IEEE 18th International Conference on. IEEE, 2012, pp. 408–415.

[36] G. Perry, “How cloud & utility computing are different.” GIGAOM, 2008.

[37] “Amazon aws,” https://aws.amazon.com/s3/.

211

https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/
https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/
 https://aws.amazon.com/s3/

[38] I. Foster, “What is the grid?-a three point checklist,” GRIDtoday, vol. 1, no. 6,
2002.

[39] V. Kundra, “25 point implementation plan to reform federal information tech-
nology management,” EXECUTIVE OFFICE OF THE PRESIDENT WASH-
INGTON DC/OFFICE OF MANAGEMENT AND BUDGET OFFICE OF E-
GOVERNMENT AND INFORMATION TECHNOLOGY, Tech. Rep., 2010.

[40] S. Moss, “Under trump, us federal data center consolidation progress remains un-
clear, 24th march 2017,” Datacenter Dynamics, The Business of Data Centers,
2017.

[41] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P.
Hancke, “Smart grid technologies: Communication technologies and standards,”
IEEE transactions on Industrial informatics, vol. 7, no. 4, pp. 529–539, 2011.

[42] I. Berger, “Keeping cloud computing’s prospects safe and sunny,” 2010.

[43] K. McCabe and R. Nachbar, “Survey by ieee and cloud security alliance details
importance and urgency of cloud computing security standards,” 2010.

[44] C. Aradau, “Security that matters: Critical infrastructure and objects of protection,”
Security Dialogue, vol. 41, no. 5, pp. 491–514, 2010.

[45] M. Poess and R. O. Nambiar, “Energy cost, the key challenge of today’s data cen-
ters: a power consumption analysis of tpc-c results,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1229–1240, 2008.

[46] Greenpeace, “How dirty is your data?” a look at the energy choices that power
cloud computing, 2011.

[47] Q. Zhang and W. Shi, “Energy-efficient workload placement in enterprise datacen-
ters,” Computer, vol. 49, no. 2, pp. 46–52, 2016.

[48] G. Kousiouris, T. Cucinotta, and T. Varvarigou, “The effects of scheduling, work-
load type and consolidation scenarios on virtual machine performance and their
prediction through optimized artificial neural networks,” Journal of Systems and
Software, vol. 84, no. 8, pp. 1270–1291, 2011.

212

[49] J. Son and R. Buyya, “Sla-aware and energy-efficient dynamic overbooking in sdn-
enabled cloud data centers,” in 4TH ANNUAL DOCTORAL COLLOQUIUM, 2016,
p. 43.

[50] C. Cai, L. Wang, S. U. Khan, and J. Tao, “Energy-aware high performance com-
puting: A taxonomy study,” in IEEE 17th Int. (ICPADS), 2011, pp. 953–958.

[51] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side channels and
their use to extract private keys,” pp. 305–316, 2012.

[52] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my
cloud: exploring information leakage in third-party compute clouds,” pp. 199–212,
2009.

[53] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “Homealone: Co-residency de-
tection in the cloud via side-channel analysis,” in Security and Privacy (SP), 2011
IEEE Symposium on. IEEE, 2011, pp. 313–328.

[54] S. M. Parikh, N. M. Patel, and H. B. Prajapati, “Resource management in cloud
computing: classification and taxonomy,” arXiv preprint arXiv:1703.00374, 2017.

[55] L. Kwiat, C. A. Kamhoua, K. A. Kwiat, J. Tang, and A. Martin, “Security-aware
virtual machine allocation in the cloud: A game theoretic approach,” in Cloud
Computing (CLOUD), 2015 IEEE 8th International Conference on. IEEE, 2015,
p. 556–563.

[56] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguadé, “Managing slas of
heterogeneous workloads using dynamic application placement,” in Proceedings
of the 17th international symposium on High performance distributed computing.
ACM, 2008, pp. 217–218.

[57] G. von Laszewski, L. Wang, A. J. Younge, and X. He, “Power-aware scheduling of
virtual machines in dvfs-enabled clusters.” in CLUSTER. IEEE, 2009, pp. 1–10.

[58] S. Wang, W. Munawar, J. Liu, J.-J. Chen, and X. Liu, “Power-saving design for
server farms with response time percentile guarantees.” in IEEE Real-Time and
Embedded Technology and Applications Symposium, M. D. Natale, Ed., 2012, pp.
273–284.

[59] P. Lama and X. Zhou, “Efficient server provisioning with end-to-end delay guar-
antee on multi-tier clusters.” in IWQoS. IEEE, 2009, pp. 1–9.

213

[60] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis, “Efficient
resource provisioning in compute clouds via vm multiplexing,” in Proceedings of
the 7th international conference on Autonomic computing. ACM, 2010, pp. 11–
20.

[61] F. Caglar and A. Gokhale, “ioverbook: Intelligent resource-overbooking to support
soft real-time applications in the cloud,” in CLOUD, IEEE 7th Int. Conference on,
2014, pp. 538–545.

[62] K. C. Almeroth, A. Dan, D. Sitaram, and W. B. Tetzlaff, “Long term resource allo-
cation in video delivery systems,” in INFOCOM’97. 16th Annual Joint Conference
of the IEEE Computer and Communications Societies. Driving the Information
Revolution., Proceedings IEEE, vol. 3, 1997, pp. 1333–1340.

[63] K. G. Shin and P. Ramanathan, “Real-time computing: A new discipline of com-
puter science and engineering,” Proceedings of the IEEE, vol. 82, no. 1, pp. 6–24,
1994.

[64] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time scheduling theory: A his-
torical perspective,” Real-time systems, vol. 28, no. 2-3, pp. 101–155, 2004.

[65] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load balancing and
scheduling in cloud computing clusters,” in INFOCOM, 2012 Proceedings IEEE.
IEEE, 2012, pp. 702–710.

[66] M. Fan, “Real-time systems,” in Real-time Systems. InTech, 2016.

[67] H.-E. Zahaf, A. E. H. Benyamina, R. Olejnik, and G. Lipari, “Energy-efficient
scheduling for moldable real-time tasks on heterogeneous computing platforms,”
Journal of Systems Architecture, vol. 74, pp. 46–60, 2017.

[68] I. Hwang, T. Kam, and M. Pedram, “A study of the effectiveness of cpu consoli-
dation in a virtualized multi-core server system,” in Proceedings of the ACM/IEEE
int. symposium on Low power electronics and design, 2012, pp. 339–344.

[69] V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. Mosse, J. Mars, and
L. Tang, “Octopus-man: Qos-driven task management for heterogeneous multi-
cores in warehouse-scale computers,” in HPCA, IEEE 21st Int. Symposium on,
2015, pp. 246–258.

214

[70] A. Sarkar, F. Mueller, and H. Ramaprasad, “Static task partitioning for locked
caches in multicore real-time systems,” ACM Transactions on Embedded Com-
puting Systems (TECS), vol. 14, no. 1, p. 4, 2015.

[71] C.-W. Chang, J.-J. Chen, T.-W. Kuo, and H. Falk, “Real-time task scheduling on
island-based multi-core platforms,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 2, pp. 538–550, 2015.

[72] E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven scheduling model for
real-time operating systems.” in RTSS, vol. 85, 1985, pp. 112–122.

[73] P. Li, H. Wu, B. Ravindran, and E. D. Jensen, “A utility accrual scheduling al-
gorithm for real-time activities with mutual exclusion resource constraints,” IEEE
Transactions on Computers, vol. 55, no. 4, pp. 454–469, 2006.

[74] W. Li, K. Kavi, and R. Akl, “A non-preemptive scheduling algorithm for soft real-
time systems,” Computers & Electrical Engineering, vol. 33, no. 1, pp. 12–29,
2007.

[75] F. Zhang, J. Cao, K. Li, S. U. Khan, and K. Hwang, “Multi-objective scheduling
of many tasks in cloud platforms,” Future Generation Computer Systems, vol. 37,
pp. 309–320, 2014.

[76] Z. Liu and S. Cho, “Characterizing machines and workloads on a google cluster,”
in Parallel Processing Workshops (ICPPW), 2012 41st International Conference
on. IEEE, 2012, pp. 397–403.

[77] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun, “Multi-tiered on-demand resource
scheduling for vm-based data center,” in Cluster Computing and the Grid, 2009.
CCGRID’09. 9th IEEE/ACM International Symposium on. IEEE, 2009, pp. 148–
155.

[78] M. Chen, H. Zhang, Y.-Y. Su, X. Wang, G. Jiang, and K. Yoshihira, “Effective vm
sizing in virtualized data centers.” in Integrated Network Management. Citeseer,
2011, pp. 594–601.

[79] S. Ren, Y. He, and F. Xu, “Provably-efficient job scheduling for energy and fair-
ness in geographically distributed data centers,” in Distributed Computing Systems
(ICDCS), 2012 IEEE 32nd International Conference on. IEEE, 2012, pp. 22–31.

[80] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck, “Web service level
agreement (wsla) language specification,” Ibm corporation, pp. 815–824, 2003.

215

[81] P. Ferguson and G. Huston, Quality of service: delivering QoS on the Internet and
in corporate networks. John Wiley & Sons, Inc., 1998.

[82] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces: format+
schema,” Google Inc., Mountain View, CA, USA, Technical Report, 2011.

[83] P. Lama and X. Zhou, “Efficient server provisioning with end-to-end delay guaran-
tee on multi-tier clusters,” in Quality of Service, 2009. IWQoS. 17th International
Workshop on. IEEE, 2009, pp. 1–9.

[84] R. Sethi, “Exoskeleton: Fast cache-enabled load balancing for key-value stores,”
2015.

[85] R. Bane, B. Annappa, and K. Shet, “Survey of dynamic resource management
approaches in virtualized data centers,” in Computational Intelligence and Com-
puting Research (ICCIC), IEEE Int. Conference on, 2013, pp. 1–7.

[86] A. Verma, P. Ahuja, and A. Neogi, “pmapper: power and migration cost aware
application placement in virtualized systems,” in Middleware. Springer, 2008,
pp. 243–264.

[87] M. A. Awan, P. M. Yomsi, G. Nelissen, and S. M. Petters, “Energy-aware task
mapping onto heterogeneous platforms using DVFS and sleep states,” Real-Time
Systems, vol. 52, no. 4, pp. 450–485, 2016.

[88] D. Page, “Defending against cache-based side-channel attacks,” Information Secu-
rity Technical Report, vol. 8, no. 1, pp. 30–44, 2003.

[89] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based
side channel attacks,” ACM SIGARCH Computer Architecture News, vol. 35, no. 2,
pp. 494–505, 2007.

[90] Y. Zhang, M. Li, K. Bai, M. Yu, and W. Zang, “Incentive compatible moving target
defense against vm-colocation attacks in clouds,” in IFIP International Informa-
tion Security Conference. Springer, 2012, pp. 388–399.

[91] B. Danev, R. J. Masti, G. O. Karame, and S. Capkun, “Enabling secure vm-vtpm
migration in private clouds,” in Proceedings of the 27th Annual Computer Security
Applications Conference. ACM, 2011, pp. 187–196.

216

[92] T. Wood, P. J. Shenoy, A. Venkataramani, M. S. Yousif et al., “Black-box and gray-
box strategies for virtual machine migration.” in NSDI, vol. 7, 2007, pp. 17–17.

[93] S. Siewert, Real-time embedded components and systems. Cengage Learning,
2006.

[94] H. Kopetz, Real-time systems: design principles for distributed embedded appli-
cations. Springer Science & Business Media, 2011.

[95] S. Baruah and K. Pruhs, “Open problems in real-time scheduling,” Journal of
Scheduling, vol. 13, no. 6, pp. 577–582, 2010.

[96] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a
hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–
61, 1973.

[97] A. K.-L. Mok, “Fundamental design problems of distributed systems for the hard-
real-time environment,” Ph.D. dissertation, Massachusetts Institute of Technology,
1983.

[98] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time cpu scheduling for mo-
bile multimedia systems,” in ACM SIGOPS Operating Systems Review, vol. 37,
no. 5. ACM, 2003, pp. 149–163.

[99] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemption thresh-
old,” in Real-Time Computing Systems and Applications, 1999. RTCSA’99. Sixth
International Conference on. IEEE, 1999, pp. 328–335.

[100] H. Oh and S. Ha, “A static scheduling heuristic for heterogeneous processors,” in
European Conference on Parallel Processing. Springer, 1996, pp. 573–577.

[101] G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras, “Predictive dynamic thermal and
power management for heterogeneous mobile platforms,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2015. IEEE, 2015, pp. 960–965.

[102] J. M. Rivas, J. J. Gutiérrez, and M. G. Harbour, “Fixed priorities or EDF for dis-
tributed real-time systems?” ACM SIGBED Review, vol. 10, no. 2, pp. 21–21,
2013.

[103] G. C. Buttazzo, “Rate monotonic vs. EDF: judgment day,” Real-Time Systems,
vol. 29, no. 1, pp. 5–26, 2005.

217

[104] S. K. Baruah, “The non-preemptive scheduling of periodic tasks upon multiproces-
sors,” Real-Time Systems, vol. 32, no. 1-2, pp. 9–20, 2006.

[105] X. Wang, Z. Li, and W. M. Wonham, “Optimal priority-free conditionally-
preemptive real-time scheduling of periodic tasks based on des supervisory con-
trol,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47,
no. 7, pp. 1082–1098, 2017.

[106] X. Wang, Z. Li, and W. Wonham, “Priority-free conditionally-preemptive schedul-
ing of modular sporadic real-time systems,” Automatica, vol. 89, pp. 392–397,
2018.

[107] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algo-
rithms and applications. Springer Science & Business Media, 2011, vol. 24.

[108] J. A. Stankovic, “Misconceptions about real-time computing: A serious problem
for next-generation systems,” Computer, vol. 21, no. 10, pp. 10–19, 1988.

[109] H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin, and J. Wu, “Towards energy-efficient
scheduling for real-time tasks under uncertain cloud computing environment,”
Journal of Systems and Software, vol. 99, pp. 20–35, 2015.

[110] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning of cloud
resources for real-time services,” in Proceedings of the 7th International Workshop
on Middleware for Grids, Clouds and e-Science. ACM, 2009, p. 1.

[111] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload analysis and de-
mand prediction of enterprise data center applications,” in Workload Characteriza-
tion, 2007. IISWC 2007. IEEE 10th Int. Symposium on, Sept 2007, pp. 171–180.

[112] I. S. Moreno and J. Xu, “Neural network-based overallocation for improved
energy-efficiency in real-time cloud environments,” in Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), 2012 IEEE 15th Interna-
tional Symposium on. IEEE, 2012, pp. 119–126.

[113] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server workload
analysis for power minimization using consolidation,” in Proceedings of the Con-
ference on USENIX Annual Technical Conference, ser. USENIX’09, Berkeley, CA,
USA, 2009, pp. 28–28.

218

[114] K. H. Kim, R. Buyya, and J. Kim, “Power aware scheduling of bag-of-tasks ap-
plications with deadline constraints on dvs-enabled clusters.” in CCGRID, vol. 7,
2007, pp. 541–548.

[115] M. Poess and R. O. Nambiar, “Energy cost, the key challenge of today’s data cen-
ters: a power consumption analysis of tpc-c results,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1229–1240, 2008.

[116] A. Beloglazov and R. Buyya, “Energy efficient resource management in virtualized
cloud data centers.” in CCGRID. IEEE, 2010, pp. 826–831.

[117] S. Liu, S. Homsi, M. Fan, S. Ren, G. Quan, and S. Ren, “Scheduling time-sensitive
multi-tier services with probabilistic performance guarantee,” in 2014 20th IEEE
(ICPADS). IEEE, 2014, pp. 736–743.

[118] I. Ahmad and S. Ranka, Handbook of Energy-Aware and Green Computing-Two
Volume Set. CRC Press, 2016.

[119] A. Hammadi and L. Mhamdi, “A survey on architectures and energy efficiency in
data center networks,” Computer Communications, vol. 40, pp. 1–21, 2014.

[120] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic consolidation of virtual
machines in self-organizing cloud data centers,” IEEE T. Cloud Computing, vol. 1,
no. 2, pp. 215–228, 2013.

[121] F. Salfner, P. Tröger, and A. Polze, “Downtime analysis of virtual machine live
migration,” in DEPEND, 2011, pp. 100–105.

[122] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle, “Man-
aging energy and server resources in hosting centers,” ACM SIGOPS Operating
Systems Review, vol. 35, no. 5, pp. 103–116, 2001.

[123] J. Liddle, “Amazon found every 100ms of latency cost them 1% in sales,” The
GigaSpaces, vol. 27, 2008.

[124] F. Caglar, S. Shekhar, and A. Gokhale, “A performance interferenceaware virtual
machine placement strategy for supporting soft realtime applications in the cloud,”
Institute for Software Integrated Systems, Vanderbilt University, TN, USA, Tech.
Rep. ISIS-2013-105.

219

[125] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou, “Profit-driven service request
scheduling in clouds,” in Proceedings of the 2010 10th IEEE/ACM international
conference on cluster, cloud and grid computing. IEEE Computer Society, 2010,
pp. 15–24.

[126] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and adap-
tive heuristics for energy and performance efficient dynamic consolidation of vir-
tual machines in cloud data centers,” Concurrency and Computation: Practice and
Experience, vol. 24, no. 13, pp. 1397–1420, 2012.

[127] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic method of fair
resource allocation for cloud computing services,” The journal of supercomputing,
vol. 54, no. 2, p. 252–269, 2010.

[128] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement in virtualized
data center environments,” in Proceedings of the 2010 IEEE/ACM Int’l Conference
on Green Computing and Communications & Int’l Conference on Cyber, Physical
and Social Computing. IEEE Computer Society, 2010, pp. 179–188.

[129] J. Kunsemoller and H. Karl, A Game-Theoretical Approach to the Benefits of
Cloud Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
148–160. [Online]. Available: https://doi.org/10.1007/978-3-642-28675-9 11

[130] V. Vazirani, “Approximation algorithms springer-verlag,” New York, 2001.

[131] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C.-C. Yao, “Resource con-
strained scheduling as generalized bin packing,” Journal of Combinatorial Theory,
Series A, vol. 21, no. 3, pp. 257–298, 1976.

[132] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable application place-
ment controller for enterprise data centers,” in Proceedings of the 16th interna-
tional conference on World Wide Web. ACM, 2007, pp. 331–340.

[133] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for vector bin pack-
ing,” research. microsoft. com, 2011.

[134] J. F. Nash et al., “Equilibrium points in n-person games,” Proceedings of the na-
tional academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.

[135] J. von Neumann, “On the theory of parlor games,” Mathematische Annalen, vol.
100, pp. 295–320, 1928.

220

https://doi.org/10.1007/978-3-642-28675-9_11

[136] A. Avron, “Mitchell john c.. foundations for programming languages. foundations
of computing. the mit press, cambridge, mass., and london, 1996, xix+ 846 pp.”
The Journal of Symbolic Logic, vol. 64, no. 2, pp. 918–922, 1999.

[137] R. Porter, E. Nudelman, and Y. Shoham, “Simple search methods for finding a nash
equilibrium,” Games and Economic Behavior, vol. 63, no. 2, pp. 642–662, 2008.

[138] V. Jalaparti and G. D. Nguyen, “Cloud resource allocation games,” Tech. Rep.,
2010.

[139] P. S. Pillai and S. Rao, “Resource allocation in cloud computing using the uncer-
tainty principle of game theory,” IEEE Systems Journal, vol. 10, no. 2, pp. 637–
648, 2016.

[140] F. Teng and F. Magoulès, “A new game theoretical resource allocation algorithm for
cloud computing,” in International Conference on Grid and Pervasive Computing.
Springer, 2010, pp. 321–330.

[141] Y. Han, T. Alpcan, J. Chan, and C. Leckie, “Security games for virtual machine
allocation in cloud computing,” in International Conference on Decision and Game
Theory for Security. Springer, 2013, pp. 99–118.

[142] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating fine grained timers in xen,”
in Proceedings of the 3rd ACM workshop on Cloud computing security workshop.
ACM, 2011, pp. 41–46.

[143] N. S. V. Rao, S. W. Poole, F. He, J. Zhuang, C. Y. T. Ma, and D. K. Y. Yau, “Cloud
computing infrastructure robustness: A game theory approach,” in 2012 Interna-
tional Conference on Computing, Networking and Communications (ICNC), Jan
2012, pp. 34–38.

[144] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A. Shah, and B. Rao,
“Quantitative comparison of xen and kvm,” Xen Summit, Boston, MA, USA, pp.
1–2, 2008.

[145] “Xen project,” http://www.xenproject.org/.

[146] C. Math, “The apache commons mathematics library,” : http://commons. apache.
org/proper/commons-math/, 2014.

221

http://www.xenproject.org/
:

[147] P. Wendykier, “Jtransforms,” https://sites.google.com/site/piotrwendykier/
software/jtransforms, 2009.

[148] “Openstack documentation.” [Online]. Available: http://docs.openstack.org/

[149] “Qfabric: Enabling the new data center,” http://www.slideshare.net/
junipernetworks/qfabric-enabling-the-new-data-center.

[150] W. Tarreau et al., “Haproxy-the reliable, high-performance tcp/http load balancer,”
2012.

[151] “Kvm,” http://www.linux-kvm.org/page/Main Page.

[152] “Vmware,” https://www.vmware.com/.

[153] “Benchvm,” Benchvm,http://www.clarkson.edu/projects/virtualization/benchvm/.

[154] “Qfabric: Enabling the new data center,” http://www.slideshare.net/
junipernetworks/qfabric-enabling-the-new-data-center.

[155] “Spec benchmark,” http://www.spec.org/benchmarks.html.

[156] “Rally benchmark,” https://wiki.openstack.org/wiki/Rally.

[157] “Autotest,” https://github.com/autotest/autotest.

[158] “Sensu,” http://sensuapp.org/docs/.

[159] “Najios,” http://www.nagios.org/.

[160] T. Robertazzi, Computer Networks and Systems: Queueing Theory and Perfor-
mance Evaluation, ser. Telecommunication networks and computer systems,2000.
Springer, 2000.

[161] V. Gupta, M. Harchol-Balter, J. Dai, and B. Zwart, “On the inapproximability of
m/g/k: why two moments of job size distribution are not enough,” Queueing Sys-
tems, vol. 64, no. 1, pp. 5–48, 2010.

[162] “Cloudsuite benchmark,” http://parsa.epfl.ch/cloudsuite/overview.html.

222

https://sites.google.com/site/piotrwendykier/software/jtransforms
https://sites.google.com/site/piotrwendykier/software/jtransforms
http://docs.openstack.org/
http://www.slideshare.net/junipernetworks/qfabric-enabling-the-new-data-center
http://www.slideshare.net/junipernetworks/qfabric-enabling-the-new-data-center
 http://www.linux-kvm.org/page/Main_Page
https://www.vmware.com/
Benchvm, http://www.clarkson.edu/projects/virtualization/benchvm/
http://www.slideshare.net/junipernetworks/qfabric-enabling-the-new-data-center
http://www.slideshare.net/junipernetworks/qfabric-enabling-the-new-data-center
http://www.spec.org/benchmarks.html
https://wiki.openstack.org/wiki/Rally
https://github.com/autotest/autotest
http://sensuapp.org/docs/
http://www.nagios.org/
http://parsa.epfl.ch/cloudsuite/overview.html

[163] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kay-
nak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: a study of
emerging scale-out workloads on modern hardware,” in ACM SIGPLAN Notices,
vol. 47, no. 4, 2012, pp. 37–48.

[164] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and qos-aware cluster
management,” ACM SIGPLAN Notices, vol. 49, no. 4, pp. 127–144, 2014.

[165] D. Y. Barrer, “Queuing with impatient customers and ordered service,” Operations
Research,, vol. 5, no. 5, pp. pp. 650–656, 1957.

[166] E. Feller, L. Rilling, and C. Morin, “Energy-aware ant colony based workload
placement in clouds,” in Grid Computing (GRID), 2011 12th IEEE/ACM Int. Con-
ference on, Sept 2011, pp. 26–33.

[167] Y. Ajiro and A. Tanaka, “Improving packing algorithms for server consolidation.”
in Int. CMG Conference. Computer Measurement Group, 2007, pp. 399–406.

[168] J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, and C. Pu, “Performance overhead
among three hypervisors: An experimental study using hadoop benchmarks,” in
BigData Congress, IEEE Int. Congress on, 2013, pp. 9–16.

[169] R. G. Michael and S. J. David, “Computers and intractability: a guide to the theory
of np-completeness,” WH Free. Co., San Fr, 1979.

[170] S. Homsi, S. Liu, G. A. Chaparro-Baquero, O. Bai, S. Ren, and G. Quan, “Work-
load consolidation for cloud data centers with guaranteed qos using request reneg-
ing,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 7, pp.
2103–2116, July 2017.

[171] B. Wilder, Cloud architecture patterns: using microsoft azure. ” O’Reilly Media,
Inc.”, 2012.

[172] Microsoft Azure Government Cloud Computing. [Online]. Available: https:
//azure.microsoft.com/en-us/overview/clouds/government/

[173] J. Y. Arrasjid, “Virtustream and vmware en-
able mission critical hybrid cloud,” 2017. [Online].
Available: Availableat:https://www.virtustream.com/videos/LHC3380BES
Virtustream-and-VMware-Enable-Mission-Critical-Hybrid-Cloud.pdf

223

https://azure.microsoft.com/en-us/overview/clouds/government/
https://azure.microsoft.com/en-us/overview/clouds/government/
Available at: https://www.virtustream.com/videos/LHC3380BES_Virtustream-and-VMware-Enable-Mission-Critical-Hybrid-Cloud.pdf
Available at: https://www.virtustream.com/videos/LHC3380BES_Virtustream-and-VMware-Enable-Mission-Critical-Hybrid-Cloud.pdf

[174] Mission Critical Cloud. [Online]. Available: https://www.cogecopeer1.com/
services/cloud/mission-critical/

[175] M. Hadji and D. Zeghlache, “Mathematical programming approach for revenue
maximization in cloud federations,” IEEE transactions on cloud computing, vol. 5,
no. 1, pp. 99–111, 2017.

[176] K. Gai, M. Qiu, and H. Zhao, “Cost-aware multimedia data allocation for hetero-
geneous memory using genetic algorithm in cloud computing,” IEEE transactions
on cloud computing, 2016.

[177] R. Meng, Y. Ye, and N.-g. Xie, “Multi-objective optimization design methods
based on game theory,” in Intelligent Control and Automation (WCICA), 2010 8th
World Congress on. IEEE, 2010, pp. 2220–2227.

[178] N. V. Sahinidis, “Optimization under uncertainty: state-of-the-art and opportuni-
ties,” Computers & Chemical Engineering, vol. 28, no. 6, pp. 971–983, 2004.

[179] M. Li, Y. Zhang, K. Bai, W. Zang, M. Yu, and X. He, “Improving cloud survivabil-
ity through dependency based virtual machine placement.” in SECRYPT, 2012, pp.
321–326.

[180] M. Hazewinkel, “Minimax principle,” Encyclopedia of Mathematics, Springer,
2001.

[181] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic game theory.
Cambridge University Press Cambridge, 2007, vol. 1.

[182] K. Garrett and E. Moore, “Teaching mixed strategy nash equilibrium to undergrad-
uates,” International Review of Economics Education, vol. 7, no. 2, pp. 79–87,
2008.

[183] J. Nash, “Non-cooperative games,” Annals of mathematics, pp. 286–295, 1951.

[184] J. Quaintance, Combinatorial identities for Stirling numbers: the unpublished
notes of HW Gould. World Scientific, 2015.

[185] 1000 VM per rack is the new minimum. [Online]. Available: http://virtual-red-dot.
info/1000-vm-per-rack-is-the-new-minimum/

224

https://www.cogecopeer1.com/services/cloud/mission-critical/
https://www.cogecopeer1.com/services/cloud/mission-critical/
http://virtual-red-dot.info/1000-vm-per-rack-is-the-new-minimum/
http://virtual-red-dot.info/1000-vm-per-rack-is-the-new-minimum/

[186] D. C. Llewellyn, C. Tovey, and M. Trick, “Finding saddlepoints of two-person, zero
sum games,” The American Mathematical Monthly, vol. 95, no. 10, pp. 912–918,
1988.

[187] M. Dresher, “Games of strategy: theory and applications,” RAND CORP SANTA
MONICA CA, Tech. Rep., 1961.

[188] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The complexity of com-
puting a nash equilibrium,” SIAM Journal on Computing, vol. 39, no. 1, pp. 195–
259, 2009.

[189] I. Dunning, J. Huchette, and M. Lubin, “Jump: A modeling language for mathe-
matical optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320, 2017.

[190] G. Optimization, “Inc.,gurobi optimizer reference manual, 2015,” URL:
http://www. gurobi. com, 2014.

[191] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource allocation
algorithms for virtualized service hosting platforms,” Journal of Parallel and dis-
tributed Computing, vol. 70, no. 9, pp. 962–974, 2010.

[192] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual machine
live migration in clouds: A performance evaluation,” in IEEE International Con-
ference on Cloud Computing. Springer, 2009, pp. 254–265.

[193] C. Reiss, A. Tumanov, G. R. Ganger, Y. H. Katz, and M. A. Kozuch, “Towards
understanding heterogeneous clouds at scale: Google trace analysis,” 2012.

[194] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search using mobile
cores: quantifying and mitigating the price of efficiency,” ACM SIGARCH Com-
puter Architecture News, vol. 38, no. 3, pp. 314–325, 2010.

[195] R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting platform heterogeneity for power
efficient data centers,” in Autonomic Computing, 2007. ICAC’07. Fourth Interna-
tional Conference on. IEEE, 2007, pp. 5–5.

[196] B. C. Lee and D. M. Brooks, “Illustrative design space studies with microarchi-
tectural regression models,” in High Performance Computer Architecture, 2007.
HPCA 2007. IEEE 13th International Symposium on. IEEE, 2007, pp. 340–351.

225

[197] S. Garg, S. Sundaram, and H. D. Patel, “Robust heterogeneous data center de-
sign: a principled approach,” ACM SIGMETRICS Performance Evaluation Review,
vol. 39, no. 3, pp. 28–30, 2011.

[198] S. Hazelhurst, “Scientific computing using virtual high-performance computing: a
case study using the amazon elastic computing cloud,” in Proceedings of the 2008
annual research conference of the South African Institute of Computer Scientists
and Information Technologists on IT research in developing countries: riding the
wave of technology. ACM, 2008, pp. 94–103.

[199] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. J.
Wasserman, and N. J. Wright, “Performance analysis of high performance com-
puting applications on the amazon web services cloud,” in 2nd IEEE international
conference on cloud computing technology and science. IEEE, 2010, pp. 159–
168.

[200] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, “Cutting the elec-
tric bill for internet-scale systems,” SIGCOMM Comput. Commun. Rev., vol. 39,
no. 4, pp. 123–134, Aug. 2009.

226

VITA

SOAMAR HOMSI

2007 B.S., Computer Engineering
Albaath University
Homs, Syria

2014 M.S., Computer Engineering
Florida International University
Miami, Florid

2019 Ph.D., Electrical and Computer Engineering
Florida International University (FIU)
Miami, Florida

Selected Publications and Presentations in Discipline

• Homsi, S., Liu, S., Chaparro-Baquero, G. A., Bai, O., Ren, S., & Quan, G. (2017).
Workload consolidation for cloud data centers with guaranteed QoS using request
reneging. IEEE Transactions on Parallel and Distributed Systems (TPDS), 28(7),
2103-2116.

• Wang, T., Homsi S., Niu, L., Ren, S., Bai, O., Quan, G., & Qiu, M. (2017).
Harmonicity-aware task partitioning for fixed priority scheduling of probabilistic
real-time tasks on multi-core platforms. ACM Transaction on Embedded Comput-
ing Systems (TECS), 16(4), 101.

• Homsi S., Wen. W, Gang Quan, Chaparro-Baquero G., & Njilla L. (2019, May).
Game Theoretic-based Approaches for Cybersecurity-aware Virtual Machine Place-
ment in Public Cloud Clusters. The 19th Annual IEEE/ACM International Sympo-
sium in Cluster, Cloud, and Grid Computing (CCGRID), Accepted.

• Homsi, S., Quan, G., & Njilla, L. (2018, November). Critical Workload Deploy-
ment in Public Clouds with Guaranteed Security Levels and Optimized Resource
Usage and Energy Cost. In Proceedings of the Future Technologies Conference
(FTC) (pp. 240-260). Springer, Cham.

• Chaparro-Baquero, G. A., Sha, S., Homsi, S., Wen, W., & Quan, G. (2017, Octo-
ber). Thermal-aware joint CPU and memory scheduling for hard real-time tasks
on multicore 3D platforms. In 2017 Eighth International Green and Sustainable
Computing Conference (IGSC) (pp. 1-8). IEEE.

227

• Chaparro-Baquero, G. A., Sha, S., Homsi, S., Wen, W., & Quan, G. (2017, March).
Processor/memory Co-Scheduling using periodic resource server for real-time sys-
tems under peak temperature constraints. In 2017 18th International Symposium
on Quality Electronic Design (ISQED) (pp. 360-366). IEEE.

• Chaparro-Baquero, G. A., Homsi, S., Vichot, O., Ren, S., Quan, G., & Ren, S.
(2015, October). Cache allocation for fixed-priority real-time scheduling on multi-
core platforms. In 2015 33rd IEEE International Conference on Computer Design
(ICCD) (pp. 589-596). IEEE.

• Liu, S., Homsi, S., Fan, M., Ren, S., Quan, G., & Ren, S. (2015, March). Power
minimization for data center with guaranteed QoS. In 2015 Design, Automation &
Test in Europe Conference & Exhibition (DATE) (pp. 1347-1352). IEEE.

• Liu, S., Homsi, S., Fan, M., Ren, S., Quan, G., & Ren, S. (2014, December).
Scheduling time-sensitive multi-tier services with probabilistic performance guar-
antee. In 2014 20th IEEE International Conference on Parallel and Distributed
Systems (ICPADS) (pp. 736-743). IEEE.

• Homsi S., Quan G., & Njilla L. Secure Deployment of Critical Workloads in Energy
Efficient Public Clouds. (2018, July). The 5th Annual Colloquium on Game Theory
applied to Cybersecurity. Air Force Research Laboratory (AFRL), Rome, NY, July
2018.

228

	Cloud Workload Allocation Approaches for Quality of Service Guarantee and Cybersecurity Risk Management
	Recommended Citation

	ABSTRACT OF THE DISSERTATION
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Cloud computing
	What exactly is cloud computing?
	The uniqueness of cloud computing and its market potential
	Cloud computing challenges

	Cloud resource management
	What is cloud resource management?
	The need for cloud resource management to provide QoS guarantee
	The need for cloud resource management to minimize cybersecurity risks

	Research problem
	Our contributions
	Organization

	BACKGROUND AND RELATED WORK
	Real-time scheduling
	Scheduling time-sensitive services in cloud platforms
	Power-aware cloud resource management
	Cloud resource allocation with QoS-awareness

	VM allocation in cloud platforms
	Vector Bin Packing (VBP) based cloud resource allocation
	Game theory-based cloud resource management
	Cloud cybersecurity countermeasures using the Game theory
	Cybersecurity-aware cloud resource allocation

	Summary

	THE GREEN CLOUD COMPUTING PROTOTYPE (GCCP)
	Motivation
	Platform characteristic
	GCCP's hardware components
	GCCP's software components

	How to deploy and utilize GCCP with actual cloud clusters
	List of cloud and virtualization benchmarks that are readily deployable over GCCP
	Summary

	WORKLOAD CONSOLIDATION FOR CLOUD DATA CENTERS WITH GUARANTEED QUALITY OF SERVICE USING REQUEST RENEGING
	Introduction to the research problem
	System model
	Service model
	Power model
	Problem definition

	Preliminaries
	Processing rate minimization for QoS guarantee using request reneging
	Request multiplexing
	Request packing

	The Green Workload Packing and Consolidation (GWPC) algorithm with statistical guarantee
	Experimental validation
	Performance with request reneging
	Multiplexed vs. split request processing
	Performance under different service utilizations
	Performance under different server capacities
	Validation using cloud benchmarks

	Summary

	SECURE ALLOCATIONS OF CRITICAL VMS IN CLOUD DATA CENTERS WITH RELAXED AND CONSTRAINED RESOURCE USAGE AND POWER CONSUMPTION
	Introduction to the research problem
	Related work
	System models
	Cloud cluster model
	Cloud service model

	Problem definition
	Security-aware allocation with unconstrained resource usage
	Security-aware allocation with resource usage and power consumption constraints
	The VM-to-VM Interdependent Cybersecurity (IC) risk's bounds

	Numerical results
	Summary

	GAME THEORETIC-BASED APPROACHES FOR CYBERSECURITY- AWARE VIRTUAL MACHINE PLACEMENT IN CLOUD CLUSTERS
	Introduction to the research problem
	Related work
	Cloud system model
	The mathematical programming formulation of the VM allocation problems
	Finding the optimal VM allocation strategy using Nash Equilibrium (NE) general search algorithms
	Obtaining the optimal VM allocation solution using the Minimax method
	MP-based implementation of the Support Testing and Enumerating (STE) algorithm

	Game theoretical analysis of the security-aware VM allocation problems
	Game theoretic approaches for security-aware VM allocation strategies
	Nash Equilibrium-based VM (NEVM) allocation algorithm
	The Primary VM-based bin-packing (PVM) algorithm

	Experimental validation
	Simulation setup
	Studying the performance of the mathematical programs MPL and MPR
	Studying the performance of the NEVM algorithm
	Performance evaluation of PVM using clusters with small numbers of VMs and servers
	Performance evaluation of PVM under clusters with moderate numbers of VMs and servers
	Performance evaluation of PVM under clusters with a large number of VMs

	Summary

	CONCLUSION AND FUTURE WORK
	Summary
	Future work
	Dynamic allocation strategies with QoS guarantee in heterogeneous cloud platforms
	Cloud workload modeling and analysis
	Game-theoretical based VM live migration in cloud clusters with cybersecurity awareness

	BIBLIOGRAPHY
	VITA

