
Florida International University Florida International University 

FIU Digital Commons FIU Digital Commons 

FIU Electronic Theses and Dissertations University Graduate School 

3-28-2019 

Detection and Prevention of Abuse in Online Social Networks Detection and Prevention of Abuse in Online Social Networks 

Sajedul Karim Talukder 
Florida International University, stalu001@fiu.edu 

Follow this and additional works at: https://digitalcommons.fiu.edu/etd 

 Part of the Information Security Commons, Other Computer Sciences Commons, and the Systems 

Architecture Commons 

Recommended Citation Recommended Citation 
Talukder, Sajedul Karim, "Detection and Prevention of Abuse in Online Social Networks" (2019). FIU 
Electronic Theses and Dissertations. 4026. 
https://digitalcommons.fiu.edu/etd/4026 

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It 
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU 
Digital Commons. For more information, please contact dcc@fiu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Florida International University

https://core.ac.uk/display/323216342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.fiu.edu%2Fetd%2F4026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.fiu.edu%2Fetd%2F4026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.fiu.edu%2Fetd%2F4026&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.fiu.edu%2Fetd%2F4026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4026?utm_source=digitalcommons.fiu.edu%2Fetd%2F4026&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

DETECTION AND PREVENTION OF ABUSE IN ONLINE SOCIAL NETWORKS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Sajedul Karim Talukder

2019



To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Sajedul Karim Talukder, and entitled Detection and Preven-
tion of Abuse in Online Social Networks, having been approved in respect to style and
intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Sundaraja S. Iyengar

Deng Pan

Leonardo Bobadilla

B.M. Golam Kibria

Bogdan Carbunar, Major Professor

Date of Defense: March 28, 2019

The dissertation of Sajedul Karim Talukder is approved.

Dean John L. Volakis
College of Engineering and Computing

Andrès G. Gil
Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2019

ii



© Copyright 2019 by Sajedul Karim Talukder

All rights reserved.

iii



DEDICATION

I dedicate this dissertation work to my beloved family, my wife, my son and especially

my parents for their patience, love and support.

iv



v

ACKNOWLEDGMENTS

It is the support from many people that brings me with the possibility to complete the 

dissertation for concluding my Ph.D. study. First and foremost, I would like to express 

my sincerest thanks and appreciation to my advisor Dr. Bogdan Carbunar, an eminent re- 

searcher in the community of security and privacy, for his inimitable support, meticulous 

guidance, insightful advice, and getting me immersed with an excellent research atmo- 

sphere. It is his great passion and endless patience that helped me to locate my research 

interest and develop the related research skills in the area of security and privacy.

 Next, my thanks goes to my dissertation committee members: Dr. Sundaraja S. Iyen- 

gar, Dr. Deng Pan, Dr. Leonardo Bobadilla, and Dr. B. M. Golam Kibria, for their helpful 

advices, insightful comments and great support on my dissertation and future career plans.

 Additionally, I am extremely grateful to my colleagues of Cyber Security and Privacy 

Research (CaSPR) Lab: Mahmudur, Mizanur, Mozhgan, Nestor and Ruben for their valu- 

able insights and cooperation. I also like to thank our wonderful department staff: Olga 

Carbonell, Vanessa Cornwall, Ariana Taglioretti, Luis Rivera and others for their support.

 Finally, I would like to express my utmost gratitude to my parents, M A Jalil Talukder 

and Sajeda Siddiqua, whose endless love and prayer are with me in whatever I pursue. My 

special gratitude goes to my beloved wife Dr. Nourin Sultana, who has made me happier, 

stronger, more empathetic and given me the cherished gift of her love, tears and support 

in my times of pain. I am also grateful to my dearest son Nushjad Karim Talukder for 

his unexpressible sacrifice during my Ph.D. journey. I am grateful to my beloved brother, 

Zahidur Rahim Talukder, who gave me inspiration at all times. Without the unlimited 

support from them, I would never go through any tough times in my life.



ABSTRACT OF THE DISSERTATION

DETECTION AND PREVENTION OF ABUSE IN ONLINE SOCIAL NETWORKS

by

Sajedul Karim Talukder

Florida International University, 2019

Miami, Florida

Professor Bogdan Carbunar, Major Professor

Adversaries leverage social networks to collect sensitive data about regular users and tar-

get them with abuse that includes fake news, cyberbullying, malware distribution, and pro-

paganda. Such behavior is more effective when performed by the social network friends

of victims. In two preliminary user studies we found that 71 out of 80 participants have at

least 1 Facebook friend with whom (1) they never interact, either in Facebook or in real

life, or whom they believe is (2) likely to abuse their posted photos or status updates, or

(3) post offensive, false or malicious content. Such friend abuse is often considered to be

outside the scope of online social network defenses. Several of our studies suggest that

(1) perceived Facebook friend abuse as well as stranger friends are a significant problem;

(2) users lack the knowledge or ability to address this problem themselves; and (3) when

helped and educated, users are often willing to take defensive actions against abusive

existing and pending friends, and strangers.

Motivated by the rich, private information of users that is available to the Facebook

friends, often the entry point of this vulnerability is the pending friends. In an exploratory

study with a number of participants, we found that participants not only tend to accept in-

vitations from perfect strangers but can even invent a narrative of common background to

motivate their choice. Further, based on our conjecture that Facebook’s interface encour-

ages users to accept pending friends, we develop new interfaces that seek to encourage

users to explore the background of their pending friends and also to train them to avoid

vi



suspicious friends. The efficacy and implementation simplicity of the proposed modifica-

tions suggest that Facebook’s unwillingness to protect its users from abusive strangers is

deliberate.

This dissertation explores the friend abuse problem in online social networks like

Facebook. We introduce two novel approaches to prevent friend abuse problem in Face-

book. (1) First, we introduce AbuSniff which can detect already existing abusive friends

in Facebook, and prevent the abusive friend from doing abuse by taking some protective

actions against them. (2) Second, we introduce FLock to address the problem of abuse

prevention during the time of friend invitation: by educating and training the Facebook

users about the abusive friend from the list of pending friend invitations, and introduc-

ing new User Interface to help users reject the potentially abusive friend invitation, thus

protecting the user from abuse in advance.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Social networks provide an ideal platform for abuse, that includes the collection and mis-

use of private user information [YS14, Yat17, KPIM11], cyberbullying [SRHF17, KS13],

and the distribution of offensive, misleading, false or malicious information [CBDL17,

AS10,Wei10,Aro16]. The propensity of social networks towards such abuse has brought

intense scrutiny and criticism from users, media, and politicians [Smi08, AG17, Sha16,

Lee17, Wak17].

Social networks like Facebook have made progress in raising user awareness to the

dangers of making information public and the importance of deciding who can access

it. However, many users still allow their Facebook friends to access their information,

including timeline and news feed. This, coupled with the fact that people often have

significantly more than 150 Facebook friends1 – the maximum number of meaningful

friend relationships that humans can manage [Dun92]) – suggests that Facebook users

may still be vulnerable to attacks.

To evaluate user perception of exposure to abusive friend behaviors, we designed 2

user studies (total n = 80) where each participant had to evaluate 20 of their randomly se-

lected Facebook friends. 65 of the 80 participants admitted to have at least 1 friend whom

they perceived would abuse their status updates or pictures, and 60 of the participants

had at least 1 friend whom they perceived would post abusive material (i.e., offensive,

misleading, false or malicious). This is consistent with recent revelations of substantial

abuse perpetrated through Facebook, including Cambridge Analytica’s injection of con-

tent to change user perception [OJ18], and Facebook’s admission that in the past two

1Participants in our studies had up to 4,880 friends, M=305.
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years Russia-based operatives created 80,000 posts that have reached 126 million users in

the US [BBC17a, Lee17].

Further, 55 of the 80 participants admitted to have at least 1 Facebook friend with

whom they have never interacted, either online or in person. Such stranger friends

could be bots [VFD+17] that passively collect sensitive user data and later use it against

the user’s best interest, as we also show through pilot study answers. This corrobo-

rates Facebook’s recent estimate that 13% (i.e., 270 million) accounts are either bots or

clones [Hea17]. Stranger friends can use the collected data to infer other sensitive user in-

formation [YS14], identify “deep-seated underlying fears, concerns” by companies such

as Cambridge Analytica [Lap18], perform profile cloning [KPIM11], sextorsion [Yat17],

identity theft [NWM10], and spear phishing [GHW+10] attacks.

These studies signal the need for defenses against abusive and stranger friends, that

include restricting the abusers’ access to user information, unfollowing them and even

unfriending - removing them from the friend list. When asked directly, participants in

our studies unfollowed and restricted access for abusers in 91.6% and 90.9% of the cases,

respectively. When informed about the potential privacy risks posed by stranger friends,

participants chose to unfriend or sandbox (block bi-directional communications with)

such friends in 92.45% of the cases.

While Facebook has promised to take swift and decisive action to curtail attacks [Guy18,

MZ.18], we observed few changes concerning the handling of friend relationships. This

leaves spam friend requests as an alternative for attackers to gain access to personal data

of Facebook users. To prove this point, in a first contribution, we show through user

studies that little has changed since 2014 [RBJB14], and regular Facebook users are still

vulnerable to spam friend requests. We further show that 8 out of 10 in-person interview

participants that we recruited from random people in our city, and 26 out of 30 online

participants who were recruited from the crowdsourcing website, have each accepted at
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least 1 synthetic Facebook friend invitations from complete strangers that we fabricated,

when asked to make a decision. There were 19 online participants who confirmed at least

1 such synthetic friend invitation even without inspecting the sender’s profile.

We conjecture that the blame for confirming perfect strangers as friends, lays at least

in part with the Facebook UI design for viewing and processing pending friends, that en-

courages users to quickly accept pending friends, especially if they are well-crafted, even

though perfect strangers. We have developed new defensive user interfaces for processing

pending invitations in Facebook, that encourage users to carefully inspect and question

their friend invitations, and train users to avoid accepting invitations from strangers. From

3 user studies with 120 online participants, we found that when compared to a control,

our solutions reduced confirmed synthetic friend invitations by up to 42.6%, reduced

blind confirms by 21.9%, increased inspected synthetic friend profiles by 54.67%, and

increased average decision times by 40.3%, respectively.

1.2 Problem Definition and Contributions

We observe that abuse detection and prevention mechanisms, as proposed in academic

work and implemented in popular online social networks, are ineffective to ensure that

the users are protected from the perceived friend abuse [Lee17, Lap18, AG17, Sha16].

In this thesis, we posit that friends and pending friends who are perceived as abusive by

users, can be automatically detected, without human interaction. Further, we posit that

tools can be developed to accurately predict the defenses against such friends, that users

would be willing to execute.

This dissertation makes several contributions which are described in the following

Sections from 1.2.1 to 1.2.8.
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1.2.1 Contribution-1: Perceived Friend Abuse Questionnaire

In Section 1.1, we have introduced the idea of friend abuse problem in online social net-

works like Facebook. We have performed several user studies to confirm the widespread

friend abuse problem in Facebook and developed a friend abuse questionnaire that cap-

tures the user perception that a Facebook friend is abusive or a stranger. Moreover, we

have also devised rules to convert questionnaire answers into defense actions.

1.2.2 Contribution-2: Abuse and Defense Prediction

We have proposed and evaluated the hypothesis that data recorded by Facebook can be

used to predict the user perception of friend abuse. In order to automate the implemented

system, we have developed mutual activity features and used them to train supervised

learning algorithms to predict user perceived friend abuse, and defensive actions that

users are willing to take against the perceived perpetrators. We have also shown through

our user studies, that the automatic abuse prediction and defense mechanism is efficient,

practical and well-receieved by the real world Facebook users.

1.2.3 Contribution-3: Open Source AbuSniff as an Android App

We have implemented AbuSniff in Android platform as an Android app, and evaluated it

through user studies with 263 participants from 25 countries and 6 continents. We have

also made AbuSniff available to be downloaded from Google Play [Abu17a], and made it

open source [Abu17b] so that anybody can contribute to the system and improve it further.
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1.2.4 Contribution-4: Positive Influence on Participant Willingness

We have shown that the questionnaire based AbuSniff is significantly more efficient than

control in terms of participant willingness to unfriend and restrict the abusive friends.

We have also shown that the predictive AbuSniff can accurately predict questionnaire

responses and the abusive friends that users prefer to ignore.

1.2.5 Contribution-5: Vulnerability on Stranger Friend Invitation

We conjecture that Facebook UI design for viewing and processing pending friends en-

courages users to quickly accept pending friends, especially if they are well-crafted,

even though perfect strangers. We have confirmed through in-person and online studies,

that Facebook encourages blind and rapid friend confirmations, including from perfect

strangers.

1.2.6 Contribution-6: New Friend Request Interface for Facebook

We have introduced FLock, a new interface design for viewing and processing received

friend invitations in Facebook, that encourages users to carefully investigate pending

friends. We further introduced T-FLock, a system that trains users to be suspicious of

friend spam and helps them to filter out the friend spam more effectively.

1.2.7 Contribution-7: Evaluation Scores

We have introduced scores to evaluate the ability of developed solutions to raise awareness

and prevent friend spam attacks in Facebook. We have shown that careful changes to the

Facebook pending friend UI can significantly improve the number of inspected profiles,

5



the number of blind confirms, the time to inspect and decide, and the rejection rate of

strangers.

1.2.8 Contribution-8: User Decision Predictor

We have introduced and developed the first classifier to predict user decisions on pending

invitations. We used k-fold cross-validation for time series for the classification. Without

using the timing information, our Random Forest classifier achieved an aggregate F1 of

over 65% and using the time information for an F1 of over 88%.

1.3 Related Publications

This dissertation has been written based on the following list of publications:

• Sajedul Talukder and Bogdan Carbunar. AbuSniff: Automatic Detection and De-

fenses Against Abusive Facebook Friends. In Proceedings of the International AAAI

Conference on Web and Social Media, pages 385–394, 2018.

• Sajedul Talukder and Bogdan Carbunar. When Friend Becomes Abuser: Evidence

of Friend Abuse in Facebook. In Proceedings of 9th ACM Conference on Web Science

(WebSci), 2017.

The following two manuscripts are currently under review:

• Sajedul Talukder and Bogdan Carbunar. A Study of Friend Abuse Perception in

Facebook. ACM Transactions on Social Computing (TSC), 2018. (In Submission).

• Sajedul Talukder, Nestor Hernandez, Mozhgan Azimpourkivi and Bogdan Carbunar.

“I don’t remember exactly, but ...”: Vulnerabilities and Defenses to Facebook Strangers.

In The Fifteenth Symposium on Usable Privacy and Security (SOUPS), 2019. (In Sub-
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Figure 1.1: Organization of this dissertation with arrows indicating dependencies.

mission).

1.4 Organization of the Dissertation

We conclude this introductory chapter with a preview of the remainder of the dissertation.

Chapter 2 presents the background and model of this dissertation. Chapter 3 presents the

related work. Chapters 4 and 5 contain original contributions. Concluding remarks, open

problems, and some potential avenues for future work appear in Chapter 6. The structure

and dependencies between chapters are shown in Figure 1.1. The contributions of this

dissertation are laid out in the following chapters as follows:

• Chapter 2: We discuss the background of the research of this dissertation. Section

2.1 provides the definition of the online social network. Section 2.2 discusses the

history of the online social networks: CompuServe, Talkomatic, BBS, Six Degeres,
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AOL, Friendster and Hi5. Section 2.3 describes the history of Facebook along with

the terminologies used in Facebook. Section 2.4 presents the system model. Section

2.5 concludes the chapter by presenting the adversary model.

• Chapter 3: We present the literature related to this dissertation. Section 3.1

presents the literature for the cyber abuse problem. Section 3.2 presents the lit-

erature for the cyber abuse in social networks. Section 3.3 presents the literature

for the cyber abuse detection and defenses. Section 3.4 presents the literature for

the personalized privacy setting tools. Section 3.5 presents the literature for the

industry developments. Section 3.6 presents the literature related to AbuSniff per-

spective. Section 3.7 presents the literature on the friend spam model. Finally,

section 3.1 concludes the chapter by presenting the literature on the friend spam

detection and prevention.

• Chapter 4: We present our work on automatically detecting and defensing against

the abusive friends in Facebook. In Section 4.1, we present the introduction with

the summary of contributions. In Section 4.2, we account for the restrictive actions

against the Facebook friends. In Section 4.3 we present our research objectives.

Section 4.4 discusses the questionnaire module, abuse inference engine and inter-

vention module. Section 4.5 explains the predictive version of AbuSniff system

with a detail discussion of the abuse prediction module and data collection module.

Section 4.6 outlines the user study. Section 4.7 presents the results along with the

summary of the findings. Section 4.8 discusses various aspects and limitations of

the AbuSniff system. Finally, 4.9 concludes the chapter.

• Chapter 5: We present our work on the vulnerabilities of the Facebook stranger

and spam friend invitations and their defenses. Section 5.1 presents the introduction

with the summary of contributions. Section 5.2 presents the Control app, FLock

system and T-FLock system. In Section 5.3, we present our methods along with
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the evaluation scores and ethical considerations. Section 5.4 presents the results

along with the comparisons of the Control, FLock and T-FLock, and prediction

of the user decisions on the pending friends. Section 5.5 presents the study time-

lines from three different experiments. Section 5.6 discusses various aspects and

presents some future recommendations. Section 5.7 accounts for the limitations.

Finally, section 5.8 concludes the chapter. 5.9 contains the appendix that includes

the questionnaire.

• Chapter 6: We conclude our discussion of this dissertation in this Chapter. Section

6.1 summarizes our work of the final contribution. Section 6.2 proposes some of

the possible future research directions for our dissertaton work.
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CHAPTER 2

BACKGROUND AND MODEL

2.1 Online Social Network Definition

There has been much controversy over the definition of an online social network and the

scope of the definition. General people can easily spot and differentiate the social network

from other networks, but establishing a formal definition is necessary in order to better un-

derstand it. According to Merriam-Webster, online social network is “an online service or

site through which people create and maintain interpersonal relationships.” [Web]. While

this definition covers an important aspect of the online social network communication fea-

ture, a more broad definition encompassing various other communication aspects would

be more accurate. We can define online social network as the digital communication plat-

form which enables the users to create profile, search and connect with each other either

individually or in groups, and share their thoughts, medias, and various other contents.

One easy way to distinguish other forms of networks from online social networks is the

social network users should have a public or a restricted profile and people should be able

to search the profile if it is public. There should be some way to connect with the profile

either through some indirect relationship (follow) or some direct relationship (friend).

Another important thing that comes out from this definition is that online social media

should facilitate the user to communicate directly with their peers or connections, most

often at real-time. This aspect of the definition differentiates the news websites, blogs and

forums from the online social network. Although people can post content, comment and

reply to the comments on those websites, these do not amount to a real-time direct com-

munication. Also, another important point to be noted is that online social networks are

often based on the content that their users generate, either through their communication

or through their posting of contents.
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2.2 History of Online Social Networks

Online social networks have become an integral part of people’s life. It is simply unimag-

inable for many people what a world without the online social networks could be. Online

social networks have dramatically changed the way we communicate with our families,

friends and peers. we use online social networks to stay connected with our family mem-

bers, to communicate with someone thousands of miles away, to get updates about the

people we care and share our thoughts and updates with others. The whole world has

come under a single umbrella and it is possible to search the huge database with billions

of people to find the right people we look for. From the ancient times, people have al-

ways looked for ways to communicate with others, through pigeons, letters, telegraphs or

telephones. Often these communications mediums were very time consuming compared

to the modern times. Physical distance, geographical restrictions and weather conditions

often hampered the older forms of communications. But the inquisitive nature of the hu-

man being led to the invention of internet in the 20th century, which radically changed the

way people communicated. Thankfully, with the internet people experienced faster way

to communicate irrespective of the geographical boundary. Internet enabled the people

to think about smarter way of communication and invent the peer to peer communica-

tion like email and messaging application. The modern age took over the older internet

communication and gave birth to the online social networks.

CompuServe. CompuServe was a file sharing service in the early internet ages in the

1970s where the users could also access news and events. At the beginning, it was a

mainframe computer communication service mainly serving business-oriented solution.

It had a chat application embedded in it which allowed the users to experience true inter-

action via exchanging messages with each other. The system also allowed the users to join

thousands of discussion groups and forums and stay up-to-date with the current trends or
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Figure 2.1: Screenshots of the older social networks: (a) CompuServe service. (b) Bul-
letin Board System. (c) Geocities. (d) Friendster.

subject matters. It was extremely popular and by the late 1980s, it was available in the

public domain. Members of the forum were able to post questions or discussions, and fel-

low members could respond to that thread. This was a preliminary version of the concept

of “post” like current day social networks where other users can respond by reacting or

commenting.

Talkomatic. Talkomatic was the pioneer of the online chat system which was created

in 1973 by Doug Brown and David R. Woolley. It was a multi-user system offering six

different channels on the PLATO system that was located in the University of Illinios. The

channels were similar to a “room” and each channels could support maximum five users.

Talkomatic gained much popularity which was being used by a large online community.
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This was one of the earliest online systems allowing “online chatting” that paved the

way for the later modern online social networks.

BBS. Bulletin Board System, or in short BBS was the online meeting place in the late

1970s to 1980s and 1990s where the users were able to exchange messages with each

other. The users could also connect to a central system using dial-up connection to the

host machine which allowed them to download software, games and files. However, the

connection to the BBS was limited to one person at a time. It was extremely popular

to the hobbyists to discuss about various aspects of their projects. Since the connection

was made over telephone lines, the cost of long-distance calling was high which often

limited the system to local only users. Though the technology had various limitations, it

was really popular among it’s users which helped them to socialize virtually. However,

the system was highly criticized for allowing the users to share virus code, illicit adult

contents and various banned materials. Nonetheless, it was the beginning of the idea of

current day “timeline”, where people can share their contents, ideas and files with other

people.

Six Degrees. Six Degrees was launched in 1997 which is considered as one of the first

true online social network sites. The site was based on the idea that every individual in

the world is connected to each other with maximum six degrees of separation, or formally

known as “six degrees of separation” theory. The site allowed the users to create indi-

vidual profile, add friends the profile, search for other profiles and create groups. It was

highly popular at that time which reached 3.5 million users. It introduced the concept of

“profile” that is an integral part of current day social network like Facebook. However,

there were complains against the social network that it was driving membership by allow-

ing spam invitations. Eventually, the network was shut down in 2000 after being bought

by YouthStream Media Networks in 1999.
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AOL Instant Messenger. AOL Instant Messenger started it’s journey in 1997. It was

the first ever instant messaging service which allowed the users to chat with each other

instantly. The users could also create profile which included a biography about the user.

The users could also search for other profiles. It was one of the true predecessors of the

modern online social networks with “instant messaging” capability.

Friendster. Friendster was launched in 2002 as a major competitor of Six Degrees. It

was mainly intended to be a dating site but the users could create profile and add friends

in their personal network. It also allowed the users to post photo, video and message and

share with the connections. The connections could also post comments on the shared con-

tents. Like the Six Degrees, it also shared a similar concept called “Circle of Friends”. It

was extremely popular and soon after it’s start, it reached more than one hundred million

users. Friendster was a true predecessor of the “status update“ of the modern online

social network like Facebook which allowed the posting of text, photo and video. How-

ever, despite it’s popularity at that time, it failed to keep up with the more recent social

networks and stopped it’s services in 2015. It was officially closed in 2019.

Hi5. Hi5 was launched in 2003 and it soon established itself as one of the major online

social networks. Like the other social networks, users can have profile in Hi5, but unlike

other networks the friends are consist of direct friends (first degree), friends of friends

(second degree) and friends of friends of friends (third degree). The profile can contain

various personal information. It also allows the users to post status updates, upload photos

and join various groups. It currently has around 60 million users in the world (mostly

outside of US). This network first introduced the concept of “public profile”, where

anyone can see the profile, and “friends only profile”, where only friends can see the

profile.
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Figure 2.2: Facebook.

2.3 Facebook

Facebook, the most influential and popular online social network in the history of mankind

until now was founded in 2004 by Mark Zuckerberg, Andrew McCollom, Eduardo Saverin,

Chris Hughes, and Dustin Moskovitz from a dorm room in Harvard. It first started as a

campus-only networking site for the university students, which later transformed into a

online social network for the general people. At the beginning, users were only allowed

to join Facebook if some already existing Facebook user had sent them the invitation.

However, as the popularity of Facebook grew, this restriction was removed and anyone

could join Facebook without any exclusive invitation. It quickly surpassed all the other

existing online social networks like MySpace, Hi5 and Friendster. Soon it became the

most visited website in the world. It is now the most popular online social network in

the US and in the whole world having more than 2.3 billion users. More than half of the

users login to Facebook everyday and spend a substantial amount of time in Facebook.

The network generates over $40 billion in revenue each year and values over $104 billion,

making it one of the most important tech companies in the world.
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2.3.1 Facebook Terminologies

We list the most common terminologies used in Facebook.

Profile. Profile in Facebook refers to the entire set of information that are saved in a Face-

book account that contains the user photos, stories, videos, basic information, timeline,

newsfeed, biography and all the Facebook friends. The profile can be private, locked or

public.

Timeline. Timeline (a.k.a wall, or profile) is the place where the user can share her posts,

photos, videos, check-ins, interests, event attendance and other activities (e.g., posting

comments on a status update or picture, confirming a new friend, etc). These activities

appear as stories, in reverse chronological order. The timeline also includes friend activ-

ities that directly concern the user, e.g., their comments, status updates, notes or pictures

that reference or include the user. This sensitive information is accessible by default by

the user’s friends.

Newsfeed. Newsfeed is a constantly updating place where the user receives the updates

(likes, comments, attendance, interests, status updates, stories, events) of the friends that

she follows. A user’s newsfeed shows stories created by her friends, groups, liked pages,

and subscribed events. Stories are sorted based on various features, e.g., post time and

type, poster popularity.

Friend. Friend in Facebook is a form of relationship. Each user has a friend list of other

users with whom she has formed friend relationships. To befriend someone, a user needs

to send a friend invitation and be approved. When two users become friends, they both

automatically follow each other as well. Adding someone as a friend in Facebook enables

both the users to see each other profiles and interact.

Follow. Follow in Facebook is a type of relationship that allows the follower to subscribe

to someone’s public stories on Facebook and interact with the story (like or comment).
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Figure 2.3: Anonymized Facebook interfaces: (a) Timeline. (b) Newsfeed.

Following someone in Facebook automatically shows her updates in the newsfeed of the

follower.

Post. Post in Facebook refers to the story that the user shares with her followers. Post

may contain only text or include images and videos along with check-ins, tags, feelings

and locations. User gets notification from Facebook when there happens any interaction

with that post. Posts are stored in the timeline of the user’s profile.

Tag. Tag is a type of connection in the Facebook post that can relate another person or

page with the post by showing a link to that person or page in the post. If someone tags

a user in a post, the user will get notification from Facebook and her name will appear in

the post.

2.4 System Model

We consider a Facebook-like social network, where users form friend relationships, ini-

tiated when users send friend invitations to other Facebook users. Friend invitations are

stored in a pending friend list. Such pending friends cannot access any of the non-public

information of the user.
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Users can inspect their pending friend lists in order to make a decision, and view

the profile of any pending friend, by tapping on its entry in the pending friend list. If

the account of the pending friend is public, the user will be able to access information

that includes the profile photo, name, number of mutual friends, occupation, current city,

country of origin, marital status, number of followers, education information, photos and

recent timeline posts if any. If the profile of the pending friend is not public, the user

can only see the profile photo, name, number of mutual friends, number of followers, and

location.

The user can either confirm or delete a pending friend. Upon confirmation, the pend-

ing friend is moved to the user’s friend list, where the friend will be able to access all the

account information that the user shares with friends.

Each user has a friend list of other users with whom she has formed friend relation-

ships. When two users become friends, they both automatically follow each other as well.

Following someone lets the user receive that person’s status updates show up in her news

feed. A user’s news feed shows stories created by her friends, groups, and subscribed

events. Stories are sorted based on various features, e.g., post time and type, poster pop-

ularity.

The social network also allows users to simply follow instead of befriend another user.

Following does not involve an invitation and approval process. Following someone other

than a friend lets the user get that person’s publicly shared status updates automatically

show up in her news feed, but not vice versa.

The timeline of the user includes her updates, photos, check-ins, and other activities

along with friend activities that directly concern the user, e.g., their comments, status

updates, notes or pictures that reference or include the user. This sensitive information is

accessible by default by the user’s friends. While users can control with whom they share
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Figure 2.4: Anonymized Facebook interfaces: (a) Friendlist. (b) Friend Request.

each story, i.e., through the audience selector option, it is well known that they often use

the default settings [MJB12, LGKM11, DLHH09].

2.5 Adversary Model

Friend spam. We consider an adversary who controls multiple social network accounts,

a.k.a sockpuppets or Sybils, and uses them to send friend invitations to other, victim

accounts. Such behavior is known as friend spam or infiltration campaign [RBJB14].

If a spam invitation is confirmed, the spammer can collect private information from

the befriended victim [BBC17a, Yat17, YS14, NWM10, GHW+10], use it to infer other

sensitive user information [YS14], identify “deep-seated underlying fears, concerns” by

companies such as Cambridge Analytica [Lap18], inject content to change user percep-

tion [OJ18], distribute fake news, misinformation, propaganda and malware [BBC17a,

Lee17, Sin14, Aro16, Wei10, AS10], and perform cyberbullying [WCZB+16, LLGL13,

EN11], profile cloning [BSJ14], sextorsion [Yat17], identity theft [NWM10], and spear

phishing [GHW+10] attacks.
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We assume that the adversary can use bots to maintain his sockpuppet accounts and

send friend spams. Facebook estimated that 13% (i.e., 270 million) of their accounts

are either bots or clones [Hea17], and also admitted that Russia-based operatives created

80,000 posts that have reached 126 million users in the US [BBC17a, Lee17]. This sug-

gests that friend spam, i.e., receiving friend invitations sent from adversary-controlled

accounts, is a threat with substantial impact in social networks.

Privacy abuse. We consider adversaries who leverage the above communication mecha-

nisms to send friend spam [GHW+10,SKV10,BHI+08,TN10] from fake, Sybil accounts

to intended victims. Once victims accept friend invitations from such accounts, the at-

tackers can collect sensitive information (profiles, photos, friend lists, locations visited,

opinions) posted by friends on their timelines or take screenshots of stories. We focus

on the following mechanisms to perpetrate abuse through Facebook friends: The adver-

sary can collect personal information and then use this data to infer more sensitive infor-

mation [YS14], initiate sextorsion [Yat17], perform profile cloning [KPIM11], identity

theft [NWM10], and spear phishing [GHW+10] attacks.

Timeline abuse. The Facebook timeline is one of the social networking affordances that

provides the dimensions of persistence, searchability, replicability and invisible audience,

known to magnify bullying [Boy07]. Cyberbullying is defined as the use of the internet

and devices to send or post text or images intended to hurt or embarrass another person,

see e.g., [DJH+12]. In Facebook, adversarial users can post abusive replies to stories

(e.g., status updates, photos) posted by friends on their own timeline. The abusive replies

appear on the timeline of the victim, where the original stories were posted. Kwan et

al. [KS13] have shown that the intensity of Facebook use and engagement in risky Face-

book behaviors were related to Facebook victimization and bullying, respectively.

News feed abuse. The adversary posts abusive material on his timeline, which is then

propagated to the news feed of his friends. Abusive information includes material per-
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ceived to be offensive, misleading, false, or malicious. For instance, Facebook revealed

that Russia-based operatives created over 80,000 posts that have reached 126 million US

users [BBC17a,Lee17]. When studying the wall posts of 3.5 million Facebook users, Gao

et al. [GHW+10] discovered more than 200K malicious posts with embedded URLs, with

more than 70% pointing to phishing sites. Brown et al. [BHI+08] found that in Facebook,

attackers could send context-aware email to approximately 85% of users, including those

with private profiles.

This is consistent with findings that government sponsored and terrorist organizations

use tweets and news feeds to distribute propaganda and misinformation [BBC17a,Lee17,

Sin14, Aro16, Wei10, AS10].

The above mechanisms can be used to implement a wide range of cyber abuse. In

this thesis, we focus on the perception of users concerning the willingness of their friends

to perform such abuse through these Facebook mechanisms. In Section 4.4.1 we show

examples of these abuse types, as real-life events reported by participants in a pilot study.
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CHAPTER 3

RELATED WORK

The features provided by online services are known to influence abuse and generate

negative socio-psychological effects [SRHF17]. Social networks in particular enable a

diverse set of abusive behaviors, that include the adversarial collection and abuse of pri-

vate information [BBC17a,Yat17,YS14,NWM10,GHW+10], cyberbullying [WCZB+16,

LLGL13, EN11, QBC12], and the viral distribution of fake news, misinformation, propa-

ganda and malware [BBC17a, Lee17, Sin14, Aro16, Wei10, AS10]. In the following we

review literature on social networking abuse types relevant to this work, as well as on the

automatic detection, prevention and mitigation of online abuse, and automated solutions

for personalized privacy and security settings. In the following we review literature on

social networking abuse types relevant to this thesis, as well as on the automatic detection,

prevention and mitigation of online abuse, automated solutions for personalized privacy

and security settings, friend spam models, and friend spam detection and prevention.

3.1 The cyber abuse problem

. The functionality provided by online services is known to influence abuse and generate

negative socio-psychological effects [SRHF17]. Social networks in particular enable a

diverse set of abusive behaviors, that include the adversarial collection and abuse of pri-

vate information [BBC17a,Yat17,YS14,NWM10,GHW+10], cyberbullying [WCZB+16,

LLGL13, EN11, QBC12], and the viral distribution of fake news, misinformation, propa-

ganda and malware [BBC17a, Lee17, Sin14, Aro16, Wei10, AS10].

Wolford-Cleveng et al. [WCZB+16] have used the Partner Cyber Abuse Questionnaire

and found a prevalence of 40% of victimization by cyber abuse among college students

in dating relationships, with no differences in victimization of men and women. Landoll

et al. [LLGL13] developed and used the Social Networking-Peer Experiences Question-
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naire (SN-PEQ), and found that negative social networking experiences were associated

with symptoms of social anxiety and depression, in adolescents and young adults. El-

phinston and Noller [EN11] developed an 8 item questionnaire to explore the impact of

involvement with Facebook on relationship satisfaction and found that Facebook intru-

sion was linked to relationship dissatisfaction via experiences of cognitive jealousy and

surveillance behaviors.

3.2 Cyber abuse and social networks

. Cyber abuse perpetrated by friends has been considered in the past to be outside the

scope of online social network defenses [SCM11]. For instance, Facebook’s Immune

System (FIS) [SCM11] states that “When two users are friends and the behavior of one is

bothering another, ideally the two can resolve conflict [sic] without system involvement.”

However, [KSS+15] found that one of reason for people to fabricate, omit or alter the

truth online is to avoid harassment or discrimination. Such self-censorship may defeat

the “free flow of information” envisioned by Facebook [Zuc06].

Cho and Filippova [CF16] found that Facebook users apply a combination of collabo-

rative, corrective and preventive strategies, along with information control, to address the

privacy challenges encountered in their use of Facebook. Tamir and Eran [MT17] have

shown that users with high perceived behavioral control are more susceptible to peer in-

fluence in adopting online privacy practices, while the intention to adopt privacy practices

is correlated with the intention to influence others.

Wisniewski et al. [WIKP15] found that users whose privacy desires were met in social

networks, reported higher levels of social connectedness than those who achieved less

privacy than they desired. Matthews et al. [MOT+17] studied the digital privacy and

security motivations, practices, and challenges of survivors of intimate partner abuse, and
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conclude that the usability of and control over privacy and security functions need to be

high priorities for technology creators. This research suggests that social networks would

benefit and thus should be co-interested in providing the privacy levels and protections

desired by their users.

3.3 Cyber abuse detection and defenses

. Quercia et al. [QBC12] found that the reasons for ending friend relations are similar in

the real and online worlds, and conjectured that tools can be built to monitor online rela-

tions. Dinakar et al. [DJH+12] observed that by 2012, little attention had been devoted

to automated social network solutions to detect bullying and provide interventions. To

this end, they used datasets of manually annotated comments, NLP features, supervised

learning, and reasoning technique, then introduced several intervention designs. Ashk-

torab and Vitak [AV16] conducted participatory design sessions with teenage participants

to design, improve, and evaluate prototypes that address cyberbullying scenarios. They

describe several design solutions proposed by the participants, and identified several sub-

types of designs for the prevention of abuse, based on the perpetrator, the victim, and

automated systems and bystanders.

Vitak and Kim [VK14] found that the risks perceived by US graduate students in

their self-disclosure use of Facebook include fears of social rejection and of hurting other

peoples’ feelings, especially as posted information is persistent and shared with a diverse

audience. Further, they observed that to mitigate risks, graduate students used a variety of

risk management techniques that include limiting the recipients of posts, hiding friends

from their news feed, and unfriending friends.

To address the challenge of obtaining large training corpora to detect abusive online

content, Chandrasekharan et al. [CSSG17] proposed a Bag of Communities (BoC) tech-

24



nique that leverages large-scale, preexisting data from other Internet communities. They

show that a dynamic BoC model achieves high accuracy after seeing 100,000 human-

moderated posts, thus can be used to better deal with abusive behaviors. Further, Narwal

et al. [NSL+17] proposed UnbiasedCrowd, an automated Twitter assistant that identifies

text and visual bias, aggregates and presents evidence of bias to users, and enable activists

to inform the public of bias, through bots.

Cao et al. [CSY+15] proposed to detect the fake accounts behind friend spam, by

extending the Kernighan-Lin heuristic to partition the social graph into two regions, that

minimize the aggregate acceptance rate of friend requests from one region to the other.

Wu et al. [WSHY15] utilized posting relations between users and messages to combine

social spammer and spam message detection. They extracted the social relations between

users and the connections between messages, and used them as regularization terms over

prediction results. Quercia and Hailes [QH10] leveraged information about friendly and

suspicious devices that the user encounters in time, to decide if the user is the target of

a friend spam attack. A different flavor of friend spam attacks was introduced by Huber

et al. [HMW10], who exploit the unprotected communications between users in social

networks.

AbuSniff focuses on the user perception of strangers friends, their automatic detection

and defenses.

3.4 Personalized privacy setting tools

. Raber et al. [RLG16] introduced Privacy Wedges, a user interface that displays pri-

vacy settings for historical posts and enables users to meaningfully decide with whom to

share social network posts. Liu et al. [LAS+16] proposed a mobile personalized privacy

assistant and show that many of its recommendations on privacy settings for Android
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devices were adopted by its users, and were perceived as useful and usable. Mondal et

al. [MMG+16] have shown that tweet deletion was insecure in Twitter, and proposed an

exposure control mechanism that eliminates information leakage via residual activities.

Amos et al. [ARK15] proposed an agent that uses machine learning algorithms trained on

the data collected from human participants, to detect and incriminate deceptive partici-

pants in forums and chat-rooms. While automatic, privacy setting assistants can improve

the privacy and security of their users, one challenge is that not all the friends are equally

trustworthy or suitable to see all the user’s posts, while some may be even abusive or

strangers.

3.5 Industry developments

. Industry backed technologies to solve the online abuse problem are emerging and are

made publicly available. Notably, Jigsaw and Google have recently released Perspec-

tive [Per17], an API that provides developers with access to anti-harassment tools. Per-

spective uses machine learning to return a “toxicity” metric for any input sentence, that

signals harassment, insults and abusive online speech [Gre17].

3.6 AbuSniff perspective

. We seek to develop tools that ensure that even “at risk” users are safe in Facebook.

While automatic, privacy setting assistants [RLG16, LAS+16] can improve the privacy

and security of their users, one challenge is that not all the friends are equally trustworthy

or suitable to see all the user’s posts, while some may be even abusive or strangers. Under-

standing and detecting user perception of abuse from friends and strangers is a first step in

protecting social network users. AbuSniff is an automated victim-side approach [AV16]
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to detect the user’s abuse perception, that avoids the problems associated with accessing

individual posts [DJH+12]. Similar to the experienced participants in the study of Vitak

and Kim [VK14], our tools (1) limit the access to user data for friends perceived to be

abusive, (2) hide friends perceived to post offensive, misleading, propaganda or malicious

information from the news feed of the user, and (3) unfriend or sandbox friends who are

perceived as strangers or who qualify for both points (1) and (2).

Unlike prior work on friend spam detection [CSY+15, WSHY15, QH10, HMW10],

AbuSniff focuses on the user perception of strangers friends, and their automatic detection

and defenses.

Further, AbuSniff can reduce the audience that needs to be considered by audience

selector solutions, e.g., [RLG16], and can also be used in conjunction with tools that

monitor individual social networking events and actions [DJH+12, Per17].

3.7 Friend spam models

. Previous work has explored influential factors in privacy-related behaviors of social

network users. Dong et al. [DJK15] revealed that factors that impact privacy-related deci-

sions in Google+ include the sensitivity of the shared data, the user’s perceived trust-

worthiness of the requester, and the behavioral and psychological traits of the users.

Toma [Tom14a] found that the factors that impact the evaluation of trustworthiness of

other users in Facebook, include their number of friends, profile picture, number of “likes”

received from other users, number of tagged images, and number of fields that were filled

out in the profile. Hristova et al. [HMM14] have shown a greater profile similarity be-

tween accounts that have stronger friendship ties in Facebook. These studies suggest that

people may be more willing to accept friend requests from accounts with trustworthy-

looking profiles, and also similar to their own.
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Rashtian et al. [RBJB14] used grounded theory to develop a friend request acceptance

model that explains how various factors influence user behaviors. The identified factors

include the profile picture and name, knowing the person in real life and having a common

background, gender, and the number of mutual friends. Our interview study confirms that

5 years later, several of these factors remain decisive. In this paper, we instead study

participants’ behaviors as performed on both their actual pending friends, and on ground

truth, synthetic strangers. We also design interfaces that encourage users to investigate

their pending friend requests, and to identify and delete invitations received even from

attractive strangers.

Rashtian et al. [RBJB14] further presented design guidelines to improve the design

of the user interface for processing pending friends. The focus of our work is different,

as our concern is to understand how modifications to the user interface, coupled with

training, can improve user awareness when accepting friend requests in Facebook.

3.8 Friend spam detection and prevention

. Boshmaf et al. [BMBR11] and Potharaju et al. [PCNR10] were the first to demonstrate

that large scale, and even automated friend spam campaigns are possible in Facebook.

Potharaju et al. [PCNR10] showed that their friend spam experiments achieved an in-

filtration rate that ranged between 45% to 80%. Boshmaf et al. [BMBR11] developed

adaptive social bots and have used them to spam and infiltrate Facebook accounts, with a

success rate of up to 80%.

Sybil account detection solutions can help detect friend spam, e.g., by flagging in-

vitations sent from detected Sybils, to be spam. Sybil detection work has often made

the assumption that attackers can easily form social relationships between Sybil accounts

they control, but find it hard to establish links to honest accounts [AAA+17, CSY+15,
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YGKX10,YKGF08,TMLS09]. However, friend spam studies such as [RBJB14,BMBR11,

PCNR10], have debunked this assumption in Facebook. Further, Yang et al. [YWW+14],

showed that in Renren, Sybil accounts do not form tight-knit communities, and are well

connected with honest users.

To decide if the user is the target of a friend spam attack, Quercia and Hailes [QH10]

proposed to maintain information about friendly and suspicious devices that the user en-

counters in time.

To address this problem, Boshmaf et al. [BLS+15] leveraged the observation that

spammers have no control over victim accounts. Thus, benign, victim accounts form a

distinguishable classification category. They used this observation to develop a victim

prediction classifier that uses features such as gender, number of friends, and time since

last update. Boshmaf et al. [BLS+15] then introduced a fake social network account

detection system that integrates information about predicted victims into social graph

structures, and uses them to detect the fake accounts performing friend spam.

Cao et al. [CSY+15] proposed to detect fake accounts behind friend spam, by ex-

tending the Kernighan-Lin heuristic to partition the friend graph into two regions, that

minimize the aggregate acceptance rate of friend requests from one region to the other.

Wu et al. [WSHY15] utilized posting relations between users and messages to combine

social spammer and spam message detection.

Talukder et al. introduced AbuSniff [TC18], a system that identifies Facebook friends

perceived by users to be strangers or abusive, and protects the user by suggesting to un-

friend, unfollow, or restrict access to information for such friends. Our focus is on pend-

ing friend invitations, where we lack a history of mutual social network activities, thus

are unable to predict pending friends who would be perceived as abusive. Instead, we

develop and evaluate techniques to improve user awareness and responses to friend spam,

and build a classifier to predict user decisions.
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CHAPTER 4

ABUSNIFF: AUTOMATIC DETECTION AND DEFENSES AGAINST ABUSIVE

FACEBOOK FRIENDS

4.1 Introduction

Influential social networks like Facebook that encourage casual friendship relations, ex-

pose their users to a range of vulnerabilities and abuse, that include cyberbullying [SRHF17,

KS13, KLLA12], the distribution of offensive, misleading, false or malicious informa-

tion [CBDL17, AS10, Wei10, Aro16], and the collection and misuse of private informa-

tion [YS14, Yat17, KPIM11]. Such abuse can be perpetrated by real friends, acquain-

tances, or even perfect strangers, since social network users often have significantly more

than 150 friend relationships, which is the number of meaningful friend relationships

that regular humans can manage [Dun92]). For instance, in [CRAD16], we observed

that 75% of 68 participants declared not to remember at least one of their 20 randomly

selected friends.

We conjecture that such attacks can occur through malicious users or even bots [Hea17],

who infiltrate the friend lists of victims, then use social networking affordances, e.g.,

timelines and news feeds, to collect their sensitive information, and to actively abuse and

manipulate them. Some of the “excess” friends may not be friends at all. For instance

in [CRAD16], we observed that 75% of 68 participants declared not to remember at least

one of their 20 randomly selected friends.

To further investigate this observation, we have evaluated the user perception of ex-

posure to abusive friend behaviors, through 2 user studies (total n = 80) where each par-

ticipant had to evaluate 20 of their randomly selected Facebook friends. 65 of the 80

participants admitted to have at least 1 friend whom they perceived would abuse their

status updates or pictures, and 60 of the participants had at least 1 friend whom they per-
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ceived would post abusive material (i.e., offensive, misleading, false or malicious). This is

consistent with recent revelations of substantial abuse perpetrated through Facebook, in-

cluding Cambridge Analytica’s injection of content to change user perception [OJ18], and

Facebook’s admission that in the past two years Russia-based operatives created 80,000

posts that have reached 126 million users in the US [BBC17a, Lee17].

Further, 55 of the 80 participants admitted to have at least 1 Facebook friend with

whom they have never interacted, either online or in person. Such stranger friends

could be bots [VFD+17] that passively collect sensitive user data and later use it against

the user’s best interest, as we also show through pilot study answers. This corrobo-

rates Facebook’s recent estimate that 13% (i.e., 270 million) accounts are either bots or

clones [Hea17]. Stranger friends can use the collected data to infer other sensitive user

information [YS14], identify “deep-seated underlying fears, concerns” by predators such

as Cambridge Analytica [Lap18], perform profile cloning [KPIM11], sextorsion [Yat17],

identity theft [NWM10], and spear phishing [GHW+10] attacks.

These results signal the need to develop defenses against abusive and stranger friends,

that include restricting the abusers’ access to user information, unfollowing them and

even unfriending - removing them from the friend list. When asked directly, participants

in our studies unfollowed and restricted access for abusers in 91.6% and 90.9% of the

cases, respectively. When informed about the potential privacy risks posed by stranger

friends, participants chose to unfriend or sandbox (block bi-directional communications

with) such friends in 92.45% of the cases.

We leverage these findings to develop AbuSniff (Abuse from Social Network Friends),

a system that evaluates, predicts and protects users against perceived friend abuse in

Facebook. AbuSniff also builds on the findings of Grinberg et al. [GKAN17] that Face-

book users are more likely to expect feedback on their posts from closer friends, and of
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Toma [Tom14b] that Facebook profile cues (e.g., number of friends, tagged photographs,

comments) can predict user perceived trustworthiness.

Specifically, we first develop a friend abuse questionnaire that captures the user per-

ception that a Facebook friend (1) is a stranger, (2) would publish abusive responses to

pictures and status updates posted by the user, or (3) would publish and distribute offen-

sive, misleading, false or potentially malicious information. Further, we devise rules to

convert identified abuse into defense actions.

We show that when using this questionnaire based version of AbuSniff, participants

in our user studies were willing to restrict the access of friends whom they perceive

would abuse their timeline, and were willing to unfollow friends whom they perceive

would abuse them through their news feed. While participants were unwilling to unfriend

strangers, they were more willing to sandbox them.

We also show that when compared to a control experiment performed with 27 partici-

pants, AbuSniff significantly increased participant willingness to unfriend (17% of cases

vs. 1% in the control) and restrict friends (11% of cases vs. 2% in the control).

Further, in a user study with 40 participants, involving 1,200 Facebook friends, we

found that without having to answer the questionnaire, participants accepted 78% of

AbuSniff’s recommendations for defensive actions against abusive friends and strangers.

In a study with 62 participants, AbuSniff increased participant self-reported willingness

to reject invitations from perceived strangers and abusers, their awareness of friend abuse

implications and perceived protection from friend abuse.

To address the observed difficulty of answering a questionnaire for each Facebook

friend, we propose and investigate the hypothesis that data recorded by Facebook can be

used to predict the user perception of friend abuse. We introduce several mutual activity

features that quantify the Facebook recorded interactions between a user and her friend.

We then use supervised learning algorithms trained on these features to predict (1) user
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answers to the questionnaire, thus user perceived strangers and friend abuse and (2) the

user willingness to take defensive actions against such friends.

When using data we collected from 1,452 friend relationships (n=57), we found that

supervised learning algorithms trained on AbuSniff’s mutual activity features were able

to predict the user answers to the questionnaire questions for friends (1) with whom the

user never interacts in Facebook (F-measure = 86.6%), (2) with whom the user never

interacts in real life (F-measure = 89.7%), as well as those whom the user perceives likely

to (3) abuse their sensitive photos (F-measure = 75.7%), (4) abuse their status updates

(F-measure 69.2%), and (5) post offensive, misleading, false, or malicious content (F-

measure = 78.0%). Further, AbuSniff was able to predict the cases where the users chose

to ignore the suggested defensive action against friends, with an F-Measure of 97.3%.

In this chapter we propose AbuSniff (Abuse from Social Network Friends), a system

that leverages the above findings to evaluate, predict and protect users against perceived

friend abuse in Facebook. AbuSniff has the potential to mitigate the effects of abuse,

and reduce its propagation through social networks and its impact on social processes

(including electoral). AbuSniff has the potential to mitigate the effects of friend based

abuse, and reduce its propagation through social networks and even its negative impact on

social processes (e.g., electoral). In summary, we introduce the following contributions:

• We develop a friend abuse questionnaire that captures the user perception that a

Facebook friend (1) is a stranger, (2) would publish abusive responses to pictures

and status updates posted by the user, or (3) would publish and distribute offen-

sive, misleading, false or potentially malicious information. We introduce rules to

convert identified abuse into defense actions.

• We conjecture that data recorded by Facebook can be used to predict the user per-

ception of friend abuse. We introduce mutual activity features that quantify the

Facebook recorded interactions between a user and her friend. We use supervised
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learning algorithms trained on these features to predict (1) user answers to the ques-

tionnaire, thus user perceived strangers and friend abuse and (2) the user willingness

to take defensive actions against such friends.

• We have implemented AbuSniff in Android, and evaluated it through user studies

with 263 participants from 25 countries and 6 continents. AbuSniff can be down-

loaded from Google Play [Abu17a], and is open source [Abu17b].

• We show that that the questionnaire based AbuSniff is significantly more efficient

than control in terms of participant willingness to unfriend and restrict friends. The

predictive AbuSniff can accurately predict questionnaire responses and the abusive

friends that users prefer to ignore.

4.2 Restrictive Actions Against Friends

AbuSniff leverages several defense mechanisms provided by Facebook to protect the

user against strangers and abusive friends: unfollow – stories subsequently posted by

the friend in his timeline no longer appear in the user’s news feed, restrict – stories pub-

lished by the user in her timeline no longer appear in the friend’s news feed, and unfriend

– remove the friend from the user’s list of friends.

Further, we introduce the sandbox defense option, a combination of unfollow and

restrict: the user and her friend no longer receive stories published by the other. Unlike

unfriending, sandboxing will not remove the user and her friend from each other’s friend

lists.

4.3 Research Objectives

In this chapter we focus on the following key questions that concern friend based abuse:
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Figure 4.1: Questionnaire based AbuSniff architecture. The QRM module delivers the
questionnaire. The AIE module uses the output of QRM to identify abusive friends, and
the IM module asks the user to take a protective action against them. The output of the
QRM, AIE and IM modules is stored for training, and is later used by the predictive
AbuSniff (Section 4.5).

• (RQ1): Are perceived strangers and friend abuse real problems in Facebook?

• (RQ2): Are Facebook users willing to take defensive actions against abusive friends?

• (RQ3-a): Does AbuSniff impact the willingness of users to take defensive actions

on Facebook friends?

• (RQ3-b): Is the willingness of users to take defensive actions impacted by the type

of abuse perpetrated by the friend and the suggested defensive action?

• (RQ4): Can AbuSniff predict abusive friends and the defenses that users are willing

to take against such friends?

• (RQ5): Does AbuSniff impact user awareness of stranger and abusive friends, and

their perception of safety from such friends?

In order for AbuSniff to be relevant, RQ1, RQ2 and RQ5 need to have positive answers.

The answer to RQ3-a and RQ3-b will impact the design of AbuSniff, while a positive

answer to RQ4 will indicate that systems can be built to automatically defend users against

friend abuse.
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4.4 Questionnaire Based AbuSniff

We have designed the AbuSniff system to help us investigate these questions. AbuSniff

is a mobile app that asks the user to login to her Facebook account. As illustrated in

Figure 4.1, AbuSniff consists of modules to identify abusive friends and recommend de-

fensive actions. The questionnaire module (QRM) delivers to the user a set of questions

about each of her evaluation friends. The abuse inference engine (AIE) converts answers

to the questionnaire into actions.

The data collection module (DCM) collects user responses as well as Facebook infor-

mation about each of the user’s evaluation friends. The abuse prediction module (APM)

leverages data collected by DCM and supervised learning to predict the outcome of (and

replace) the QRM and IM modules.

The intervention module (IM) displays the actions decided by the AIE and asks the

user to confirm them. The output of the QRM, AIE and IM modules is stored in a training

dataset, which is used by the predictive AbuSniff (see Section 4.5). In the following, we

detail each module.

4.4.1 The Questionnaire Module (QRM)

We have designed a questionnaire intended to capture the user perception of (potentially)

abusive behaviors from friends in Facebook. Since Facebook users tend to have hundreds

and even thousands of friends, we decided to present the questionnaire for each of only

a randomly selected subset of the user’s friends. One design goal was that the questions

should help identify the perceived use of the abusive mechanisms listed in the adversary

model. To ensure a simple navigation of the questionnaire, we further sought to fit all the

questions on a single screen for a variety of popular smartphones. We have designed the

questionnaire through an iterative process that included a focus group and a pilot study
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Figure 4.2: Anonymized screenshots of the Android AbuSniff app: (a) QRM question-
naire. The first two questions identify stranger friends, questions 3 and 4 identify per-
ceived timeline abuse and question 5 identifies perceived news feed abuse. (b) The IM
UI asking the user to unfriend an abusive friend also explains the reasons for the action,
according to the questionnaire responses. (c) The IM UI asking the user to explain the
reasons for the unwillingness to unfriend in the previous screen. (d) The “unfriend or
sandbox” UI for privacy abuse: sandboxing isolates but does not unfriend or notify the
friend. (e) The UI of the autonomous AbuSniff asking user confirmation to restrict the
access of a friend predicted to be a timeline abuser.

with 2 K-8 teachers, 1 psychologist, 8 students, 1 dentist and 1 homemaker (8 female and

5 male).

Figure 4.2(a) shows a snapshot of the resulting questionnaire, that consists of 5 ques-

tions. The first two questions (Q1) (How frequently do you interact with this friend in

Facebook) and (Q2) (How frequently do you interact with this friend in real life) deter-

mine the user’s frequency of interaction with the friend, on Facebook and in real life.

The options are “Frequently”, “Occasionally”, “Not Anymore” (capturing the case of es-

tranged friends), “Never” and “Don’t Remember”. We are particularly interested in the

“Never” responses.

After answering “Never” for Q1 for a friend, participants in the focus group explained

that they have never initiated conversations with the friend and are either not aware of or

interested in communications initiated by the friend, e.g.,
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“I never did chat with him, he never commented on my photos or any shared thing.

He never puts a like [sic].”

“I never like or comment on his post, I never chat with him. [..] Actually I do not

notice if he likes my posts. But I do not do [sic] any interaction.”

For question Q2, participants agreed that they have never met in real life friends for

whom they answered “Never”. Reasons for accepting the friend invitations from such

friends include “he is a friend of my friend and my friend met him in real life”, and “she

is from my same [sic] college”. This suggests that friends with whom the user has never

interacted in Facebook and in real life, may be strangers. Such strangers may exploit

Facebook affordances (e.g., claim college education) to befriend victims.

The next two questions identify perceived timeline abusers, i.e., (Q3) This friend

would abuse or misuse a sensitive picture that you upload and (Q4) This friend would

abuse a status updated that you upload. The possible responses are “Agree”, “Disagree”

and “Don’t Know”. After answering “Agree” for Q3, participants shared several stories

of abuse, e.g.,

“Once this friend has downloaded my photo and then opened a fake Facebook ac-

count, like with that picture.”, and

“This friend has posted a bad comment in one of my photos. That was my wedding

photo. I felt so offended.”

Participants who answered “Agree” for a friend on Q4 shared other stories of abuse,

e.g.:
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“This friend posted a bad comment on my post and from that post there was other bad

stuff posted on my wall.”, and

“Once I posted a sad status update because I was feeling frustrated. But this friend

then posted a trolling comment on my post.”

The last question (Q5) This friend would post offensive, misleading, false or poten-

tially malicious content on Facebook identifies perceived news feed abusers. Stories

shared by participants who answered “Agree” on Q5 include:

“This friend bothered friends by bad posts [..] The posts were against my own ideas

[sic].”, and

“I have often seen this friend sharing fake news. Sometimes she posts so much bogus

stuff that my news feed gets flooded.”

These examples show that privacy and security abuses occur in the real life interac-

tions of Facebook users and their friends. The following AbuSniff modules seek to predict

the user perception of abuse and convert it into defensive actions that users will consider

appropriate.

4.4.2 The Abuse Inference Engine (AIE)

AbuSniff seeks to provide safe social interactions to regular social network users. To

this end, the abuse inference engine (AIE) takes as input the responses collected by the

QRM or predicted by the APM, and outputs suggested actions from the set { “unfriend”,

“unfollow”, “restrict access”, “sandbox”, “ignore”}.
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Q1 Q2 Q3 Q4 Q5 Action
1 Never Never !Agree !Agree !Agree Unfriend/

Sandbox
2 Never Never ∗ ∗ ∗ Unfriend

3 Never !Never Agree Agree Agree Unfriend
4 !Never Never Agree Agree Agree Unfriend
5 Never !Never Agree !Agree Agree Unfriend
6 Never !Never !Agree Agree Agree Unfriend
7 !Never Never Agree !Agree Agree Unfriend
8 !Never Never !Agree Agree Agree Unfriend
9 !Never !Never Agree Agree Agree Unfriend
10 !Never !Never Agree !Agree Agree Unfriend
11 !Never !Never !Agree Agree Agree Unfriend

12 !Never !Never Agree Agree !Agree Restrict
13 !Never !Never Agree !Agree !Agree Restrict
14 !Never !Never !Agree Agree !Agree Restrict

15 !Never !Never !Agree !Agree Agree Unfollow

16 ∗ ∗ ∗ ∗ ∗ NOP

Table 4.1: Set of rules to convert questionnaire responses to defensive actions. Like
firewall filters, the first matching rule applies. !A denotes any response different from A.
NOP = no operation.

Specifically, AbuSniff (1) limits the access to user data for friends perceived to be

abusive, (2) hides posts from friends perceived to post offensive, misleading, propaganda

or malicious information from the news feed of the user, and (3) unfriend or sandbox

friends who are perceived as strangers or who qualify for both points (1) and (2).

We have used intuition to develop a preliminary set of rules for AIE, see Table 4.1.

The rules are applied on a first match basis: rule r is evaluated only if all the rules 1 to r

- 1 have failed.

Intuitively, the first 15 rules detect restrictive actions. For instance, rule 1 suggests

that a stranger, non-abusive friend should be either unfriended or sandboxed. Rule 2

however applies to stranger friends who are perceived as also abusive: at least one of the

questions Q3-Q5 has been answered with “Agree”. Rule 2 suggests that such a friend

should be unfriended without option for sandboxing. Rules 3-11 apply to non-stranger
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friends who answered “Agree” on at least 2 of Q3-Q5. Since such friends are perceived

as bi-directional abusers (i.e., capable to abuse at least some of the information posted

by the user, and also to post abusive information on their own), the AIE module suggests

unfriending, i.e., cutting bi-directional ties.

Initially, we considered a hard stance against abuse: a friend who scores negatively on

any 2 out of the 5 questions (i.e., assigned “Never” in any of the 2 first questions, “Agree”

in any of the last 3 questions) should be unfriended (rules 1-11). We have later relaxed

rule 1, to also allow sanboxing of such friends.

AIE outputs less restrictive actions against friends with whom the user has interacted

both in Facebook and in real life, and is either only a timeline abuser (restrict, rules 12-14)

or only a news feed abuser (unfollow, rule 15). If none of the first 15 rules matches, the

last rule decides that the friend is not abusive (i.e., ignore). We evaluate and adjust these

rules in the evaluation section.

4.4.3 The Intervention Module (IM)

To help us answer the key research questions RQ2, RQ3-a and RQ3-b we have designed

a user interface that asks the user to take a defensive action against each friend detected

as abusive by the AIE module. The action, i.e., unfriend, restrict, unfollow, is determined

according to the rule matched in Table 4.1.

Figure 4.2(b) shows a snapshot of the “unfriend” recommendation. The UI further

educates the user on the meaning of the action, and lists the reasons for the suggestion,

based on the questionnaire responses that have matched the rule, see Figure 4.2(a).

The user is offered the option to accept or ignore the suggestion. If the user chooses to

ignore the suggestion, the IM module asks the user (through a PopupWindow) to provide

a reason, see Figure 4.2(c). We have conducted a focus group with 20 participants in order
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Figure 4.3: Predictive AbuSniff system architecture. The DCM module collects Facebook
data concerning the relationship between the user and each friend. The APM module uses
this data, and training data collected by the questionnaire based AbuSniff (Section 4.4),
to predict the user responses to the questionnaire. The AIE module is inherited from the
questionnaire based AbuSniff, but uses the output of APM instead of QRM to identify
abusive friends. The optional IM module asks the user to confirm the predicted action
against detected abusive friends.

to identify possible reasons for ignoring “unfriend” recommendations. They include “the

suggestion does not make sense”, “I agree, but I want to unfriend later”, “I agree but I am

still unwilling to unfriend”, and “I don’t want this friend to find out that I unfriended”,

see Figure 4.2(c).

The IM module educates users about the meaning and dangers of having a stranger as

a friend, see Figure 4.2(d). It also offers the option to “sandbox” such friends. According

to the rules of Table 4.1, IM also suggests unfollowing or restricting friends who are

abusive in only one direction of their communications. Figure 4.2(e) shows a snapshot of

the restrict screen, its meaning and reasons for selection.

4.5 Predictive AbuSniff

The questionnaire based AbuSniff requires the user to manually evaluate each friend.

However, the average number of friends per Facebook user is 338, while the median is

200 [Smi18]. To address this problem, we propose to use a supervised learning approach,
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to automatically predict the friends perceived to be abusive and the defenses that users

are willing to implement against them. However, for this approach to work, we need to

provide an affirmative answer to question RQ4 (can AbuSniff predict the abusive friends

and the defenses that users are willing to take against such friends?).

To this end, we introduce the predictive AbuSniff system, see Figure 4.3. The predic-

tive AbuSniff replaces the QRM module with an Abuse Prediction Module (APM). APM

uses training data collected through the questionnaire based AbuSniff (see Figure 4.1 and

Section 4.7.3) and data collected by the data collection module (DCM), to predict the

outcome of the QRM module. In the following we detail the APM and DCM modules.

4.5.1 The Abuse Prediction Module

We introduce several mutual activity features, based on the Facebook data shared by a user

U and a friend F , and use them to evaluate the ability to predict questionnaire responses

and user decisions. Specifically, the features are (1) mutual post count: the number of

stories posted by either U or F , on which the other has posted a comment, (2) common

photo count: the number of photos in which both U and F are tagged together, (3)

mutual friend count: the number of common friends of U and F , (4,5) same current

city and hometown: boolean values that are true when U and F live in the same city

and are from the same place, (6,7) common study and work count: the total number of

places where U and F have studied and were employed together, respectively.

The abuse prediction module (APM) uses supervised learning algorithms trained on

these features, and previously collected questionnaire responses and user decisions, to

predict the user’s answers to the QRM questionnaire and the user’s reactions to suggested

actions. Specifically, for each user U and friend F , APM stores a tuple that consists of

(1) the mutual activity feature values of U and F , (2) U ’s responses to the 5 questions for
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F , and (3) the suggested action for F – ignore (safe friend), unfriend, unfollow, restrict,

sandbox, and (4) the action taken by U for F .

The intuition behind using these features, is that the quantity and quality of shared

Facebook activities with a friend may determine whether the user has interacted with

that friend in Facebook and in real life. In Section 4.7.3 we evaluate the ability of these

features to predict questionnaire answers and user decisions on suggested actions.

4.5.2 The Data Collection Module (DCM)

The Data Collection Module (DCM) collects Facebook data from the user and her evalu-

ation friends, as well as user provided input (e.g., responses from the QRM, choices from

the IM) and timing information. AbuSniff uses this data to make local decisions and par-

tially reports it to our server for evaluation purposes. In Section 4.6.1 we discuss ethical

considerations of the data collection process.

This task is made challenging by the restrictions imposed by Facebook in the Graph

API v2.0 and above. This policy enables an installed app to collect data from the user’s

Facebook account, including gender, birthday and the current city, but prevents the app to

even retrieve the full list of a user’s friends or their Facebook ids. The Facebook friends

API endpoint returns information only from the friends who are using the same app (i.e.,

AbuSniff) and who have specifically granted permission for the app to see their data using

the user friends permission. This is done in order to protect the privacy of users, a big

step forward from early day Facebook policies that enabled crawlers to collect detailed

data of millions of users.

To address this challenge, we have leveraged the observation that Facebook’s app

policy allows JavaScript injection into the HTML source page itself. We have then dy-

namically created different Facebook URLs for the information that we seek to collect.
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The URLs are loaded in WebView, an embedded browser wrapper around the WebKit

rendering engine, which can be used to display web pages inside Android applications.

We then developed JavaScript code that fetches the HTML source contents of the Face-

book page into a Java string. AbuSniff injects this code into the WebView at runtime, i.e.,

through the webview.loadUrl (“javascript:code”) method, where “code” is the Javascript

code.

We use this process to extract the features of the APM module: retrieve first the

user’s Friends page, that contains the Facebook ids of the friends, then for each evaluation

friend, collect their About and Mutual Friendship pages. We use regular expressions to

extract the data required to build the APM features. This process is fast: each page takes

approximately 1.5s to fetch and process, for around 3s per friend. AbuSniff performs this

process in the background, e.g., while the user is answering the QRM questionnaire.

4.6 User Study

We have conducted several user studies to answer our key research questions. In the

following we describe the participant recruitment procedure, the experiment design, and

techniques we used to ensure data quality.

We expect a positive answer for RQ1 (is friend abuse a problem in Facebook?, as pre-

vious studies have shown that Facebook users are aware of friend spam (see e.g., [CRAD16]).

We have devised a suite of user experiences that attempt to convince users to pro-

tect themselves against dangerous friends. We have performed user studies to evaluate

and improve on the willingness of users to take defensive actions against abusive friends.

We observed that users are not only unaware of the risks undertaken by keeping poten-

tially abusive friends, but, if inappropriately approached, may also be unwilling to de-

fend against such friends. This reveals the importance of identifying not only convincing
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Figure 4.4: More (anonymized) screenshots: (a) Definitions of the suggested actions. (b)
Attention check screen. (c-e) Pre-test survey questions. (f) Control study screenshot for
suggested actions for sample selected friend. (g) Bogus friend example. (h-j) Post-test
survey questions.

reasons but also the appropriate defensive actions against the different types of abusive

friends.

We have recruited 325 participants from JobBoy [Job17], during 7 studies conducted

between August 2016 and October 2017. The jobs we posted asked the participants to

install AbuSniff from the Google Play store, use it to login to their Facebook accounts

and follow the instructions on the screen. A participant who successfully completes the

app, receives on the last screen a code required for payment.

In the first session we recruited 20 participants over 25 days, 60 in session 2 over 45

days, 95 in session 3 over 52 days, and 52 in session 4 over 15 days. The sessions were

set around 3 weeks apart. Second, we have recruited 98 participants between June and

46



Figure 4.5: Participant demographics. (country) Distribution of the 25 countries of res-
idence by gender. US, Bangladesh and India are the top 3 countries of residence. (age)
Distribution of age range by gender. A majority of the 151 male and 112 female partici-
pants are 20-29 years old; 15 are 40-59 years old.

July 2017, during 3 additional sessions, as follows. In a control session we recruited 30

participants over 6 days, in a pre-test survey study we recruited 36 participants over 8

days, and in a post-test study we recruited 32 participants over 9 days.

We have paid each participant $3, with a median job completion time of 928s (SD =

420s).

We have only recruited participants who have at least 30 Facebook friends, had access

to an Android device, and were at least 18 years old. Further, we have used the following

mechanisms to ensure the quality of the data collected.

• Attention-check screen. To ensure that the participants pay attention and are able

to understand and follow simple instructions in English, AbuSniff includes a standard
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Figure 4.6: Distribution of times taken by participants in the first 2 user studies to answer
the questionnaire, and decide whether to accept or ignore an action suggested against an
abusive friend. The median time to answer any of the 5 questions exceeds 4.11s, with
a maximum time of 17.29s. Participants have taken significantly more time to ignore a
suggestion (M = 29.30s, SD = 9.86) than to accept it (M = 13.14s, SD = 4.71). The times
suggest deliberation, not random choices.

attention-check screen at the beginning of the app, (see Figure 4.4(b) for a snapshot).

Specifically, the screen states that “AbuSniff will help us understand how people perceive

their friends in Facebook and how they make decisions about their friends. For instance,

we are interested whether you take the time to read the directions. To show that you

have read the instructions, please ignore the question below and just choose “none of the

above” option. Please check all the words that describe how you feel now”. The last of

the 10 options is “none of the above”. Less than 10% of the participants in our studies

have failed this test. We have discarded all the data from these participants.

• Bogus friends. To detect participants who answer questions at random, we used “bogus

friends”: 3 fake identities (2 female, 1 male) that we included at random positions in

the AbuSniff questionnaire (see Figure 4.4(g) for a bogus friend screenshot). We have

discarded the data from participants who answered Q1 and Q2 for the bogus friends, in

any other way than “Never” or “Don’t Remember”.
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Study Questions Task Modules User # Days Results

1 RQ1, RQ2, RQ3-a Explore problem QRM, DCM, AIE, IM 20 25 Participants willing to defend against timeline and
news feed abuse but unwilling to unfriend strangers

2 RQ1, RQ2, RQ3-b Sandbox effect QRM, DCM, AIE, IM 60 45 Participants willing to sandbox strangers
3 RQ3-a Control study simplified IM 27 6 Without questionnaire and explanations,

participants are seldom willing to defend against a friend
4 RQ4 Data collection & QRM, DCM, AIE, IM 54 52 Mutual activity features accurate in predicting answers to

Prediction eval. Q1-Q4 and the “ignore” action
but less accurate in predicting Q5

5 RQ4 Prediction eval. DCM, APM, AIE, IM 40 15 78% of AbuSniff suggestions accepted by participants
6 & 7 RQ5 Pre-test vs. QRM, DCM, AIE, IM 31, 31 8,9 AbuSniff increases participant (1) willingness to

AbuSniff+Post-test reject invitations from strangers and abusers,
(2) understanding of abuse and (3) perceived safety

Table 4.2: Summary of user studies: The research questions investigated, the task per-
formed, the modules used, the number of participants, the duration in days of the study,
and results.

• Timing information. We have measured the time taken by participants to answer each

questionnaire question and to make a decision on whether to accept or ignore the sug-

gested action. We have discarded data from participants whose average response time

was below 3s. Figure 4.6 shows the distribution of the response times over the remaining

participants. For the remaining participants, the total time taken to answer the 5 questions

for a friend ranged between 7s and 74s (M = 32s, SD = 12.046). The time taken to make

a decision ranged between 4 to 54s (M = 15s, SD = 8.960). Participants took significantly

longer to ignore a suggestion (M = 29.30s, SD = 9.86) than to accept it (M = 13.14s, SD

= 4.71). These numbers suggest that participants have carefully considered AbuSniff’s

questions and suggestions, and have not randomly browsed through the app.

We have used these mechanisms to discard 62 of the recruited 325 participants. The

following results are shown over the remaining 263 participants. Figure 4.5 shows the dis-

tribution of the country of origin (left) and age (right), by gender, over these participants.

The 151 male and 112 female participants are from 25 countries (top 5: US, Bangladesh,

India, Nepal and UK) and 6 continents, and are between 18-52 years old (M = 23, SD =

7.22).

Table 4.2 summarizes our user studies, including the research questions they investi-

gate, the task they perform, the AbuSniff modules they use, the number of participants
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(after discarding the above 62), the number of days over which the experiment took place

and the results which we further detail in the following section.

4.6.1 Ethical Data Collection

We have developed our protocols to interact with participants and collect data in an eth-

ical, IRB-approved manner (Approval #: IRB-16-0329-CR01). The 54 participants from

whose friends we collected mutual activity features, were made aware and approved of

this data collection step. We have collected minimalistic Facebook data about only their

investigated friend relationships. Specifically, we have only collected the counts of com-

mon friends, posted items, studies and workplaces, and boolean values for the same cur-

rent city and hometown, but not the values of these fields. Further, we have only collected

anonymized data, and the automated AbuSniff version never sends this data from the

user’s mobile device. AbuSniff only uses the data to make two predictions (the type of

abuse and whether the user will take the suggested action, then erases the collected Face-

book data.

4.7 Results

In Section 4.7.1 we first use the data collected in the first 2 user studies to evaluate the

perception of friend abuse in Facebook. We then use the data from the first user study to

evaluate the willingness of users to defend against friends that they perceive as abusive.

We use the data from the second user study to evaluate the impact of the “sandbox”

option on the willingness of participants to take a weaker but still effective defensive

measure against stranger friends. In Section 4.7.2 we compare AbuSniff against a control

experiment in order to understand if AbuSniff had an effect on the willingness of users to

take defensive actions for friends, by comparing it against a control study. In Section 4.7.3
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Figure 4.7: Distribution of responses for the friend abuse questionnaire over 1,600 Face-
book friend relationships. From top to bottom: Q1: frequency of Facebook interaction,
Q2: frequency of real world interaction, Q3: friend would abuse posted sensitive picture,
Q4: friend would abuse status update post, and Q5: friend would post offensive, mis-
leading, false or potentially malicious content. The red sections correspond to potential
strangers or abusive friends.

we use the collected user data to evaluate the ability of the APM module to predict the

questionnaire answers and defense actions. In Section 4.7.4 we evaluate the accuracy of

an automated AbuSniff in a separate user study. In Section 4.7.5 we evaluate the user

perception of the impact of AbuSniff.

4.7.1 Studies 1 & 2: Abuse Perception and Willingness to Defend

We developed 2 preliminary studies (n = 20 and n = 60) to evaluate the extent of the user

perception of stranger friends and friend abuse in Facebook (RQ1) and the willingness

of users to accept defensive actions against friends considered to be abusive (RQ2, RQ3-

a and RQ3-b). To this end, we used the questionnaire based AbuSniff of Section 4.4:

The AbuSniff app randomly selected 20 Facebook friends for each participant, asked

the participant to answer the questionnaire for each friend, then asked the participant to

take a defensive action against the friends detected to be abusive, or provide a reason

for ignoring the suggested action. AbuSniff then collected and sent to our server, the

questionnaire answers for the 20 friends, the decisions taken for the abusive friends, and

the reasons provided for ignoring the suggestions.
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Figure 4.7 shows the distribution of the responses for each of the 5 questions from the

1,600 friend relationships (20 from each participant). The top bar shows that in 12% of

the 1,600 friend relationships, the participants stated that they have never interacted with

that friend in Facebook. Further, 64 of the 80 participants stated that they have at least

one friend with whom they have never interacted in Facebook.

The second bar from the top shows that in 20% of the 1,600 friend relationships, the

participants stated that they have never interacted with the corresponding friend in real

life. 73 of the participants had at least one friend with whom they have never interacted

in real life .

In 21% of the 1,600 friend relationships, participants stated that the queried friend

would abuse a photo they post (third bar), in 19% of the cases they admit the friend would

abuse their status updates (fourth bar), while in 19% of the cases, they admit that the

friend would post offensive, misleading, false or potentially malicious content (bottom

bar). 68 of the participants had at least 1 friend whom they perceived would abuse their

photos, 62 of the participants have at least 1 friend who would abuse their status updates,

and 62 have at least 1 friend who would post abusive content.

Gender and age impact. In terms of having at least 1 friend perceived as abusive, Chi-

square tests revealed no significant difference between genders on any of the 5 questions.

Similarly, Chi-square tests revealed no significant differences between the age groups

of under 30 years old and above 30 years old participants (61 vs 19 participants), on

questions 1, 2 and 4. However, participants under 30 are significantly more likely (χ2 =

4.417, df = 1, p = 0.03) to have at least 1 friend whom they perceive would abuse a photo

they post, than participants over 30 (52 out of 61 vs 12 out of 19). Younger participants

were also more likely to answer that they have at least 1 friend who would post offensive,

misleading, false or potentially malicious content (50 out of 61 vs 10 out of 19, χ2 = 6.64,

df = 1, p = 0.01).
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Figure 4.8: Heatmap of frequent questionnaire responses and corresponding user deci-
sions, for (a) 1st user study (n = 20) and (b) 2nd user study (n = 60). A row on the y axis
shows the number of friend relationships that have the questionnaire response, recommen-
dation and user decision pattern shown on the x axis. The responses for each question,
the recommendations, and user decisions are shown with different colors, see legend. (a)
In the 1st study, 52 out of 85 abusive relationships were perceived to be stranger friends.
Of these 52 cases, participants have been unwilling to unfriend 46 of the corresponding
stranger friends (red border rectangles). (b) In the 2nd study, 53 out of 513 abusive re-
lationships were perceived as strangers. Of these 53 cases, in only 4 cases (red border
rectangles) the participants have been unwilling to either unfriend or sandbox the corre-
sponding stranger friends. The contrast to the 1st study suggests participant preference to
sandbox vs. unfriend stranger friends.

Willingness to defend against abuse. We now investigate RQ2 (are users willing to take

defensive actions against abusive friends?) and RQ3-b (is the willingness of users to take

defensive actions impacted by the type of abuse perpetrated by the friend and the type of

suggested defensive action?).

In the first of the above 2 studies (n = 20, 400 investigated friend relationships), AbuS-

niff identified 85 abusive friend relations. Of these, AbuSniff recommended 74 to un-

friend, 6 to restrict and 5 to unfollow. Figure 4.8(a) shows a detailed view (heatmap)
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Figure 4.9: Comparison of recommendation vs. acceptance in study 1 (n = 20) vs. study
2 (n = 60). In study 1, 8% of the recommended “unfriend” actions were accepted. The
undefined “unfriend or sandbox” option is shown for alignment. The “sandbox” option
and user education were effective: in study 2, 92% of the suggested “unfriend or sandbox”
suggestions were approved by participants.

of these 85 abusive relationships, along with the frequently occurring (shown on y axis)

patterns of questionnaire answers, suggested actions and user decisions (shown on the x

axis). Of particular interest is the fact that 52 out of 85 abusive relationships were per-

ceived to be non-abusive stranger friends, and, of these 52 cases, participants have been

unwilling to unfriend 46 of the corresponding stranger friends (red border rectangles).

The small approval rate of the suggestion to unfriend strangers (11.5%) motivates the

second study.

The results of this study are further summarized in Figure 4.9(a). 4 out of the 6 recom-

mended restrict friends were restricted, and 4 out of the recommended 5 were unfollowed.

However, only 6 out of 74 recommended unfriend were unfriended.

The “Sandbox” effect. To address the fear of being observed by the unfriended friend,

we have relaxed rule 1 in Table 4.1, to give the user the option to either sandbox or un-

friend a non-abusive stranger. A sandboxed friend can no longer harm the user, as all

Facebook communication lines are interrupted. Sandboxing achieves this without sever-
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ing the friend link, thus is not observable by the friend. However, if the stranger exhibits

any sort of abusive behavior (timeline or news feed abuse) AIE recommends that the

friend should be unfriended (rule 2). Rule 2 is evaluated only if rule 1 fails (see Ta-

ble 4.1).

Further, we have modified AbuSniff’s UI to educate the user through a description of

the harm that strangers can perform, and of the defenses that the user can take against

such friends. Figure 4.2(d)) shows a snapshot of the modified UI screen that offers the

sandbox alternative to unfriending strangers.

The second user study described above (n = 60) evaluated the updated AbuSniff,

that identified a total of 513 abusive friend relations. Figure 4.8(b) provides a detailed

view of the user responses, recommended actions and user decisions. For instance, it

shows that 53 friend relations are considered non-abusive strangers. Of these 53 cases,

participants were unwilling to unfriend or sandbox only 4 of the corresponding stranger

friends. The contrast to the 1st study is significant: there, participants took a defensive

action for a non-abusive stranger friend in only 11.5% of the cases, whereas in the second

study participants took an action in 92.4% of the cases. This contrast suggests participant

preference to sandbox stranger friends.

Figure 4.9(study 2) further shows that AbuSniff recommended 303 friend relations to

unfriend, 53 to unfriend or sandbox, 138 to restrict and 19 to unfollow. Consistent with

the first study, 18 of the 19 unfollow and 127 of the 138 restrict suggestions were ac-

cepted. In contrast to the first study, 49 of the 53 “unfriend or sandbox” suggestions were

accepted. In addition, 208 of 303 “pure” unfriend recommendations were accepted, again

a significant improvement over the first study (6 out of 74). These results suggest that the

explanation of the harm is effective in raising user awareness, and that user awareness of

the harm converts into more restrictive actions.
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Reasons to ignore recommended action S1 S2

Recommendation does not make sense 9 1
Not ready to take action at that time 12 2
Agree but still want to keep stranger friend 9 1
Afraid that action will be observable 16 0

Total Cases 46 4

Reasons to ignore recommended action S1 S2

Recommendation does not make sense 4 6
Not ready to take action at that time 6 48
Agree but still want to keep abusive friend 3 9
Afraid that action will be observable 9 32

Total Cases 22 95

Table 4.3: Comparison of reasons to ignore AbuSniff suggested action in user study 1
(n=20) and user study 2 (n = 60) for (left) non-abusive strangers, where the suggestion
was “unfriend” in the first study but “sandbox or unfriend” in the second study, and (right)
abusive non-strangers, where the suggestion was “unfriend” in both studies. The addition
of the “sandbox” option for non-abusive strangers had a significant effect on participant
perception of suitability of suggestion, readiness for action, and fear of observability.

Reasons to ignore recommendations. As mentioned above, in the first study, partici-

pants ignored recommended defenses in 46 out of 52 non-abusive strangers cases, while

in the second study, participants ignored such recommendations in only 4 out of 53 non-

abusive strangers cases. Table 4.3(left) summarizes and compares the reasons given by

the participants in the two studies, to ignore the suggested recommendations.

We observe that the addition of the “sandbox” option for non-abusive strangers had

a significant effect on participant perception of suitability of the AbuSniff suggestion: 9

participants believed that AbuSniff’s recommendation does not make sense in the first

study, compared to only 1 in the second study. It further had a significant effect on par-

ticipant readiness for the suggested defense: only 3 participants in the second study were

either not ready for the action or wanted to keep the stranger friend, compared to 21 in

the first study. Notably, none of the participants in the second study were afraid that the

action will be observable by the friend, a steep decrease from 16 participants in the first

study.

Table 4.3(right) further compares the reasons chosen by participants in the two studies,

to ignore the recommended defense action of unfriending abusive non-stranger friends.

These are friends with whom the participants had interacted in Facebook and/or real life,

and who are perceived as potentially “bi-directional” (timeline and news feed) abusive.
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We observe that 22 such friends were identified in the first study, and 95 such cases were

found in the second study. We observe that in only 4 and 6 cases in the two studies,

participants believe that the recommendation does not make sense. In 9 cases in the

first study and 57 in the second study, participants agree with the suggested defense but

are either not ready to take it, or would prefer to keep the friend. Further, in almost

1 third of the cases in both studies, the participants did not take the action due to fear

of observability. These numbers are consistent with the “unfriend” suggestion for non-

abusive stranger friends in the first study (16 out of 46 cases), see Table 4.3(left) and

suggest that these participants may prefer to sandbox even abusive non-stranger friends.

In 13 of the 68 ignored cases, the participants believed that AbuSniff’s unfriend rec-

ommendation does not make sense. In these cases, AbuSniff suggested to unfriend due

to the fact that the friend was a stranger (the participant never interacted with that friend

either in Facebook or real life) In 55 (68 - 13) of the 68 ignored unfriend cases, the partic-

ipants believed that our warning was correct. However, they refused to unfriend because

either they were not ready to unfriend them at that time (18 of the 55 cases), they still

wanted to keep those abusive friends (11 cases), or they were afraid that this action will

be observable by the abuser (26 cases).

Only 5 out of the 95 ignored unfriend recommendations were due to the participant

not believing our recommendation

In addition, in 52% of the cases the participant was not ready to unfriend at that time,

in 10% of the cases the participant still wanted to keep the abusive friend and in 36% of

the cases, the participant did not want the friend to find out that he/she was unfriended.

We conjecture that we could achieve increased performance, if similarly, AbuSniff offered

users the option to sandbox (or at least restrict/unfollow) even actively abusive friends.
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Figure 4.10: Questionnaire based AbuSniff vs. control experiment. AbuSniff had a sig-
nificant impact on the willingness of participants to unfriend (17% vs. 1%) and restrict
(11% vs. 2%) friends.

4.7.2 Study 3: Questionnaire Based AbuSniff vs. Control

In order to understand if AbuSniff had an effect on the willingness of users to take de-

fensive actions on Facebook friends (key question RQ3-a), we have designed a control

app, that first explains each user action (“unfriend”, “unfollow”, “sandbox”, “restrict”

and “ignore”, see Figure 4.4(a), then, for each of 30 randomly selected Facebook friends

of the user, asks the user to take one of these actions for the friend. (see Figure 4.4(f) for

a snapshot). The control app does not require the user to answer a questionnaire and the

user is not provided with a motivation for taking an action for the friend. We performed a

control study with this app on 27 participants.

Figure 4.10 compares the results of our second user study with the questionnaire based

AbuSniff, against the control, in terms of the percentage of actions taken by the partici-

pants. For AbuSniff, the “Ignore” bar shows not only the recommended actions that were

ignored by the participants, but also the much larger number of relationships that were

not identified by AbuSniff as problematic (abusive or strangers).

We found that in the control experiment, participants did not take a restrictive action

in 92% of cases. In contrast, with AbuSniff, friend relationships (including “safe” ones)
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were ignored in only 66% of the cases. We observed significant differences for the “un-

friend” and “restrict” options, that were chosen in only 1% and 2% of cases respectively

during the control experiment, but in 17% and 11% of the cases respectively during the

AbuSniff experiment.

4.7.3 Study 4: Efficacy of Abuse Prediction

We investigate now key question RQ4 (Can AbuSniff predict abusive friends and the de-

fenses that users are willing to take against such friends). For this, we performed a fourth

study where we have used the questionnaire based AbuSniff to collect a subset of Face-

book data from 1,452 friend relationships of 54 participants.

Feature correlation investigation. First, we investigate the intuition behind the features

we used in the APM module (see Section 4.5.1). For that, we have performed multino-

mial logistic regression (MLR) analysis using SPSS to find out whether the mutual activ-

ity features (number of mutual posts, common photos, mutual friends, common studies,

common workplaces, living in the same current city, and having the same hometown) are

good predictors for the actions decided by AIE. Multinominal logistic regression is ap-

propriate since the outcome variable is categorical with more than two categories and the

predictors are of either continuous or nominal. We used the 7 mutual activity features (5

continuous, 2 categorical) as the independent variables and the AIE decision with 5 cate-

gories (Unfriend, Sandbox/Unfriend, Restrict, Unfollow, Safe) as the dependent variable.

Model fit statistics indicate a good fit, i.e., χ2 (28) = 385.037, p ¡ 0.05 which con-

firms our model predicts significantly better, or more accurately, than the null model.

Table 4.4 shows the output from the likelihood ratio test that checks the contribution of

each effect/feature to the model. For each effect, the -2 log-likelihood is computed for the

reduced model; that is, a model without the effect. If the significance of the test is small
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Figure 4.11: Multinomial logistic regression (MLR) correlations between mutual activity
features and AIE decision for each abuse category. Coefficients for the mutual activ-
ity features are plotted as Sign(Cf )*Log(1+Abs(Cf )), where Cf denotes the actual co-
efficient. For the Same current city and same hometown features, we have analyzed the
values of [Same current city=No] and [Same hometown=No]. The same current city, the
same hometown, the number of common workplaces, the number of common studies and
the number of mutual posts have the highest impact on all of the AIE decisions.

(less than 0.05) then the feature contributes to the model. The chi-square statistic is the

difference between the -2 log-likelihoods of the reduced model and the final model. 6 of

the 7 features show statistically significant overall association with the AIE decision. The

only exception is the “number of common photos” feature.

Figure 4.11 plots the value of each coefficient in the model with its respective sign,

to show if the features are positively or negatively correlated with the AIE decisions.

For convenience of showing the results, we plot the co-efficients for the mutual activity

features as Sign(Cf )*Log(1+Abs(Cf )), where Cf denotes the actual co-efficient value. A

larger (absolute) coefficient means that the corresponding feature has more impact on the
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APM Feature χ2 Significance

Number of mutual posts 39.652 0.000
Number of common photos 1.938 0.747
Number of mutual friends 38.739 0.000
Number of common studies 14.442 0.006
Number of common workplaces 31.942 0.000
Same current city 55.134 0.000
Same hometown 41.555 0.000

Table 4.4: Independent variables that have statistically significant overall association with
the AIE decision. The results are significant (at p < 0.05) between each feature and the
AIE decision except for the number of common photos.

prediction. It shows that according to the MLR analysis, the same current city, the same

hometown, the number of common workplaces, the number of common studies and the

number of mutual posts have the highest impact on all of the AIE decisions.

Experiment details. We have used 10-fold cross validation to evaluate the ability of

the abuse prediction module (APM) to predict questionnaire responses and user defense

decisions. For this, we have computed the 7 mutual activity features of the 54 participants

and the 1,452 friends. We have generated a dataset of 1,452 tuples, one for each friend

relationship. Each data tuple corresponds to a user U and friend F , and consists of (1)

the mutual activity feature values of U and F , (2) U ’s responses to the 5 questions for

F , and (3) the suggested action for F : ignore (safe friend), unfriend, unfollow, restrict,

sandbox, and (4) the action taken by U for F . We have divided this dataset into 10 folds of

145 tuples each, selected randomly, and used 10-fold cross validation to evaluate several

supervised learning algorithms. That is, in each of 10 experiments, we used 9 folds to

train and 1 to test. We used the features of each tuple in the 9 folds to separately train

supervised learning algorithms for each of the 5 questionnaire questions and for the user

decision. Then, for each tuple in the remaining fold, APM uses the trained algorithms to

predict the answers to the 5 questions and the user decision. We report averages of the

prediction accuracy over the 10 experiments.
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As shown in Figure 4.7, the distribution of the answers to the 5 questions of the ques-

tionnaire was not balanced. To address this imbalance, we have duplicated tuples from

the minority classes up to the the number of the majority class. We have ensured that

duplicates appear in the same fold, to prevent testing on trained tuples.

We have used Weka 3.8.1 [Wek17] to evaluate several supervised learning algorithms,

including Random Forest (RF), Decision Trees (DT), SVM, PART, MultiClassClassifier,

SimpleLogistic, K-Nearest Neighbors (KNN) and Naive Bayes, but report only the best

performing algorithm.

Predicting questionnaire answers. We now evaluate the ability of the APM module

of the predictive AbuSniff to predict the user’s questionnaire answers. Table 4.5 shows

the precision, recall and F-measure achieved by the best performing supervised learning

algorithm for each of the questionnaire questions (Q1-Q5).

For question Q1, the Random Forest (RF) classifier achieved the best performance.

We have used 1 class for each of the 5 possible responses. Table 4.5 (top section) shows

the classification results of RF for each class and as a weighted aggregate. APM with RF

predicts the “Never” response with precision 81.8% and recall 92%, for a F-measure of

86.6%. RF also achieves the best performance for question Q2, with an overall F-measure

of 90% (see second section of Table 4.5). APM with Random Forest is able to predict the

“Never” response for a friend, with precision 86.5% and recall 93.2%.

For Q3, APM achieved the best performance when using the Decision Tree (DT)

classifier (see third section of Table 4.5), with an average F-Measure of 79.3%. The DT

classifier also achieved the best results for Q4 (the fourth section of Table 4.5), with an

average F-Measure is 80.4%. For Q5, APM achieved best performance with RF, see

Table 4.5 (fifth section), with an F-Measure for the news feed abuse indicator (“Agree”

response) of 78%.
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Question Precision Recall F-Measure Class

0.983 1.000 0.992 Frequently
0.928 0.897 0.912 Occasionally

Q1 0.962 0.797 0.872 Not Anymore
(RF) 0.818 0.920 0.866 Never

0.934 0.898 0.916 Don’t Remember
0.917 0.914 0.914 Weighted Avg.

0.966 0.905 0.934 Frequently
0.893 0.869 0.881 Occasionally

Q2 0.893 0.877 0.885 Not Anymore
(RF) 0.865 0.932 0.897 Never

0.907 0.911 0.909 Don’t Remember
0.902 0.900 0.900 Weighted Avg.

0.725 0.792 0.757 Agree
Q3 0.820 0.793 0.806 Disagree

(DT) 0.810 0.791 0.800 Don’t Know
0.794 0.792 0.793 Avg.
0.662 0.725 0.692 Agree

Q4 0.791 0.778 0.785 Disagree
(DT) 0.857 0.844 0.851 Don’t Know

0.805 0.803 0.804 Avg.

0.794 0.765 0.780 Agree
Q5 0.837 0.845 0.841 Disagree

(RF) 0.830 0.842 0.836 Don’t Know
0.824 0.824 0.824 Avg.

Table 4.5: Precision, recall and F-measure of APM for questions Q1 (RF), Q2 (RF), Q3
(DT), Q4 (DT) and Q5 (RF). (Question 1) APM with Random Forest (RF) predicts the
“Never” response with precision 81.8% and recall 92% (Kappa statistic = 0.88). (Ques-
tion 2) APM with Random Forest (RF) predicts the “Never” response with precision
86.5% and recall 93.2% (Kappa statistic = 0.86). (Question 3) APM with Decision Tree
predicts the abuse indicator “Agree” response with F-Measure of 75.7% (Kappa statis-
tic = 0.68). (Question 4) APM with Decision Tree achieves F-Measure of 69.2% when
predicting the abuse indicator “Agree” (Kappa statistic = 0.67). (Question 5) APM with
Random Forest has the F-Measure for “Agree” of 78% (Kappa statistic = 0.73).
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Classified As
Unfriend Sandbox Restrict Unfollow Ignore Decision

882 13 10 13 3 Unfriend
103 27 1 1 3 Sandbox
77 1 6 0 1 Restrict
79 3 0 6 0 Unfollow
5 0 0 0 218 Ignore

Table 4.6: APM confusion matrix for predicting user decisions. The rows show partici-
pant decisions, the columns show APM predictions during the experiment. AbuSniff will
leverage APM’s high precision (96.9%) and recall (97.8%) for the “ignore” action, to
decide which abusive friends to ignore.

We observe a higher F-measure in predicting answers to the questions that suggest

stranger friends (Q1 and Q2) than in predicting answers to the questions that suggest

abuse (Q3-Q5). This is not surprising, as the mutual activity features are more likely to

predict online and real life closeness.

Predicting the user decision. We have evaluated the ability of APM to predict the de-

fense action that the user agrees to implement, according to the 5 possible classes: “un-

friend”, “restrict”, “unfollow”, “sandbox”, and “ignore”. APM achieved the best perfor-

mance with the RF classifier. Table 4.6 shows the confusion matrix for APM with RF,

over the 10-fold cross validation performed on the 1,452 friend instances. APM’s overall

F-Measure is 73.2%. The APM’s precision, recall and F-Measure for the “unfriend” op-

tion are 77.0%, 95.8% and 85.3% respectively. However, APM achieved an F-measure of

97.3% when predicting the “ignore” option. We emphasize the importance of this result,

as AbuSniff uses APM’s predictions to decide which friends to recommend for the user

to defend against.

Feature rank. Since we have only used 7 features, we have not selected or reduced the

feature set. The most informative features in terms of information gain were consistently

among the mutual post count, mutual friend count and mutual photo count; same home-

town and common study count were the least informative features. We found correlations
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between the common photo count and mutual post count (Pearson correlation coefficient

of 0.65), mutual friend count and mutual photo count (Pearson correlation coefficient of

0.57), and mutual post count and mutual friend count (Pearson correlation coefficient of

0.45). The rest of the features had insignificant positive or negative correlations.

4.7.4 Study 5: Predictive AbuSniff in the Wild

As described in Section 4.5, the predictive AbuSniff system replaces the questionnaire

delivery module (QRM) with the abuse prediction module (APM). It then asks the user to

either accept or ignore the APM predicted defense action, shown only for the friends for

whom the APM predicts that the user will defend against.

We have recruited 49 participants to evaluate their reaction to the predictions of the

APM module. We have discarded 9 participants who failed the data quality verification

tests previously described. Of the 1,200 friend relationships investigated for the remaining

40 participants (30 friends per participant), APM automatically labeled 403 as potentially

abusive. AbuSniff predicted that 359 of these will be approved by the participants, i.e.,

41 unfollow, 30 restrict, 137 unfriend and 151 sandbox. AbuSniff displayed only these

suggestions to the respective participants. All the unfollow and 29 of the 30 restrict sug-

gestions were accepted by the participants. 119 of the suggested sandbox relationships

and 92 of the suggested unfriend relationships were accepted. Thus, overall, the 40 par-

ticipants accepted 78% of AbuSniff’s suggestions.

4.7.5 Studies 6 & 7: Impact of AbuSniff

We have designed 2 user studies to evaluate the impact of AbuSniff on (1) the willingness

of participants to ignore new friend invitations based on their perception of the prospective
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friend being a stranger or an abuser, on (2) participant awareness of and perception of

safety from friend abuse, and (3) their willingness to screen other friends.

For this, we have designed a pre-study survey that consists of 3 Likert items: (I1)

“When I receive a friend invitation in Facebook, I reject it if I have never interacted with

that person in real life or online”, (I2) “When I receive a friend invitation in Facebook, I

reject it if I think that the person would abuse my photos or status updates in Facebook,

and (I3) “ When I receive a friend invitation in Facebook, I reject it if I think that the per-

son would post abusive material (offensive, misleading, false or potentially malicious).”

We performed a pre-test only study with 31 participants, where we have delivered (only)

this survey. Figure 4.4(c-e) shows screenshots of this survey.

Further, we have designed a post-study survey that, in addition to the above 3 items,

includes the following 3 Likert-scored statements: (I4) “After completing AbuSniff, I

feel more aware of the implications of friend abuse in Facebook”, (I5) “After completing

AbuSniff, I feel more protected from abuse from Facebook friends”, and (I6) “I will

go to my friend list and evaluate my other friends to defend against those I feel could

be abusive”. Figure 4.4(h-j) shows snapshots of these questions. In a post-test study

with a different set of 31 participants, we asked them to first run the questionnaire based

AbuSniff, then answer the post-study survey.

Figure 4.12(a) compares the user responses in the pre-test (top) and post-test (bottom)

experiments, for each of the first 3 Likert items. In the pre-test experiment, the user

responses are balanced between agree, neutral and disagree, and there are no strong agree

and strong disagree responses. In contrast, after running AbuSniff (i.e., in the post-test

experiment), significantly more participants either strongly agree or agree on all 3 items.

Specifically, for (I1), 14 out of 31 participants Strongly Agree or Agree that they would

always reject a pending friend with whom they have never interacted, while 9 Disagree.

Only 1 participant strongly disagreed. 19 participants strongly agree or agree with (I2),
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(a)

(b)

Figure 4.12: (a) The impact of the questionnaire based AbuSniff on (I1), (I2) and (I3).
For each question, top bar shows pre-test and bottom bar shows post-test results. In the
post-test, significantly more participants tend to strongly agree or agree that they would
reject new friend invitations based on lack of interaction or perceived timeline or news
feed abuse, when compared to the pre-test. (b) Post-test results for (I4), (I5) and (I6).
23 out of 31 participants perceived that AbuSniff improved their understanding of abuse,
more than half perceived that AbuSniff has impacted and improved their safety, and more
than half agreed to continue the process on other friends.
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and only 4 disagree. Finally, 17 participants strongly agree or agree with (I3), and 5

disagree.

Figure 4.12(b) shows the participant responses to only the 3 new post-test Likert items.

23 out of 31 participants strongly agree or agree that after running AbuSniff they feel

more aware of the implications of friend abuse; only 1 disagreed. 19 participants strongly

agree or agree that after running AbuSniff they feel more protected from friend abuse; 4

participants disagree. 20 participants strongly agree or agree that they would revisit their

other friends after running AbuSniff, and only 3 disagree, 1 strongly disagrees.

4.7.6 Summary of Findings

• Significant perception of friend abuse. We observed significant user perception

of potentially abusive Facebook friend connections. Male and female participants

did not exhibit significant differences. Younger participants were more vulnerable

to timeline and news feed abuse than older ones, but not to strangers.

• Sandbox preferred over unfriend. We observed a mixed response for RQ2, thus

a positive answer for RQ3-b. Specifically, Participants tended to accept suggestions

to unfollow news feed abusers (22 out of 24 cases), restrict timeline abusers (131

out of 144 cases), and were more willing to sandbox than unfriend perceived non-

abusive strangers.

• AbuSniff better than control. When compared to the control group, AbuSniff

has significantly increased the willingness of participants to unfriend and restrict

friends.

• AbuSniff can predict friend abuse and willingness to defend. APM is better at

predicting user responses to Q1 and Q2 than to Q3-Q5, and is able to accurately

predict the user choice to ignore the suggested defense action. However, APM has
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a lower accuracy when predicting the specific defense action that the user will be

willing to take.

• Life imitates art. In real life studies, AbuSniff had similar accuracy with cross-

validation experiments.

• AbuSniff influences participants. AbuSniff increased participant self-reported

willingness to reject invitations from strangers and abusers, their awareness of abuse

implications and perceived protection from friend abuse.

4.8 Discussion and Limitations

We have explored the perception of friend abuse in Facebook, and the willingness of users

to take radical actions against friends that they perceive to be abusive or strangers. Unlike

previous work that detects, prevents and mitigates cyberbullying in teenagers [DJH+12,

AV16], we have focused on general abuse, as perceived by the general Facebook pop-

ulation (equipped with Android devices). We have developed AbuSniff, an automated

victim-side tool [AV16] that avoids the problems of accessing individual posts [DJH+12],

to instead detect friends perceived to be strangers or abusive.

AbuSniff differs from prior work on cyber abuse and victimization, e.g., [WCZB+16,

LLGL13] in that we (1) focus on specific types of abuse perpetrated through Facebook,

i.e., timeline and news feed abuse, and stranger friends, (2) investigate abuse perception

from individual friends and not general exposure, (3) seek to automatically detect abuse

perception and (4) provide a first line of suitable defenses against abuse for Facebook

users who are unlikely to know and trust all their friends. We performed studies with 263

participants from 25 countries and 6 continents. We acknowledge a common crowdsourc-

ing worker background between participants.
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AbuSniff reduces the attack surface of its users, by reducing the number of, or isolat-

ing friends predicted to be perceived as potential attack vectors. AbuSniff can reduce the

audience that needs to be considered by audience selector solutions, e.g., [RLG16], and

can be used in conjunction with tools that monitor social networking events [DJH+12,

Per17].

We expect AbuSniff to have more impact for users who have significantly more than

150 friends, the maximum number of meaningful friend relationships that humans can

manage [Dun92]. We note that false positives, while being a nuisance, can be fixed by

reinstating removed or restricted friends. However, false negatives (keeping abusive and

stranger friends) can harm the user and even influence the outcome of elections [BBC17a,

BBC17b].

Online relationships and loose tie friends. Social networks like Facebook encourage

online relationships (people never met in real life) and loose ties (users keeping up to date

with the posts of others, without bi-directional communication). AbuSniff defines and

detects “strangers” as friends with whom the user has no online and real world commu-

nications. Thus, since “keeping up to date” is considered interaction, AbuSniff does not

detect and suggest removing strictly online relationships or loose tie friends.

Ability of questionnaire to identify perceived abuse. Questions 3, 4 and 5 in the ques-

tionnaire explicitly evaluate participant perception on the potential for abuse of their

friends, i.e., abusing status updates or pictures that they post (questions 3 and 4), and

friends posting abusive information on their news feed (question 5). However, questions

1 and 2 identify friends with whom the user has never interacted both in real life and on-

line. Not all such “strangers” may be truly abusive, but simply random people befriended

online. Our second user study (see Table 4.2) reveals that indeed, few participants agreed

to completely remove such friends, thus they are likely to seldom perceive such friends

as being abusive. However, our third study has shown that participants had a much higher
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likelihood to “sandbox”, i.e., isolate such friends. Even if only a small percentage of those

friends are a true threat, the participants in our user study had up to 4,880 friends (median

of 305 friends). Since any stranger could be an “attack vector”, sandboxing or unfriend-

ing strangers can reduce the user’s “attack surface”, and protect from both mishandling

of private, sensitive information, and from attacks such as spear phishing and malware

distribution.

Further, in the last user study, 23 participants strongly agreed or agreed that after

running the questionnaire based AbuSniff they felt more aware of the implications of

friend abuse; only 1 disagreed, none strongly disagreed. This suggests that participants

perceived that AbuSniff had an impact on their understanding of abuse.

Prediction accuracy. The APM features extracted from mutual Facebook activities are

less effective in predicting the user responses to Q3-Q5. This is not surprising, as we

have trained APM on relationship closeness features. We note that the choice of features

was due to our need to respect Facebook’s terms of service. Access to more information,

e.g., stories on which friends posted replies and the friend replies, and abuse detection

APIs [Per17] can improve APM’s prediction performance. We emphasize however that

AbuSniff had an F-Measure of 97.3% when predicting the “ignore” action. Thus, we

see potential for improvement and also promise for the feasibility of developing fully

automated abuse detection and defense solutions for social networks.

Due to Facebook restrictions, the mechanisms we developed to automatically detect

abuse perception are not yet mature, e.g., as they cannot accurately detect perceived news

feed abuse. Abuse prediction at the level of individual posts is likely to be much more

accurate, especially with the advent of industry APIs for abuse detection [Per17]. How-

ever, Facebook’s decision to ignore the automatic abuse detection problem and its policies

that prevent other parties from accessing the data required to solve it, are significant road

blocks toward eliminating friend abuse.
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The autonomous AbuSniff had lower performance when predicting the answer to

question 5 (This friend would post offensive, misleading, false or potentially malicious

content on Facebook)), vs. questions 1-4, i.e., an F-Measure of 82.7%. Further, while

AbuSniff was able to accurately predict the abusive friends whom a user would choose to

defend against vs. ignore, it was not able to accurately predict the exact defensive action

that the user would approve. We need to investigate additional features that can boost the

accuracy of classifiers. For instance, develop and adapt techniques (e.g., [NTT+16]) that

automatically detect abusive posts of evaluated friends, and use the absolute and relative

counts of abusive posts as additional APM features.

Validity of AbuSniff recommendations. Participants took significantly longer time to

ignore a suggestion (M = 29.30s, SD = 9.86) than to accept it (M = 13.14s, SD = 4.71s),

see Figure 4.6 in Section 4.6. This suggests that decisions to ignore recommendations

were not taken randomly, participants took the time to process this decision. This implies

the quality of AbuSniff recommendations, as obviously incorrect recommendations would

have been quickly ignored.

Keeping friends perceived to be abusive. The above discussion may also suggest that

some participants had stronger reasons for keeping abusive or stranger friends. In the

first AbuSniff study, for 11 of the 68 unfriended friend cases, the participants believed

that our warning was correct, but still wanted to keep those friends. One reason for this

may be that the participant had reasons to make him or her abusive toward that friend.

As mentioned by Dinakar et al. [DJH+12], determining the victim and the perpetrator in

an interaction is not an easy task, as victims may also retaliate thus become perpetrators.

We leave this investigation for future work, but note that AbuSniff is a victim-side abuse

prevention tool, thus may protect the friends if they installed AbuSniff.

“Stranger” friends. Our interest in “stranger” friends is motivated by the fact that par-

ticipants in our study had up to 4,880 friends (median of 303 friends). This is in line with
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Facebook stats, whose current median number of friends per user is 200. Our studies have

shown that participants have high numbers of perceived stranger friends. Even if only 1%

of those friends are truly abusive, they could launch damaging attacks that include cyber-

bullying (e.g., outing), identity theft, profile cloning and spear phishing. We emphasize

that strangers are just that: friends whom the user perceives now to have never interacted

with in real life and online. Since any stranger could be an “attack vector”, from a se-

curity and privacy perspective, it makes sense to sandbox or remove those friends, thus

minimize the user’s “attack surface”.

Implementation of the suggested actions. AbuSniff does not implement the actions

taken by users against their friends. While programatically implementing unfriend, un-

follow or restrict actions is possible, one of our goals was for AbuSniff to be minimally

invasive. Since participants in our studies has up to 4,880 friends (median of 303), taking

an action against a subset of 20-30 friends is unlikely to provide real protection. However,

one goal of AbuSniff is to also make users aware of the implications of potential friend

abuse. Further, we note that we have not made participants aware of the choice of not

implementing their actions. Since we allowed a crowdsourcing worker to participate in at

most one of our studies, this design decision is unlikely to have impacted their behavior.

Friend evaluation limitations. We chose to evaluate 20 to 30 friends per participant.

A larger number may increase participant fatigue or boredom when answering the ques-

tionnaire, thus reduce the quality of the data, AbuSniff’s ability to make predictions, and

our ability to generalize results. More studies are needed to find the optimal number of

evaluated friends per participant, and whether it should be a function of the participant

background, e.g., friend count, age, gender.

Further, we note that we have evaluated AbuSniff only on Facebook and make no

claims on the applicability of our results to other social networks. More work is needed

to identify other relevant forms of abuse (e.g., abusive comments on Instagram photos,
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“unprofessional” remarks on LinkedIn, real-life cyberbullying), study their prevalence,

and investigate the ability of tools similar to AbuSniff, to educate and protect users.

4.9 Conclusions

We have introduced and studied AbuSniff, the first friend abuse detection and defense sys-

tem for Facebook. We have developed a compact “stranger and abuse” detection question-

naire. We have introduced and studied rules to convert questionnaire answers to defensive

actions. We have shown that supervised learning algorithms can use social networking

based features to predict questionnaire answers and defense choices. AbuSniff increased

participant willingness to reject invitations from perceived strangers and abusers, as well

as awareness of friend abuse implications and perceived protection from friend abuse.
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CHAPTER 5

FLOCK: VULNERABILITIES AND DEFENSES TO FRIEND SPAM

5.1 Introduction

Adversarial organizations and governments have used social networks such as Facebook

and Twitter to collect and infer private and sensitive information from users [Lap18],

inject content to change user perception [OJ18], and distribute fake news, misinformation,

propaganda and malware [BBC17a, Lee17, Sin14, Aro16, Wei10, AS10].

Friend relationships are one gateway for such attacks. This is because in sites like

Facebook, where users tend to disclose honest self-representations [JGB+18], their data is

often shared by default with their friends. Following recent scandals [Lap18,OJ18], Face-

book has promised to take swift and decisive action to curtail attacks [Guy18, MZ.18].

However, we observed few changes concerning the friend invitation and acceptance pro-

cess.

In fact, we show through user studies that little has changed over the years, see

e.g., [RBJB14, BMBR11, PCNR10], and Facebook users with diverse backgrounds and

mobile devices, are still vulnerable to friend spam, invitations received from accounts con-

trolled by strangers. For this, we developed a Facebook-like interface to ask participants

to evaluate pending friends. Since we lack ground truth data for evaluation, we invented

it. Specifically, we fabricated synthetic pending friends, i.e., profiles that simulate spam

friend requests, and mixed 5 of them randomly with the actual pending friends, i.e., those

who actually sent a friend invitation . We found that 8 out of 10 in-person interview par-

ticipants, and 25 out of 30 online participants, have each confirmed at least 1 synthetic

friend. 19 of the 30 online participants confirmed at least 1 synthetic friend blindly, i.e.,

without inspecting its profile; 4 participants did not inspect any of the 5 synthetic friends.
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4 out of the 10 interview participants went as far as to invent narratives of common

background with synthetic pending friends, where none can exist. However, asking par-

ticipants questions about common background with pending friends, decreased their ten-

dency to confirm strangers: after acknowledging that they do not know them, participants

confirmed 35% fewer synthetic friends.

These observations suggest that the blame for confirming perfect strangers as friends,

lays at least in part with the Facebook UI design, that encourages users to confirm pending

friends without even inspecting their profiles.

To take steps toward addressing this problem, we first propose FLock, an alternative

UI design for processing pending friend invitations in Facebook. Our goal is to encourage

users to investigate their pending friends, increase their decision time, and reduce their

impulse to confirm them as friends. Further, we leverage the synthetic pending friend

concept as an opportunity to educate users about the dangers of quickly and greedily

accepting friend invitations. To this end, we introduce T-FLock, a FLock extension that

trains users to spot and delete synthetic friends, and raises awareness to the importance of

carefully considering each pending friend.

To help determine user vulnerability to friend spam without requiring user interaction,

we investigate correlations between several features extracted from user accounts and

friend invitations, and develop a classifier to predict user decisions on pending friend

invites.

Results. In studies with 120 online participants (30 control, 30 FLock, and 60 T-FLock),

we found that when compared to a control Facebook-like interface, T-FLock and FLock

(1) reduced the percentage of confirmed synthetic friends to 8% and 24.6% respectively,

from 50.6%, (2) increased the number of inspected synthetic friend profiles to 82% and

39.33% from 27.33%, (3) decreased the percentage of blind confirms from 55.9% to 37%

and 34% for synthetic friends, and (4) increased the time to make a decision for a pending
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friend by 40.4% and 29.8% respectively, and even more for synthetic friends - by 75.7%

and 40.5% respectively.

We found that user decisions were not influenced by the age, gender and education

of the participants, or by the age and price of the devices from which the decisions were

made. However, even when trained with only 5 past decisions per user, our decision

predictor achieved an F1 score of 83.43%. In summary, we introduce the following con-

tributions:

• Investigate Facebook pending friend UI. Confirm through in-person and online

studies, that Facebook encourages blind and rapid friend confirmations, including

from perfect strangers [§ 5.4.1].

• New designs. Introduce FLock, a new design to view and process received friend

invitations, that encourages users to carefully investigate pending friends, and T-

FLock, a system that further trains users to be suspicious of friend spam [§ 5.2].

• Predict user decisions. Develop the first classifier to predict user decisions on

pending invitations [§ 5.4.4].

• Evaluation scores and results. Introduce scores to evaluate the performance of

designs for processing pending friends [§ 5.3.3]. Show that design changes to the

Facebook UI significantly reduce vulnerability to friend spam attacks [§ 5.4.3].

5.2 Systems

We designed several mobile apps to investigate pending friend vulnerabilities, and miti-

gating solutions. All apps require the users to login through their Facebook account, and

fetch all the pending friends, the total number of existing friends, and 2 randomly selected

existing friends. In addition, the apps have the following common features:
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(a) (b)

Figure 5.1: Anonymized screenshots of profiles of (a) actual pending friend (of one of
the authors), and (b) synthetic friend, emulating the profile page of an actual, but private
pending friend. Developed apps display such information when the user taps on the profile
photo or name of a pending friend.
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• Attention check screen. Before login, the apps display an instructional manipu-

lation check [OMD09], to verify that the participant understands English, reads all

the text, understands and follows simple instructions, see Figure 5.2(a).

• App tutorial. Following login, while the app loads Facebook data of the user’s

pending friends, the app displays a tutorial screen, see Figures 5.2(c) and 5.4(c).

• Synthetic pending friends. To evaluate the willingness of users to accept perfect

strangers, the apps randomly mix among the real pending friends, 5 synthetic pend-

ing friends, i.e., fake profiles (3 female, 2 male if the user is male; 3 male, 2 female

if the user is female). We personalized synthetic friends to be from the same coun-

try and live in the same city as the user, and have a randomly chosen number of

mutual friends. We created a personalized list of names [Beh] and profile photos

for the synthetic friends, for each country of the participants, see Figure 5.1 for

anonymized screenshots. We chose the number of followers of a synthetic friend,

to be a random value between zero and half of the user’s number of friends. Fur-

ther, we chose identity-neutral images (e.g., nature photos) to display as part of the

synthetic friend’s profile.

• Existing friends. To evaluate participant attitudes toward existing friends, the apps

also randomly select and mix with the pending and synthetic friends, 2 existing

friends, from the user’s friend list.

• Profile inspection. Similar to Facebook, when users tap on any pending friend,

they are shown a screen where they can explore the profile of the pending friend.

For real pending friends, the apps show the same information that is shown by

Facebook (see § ??). For synthetic friends, the apps show only the minimalistic in-

formation mentioned above. We used javascript injection in the webview, to modify
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the html code of the profile page, and hide all the links that take the users to other

pages.

• Skip button. In addition to the Facebook standard “Confirm” and “Delete” but-

tons, our apps include a “Skip” button, for the case where the user does not feel

comfortable making a decision during the study.

• Time recording. The apps log the time of each user action, e.g., profile view and

decision (confirm vs. delete vs. skip) taps.

• Post-study questionnaire. After processing pending friends, we ask the partici-

pants to answer several multiple-choice questions about their age, gender, occupa-

tion, highest level of education, the age of their Facebook account, frequency of

use, and frequency of received friend invites, see Appendix 5.9.1.

• Payment code. The final screen of the apps displays a code, which the user needs

to prove completion of the app experience and redeem their payment.

Rationale for synthetic and existing friends. We use synthetic pending friends to eval-

uate design performance on ground truth data: ideally, participants should not confirm

any synthetic pending friend. The reason for showing existing friends is to understand

if participants are unhappy with past friend choices, and would like to unfriend some of

their existing friends.

In the following, we describe additional elements of each of the interfaces that we

designed.

5.2.1 Control App

We have designed a control app, that seeks to emulate the Facebook interface for pro-

cessing pending friends. The control app, (see Figure 5.3(a) for a snapshot), shows the

mix of real pending, 5 synthetic pending and 2 existing friends, in random order, on a
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single screen. When the user taps the “Proceed” button at the bottom of the screen, the

app displays the next screen only if the user has made a decision for each entry in the list.

Otherwise, the app changes the current screen to include an additional, “Skip” button for

each shown pending friend, see Figure 5.2(d). The app also pops-up a message asking

the user to make a decision for each pending friend. The reasons for this design are that

(1) we want the initial app to look as close to Facebook’s, however, we also want (2)

participants to make an explicit decision for each friend, but (3) without forcing them to

decide between “Confirm” and “Delete”.

As mentioned above, the user can inspect the profile of each pending friend by tapping

on the profile photo or name of the friend.

5.2.2 FLock

We conjectured that the Facebook UI (see Figure 5.3 and Figure 5.4(a) for snapshots) im-

plicitly encourages users to accept pending friends. This includes the emphasized, blue-

colored “Confirm” button vs. the gray “Delete” button, and the crammed listing of all

pending friends in a single screen. Participants in the studies of Rashtian et al. [RBJB14]

complained about unclear small profile photos.

We designed FLock (Friend Lock) to address these issues, see Figure 5.3(b) for an

illustrative snapshot. First, to remove the clutter and reduce cognitive load, FLock dis-

plays each pending friend in a single screen, with a large, centrally-placed profile photo.

Second, we transform the “Confirm” button into an inhibitive attractor [BLKC+13], by

displaying it in the same gray color of the “Delete” button. The users can navigate their

pending friend list using buttons on the sides of the profile photo, see Figure 5.3(b). Since

we want participants in our studies to make an explicit decision for each pending friend,

we activate the “Next” button only after the user makes a decision. We do not force par-
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(a) (b)

(c) (d)

Figure 5.2: Anonymized screenshots used in our systems: (a) Attention check screen.
(b) Post-study questionnaire. (c) Tutorial screen for the skip button, in the control app.
(d) New interface with “Skip” buttons, in the control app, shown when the user taps
“Proceed” without processing all friends. Screens (a) and (b) are shown in all the apps.
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(a) (b)

Figure 5.3: Anonymized screenshots of the friend request interface of the (a) control app,
where the first on the list is a synthetic pending friend, and (b) FLock app, showing the
decision page for the same synthetic pending friend.

ticipants to choose between “Confirm” and “Delete”, but also include the “Skip” option,

shown as a button in the same gray color.

Figures 5.4(a) and 5.4(b) compare the Facebook friend request UI with the FLock UI.

In FLock, each pending friend is displayed on a different screen, with a larger profile

photo and name fonts. The decision buttons also include the “Skip” option, but, unlike

Facebook, are shown in the same color, i.e., the “Confirm” button is transformed into an

inhibitive attractor. Figure 5.4(d) shows a snapshot of the pop-up that asks the user to

pick a reason for deleting an existing friend, that was presented as a pending friend.

Further, to understand the reasons for which users delete existing friends, presented as

pending friends, FLock pops-up a multiple-choice question asking for the reason to delete

such a friend, immediately after taking the action. The choices were (a) “This person is

already my friend”, (b) “I don’t know this person”, (c) “I don’t trust this person”, (d) “I
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(a) (b)

(c) (d)

Figure 5.4: (a) Genuine Facebook friend request interface, shown for comparison side-
by-side with (b) FLock friend request interface. (c) Tutorial screen shown in FLock and
T-FLock. (d) Screenshot of pop-up asking the user to pick a reason for deleting an existing
friend, that was presented as a pending friend.
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(a) (b)

Figure 5.5: Screenshots of the Android T-FLock app shown during the training session:
(a) Warning screen (red background) for confirming a synthetic friend. (b) Congratulation
screen (green background) for deleting a synthetic friend.

don’t want this person to be my friend anymore” and, (e) “Type other reason”, along with

a text input field where the users can type the reason, see Figure 5.4(d).

5.2.3 T-FLock

Previous work, e.g. [RBJB14, BMBR11] provides early evidence that carefully crafted

accounts have a high success rate of befriending strangers. We conjecture that Facebook

users can be trained to spot strangers, inhibit their impulse to quickly confirm friend

requests, and spend more time investigating them.

To evaluate this hypothesis, we have developed T-FLock (Trained FLock), an FLock

extension that consists of two parts. In the first, training part, T-FLock displays three syn-

thetic friends in succession, using the same UI of Figure 5.3(b). For each such synthetic

friend, if the user chooses to confirm, T-FLock immediately displays the warning screen
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of Figure 5.5(a); if the user chooses to delete, T-FLock shows the congratulatory dialogue

screen of Figure 5.5(b).

In the second, evaluation part, T-FLock behaves like FLock, i.e., it displays the par-

ticipant’s actual pending friends, mixed with 5 additional synthetic (i.e., different from

the training ones) and 2 existing friends as before, in random order. T-FLock no longer

shows the training warning or congratulation screens at this stage, in order to be able to

gauge the effects of training on the decisions made for the later synthetic friends.

Figure 5.2(a) and Figure 5.2(b) show screenshots of the attention check screen, and

the post-study questionnaire, that we display in the control, FLock and T-FLock apps.

Figure 5.2(c) shows the tutorial screen for the control app, and below it, Figure 5.4(c)

shows the tutorial screen that we display in FLock and T-FLock. Figure 5.2(d) shows

the control app interface that we display when the user taps the “Proceed” button before

processing all pending invitations. It contains a new “Skip” button added for each pending

invitation, and also a pop-up message at the bottom.

5.2.4 Collected Data

Our systems collect from each participant, the anonymized participant id, the total number

of friends, gender, country of origin - selected from a drop-down menu, answers to the

post-study questionnaire, mobile device model, and, for each processed pending friend,

its type (pending, synthetic, existing), decisions taken and timing data.

5.3 Methods

We have used in-person interviews to investigate user perception and reaction to pending

friends. Further, we have used remote online participants to evaluate the impact of our

solutions. We now detail both methods.
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5.3.1 In-Person Exploratory Interviews

We conducted semi-structured, in-person interviews with 10 participants that we recruited

from various locations in our city (e.g., supermarkets, grocery stores, restaurants, social

events etc.). Each participant signed a consent form.

Each interview took place in two rounds. In round 1, we used a FLock-like app (but

without confirm, delete and skip buttons) that displays each of the pending, synthetic and

existing friends, in random order, one by one, on the screen. We asked each participant to

make a decision for each friend (either confirm or delete) and recorded their answers.

In round 2, we revisited each of the pending friends, and asked the participant 21

open-ended questions, intended to capture the user perception of their pending friends

(see Appendix 5.9.1). We have designed the questionnaire through an iterative process

that included a focus group with 5 participants. The open-ended questions concern the

relationship of the participant with each of the shown “pending friends”, and include (1)

13 interaction type and frequency questions (e.g., “do you know this person?”, “do you

remember when and where you met this person for the first time?”, (2) 4 perception based

questions, e.g., “do you have any negative feelings about this person”, “do you trust this

person?”, and (3) 4 common background questions, e.g., “have you ever studied/worked

together?”.

After asking these questions for each pending friend, we asked the participant to make

a decision again. We audio recorded the entire interview with the consent of the partici-

pants, and transcribed their responses at a later time.

After round 2, we asked each participant to answer the post-questionnaire described in

Section 5.2, on paper, concerning their demographics, occupation, education, Facebook

activity levels, see also Appendix 5.9.1.

The participants took an average 38 minutes (M = 35, SD = 8.43) to complete the

interview, and we paid each $15.
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5.3.2 Crowdsourced User Studies

We have conducted 3 user studies, with the control, FLock and T-FLock apps, with a total

of 145 remote participants, recruited from JobBoy [Job17], between September 2018 and

February 2019. The jobs we posted asked the participants to install our app (control,

FLock or T-FLock) from the Google Play store, use it to login to their Facebook accounts

and follow the instructions on the screen. We have only recruited participants who have

at least 30 Facebook friends and 1 pending friend, had access to an Android device, and

were at least 18 years old. We applied a cryptographic one-way function to the Facebook

account ids of the participants, and used the anonymized ids to ensure that each human

participated only once in all 3 studies.

To ensure the quality of the data collected, we discarded the data of participants who

failed the attention check or declared an incorrect location, i.e., inconsistent with both

the Facebook listed location and the device IP address (see § 5.2.4). We note that we do

not exfiltrate or store Facebook listed locations or device IPs, see § 5.2.4. In total, we

have discarded data from 25 participants: 12 of the 42 recruited participants in the control

study, 5 out of 35 in the FLock study, and 8 out of 68 in the T-FLock study.

We have paid each participant, including the ones whose data we discarded, $3, for an

average job completion time of 11.18 minutes (M = 11.58, SD = 3.18).

5.3.3 Evaluation Scores

We introduce the following scores to evaluate user behaviors concerning their pending

friends, in the control study, and the impact of FLock and T-FLock:

• Inspected profiles. The number of pending friend profiles inspected.

• Blind confirmations. The number of pending friends confirmed without prior pro-

file inspection.
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• Decision split. The number of pending friends confirmed, deleted and skipped.

• Timing. The time spent inspecting a profile, and making a decision.

Ideally, we want to see a reduction in the number of confirmed synthetic friends, and blind

decisions, and an increase in the number of pending profiles inspected, and in the time to

inspect profiles and make decisions.

5.3.4 Ethical Considerations

We have developed our protocols to interact with participants and collect data in an eth-

ical, IRB-approved manner. We did not store the Facebook data (e.g., profile picture,

name, number of mutual friends, see § ?? and § 5.2) that we extracted from the pending

friends and 2 existing friends of participants. We only displayed this information for the

participant to see. Further, we did not exfiltrate and store Facebook listed locations of

the participants or their IP addresses, but only the user-selected country of location, if

consistent. Since we do not preserve this information, its handling does not fall within

the PII definition of NIST SP 800-122. Under GDPR, the use of information without

context, e.g., name or personal identification number, is not considered to be “personal

information”. We communicated our data collection process during recruitment and in

the consent form, and we recruited only consenting participants. We paid all the recruited

participants, regardless of them passing the attention check screen.

5.4 Results

We now present the results of our studies. We use a significant level of α = 0.05 in all

the statistical tests.
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Age Gender Geographical Region Occupation Education

Category Percentage Category Percentage Category Percentage Category Percentage Category Percentage

18-24 49.16% Male 69.16% Africa 3.33% Unemployed 9.16% Elementary 5.0%
25-34 35.83% Female 30.83% Asia 63.3% Homemaker 9.16% High school 30.83%
35-44 10.83% Europe 9.16% Retired 0.83% College 10.0%
45-54 3.33% Middle East 5.0% Student 41.66% Bachelors 45.0%
55-64 0.83% North America 13.33% Employed 39.16% Graduate 9.16%

South America 4.16%
Other 1.66%

Account Age Friend Count Pending Friend Count Account Usage Frequency Frequency Received Invitations

Category Percentage Category Percentage Category Percentage Category Percentage Category Percentage

¡1 year 0% ¡=35 2.50% ¡=5 26.66% Every hour 24.16% Almost everyday 0%
1-2 years 10.83% 36-75 7.50% 6-10 13.33% Several times a day 31.66% Once in every few days 1.66%
3-5 years 50.0% 76-150 10.00% 11-14 15.0% Once a day 7.50% Once a week 36.66%

6-10 years 20.0% 151-250 18.33% 15-18 20.0% Several times a week 10.83% Once a month 35.83%
¿10 years 19.16% 251-450 24.16% ¿18 25.0% Once a week 8.33% Occasionally 25.83%

451-700 9.16% Occasionally 17.50% Rarely 0%
¿700 28.33% Rarely 0%

Table 5.1: Breakdown of post-study questionnaire answers over 120 online participants.

5.4.1 In-Person Exploratory Interviews

We discuss first the participants, then qualitative and quantitative findings from our ex-

ploratory study.

Participants. The 6 male and 4 female participants were between 19-46 years old (M =

28.5, SD = 8.64) and had a diverse background: 1 unemployed, 1 housewife, 1 grocery

store owner, 1 high school teacher, 1 engineer, 1 medical resident, and 4 students (bach-

elors to graduate degree). The participants had between 46 and 1,838 Facebook friends

with an average of 488 friends (M = 413, SD = 524.56).

Round 1. We found that 40% (i.e., 20 of the total 50) of the synthetic pending friends

shown to the 10 participants, were confirmed in the first round of the experiment. Surpris-

ingly, in 11 of these cases, the participants confirmed such synthetic friends even though

they later said that they did not trust the account owner, had a negative feeling about them,

or thought they would be abusive in the future. 7 of the 10 participants have confirmed

at least one synthetic pending friend, with one participant confirming 4 synthetic pending

friends.

In addition, 5 participants did not confirm a total of 7 of their actual pending friend

invitations.
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Reasons to confirm “synthetics”. In the open-ended questionnaire, 4 out of 10 partici-

pants invented stories to support their desire to confirm synthetic pending friends.

In 5 out of the above 20 synthetic accepted cases, the participants claimed that they

either met the synthetic pending friends in real life or they don’t remember if they met.

In 4 other cases, the participants claimed that they either attended the same school

or lived in the same city. Participant P3 (42 years old immigrant male and grocery store

owner with 125 friends in Facebook) said about a synthetic friend:

“She looks like I have seen her in my store before. I don’t remember exactly when.”

P9 (19 years old female, college student with 624 friends in Facebook) said about

another synthetic friend:

“I think I saw this boy in my school. I don’t exactly remember, but his face looks so

familiar.”

P5 (46 years old male, high school teacher with 81 friends in Facebook) said about

another synthetic friend:

“She might be one of my students.”

Other participants were primarily concerned with growing their friend list. For in-

stance, P10 (23 years old male unemployed but college graduate with 1,883 friends in

Facebook) said, about two synthetic pending friends:

“I spend a lot of time in Facebook, so I want to grow my friends list. I don’t care much

when accepting. I have nothing to hide. I will accept”, and

“[..] does not look like a bad guy. I will accept. My friend list is growing so fast!”

Similar to Rashtian et al. [RBJB14], we found that Facebook users may be more

vulnerable to requests from perceived attractive accounts. For instance P4 (22 years old

female undergraduate student, with 448 Facebook friends) said about a synthetic friend:
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“I don’t remember meeting him, but I would not mind accepting him. Looks like a

gentle guy.”

Curiosity seems to also be a reason. For a synthetic friend, P9 said:

“Honestly saying, this guy looks very handsome. I don’t know why he sent me a

request but I want to find out more about him.”

P1 (30 years old male grad student with 378 friends) said:

“She is an attractive girl. I think I could accept her because she is really pretty. Even

though I feel like there is no reason this girl would send me a friend request, I still want

to accept this request. I will delete this friend if I find it to be fake.”

We found that sometimes the Facebook users accept a request to find out about the

person in more detail although they may delete the request at a later time. For instance,

P1 said “I want to accept her first and then check her profile. I mean I want to see where

she is from. I will delete this friend if I find it to be fake.”

The quality of the accounts counts. For instance, P3 said:

“This is a beautiful woman. Also the name seems Bangladeshi. Maybe she is someone

from my community. I think I will decide later”,

while P9 said:

“She has many mutual friends with me. I think she might be someone from my school.”

Similar to Zou et al. [ZMMS18], we found perceived harmlessness is also a factor.

For instance, P6 said:

“I feel like she is an innocent girl. May be she is trying to get advice from me by

connecting in Facebook. I don’t think this girl can do anything bad to me.”

Round 2: Impact of questionnaire. We observed that when we asked the open-ended

questions during round 2, it changed the participant opinions and decisions. During round
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2, only 13 of the 50 synthetic friends were confirmed, down by 35% from the 20 in the

1st round. Only 5 participants confirmed at least one synthetic friend. For instance, par-

ticipant P5 said:

“At first I thought I will accept her. But now I think I should first send her a message to

ask who she is. I am now thinking of some potential abuse after answering the questions.”

The questionnaire also had an impact on the number of actual pending friends con-

firmed in the second round: 11 out of the 29 total actual pending friends (vs. 7 in round

1) were rejected by the participants. For instance, participant P1 explained about a real

pending friend:

“He is my ex-girlfriend’s uncle. He is a professor. I was confused whether I should

accept him. After answering the questions, I now feel that this friend will not add any-

thing to my Facebook experience. So I don’t want to accept him now.”

In summary, we observed participant vulnerability to synthetic pending friends, being

mitigated by a careful assessment of past interactions, common background and percep-

tion of each pending friend.

5.4.2 Confirming Actual Invites

Participants in our in-person exploratory study reported several reasons to confirm invita-

tions received from actual pending friends.

93



Real-life relationship. P8 (28 years old male engineer with 659 Facebook friends) said

about an actual pending friend:

“He is my childhood friend. We used to meet a lot when we were younger. I like him

and will definitely accept.”

P7 (35 years old female housewife with 173 Facebook friends) said:

“She is my neighbor. We have a good family relation. Our kids are also friends.”

P3 said about another pending friend:

“He is my nephew. I love him very much. I would definitely accept him.”

Professional relationship: P8 (28 years old male engineer with 659 Facebook friends)

said about a pending friend:

“He is also an engineer. We met when we worked on a project. I will accept him.”

Peer-pressure. P6 (29 years old male, medical resident, with 512 Facebook friends) said

about a real pending friend:

“She is my colleague and a senior doctor. I am a little bit scared of her. I will definitely

accept because it will send a very bad message if I do not accept. I don’t want to risk

that.”

94



5.4.3 T-FLock and FLock vs. Control

In the following, we first describe the study participants, then compare the performance

of T-FLock and FLock against the control app, on the evaluation scores of Section 5.3.3.

Participants. Table 5.1 summarizes the answers of the 120 participants in the post-study

questionnaire. Most participants were young, with only 4.16% being more than 45 years

old (M = 25, SD = 7.56), 69.16% male and 30.83% female, representing 5 continents (but

63.33% from Asia) (top 5 countries: Bangladesh 25.0%, India 22.50%, USA 11.66%,

Nepal 5.83% and Pakistan 5.0%). The participants had diverse occupations, and education

levels, with high-school and bachelors degrees being most frequent (30.83% and 45.0%

respectively). 50% of the participants’ account were between 3 and 5 years old, while

19.16% were over 10 years.

Participant-declared frequency of Facebook account use was also diverse, ranging

from frequent (every hour 24.16%, several times a day 31.66%, once a day 7.50%), to less

frequent (several times a week 10.83%, once a week 8.33% and occasionally 17.50%).

None of the participants declared to rarely access their accounts. Most participants de-

clared that they received friend invitations either once a week (36.66%), once a month

(35.83%), or occasionally (25.83%).

The participants had an average of 12 pending friends (M = 13, SD = 6.71). 27

participants had each 20 or more pending friends. The participants had between 30 and

2,720 Facebook friends, with a average of 574 friends (M = 323, SD = 588.84).

Decision split. Figure 5.6 compares the percentage of synthetic, pending and existing

friends that were confirmed, deleted or skipped, in the control, FLock and T-FLock stud-

ies. In the control study, we have shown a total of 613 pending friend invitations, (includ-

ing 403 real pending, 150 synthetic pending, and 60 existing friends) to the 30 partici-

pants. Out of the 150 synthetic pending invitations, 76 were confirmed, 59 were deleted

and 15 were skipped. This 50.6% confirmation rate exceeds the rate in the exploratory
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Figure 5.6: Per-treatment distribution of confirmed, deleted, and skipped requests. FLock
reduces the percentage of confirmed synthetic friends from 50% (control) to 25%, while
T-FLock further reduces it to 8.8%. FLock and T-FLock also reduce the percentage of ac-
tual pending friends confirmed, but slightly increase the percentage of confirmed existing
friends.

study. More importantly, 26 of the 30 participants confirmed at least one synthetic friend;

2 participants confirmed all the 5 synthetic friends. The average number of synthetic

friends accepted is 2.53 (M=3, SD = 1.43).

Further, out of the 403 real pending invitations, 151 were confirmed, 149 were deleted

and 103 were skipped for later. We observe a higher rate of confirmation for the synthetic

pending invitations than the actual pending invitations (50% vs 37%). Finally, out of the

60 existing friends, 33 were confirmed, 16 were deleted and 11 were skipped.

In the FLock app study, we showed a total 475 pending friend invitations to 30 par-

ticipants, that include 265 actual pending friends, 150 synthetic pending friends and 60

existing friends. Out of the 150 synthetic pending invitations, 37 were confirmed, 73

were deleted, and 40 were skipped. The average number of synthetic friends accepted is

2.47 (M=1, SD = 1.23). Out of the 265 actual pending invitations, 72 were confirmed,
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(a)

(b)

Figure 5.7: (a) Per-treatment distribution of profiles inspected by type of friend request.
FLock and T-FLock significantly increase the percentage of all of synthetic, actual pend-
ing and existing friends whose profiles were inspected. (b) Per-treatment distribution of
profiles confirmed without inspection. While during control, 55.9% of synthetic friends
were confirmed blindly, this is significantly reduced to 37% and 34% by FLock and T-
FLock respectively.
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161 were deleted and 32 were skipped for later. Out of the 60 existing friends, 42 were

confirmed, 12 were deleted and 6 were skipped.

In the T-FLock app study, we showed 1,193 friend invitations to the 60 participants:

773 actual pending friends, 300 synthetic pending friends and 120 existing friends. Out of

the 300 synthetic pending invitations, only 24 were confirmed, 190 were deleted, and 86

were skipped. On average 0.3 (M=0, SD = 0.91) synthetic friends were accepted. Out of

the 773 actual pending invitations, 237 were confirmed, 302 were deleted and 234 were

skipped for later. Lastly, out of the 120 existing friends, 77 were confirmed, 19 were

deleted and 24 were skipped.

We observe thus a significantly lower rate of confirmation (24.7%) in the FLock

study, for the synthetic pending invitations, than the control experiment (50.6%). A two-

proportion one sided z-test (H0 : pcb = pfb vs. Ha : pcb > pfb where pcb and pfb

are the proportion of synthetic friends confirmed under the control and FLock treatment

respectively) produced a p − value = 0.00 (Z = 4.64), suggesting Ha, i.e., that the

proportion of synthetic pending friends confirmed is statistically significantly lower for

the FLock group. Even further, the portion of accepted synthetic friend requests in the

T-FLock (8%) study was significantly lower than that of FLock (24.7%) study (Z = 4.86,

p− value = 0.00).

In addition, we observe that in the FLock and T-FLock studies, participants confirmed

fewer actual pending friend invitations, compared to the control study: 30.66% in T-

FLock and 27.16% in FLock vs. 37.46% in the control study. A two-proportion one

sided z-test revealed the portion of confirmed actual pending friends in the FLock study

is significantly lower than that of control study (Z = 2.78, p − value = 0.00), and the

portion of confirmed actual pending friends in the T-FLock study is significantly lower

than that of the control study (Z = 2.35, p − value = 0.00). However, this test did not
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show any significant difference between the portion of confirmed actual pending friend

request in FLock and T-FLock.

In addition, in all the studies, a majority of the existing friends presented as pending

friends, were accepted by the participants: 55%, 70% and 64.16% respectively for control,

FLock and T-FLock studies.

Profile inspection. Figure 5.7(a) compares the percentage of profiles inspected, grouped

by the type of friend request, in the control, FLock and T-FLock studies. In the control

study, only 94 of the 613 pending friend profiles were inspected by 28 participants. 2

participants did not inspect any profile. Participants inspected 27.33% of the synthetic,

7.94% of the actual pending, and 35% of the existing friend invitations.

Figure 5.8(a) (left most column) compares the average time taken by the control,

FLock and T-FLock participants to inspect profile of pending friends. The control study

participants took an average of 20.11s (M = 21, SD = 4.04) to inspect the profile of

an actual pending friend, 31.95s (M = 33, SD = 5.44) for a synthetic friend, and 43s

(M = 43, SD = 2.52) for an existing friend. Thus, the participants took more time to

inspect the profile of a synthetic pending friend than an actual pending friend (t = 11.33,

p − value = 0.00). We conjecture that this occurs because the participants were more

interested in the synthetic pending friends, or they had inspected some of their actual

pending friends at an earlier time. Further, we conjecture that the participants took the

most time to inspect the profile of their existing friends presented as pending, because

such friends have longer Facebook timelines, which take longer to inspect.

In the FLock study, 122 of the 475 pending friend profiles were inspected by the 30

participants, in an average of 37.46s (M=37.5, SD=7.91). Participants inspected 39.33%,

48.33%, and 12.45% of synthetic, existing and pending friend requests respectively. Sim-

ilar to the control study, a majority of the actual pending friend requests were not in-

spected. However, compared to the control study, significantly more synthetic profiles
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(a)

(b)

Figure 5.8: (a) Per-treatment average time taken by the participants to make a decision,
per decision type. FLock increased the average confirmation time by 39.6% compared to
the control, while T-FLock increased it by 57.8%. (b) Per-treatment average time to make
a final decision (confirm, delete, or skip) per type of pending friend. Compared to the
control study, FLock increased the participant decision time for synthetic pending friends
by 40.5%, while T-FLock increased it by 75.7%.
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were inspected by participants in the FLock study (59 vs 41, Z = 2.20, p−value = 0.01).

In addition, the FLock study participants took more time on average to inspect the profile

of an actual pending friends (26.81s vs 20.11s, t = 8.17, p − value = 0.00), a synthetic

pending friend (38.24s vs 31.95s, t = 7.21, p− value = 0.00) and an existing Facebook

friend (47.93s vs 43s, t = 6.6, p− value = 0.00).

In the T-FLock study, 643 profiles out of 1,193 were inspected by the 60 participants.

Particularly, 82%, 88.33% and 37.52% of the synthetic, existing and pending friend re-

quests were inspected respectively. Two-sample proportion z-test shows that the percent-

age of inspected profiles of each friend request type in T-FLock is significantly larger than

that of control and FLock studies. In addition, compared to the FLock study, participants

in T-FLock took significantly longer time on average to inspect each type of profile: ac-

tual pending friends (31.14s vs 26.81s, t = 8.8, p − value = 0.00); synthetic pending

friends (41.14s vs 38.24s, t = 6.3, p − value = 0.00); real pending friends (49.99s vs

47.93s, t = 2.5, p− value = 0.00).

Blind confirmations. Figure 5.7(b) shows the percentage of pending friends (by type)

who were confirmed blindly, i.e., without prior profile inspection. During the control

study, 55.96%, 39.08% and 59.97% of synthetic, actual pending and real friend requests

that were confirmed by participants, were decided blindly (i.e. without prior inspection).

We observe that the number of blindly confirmed synthetic and real pending friends are

significantly higher than that of actual pending friends (z = 3.13 and z = 2.40 respec-

tively with p− value = 0.00).

In the FLock study, 37.36%, 31.03% and 70.97% of confirmed synthetic, actual pend-

ing and existing friends were decided blindly. We use a two-proportion one sided z-test

to compare the portion of blindly confirmed synthetic profiles. Compared to the con-

trol study, the portion of synthetic friends confirmed blindly was significantly reduced

(37.36% vs 55.96%, z = 2.62, p− value = 0.00).
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Finally, in the T-FLock study, 33.33%, 41.41% and 78.57% of the confirmations for

synthetic, actual pending and real friends profiles were decided blindly. Compared to

the participants in the control study, T-FLock significantly reduced the portion of blindly

confirmed synthetic profiles (33.33% vs 55.96%, z = 2.72, p− value = 0.00).

Decision timing. We have also analyzed the time taken by the participants to make a

decision for a friend invitation. We computed this time as the difference between the

decision time and the time of the previous event (e.g., return from profile inspection,

decision on previous pending friend).

Figure 5.8(a) compares the average time taken by the control, FLock and T-FLock

participants to make a decision, per decision type. In the control study, the participants

took an average 24.77s (M = 24, SD = 8.45) to make a decision for a friend request. They

took an average of 18.47s (M = 18, SD = 6.85) to confirm a friend invitation and 22.57s

(M = 23, SD = 4.0) to skip, but significantly longer, i.e., 33.36s (M = 34, SD = 3.04) to

delete a friend invitation (p− value = 0.00).

The FLock participants took on average, 39.6% more time to confirm, 16.1% more

time to skip, and 13.8% more time to delete pending friends, when compared to the con-

trol participants. A substantial increase was further induced by T-FLock, where partici-

pants took on average, 57.8% more time to confirm, 34.7% more time to skip and 24.1%

more time to delete a pending friend, than in the control study.

Figure 5.8(b) compares the average time taken by the control, FLock and T-FLock

participants to make a decision for each type of friend request (synthetic, actual pending

and existing). A Welchs t-test shows that, in the control study, the average time to make

a decision for a synthetic pending friend, 20.49s (M = 14, SD = 10.79), was significantly

shorter than the 32.20s (M = 32, SD = 2.64) for existing friends (t = 12.34, p− value =

0.00) and also than the 25.27s (M = 24, SD = 7.00) for actual pending friends (t = 5.02,
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Variable 1 Variable 2 Control FLock T-FLock

Age # delete -0.02 0.02 0.09

Device release price # confirm synthetic -0.17 -0.09 0.08

Usage frequency # skip -0.33* 0.25 0.09

Usage frequency Frequency of receiving
friend request 0.38* 0.38* 0.28*

Usage frequency # confirm synthetic 0.06 0.31* -0.08

# friends # delete synthetic 0.4 0.32* 0.07
# friends # confirm synthetic -0.13 -0.35* 0.08

Avg time to
inspect & decide # confirm synthetic -0.44* -0.31* -0.42*

Avg time to
inspect & decide synthetic # delete synthetic 0.63* 0.39* 0.50*

Table 5.2: Kendall tau-b correlation coefficient between different variables in control,
FLock and T-FLock. * indicates statistically significant result at α = 0.05.

p − value = 0.00). This occurs even though the participants took more time to inspect

the profiles of synthetic than of real pending friends (see Profile inspection above).

In the FLock study, this relationship was preserved. However, compared to the control

study, the participants took significantly (p−value = 0.00) more time to make a decision

for an actual pending friend (33.04s vs 25.27s, t = 14.0), synthetic pending friend (28.79s

vs 20.49s, t = 6.67) and existing friend (36.81s vs 32.2s, t = 9.15). In the T-FLock

study, we found further improvement: when compared to the FLock study, the T-FLock

participants took significantly (p − value = 0.00) more time to make a decision for a

synthetic friends (36.01s vs 28.79s, t = 7.31) and existing friends (39.78s vs 36.81s,

t = 6.88). However, they took almost the same time to decide about actual pending

friend requests (33.51s vs 33.04s, t = 0.95, p− value = 0.34).

In figure 5.10, we include and discuss the timelines (i.e., the times when each partic-

ipant open or closed a pending friend profile, or made a decision) of 1 participant from

each of the control, FLock and T-FLock studies, who had the largest number of pending

friends in each study (20 actual pending, 5 synthetic and 2 existing).
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5.4.4 Predicting User Decisions

We first study associations between several features extracted from user accounts and

friend invitations, then zoom-in into device model impact on user decisions, then present

results over a classifier that we developed to predict user decisions.

Correlation analysis. A Fisher exact test did not show any significant relation between

the gender of the participants and their decision to confirm at least one synthetic friend

request in the control, FLock, and T-FLock studies (p−value = 1, 0.38, and 0.72 respec-

tively). Similarly, a χ2-test did not reveal any relation between the education level of the

participants and their decision to confirm at least one synthetic friend request (p-values

for control, FLock and T-FLock are 0.73, 0.81, 0.51 respectively). Further, we computed

Kendall tau-b correlation coefficients (see Table 5.2, first row) and found no significant

correlation between the age of the participants and the number of deleted or confirmed

friend requests.

Table 5.2 further shows other Kendall tau-b correlation coefficients for several obser-

vations in the control, FLock and T-FLock studies. Perhaps unsurprisingly, the declared

frequency of Facebook use is strongly positively correlated with the declared frequency

of receiving friend requests in the control, FLock and T-FLock studies. The declared

frequency of use is negatively correlated to the number of skips in the control study, but

positively correlated to the number of skips and confirmed synthetics in the FLock study.

In the FLock study, the participant number of friends was strongly correlated with the

number of synthetic friends deleted (positive) and confirmed (negative).

In the 3 studies, the number of confirmed synthetic friends significantly decreased as

the participants took more time to inspect and make decision about the friend requests.

Similarly, the number of deleted synthetic friend requests was strongly positively corre-

lated with the decision and inspection time. This provides evidence that participant en-
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Variable 1 Variable 2 Control FLock T-FLock

Age # delete -0.02 0.02 0.09

Usage frequency # confirm 0.14 -0.04 -0.08

Usage frequency # skip -0.33* 0.25 0.09

Usage frequency # delete 0.11 0.08 -0.14

Usage frequency # delete synthetic 0.15 0.21 -0.04

Usage frequency Frequency of receiving
friend request 0.38* 0.38* 0.28*

Usage frequency # confirm synthetic 0.06 0.31* -0.08

# friends # delete synthetic 0.4 0.32* 0.07

# friends # confirm synthetic -0.13 -0.35* 0.08

# confirm synthetic Device release price -0.17 -0.09 0.08

Declared frequency
of received invites # confirm 0.03 -0.09 -0.04

Avg time to
inspect profile # confirm -0.10 -0.12 0.20

Avg time to
inspect profile # confirm synthetic -0.03 0.19 -0.04

Avg time to
inspect profile # delete -0.01 -0.11 -0.18*

Avg time to
inspect & decide # confirm synthetic -0.44* -0.31* -0.42*

Avg time to
inspect & decide synthetic # delete synthetic 0.63* 0.39* 0.50*

Table 5.3: Kendall tau-b correlation coefficient between different variables in control,
FLock and T-FLock. * indicates statistically significant result at α = 0.05.
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Figure 5.9: Scatter plot of device release price (EUR) vs. model age (years) at the time of
study, for each of 756 confirmed requests processed in the three online user studies, from
67 unique device models. Most devices are old and low-end (32.27%) or middle-aged
and low-end (30.55%).

gagement in the decision making process, decreases friend spam vulnerability. Table 5.3

in the appendix includes more studied correlations.

Impact of device models. We investigate correlations between participant decisions for

pending friend invitations, and the device model age and release price, as perhaps indi-

cators of social status. The 120 participants in our studies have used 67 unique Android

device models (Samsung Galaxy J7 Pro, Xiaomi Mi A1, Samsung Galaxy S6, Lava Iris

820, and Gionee A1 Lite were the most popular), released between 2012 and 2018. We

investigated relationships between the device model price and age, and the tendency of

users to confirm, delete or skip friend requests. Figure 5.9 shows the scatterplot of the

device model age at the time of the study and release price (EUR), over 756 confirmed

friend invitations across all three user studies. We obtained similar plots for the delete

and confirm decisions.
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We categorize devices into (1) low, mid, or high-end, if their release price is in the

range 0-260, 260-450, and > 450 EUR, respectively [Tri17], and (2) fresh (< 1 year),

middle-aged (1-2 years), and old (> 2 years). 72.62% of invitations shown in Figure 5.9

were processed from low-end, 16.73% from mid-end, and 10.64% from high-end devices;

43.8% were from old and 24.94% from new models. We found no statistically significant

correlation between the number of confirmed requests and the device release price or age

(see also Table 5.2).

The predictor. We have developed a classifier to predict user decisions on friend invita-

tions. Such a classifier can help (1) determine users who are vulnerable to friend spam,

without asking them to make decisions and (2) predict which friend invitations the user

will confirm, as soon as they are received, and before being shown to the user. Thus, we

consider a scenario where the classifier is trained on past user decisions.

Training set tuples for the classifier consist then of a user and a pending friend. For

each such tuple, we extracted features from the available data: (1) the user declared gen-

der, age, sharing preferences, frequency of invitation reception and account use, region,

occupation, education, account age, (2) extracted number of friends, number pending in-

vitations, device price and age, (3) the pending friend type (synthetic, pending, existing)

and the order of the pending friend in the interface, and (4) the percentage of past confirm,

delete and skip decisions. For a user and test pending friend, the classifier outputs one of

3 classes, confirm, delete or skip.

We used k-fold cross-validation for time series [AC10], where we train on the first

k decisions of each user, and test on the rest of the invitations. k is between 1 and the

maximum number of pending friends per participant. We have used only tuples from the

control study, where participants had the unadulterated, Facebook-like view of the friend

invitation interface, i.e., 613 tuples from 30 participants.
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Algorithm k Precision Recall F1
GBM 5 84.19% 82.68% 83.43%

16 90.68% 90.68% 90.68%

RF 5 83.19% 81.64% 82.41%
26 94.23% 92.31% 93.26%

SVM 5 71.98% 71.71% 71.84%
15 82.16% 80.00% 81.07%

KNN 5 54.93% 49.68% 52.17%
26 82.05% 76.92% 79.40%

Table 5.4: Precision, Recall, and F1 measure for different machine learning classifiers as
a function of the history length k. Second row shows the k for which the performance was
maximum. GBM and RF achieve an F1 of 83.43% and 82.41% respectively considering
only 5 previous friend requests, while GBM further improves F1 up to 90.68% when
k = 16.

Table 5.4 shows the performance of the predictor when using 4 supervised learn-

ing classifiers. Gradient Boosting Machine (GBM) outperformed RF, SVM, and KNN,

achieving an F1 of 83.43% and 90.68% when trained on only the first 5 and 16 friend

invitation decisions from each user, respectively.

The top 5 most impactful features where the order of the pending friend in the inter-

face, the percentage of past confirm, delete and skip decisions, the friend type and the

user’s friend count.

5.5 Study Timelines

We picked 1 participant from each of the control, FLock and T-FLock studies, who had

the largest number of pending friends in each study (20 actual pending, 5 synthetic and

2 existing). Figure 5.10 compares their timelines, i.e., the times when each participant

open or closed a pending friend profile, or made a decision. We observe that the control

participant (Figure 5.10(a)) confirmed 4 of the 5 synthetic friends without inspection,

inspected only 2 of the friends (1 synthetic and 1 pending) and took 669s to process

all the pending friends (avg. 24.77s per friend). The FLock participant (Figure 5.10(b))
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Figure 5.10: Participant timeline of the control study: (a) The timeline plot of the partici-
pant having maximum number of total pending friends in the control experiment. (b) The
timeline plot of the participant having maximum number of total pending friends in the
FLock experiment. (c) The timeline plot of the participant having maximum number of
total pending friends in the T-FLock experiment. All of the 4 evaluation scores improved
from control to FLock and FLock to T-FLock.

inspected then deleted 1 synthetic friend, deleted 1 synthetic friend without inspection, but

accepted 3 synthetic friends without inspection. The participant also inspected 1 pending

friend and 1 existing friend, an improvement from the previous participant. For the same

number of processed pending friends, the participant also took 1,040s to process all the

pending friends (avg. 38.51s per friend), 55% longer than the control participant.

In contrast, the T-FLock participant (Figure 5.10(c)) inspected then deleted all of the

synthetic friends, inspected 6 of the 20 actual pending friends, and both existing friends.

We also observe a substantially longer time, 1,427s, that the participant took to process

the same number of pending friends as the control and FLock participants (52.85s per

friend).

5.6 Discussion

Relevance of our work. 78.4% of the participants in our studies had more than 150

friends (and up to 2,720), which is the average number of stable relationships that hu-

mans can maintain [Dun92]. This suggests that the more friends a user has (over 150),
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the higher the chance that the user’s existing friends, and the friend invites she receives,

contain spam.

We believe that T-FLock’s substantial reduction in the total number of confirmed syn-

thetic friends and in the number of participants who confirmed at least 1 such friend, is

essential in protecting against friend spam and subsequent attacks (§ ??). We further em-

phasize the importance of T-FLock’s increase in the number of inspected pending friend

profiles, and in the time taken to inspect them and make a decision. This reveals that

users can be trained to carefully consider each pending friend. This is confirmed by our

interview study, where we found that taking the time to consider common background,

can encourage users to even question invitations received from people with whom they

have intricate common background.

Deleting existing friends. We asked the FLock participants for their reasons to delete 8 of

their existing friends, that we presented as pending friends. In four cases, the participants

recognized that this person was already their friend and hence they chose to delete the

invitation. However, in two cases, the participants mentioned that they did not want that

person to be their friend anymore. In one case, the participant reported that she did not

even know that person, while in the last case, the participant reported that the request was

from a fake profile.

This emphasizes the importance of properly vetting pending friends, and suggests

the need for solutions that continue this vetting process for existing friends. We argue

thus that contrary to Facebook’s mantra of connecting people at any cost [Fac18], care-

fully vetting online friends can reduce friend spam vulnerabilities, and increase user well-

being [DVK15, FE16, CFL+16].

Friend spam detection. Given access to relevant information, e.g., the history of friend

invitations sent and received by an account, (including their timing), the history of changes

to the account, the IP addresses and devices used to login to the account, the nature of the
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account’s posts, the account age and level of activity, we conjecture that one could predict

if (1) a user account was used to send friend spam, (2) a user has common background

with a pending friend, and (3) it is safe to confirm that pending friend. A focus group

we organized with 6 participants, proposed using this information to (1) provide more

effective attractors, e.g., highlight the “Delete” button for suspicious pending friends, (2)

pop-up a menu of friend lists where the pending friend could be added, if the user decides

to confirm, including a list for “unsafe” friends, with restricted permissions to the user’s

information, or even (3) a spam folder to store the suspicious pending friend invitations.

In summary, instead of forensically detecting friend spam, in this chapter we leverage

the observation that victims are the first line of defense, and develop online techniques

that involve the user in the spam detection process, at the time when the spam attack takes

place. Our approach seeks to encourage users to carefully evaluate their pending friends,

and trains them to avoid accepting strangers.

5.7 Limitations

Our exploratory study was performed on a small set of participants, all recruited from a

single US city. Our crowdsourced studies were performed with a biased population that

consisted of participants with access to mobile devices, were mostly young (49.2% were

18-24 years old), had more than 30 Facebook friends and 1 pending friend, and under-

stood English. Thus, we do not claim that our results generalize to the entire Facebook

population. However, the participants had a diverse education and occupational back-

ground, and the results of the exploratory study were confirmed by the control study, even

though performed on different population samples. Further, Redmiles et al. [RKM19]

revealed that regarding security and privacy experiences, 18-29 year-old participants re-

111



cruited from Amazon Mechanical Turk more closely matched the U.S. population than

did participants from a census-representative web-panel sample.

We did not implement participant decisions to confirm or delete actual pending friends.

Instead, we notified participants at the end of the study (in the payment code screen), that

we did not implement their decisions, and recommended them to visit their Facebook

accounts to implement these decisions. The reason for this is the high latency of the op-

eration, which would have made our systems unresponsive, affecting user experience and

thus the quality of our results.

In the control study, we found 8 instances (2 pending, 5 synthetic, 1 existing) where a

single profile was inspected twice, by 4 different participants. In FLock, we found 4 such

instances, all for synthetic pending friends, from 4 different participants. We conjecture,

but did not seek participant feedback, that such “profile double-checks” for synthetic

friends expose the psychological conflict presented by well-crafted stranger accounts. We

observe then that among the 60 participants in the T-FLock study, there was only 1 profile

double-check, for an actual pending friend.

5.8 Conclusions

In this chapter we have shown, through exploratory interviews and a control study with

online participants, that Facebook users continue to be vulnerable to friend spam attacks.

We have developed new designs of interfaces to process pending invitations. We have

shown, through studies with online participants, that when compared to a control system,

our designs significantly reduce the number of synthetic friends confirmed, and increase

the number of profiles inspected and time taken to decide. We reveal potential to predict

user decisions on pending invitations, before the user makes them.
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5.9 Appendix

5.9.1 The Questionnaire

Interview Study Questionnaire

A. Interaction

• Do you know this person?

• Have you ever met this person in real life?

• Do you remember where you met this person for the first time?

• Do you remember when was that?

• How frequently do you meet this person?

• Do you remember the last time when you met this person?

• Where did this happen?

• When did this happen?

• Do you know this person online? For instance, have you ever interacted with this

person on email, chat, SMS, Skype, phone, forum, or newsgroup? Have you visited

their webpage if they have one?

• Do you remember the first time when you had such an interaction with this person?

• How frequently do you interact with this person?

• How recent was your last interaction?

• How did you interact?

B. Perception
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• Do you have any negative feelings about this person?

• Do you know if this person was ever abusive toward you or others?

• Do you think this person could be abusive? If yes, in which way?

• Do you trust this person?

C. Common Background

• Do you share any common interest?

• Have you ever lived in the same city?

• Have you ever attended the same school?

• Have you ever worked together?

Post-Study Questionnaire

(a) What is your age?

• 18-24 years old

• 25-34 years old

• 35-44 years old

• 45-54 years old

• 55-64 years old

• Other:

(b) What is your gender?
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• Female

• Male

• Other:

(c) What is your occupation?

• Employed

• Student

• Homemaker

• Retired

• Unemployed

• Other:

(d) What is your highest level of education?

• Elementary

• High school

• College

• Bachelors

• Graduate

• Other:

(e) For how long have you had your Facebook account?

• Less than a year
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• 1-2 years

• 3-5 years

• 6-10 years

• More than 10 years

(f) How frequently do you use Facebook?

• Every hour

• Several times a day

• Once a day

• Several times a week

• Once a week

• Occasionally

• Rarely

(g) How often do you receive friend requests in Facebook?

• Almost everyday

• At least once in every few days

• At least once a week

• At least once a month

• Occasionally

• Rarely
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CHAPTER 6

CONCLUSIONS

6.1 Summary

Detection of friend abuse and prevention is challenging and exhaustive. In this disserta-

tion, we have introduced and studied AbuSniff, the first friend abuse detection and de-

fense system for Facebook. We have developed a compact stranger and abuse detection

questionnaire. We have introduced and studied rules to convert questionnaire answers to

defensive actions.

While participants tended to agree to defend against perceived timeline and news-feed

abusers, they needed more information and flexible options in order to agree to defend

against strangers. Further, we have shown that on data we collected, AbuSniff can predict

Facebook friends who are perceived as abusive or strangers, and against whom users are

willing to take a defensive action.

We have introduced social networking based features and shown that supervised learn-

ing algorithms can use them to accurately predict users questionnaire answers and defense

choices. We have implemented the AbuSniff system and investigated user behaviors

through 7 studies with 263 participants. AbuSniff increased participant willingness to

reject invitations from perceived strangers and abusers, as well as awareness of friend

abuse implications and perceived protection from friend abuse.

We have shown, through exploratory interviews and a control study with online par-

ticipants, that Facebook users continue to be vulnerable to friend spam attacks. We have

developed FLock and T-FLock, new designs of user interfaces to process pending invita-

tions. We have shown, through multiple user studies with online participants, that when

compared to a control system, they significantly reduce the number of synthetic friends

confirmed, and increase the number of profiles inspected and time taken to decide.
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6.2 Future Work

The research described in this dissertation can be improved in three possible directions.

Firstly, we plan to continue the exploration of user perception of abuse for pending

friends, from whom the user has received a friend invitation but has not yet accepted.

we have done some preliminary work, but we can aim to automatically detect the poten-

tially abusive pending friend in Facebook. This is a more difficult problem, as we lack

access to a common history between the user and the pending friend. However, while

users may find it hard to detect abuse, we also conjecture that users will be more will-

ing to closely scrutinize pending friends and ignore invitations from perceived strangers.

Secondly, another future work direction is to customize AbuSniff for known vulnerable

populations. Participatory design studies [AV16] could help identify approaches suitable

for adolescents, including questions to identify cyberbullying perception and personal-

ized defense actions. Further, we plan to investigate techniques to identify abusive posts

(that contain harassment, bullying, links to malware [NTT+16,DJH+12]), without break-

ing the terms of service of social networking sites. One direction we plan to investigate

is to identify privacy preserving techniques to extract computational linguistic features

from posts, without direct access to the posts. Finally, we can extend our research ideas

to other online social networks like Twitter, LinkedIn, Instagram, Tumblr, SnapChat etc.

Since the abuse problem is widespread due to the unchecked access of the user data to the

connections and friends in those social networks, it is highly likely that the same solutions

can be applied in those networks.
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