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The East Asian Monsoon system is an important dynamic of East Asian climates, affecting 

over one-third of the world’s population. Marginal seas within East Asia are ideal 

environments to study past fluctuations of monsoon intensities and durations as they are 

sensitive to climatic and glacio-eustatic sea level changes. This study focuses on 

continuous sedimentary sequences collected from three Integrated Oceanic Drilling 

Program Expedition 346 sites; Sites U1426 and U1427 in the Japan Sea and Site U1429 in 

the East China Sea. Elemental concentration (%TOC, %TN, and %CaCO3) and stable 

isotope ratios (δ13C and δ15N) are viable proxies to reconstruct past relative productivity 

rates. Japan Sea sediments show clear differentiation between glacial and interglacial 

periods in the proxies studied with increased elemental concentrations and isotopic 

enrichment indicative of increased relative paleoproductivity rates occurring in interglacial 

periods with sill depths of the Tsushima Strait >70 m. Glacial periods, in comparison, 

generally have decreased relative paleoproductivity rates with decreased elemental 

concentrations and isotopic depletion. Nitrogen isotopes (δ15N) do not follow the same 
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enrichment cycles as the other geochemical proxies and generally show the most enriched 

values during glacial low stands when sea levels are lowest, likely indicating anoxic bottom 

water conditions and denitrification through bacterial processes. The Mid-Pleistocene 

Transition (MPT) was also identified in Site U1426 sediments through the use of 

continuous wavelet analysis and multitaper method spectral analysis. Before the MPT, the 

higher frequency orbital periods of precession and obliquity dominated the 

paleoproductivity cyclicities while a lower frequency 100,000-year cycle developed at the 

MPT and dominated the cyclicity to the present. East China Sea sediments do not show 

clear differentiation between glacial and interglacial periods and instead have relatively 

constant elemental and isotopic values during the last 350,000 years with the exception of 

negative excursions during short-term stadial events during Marine Isotope Stage (MIS) 5 

and MIS 7. The abrupt negative excursions likely resulted from decreased flow of the 

Kuroshio Current and reduced upwelling of the Kuroshio Intermediate Water throughout 

the Okinawa Trough during periods of decreased sea levels. Reduced flow of the Kuroshio 

Current likely led to the deposition of gravity flow layers during these stadial events. 
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CHAPTER 1: INTRODUCTION1 

1.1 Production and Preservation of Organic Matter1  

Although it makes up only a small portion of total marine sediments, organic 

matter serves an important role in paleoceanographic and paleoenvironmental 

reconstructions. Preserved organic matter serves as an indicator of past environments, 

such as surface productivity, sea surface temperature, and source dynamics through the 

analysis of its geochemistry, such as elemental, stable isotope, and biomarker analyses. 

The major source of organic matter in marine sediments is from single-celled 

phytoplankton in the surface waters (Falkowski et al., 1998; Stein, 1991). In order for 

photosynthesis to take place, photosensitive pigments in phytoplankton must absorb 

sunlight (Sato & Moriyama, 2018). Since light penetration decreases with depth, most 

photosynthesis occurs in the photic zone (<100 m deep). Therefore, most of the 

contribution of phytoplankton biomass in organic matter is a result of production within 

the upper portion of the water column that has eventually settled along the seafloor 

(Meyers, 1997).  

Nutrient availability is another limitation in organic matter production. While 

carbon (C) is a major constituent of aquatic systems, nitrogen (N) and phosphorus (P) are 

found in bio-limited concentrations (Brasier, 1995). The 106:16:1 ratio of C:N:P, also 

known as the Redfield Ratio, controls the amount of productivity that can occur, and 

                                                        
1 Modified from Black, H.D., Anderson, W.T., and Alvarez-Zarikian, C. (2018). Data report: Organic 
Matter, carbonate, and stable isotope stratigraphy from IODP Expedition 346 Sites U1426, U1427, and 
U1429. Proceedings of the Integrated Oceanic Drilling Program (346). 
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fluctuates according to environmental conditions as determined by nutrient limitations of 

one or more of these nutrients (Geider & La Roche, 2002). Nutrient runoff from 

terrestrial systems and nutrient cycling within the water column cause the amounts of 

available nutrients, especially nitrate and phosphate, to vary (Covino, 2017).  

Marine nutrient cycles transfer nutrients such as carbon and nitrogen between 

various oceanic reservoirs, the atmosphere, and underlying sediments. The carbon cycle 

includes both organic and inorganic carbon and the transformation between inorganic and 

organic carbon. There are four main components of the marine carbon cycle: 1) the 

transfer of atmospheric CO2 between the atmosphere and surface oceans, 2) production of 

marine biomass via photosynthesis, 3) degradation of marine biomass after death, and 4) 

burial and preservation in deep sea sediments. Fluvial nutrient input can be significant in 

locations near river deltas but have little impact in open-ocean environments (Jickells, 

1998).  
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Figure 1.1. The marine carbon cycle with atmospheric and oceanic fluxes in gigatons C 
year-1. (Modified from Trumper et al., 2009.)  

The marine nitrogen cycle is more complex than the carbon cycle because of the 

significant involvement of bacteria. Nitrogen inputs are typically through dissolved forms 

in precipitation and N2 transfer between the atmosphere and surface oceans. Since 

atmospheric N2 is metabolically unavailable to phytoplankton, cyanobacteria convert N2 

into nitrate (NO3-) through nitrogen fixation. The bio-available NO3- is incorporated by 

phytoplankton, increasing marine biomass in the phototrophic zone. Dead phytoplankton 

are consumed by other organisms or degraded into ammonium (NH3+) while sinking 
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through the water column. Nitrifying bacteria then convert NH3+ into NO3- that can be 

upwelled through vertical mixing and produce additional biomass. Denitrifying bacteria 

can convert NO3- to N2 in anoxic deep-water environments and eventually the N2 is cycled 

throughout the water column, ultimately being returned to the atmosphere.  

  

Figure 1.2. The marine nitrogen cycle between the atmosphere, sea surface, and deep 
ocean environments and the bacterial processes associated with N conversion. (Modified 
from Trumper et al., 2009.)  

Nutrient cycling transfers nutrients from decomposing organic matter along the 

seafloor and returns it to the surface waters, mostly through vertical mixing and/or 

oceanic transport (Ballantyne et al., 2008). Without nutrient cycling the photic zone 

would eventually become nutrient limited, resulting in decreased algal productivity in the 

surface waters. The combination of nutrient delivery and mixing within the water column 

are major controls of the amount of primary productivity in surface waters (Moore et al., 

2013). Density stratification within the water column can limit vertical mixing in open-

ocean environments, which can result in a low productivity environment (Dave & Lozier, 
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2010). Seasonal mixing or upwelling conditions can also cause variations in productivity, 

especially in coastal areas (Berger & Wefer, 2002).  

Organic matter begins to degrade as a result of microbial activity in the photic 

zone and continues to decompose as it sinks and is eventually deposited on the surface 

layer of the sediments (Arndt et al., 2013). Typically only ~1% of the original organic 

matter from the photic zone is preserved in the organic matter of sedimentary records 

(Berner, 1989). The amount of productivity in the photic zone and the water depth 

determine the organic flux, or the amount of organic matter that sinks to a given area per 

unit of time (Crusius, 1999). In oxic conditions, the water depth influences the amount of 

degradation that occurs as the organic matter is oxidized by microbes as it sinks to the 

surface sediments, so deeper water columns allow for increased degradation during 

transport than shallow water columns (Hulthe et al., 1998). In anoxic conditions, 

however, organic matter preservation is significantly increased since microbial oxidation 

is limited (Canuel & Martens, 1996; Teece et al., 1998).  

Organic matter is typically degraded in the water column before it is buried in 

surface sediments, with more labile fractions being degraded before the refractory 

fractions (Harvey et al. 1995). Once organic matter has been deposited in the surface 

sediments, it serves as a food source for benthic organisms and undergoes further 

degradation by microbial activity (Pomeroy, 1974; Harvey et al., 1995; Teece et al., 

1998). High sedimentation rates, however, are likely to decrease the residence time at the 

sediment surface before being buried by overlying sediments, thereby relatively limiting 

microbial degradation (Harvey et al., 1995).  
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Degradation of organic matter, in both the water column and sediment surface, 

can cause substantial alteration of organic matter from its original composition (Canuel & 

Martens, 1996). Although the total amount of organic matter deposited in the sedimentary 

record is only a small portion of the original organic matter produced, it typically still 

contains accurate geochemical records (Hedges & Keil, 1995). As long as the original 

geochemical signals are preserved in marine sediments, they can be used as a proxy to 

determine past paleoceanographic and paleoenvironmental conditions (Meyers, 1994).  

1.2 Stable Isotope Geochemistry  

Carbon stable isotope ratios can be used to determine differences between 

terrestrial and marine sources depending on the metabolic pathway of the photosynthetic 

organism (Hedges & Keil, 1995; Meyers, 1997; Yu et al., 2018). For example, C3 plants 

incorporate carbon in a metabolic way that results in an isotopic fractionation of ~-20‰ 

from the atmospheric CO2 source, while some marine primary producers that use 

dissolved bicarbonate have a fractionation of ~7‰ (O’Leary, 1981). Therefore, as a mix 

of C3 and C4 plants, land plant δ13C values average ~-27‰ while marine plant δ13C 

values average ~-20‰ (O’Leary, 1981). The ~7‰ difference between terrestrial and 

marine plant material aids the use of δ13C values in organic matter to reconstruct source 

areas over geologic time (Lehmann et al., 2002; Meyers, 1997). In marine environments, 

however, it is typical to see a combination of terrestrial and marine sources with an 

isotopic value between -27‰ and -20‰ (Meyers, 1994). Carbon isotope ratios can also 

be used to determine paleoproductivity levels (Meyers, 1997; Müller & Suess, 1979). 

Organisms preferentially incorporate 12C over 13C in their metabolic pathways, so in 
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periods of increased productivity in the photic zone leads to increased competition, 

resulting in enriched (less negative) δ13C values in the sedimentary organic matter (Fry & 

Sherr, 1984).  

Like carbon stable isotope ratios, nitrogen stable isotope ratios can also be used to 

differentiate between terrestrial and marine organic matter sources (Meyers, 1997). 

Atmospheric N2 has a δ15N value of ~0‰, while dissolved nitrate has a δ15N value of 7-

10‰ (Schubert & Calvert, 2001). This difference results in C3 leguminous land plants, 

which consume atmospheric N2, to have an average δ15N value of 0.4‰ and 

phytoplankton, which consume dissolved nitrate, to have an average value of 8.6‰ 

(Peterson & Howarth, 1987). Also like carbon, a mixture of C3 terrestrial and 

phytoplankton source signals are expected in marine environments (Schubert & Calvert, 

2001) and enriched values can indicate increased primary productivity levels (Meyers, 

1997).  

The δ15N values must be interpreted with caution when identifying organic matter 

sources or paleoproductivity levels, however, since the complexity of the nitrogen cycle 

can affect the δ15N values preserved within the sediment, such as the process of 

denitrification of nitrate to N2 in anoxic water columns (Mariotti et al., 1982; Montoya et 

al., 1991). In the case of denitrification, 14N is preferentially released, which results in the 

remaining nitrate being enriched in 15N and higher δ15N values (Altabet et al., 1999; 

Cline & Kaplan, 1975). While enriched δ15N values may initially indicate increased 

levels of productivity within the surface waters, it may instead be indicative of bacterial 
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denitrification occurring within the water column or sediment interface (Altabet et al., 

2002).  

1.3 Study Area  

1.3.1 Japan Sea  

The Japan Sea is a semi-enclosed marginal sea with an area of ~1,000,000 km2, an 

average depth of ~1,670 m, and a maximum depth of 3,800 m. The Japan Sea is 

connected to other seas by shallow straits with the main water influx from the East China 

Sea through the Tsushima Strait (~130 m sill depth) and outflow to the North Pacific 

through the Tsugaru Strait (~130 m depth), the Sea of Okhotsk through the Soya (55 m 

depth) and Mamiya Straits (~15 m depth)(Tada et al., 2013)(Figure 1.1). The shallow sill 

depths of these straights have significant influences on the present and ancient 

oceanography of Japan Sea (Oba et al., 1991; Tada et al.,1999; Watanabe et al., 2007). At 

present, the only current that flows into the Japan Sea is the Tsushima Warm Current 

(TWC), which began ~1.7 Mya (Itaki, 2016).  
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Figure 1.3. Bathymetric map of IODP Exp 346 (red circles) and previous DSDP/ODP 
(white circles) sampling site locations in the Japan Sea and East China Sea. Surface 
current systems are also shown (Modified from Tada et al., 2013).  

The TWC, a branch of the Kuroshio Current, is formed in the East China Sea by 

mixing of the warm, saline Kuroshio Current and the nutrient-rich, less saline East China 

Sea Coastal Water (ECSCW)(Hase et al., 1999). Surface velocities range from 0.3 to 0.4 

m s-1 and the volume of flow in the Tsushima Strait varies from 1.1 to 2.6 Sv (Takikawa 

& Yoon, 2005). The TWC separates into three branches after entering the Japan Sea 
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(Hase et al., 1999). Most of the TWC flows out of the Tsugaru Strait to the Pacific Ocean 

while a portion of the TWC flows to the northern region of the Japan Sea (Gamo & 

Horibe, 1983).  

During glacial periods, eustatic sea level lowering had significant effects in 

oceanographic conditions within the Japan Sea, such as bottom water advection 

(Watanabe et al., 2007) and surface productivity (Oba et al., 1991; Tada et al., 1999), as a 

result of the shallow sill depths and near isolation of the Japan Sea from the East China 

Sea (Wang, 1999). Increased water column stratification occurred during these periods as 

a result of less saline, nutrient-rich water being the predominant influx to the area from 

the East China Sea (Tada et al., 1999; Watanabe et al., 2007). In comparison, increased 

sea levels during interglacial periods allow for increased current influx, not only 

increasing the volume of water flowing through the Tsushima Strait, but increasing 

nutrient flux from the East China Sea as well (Tada et al.,1999).  

1.3.2 East China Sea  

The East China Sea is a shallow, marginal sea consisting of an epicontinental 

shelf that breaks to the significantly deeper Okinawa Trough to the southeast. The East 

China Sea has an area greater than 770,000 km2, maximum shelf depth of 200 m, and 

maximum Okinawa Trough depth of 2,700 m (Wong et al., 2000). The sea is surrounded 

by China, Taiwan, the Japanese archipelago, and the Korean peninsula and has an open 

exchange with the Bohai Sea, Yellow Sea, South China Sea, and Pacific Ocean and a 

limited exchange with the Japan Sea. The Yangtze and Yellow Rivers discharge 



 11 

significant amounts of freshwater, nutrients, and sediment to the East China Sea with 

increased discharge during East Asian Summer Monsoon (EASM) conditions (Anderson 

et al., 2018; Beny et al., 2018; Zhao et al., 2018).  

Present ocean current conditions within the East China Sea are complex with 

numerous seasonal and permanent current flows, the most significant of which are the 

Kuroshio Current and the Chinese Coastal Water. The Kuroshio Current transports heat 

from lower latitudes through the South and East China Seas and eventually through the 

Pacific off the eastern coast of Japan (Wong et al., 2000). Although the Kuroshio Current 

is typically nutrient-poor, the Kuroshio Intermediate water is nutrient-rich and upwells in 

the Okinawa Trough (Chen, 1996). Before exiting the East China Sea, the Kuroshio 

Current branches into three segments with the majority of the current flowing out to the 

Pacific but with smaller volumes either entering the Japan Sea as the TWC or the Yellow 

Sea as the Yellow Sea Warm Current (Gallagher et al., 2015).  

The East China Sea is also significantly impacted by differences between glacial 

and interglacial conditions. During glacial low stands, over one-half of the epicontinental 

shelf is exposed and both the Yangtze and Yellow Rivers migrate thousands of 

kilometers towards the Okinawa Trough (Saito et al., 1998). It would therefore be 

expected that significant terrestrial inputs would be preserved at Site U1429 during 

glacial periods. Interglacial periods, in comparison, typically show an expansion of the 

Chinese Coastal Water as a result of the increased precipitation and fluvial input into the 

western portion of the East China Sea (Gallagher et al., 2015). Presently, the path of the 

Kuroshio Current during glacial low stands is debated within the scientific community 
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with some claiming a 3° westerly migration (Gallagher et al., 2015) and others claiming 

that the Kuroshio Current does not enter the East China Sea at all (Ujiié & Ujiié, 1999). 

At present, the Kuroshio Intermediate Water contributes more than three times the 

nutrient flux of the Chinese Coastal Water (Chen, 1995), so any significant reductions in 

the volume of the Kuroshio Current could potentially limit rates of primary productivity 

within surfaces waters.  

1.4 Review of Previous Research Efforts  

The East Asian Monsoon (EAM) affects large parts of India, China, Korea, and 

Japan both economically and climactically. The EAM is characterized by a southeasterly 

summer monsoon and northwesterly winter monsoon. Together, the two seasonal systems 

have a significant impact on the oceanography of the East Asian marginal seas (Tada, 

2004). The EASM is characterized by warm and humid southerly winds that are created 

by the barometric gradient between the North Pacific High and the Asian Low (Yihui & 

Chan, 2005). The EASM supplies a large amount of fresh water to the Yangtze and 

Yellow River deltas through increased precipitation over East Asia. The EASM therefore 

influences both the salinity and nutrient content of the surface waters of the East China 

Sea and the Japan Sea through the flow of the TWC through the Tsushima Strait (Kubota 

et al., 2010). In contrast, the East Asian Winter Monsoon (EAWM) is driven by pressure 

differences between the Siberian High and Aleutian Low during the winter and is 

characterized by dry and cold northerly winds and arid environments (Wang et al., 1999). 

These winter winds cool and mix the surface waters and enhance sea ice formation, 
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which in turn helps drive the deep convection that ventilates the deep Japan Sea (Qian et 

al., 2002).  

Previous studies have shown that sediments in the Japan Sea are of Plio-

Pleistocene age (~5 My) and are dominated by clay, silty clay, and diatom ooze with 

discrete foraminifera-rich clay layers and common tephra layers (Oba et al., 1991; Tada, 

1994; Watanabe et al., 2007). Tada (1994) synthesized the results of ODP 127/128 

drilling and developed the convention for lithologic units followed on IODP Expedition 

346. Lithologic Unit I consists of Holocene to early Pleistocene silty clay and clay, with 

lesser amounts of diatom-bearing silty clay. Distinct color banding of alternating light- 

and dark-colored sediment is prevalent within Japan Sea sediments and are synchronous 

basin-wide (Tada et al., 2015). The pronounced centimeter to meter-scale color banding 

characteristic of Japan Sea sediments is largely restricted to this unit (Tada et al., 1992). 

Unit I is divided into two further subunits, IA and IB, where Subunit IB is characterized 

by a decrease in the number of the interbedded dark layers. Unit II (Pliocene) is 

differentiated from Unit I because of a significant increase in the diatom abundance and 

the absence of the color banding (Tada, 1994).  
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Figure 1.4. Lithographic units (IA, IB, and II) of Site U1426 sediments with core images, 
lithographic unit descriptions, magnetic susceptibility (SI), gamma ray attenuation (GRA) 
bulk density (g/cm3), and lightness (L*) values. (Tada et al., 2015.)  

Oba and Akasaka (1990) were among the first to comment on the characteristic 

lithologies present in the basin. They recognized two different types of dark layers in a 

sediment core from the southern Japan Sea. The first, a thick, laminated layer without 
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benthic foraminifera and relatively thin laminated layers with limited benthic 

foraminiferal abundances that were dominated by Bolivina pacifica, a species tolerant of 

very low-oxygen concentrations (Oba et al., 1991; Oba & Akasaka, 1990). The thick (140 

cm), dark layer is now known to record conditions during the Last Glacial Maximum 

(LGM; ~20 ka)(Oba et al., 1995). The negative δ18O values recorded in planktonic 

foraminifera led Oba (1991) to suggest that these layers were deposited when the upper 

water column became stratified as a result of decreased sea levels and increased fluvial 

input. The strengthened stratification led to anoxic deep-water conditions with the 

presence of H2S, which is similar to present conditions in the Black Sea, and resulted in 

deposition of the thick, finely laminated, dark layer (Tada et al., 1992).  

Changes in glacio-eustatic sea level possibly played a critical role during the 

LGM as the sill depth of the Tsushima Strait would have decreased to fewer than 20 m, 

which would increase the proportion of freshwater compared to denser, saline influx 

(Oba et al., 1999). Although limited influx through the Tsushima Strait still occurred 

during the LGM, the predominant water flux to the Japan Sea was through precipitation 

and continental runoff (Tada et al., 1999). During the LGM, it was reported that increased 

water-column stratification resulted in the enrichment of redox-sensitive elements in the 

bottom sediments (Piper & Isaacs, 1996) and significant Mo peaks (Crusius, 1999), both 

indicating anoxic bottom water. In two other cores from the Japan Sea, Masuzawa and 

Kitano (1984) found layers of pyrite and extremely high elemental sulfur concentrations 

during the LGM, which suggests that the pyrite-enriched layers were deposited as a result 

of H2S bearing bottom waters.  
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The thin centimeter- to decimeter-scale alternations of dark and light layers 

observed by Oba and Akasaka (1990) were later associated with Dansgaard-Oeschger 

cycles with the light organic-poor layers corresponding to cold stadial periods and the 

dark organic-rich layers correlated to warm interstadials (Tada et al., 1999; Tada, 2004). 

The occurrence of the foraminifera species Bolivina pacifica in some of the dark layers 

suggests that oxygen levels were greatly reduced (< 1.0 mL/L), but not completely 

anaerobic (Kato, 1992). On the basis of an increase in the relative abundance the diatom 

species Paralia sulcata, which is characteristic of the East China Sea Coastal Water 

(ECSCW), Tada (1999) argued that dark layer was deposited during an increase in the 

inflow of low-salinity, nutrient-rich ECSCW in comparison to the TWC. Increased 

ECSCW input would have increased the amount of surface productivity and inhibited 

vertical mixing as a result of increased salinity gradients accompanied with increased 

nutrient loads (Tada et al., 1999). They further argued that an increase in fluvial 

discharge from the Yangtze and Yellow Rivers in response to an enhanced EASM could 

lead to a greater contribution of the ECSCW to the TWC during interglacial and 

interstadial periods (Tada et al., 1999).  

Observing the sediment fabrics in three sediment cores, Watanabe (2007) 

concluded that the variations between light and dark layers are related to deep-water 

oxygen levels. In the Japan Sea there are four different dark-layer fabrics and at least five 

different modes of deep-water circulation determined by the distribution and physical and 

chemical characteristics of the dark and light layers. Khim (2007) found elevated Mo/Al 

ratios and high concentrations of total sulfur (TS) associated with four of the thick dark 
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layers which indicates sulfidic deep-water conditions. Tada (1992) also noted high TS 

peaks from ODP Site 797 and attributed them to abundant pyrite formation during glacial 

periods. These differing circulation modes were interpreted to reflect differing intensities 

of upwelling, productivity, and density stratification at different times (Tada et al., 1992). 

The preferential enrichment of these redox- sensitive elemental compositions are likely 

the result of the formation of sulfides or their transformation into reduced, less soluble 

forms (Calvert & Pedersen, 1993; Piper & Isaacs, 1996). Not all dark layers are 

associated with enrichments of Mo and TS, however, which suggests that at least some of 

the dark layers found in the Japan Sea are associated with suboxic conditions where some 

oxygen remains (Khim et al., 2007), which may indicate a different component of 

formation.  

Within the Japan Sea, complex relationships exist between sea level, monsoonal 

dynamics (EASM precipitation; EAWM wind intensity), ocean currents (TWC vs 

ECSCW), paleoproductivity (nutrient loads and upwelling), winter cooling and deep-

water production (EAWM), and the resulting sediment deposition (organic fluxes and 

preservation). Constraints will need to be placed on these variables to develop a better 

understanding of the dark and light layers in the sedimentary record in addition to the 

overall paleoceanographic setting of the Japan Sea.  
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1.5 IODP Expedition 346  

Integrated Ocean Drilling Program (IODP) Expedition 346 had a primary 

objective of collecting continuous sedimentary sequences to reconstruct the EAM by its 

major components (EASM, EAWM, and westerly jet axis) on orbital- to millennial- 

timescales and to determine when the EAM began. The EAM currently affects the water 

supply of over one-third of the global population living in East Asia through periods of 

intense precipitation and increased aridity. To better assess the future needs of these 

vulnerable populations due to climate change, Expedition 346 collaborations will attempt 

to better understand the complex ocean-atmospheric circulation of the region over recent 

geologic time.   Expedition 346 drilling objectives were successfully completed with the 

retrieval of relatively continuous sedimentary cores in seven sampling sites in the Japan 

Sea and two sampling sites in the East China Sea during the summer of 2013 (Tada et al., 

2015). Related scientific goals for Expedition 346 were to reconstruct the surface and 

deep-water circulation patterns and surface productivity in the Japan Sea over at least the 

last five million years as well as any variation in past changes in the EAM and glacio-

eustatic sea level (Tada et al., 2013). 

 The Japan Sea experienced significant variation between glacial and interglacial 

time periods due to the shallow, narrow straits that connect it to the other water bodies. 

During interglacial periods, influx of oceanic currents from the East China Sea leads to 

increased dissolved oxygen concentrations within the water column and higher nutrient 

loads. Glacial periods, however, led to the near isolation of the Japan Sea, resulting in 

depleted dissolved oxygen and limited nutrient flux. Both the water circulation patterns 
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and surface productivity are strongly affected not only by oceanic influx, but EAM 

intensities as well. The IODP Expedition 346 was the first scientific drilling focused 

exclusively on the climate system of the area with previous Ocean Drilling Program 

(ODP) Legs 127 and 128 focusing on the tectonic and paleoceanographic history.  

The current study focuses on three Expedition 346 sites: Sites U1426 and U1427 

in the Japan Sea and Site U1429 in the East China Sea (Figure 1.3). Site U1426 is in the 

Yamato Basin near the top of the Oki Ridge. It is located at the same location as ODP 

Site 798 (37°2.00′N, 134°48.00′E) and at a depth of 903 meters below sea level (mbsl). 

Site U1426 is under the influence of the second branch of the TWC. Previous studies 

have shown an average sedimentation rate of ~80 m/My (Tada et al., 2013). Site U1426 

has the longest record of the three sites studied, spanning over 1.3 My (Sagawa et al., 

2018).  

Site U1427 is also in the Yamato Basin near the outer margin of the continental 

shelf near the coast of Honshu Island. It is located at 35°57.92′N, 134°26.06′E, is the 

shallowest site at 330.3 mbsl, and is under the influence of the first branch of the TWC. A 

study core suggests a sedimentation rate of ~300 m/My which would provide a very high-

resolution record of paleoceanographic events (Tada et al., 2013). The shallow depth of 

Site U1427 implies that it has likely always been located above the calcite compensation 

depth (CCD) in the Japan Sea (> 2000 m depth; Lee et al., 2000) and was expected to 

have high carbonate preservation.  
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Site U1429 is located in the northernmost part of the East China Sea in the Danjo 

Basin of the Okinawa Trough at 31°37.04′N, 128°59.85′N and 732 mbsl. It receives 

significant contributions from the Yangtze and Yellow Rivers, which supply high 

concentrations of terrestrial organic matter. During glacial low stands, a significant 

portion of the continental shelf is exposed and the Yangtze and Yellow Rivers migrate 

towards the Okinawa Trough (Tada et al., 2013). Site U1429 is under the influence of the 

TWC after it branches from the Kuroshio Current and the nutrient-rich ECSCW 

(Gallagher et al., 2015). Previous studies have shown high sedimentation rates between 

300-800 m/My. (Kubota et al. 2010), which will also allow a very high-resolution 

reconstruction.  

Sediments recovered during drilling were fine-grained siliciclastics with distinct 

light/dark sedimentary cycles. The dark layers were mostly laminated while the light 

layers were homogeneous to bioturbated (Tada et al., 2015). The meter-scale alternations 

in the light and dark sedimentary units record orbital-scale variations in surface and deep-

water circulations, whereas centimeter-scale alternations in the light and dark sequences 

record millennial-scale climatic oscillations (Tada et al., 2018). Tada (1992) further 

demonstrated the light/dark sedimentary cycles were synchronous basin-wide and that 

they can be correlated between sites within the study area.  

Lowering of glacio-eustatic sea level during glacial low stands limited influx 

through the Tsushima Straight causing suboxic to anoxic bottom water conditions, which 

are associated with thick, organic-rich, dark sedimentary layers. With decreased input 

from the TWC, a low-salinity surface layer developed, which limited deep-water 
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ventilation because of increased water column stratification (Oba et al., 1991). Thick, 

light-colored layers are associated with oxic conditions during interglacial high stands 

when there was a significant influx of the TWC through the Tsushima Strait (Tada et al., 

1999). Thin dark and light layers are associated with multiple productivity and bottom 

water oxygenation conditions as the relative contribution of the TWC and ECSCW varied 

throughout time (Tada, 2004).  

1.6 Objectives  

The primary goal of the present study was to use elemental and stable isotope 

geochemical analyses to establish a high-resolution paleoceanographic and 

paleoproductivity reconstruction for the Japan Sea and East China Sea systems. Distinct 

differences between glacial and interglacial periods were present as the type and volume 

of oceanic currents flowing through the Tsushima Strait vary with glacio-eustatic sea 

level changes. This study focused on marine sediment cores obtained from IODP 

Expedition 346 that will serve as records of nutrient fluxes, organic matter source 

changes, and current dynamics since the Late Pleistocene. Developing a better 

understanding of current influx, circulation modes, and surface paleoproductivities 

throughout the recent geological past will lead to a more thorough understanding of the 

EAM variability, especially conditions associated with increased EASM precipitation and 

nutrient flux. The following objectives will be addressed in successive chapters: 
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1. To determine how glacial/interglacial cycles affected the paleoceanographic conditions 

of the Japan Sea, specifically how glacial low stands and interglacial high stands 

impacted the inflow of the TWC and ECSCW and the resulting primary productivity 

levels in surface waters at Site U1427.  

1a: Determine the sill depth of water flowing through the Tsushima Strait during 
 the 350,000 year record at Site U1427 in the Japan Sea.  

1b: Determine the rates of paleoproductivity throughout the sedimentary record of 
 Site U1427 using CaCO3, TOC, TN, δ13C, and δ15N geochemical data. 

1c: Compare rates of paleoproductivity with sill depth of water in the Tsushima 
 Strait between glacial and interglacial periods.  

 

2. To compare the geochemical records from Site U1426 in the Japan Sea before and 

after the Mid- Pleistocene Transition (MPT; ~700-1200 ka) to better understand the 

correlation between orbital frequencies and relative paleoproductivity cycles.  

2a: Determine rates of paleoproductivity at Site U1426 in the Japan Sea during 
 glacial and interglacial periods using CaCO3, TOC, TN, δ13C, and δ15N 
 geochemical data. 

2b: Calculate the orbital frequencies and heterodynes within the paleoproductivity 
 records using continuous wavelet and multi-taper method (MTM) spectral 
 analyses.    
 
            2c: Determine how dominant orbital frequencies and heterodynes shift during and 
 after the MPT within Japan Sea sediments.  
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3. To understand how glacial/interglacial cycles affected the paleoceanographic 

conditions of the East China Sea, specifically how high and low stands impacted 

upwelling timing and intensity of the Kuroshio Current.  

3a: Determine rates of paleoproductivity at Site U1429 in the East China Sea 
 during  glacial and interglacial periods using CaCO3, TOC, TN, δ13C, and δ15N 
 geochemical data. 

3b: Qualitatively reconstruct Kuroshio Current flux in the East China Sea during 
 glacial periods.   

3c: Examine interbedded sand layers within the sedimentary record of Site 
 U1429.   
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CHAPTER 2: PALEOPRODUCTIVITY HISTORY OF THE JAPAN SEA OVER 

THE LAST 350,000 YEARS2 

 

2.1 Abstract 

During Quaternary glacio-eustatic sea level changes, the paleoceanographic 

conditions in the Japan Sea varied markedly as a result of the shallow, narrow straits 

connecting the sea to surrounding waters, limiting the influx of oceanic currents. During 

glacial sea level low stands the sea was nearly isolated, creating a highly-stratified water 

column and hypoxic to anoxic bottom water conditions. During sea level high stands, the 

Tsushima Warm Current flowed into the sea, bringing warm, high-salinity water, which 

led to vertical mixing and oxic conditions. The present study uses the geochemical 

(CaCO3, TOC, N, δ13C, and δ15N) and foraminiferal analyses of IODP (Integrated Ocean 

Drilling Program) Site U1427 in the Japan Sea to document the role of upwelling and 

paleoproductivity variations. The analyses suggest enhanced productivity typified 

interglacial periods, possibly as a result of increased upwelling and deep-water 

ventilation. However, during glacial periods in the Japan Sea, the sea was partially 

isolated and the limited influx through the Tsushima Strait resulted in decreased primary 

productivity in the surface waters.  

 

 

 

                                                        
2 To be submitted to Paleoceanography and Paleoclimatology. Black, H.D., Anderson, W.T., Gallagher, 
S.J., Sagawa, T., and Tada, R.  



 32 

2.2. Introduction 

Glacio-eustatic sea level variation can have a significant control on the rates of 

primary productivity occurring in surface waters of the Japan Sea as the sea can be nearly 

isolated during glacial low stands. Increasing oceanic influx through the Tsushima Strait 

that connects the Japan Sea to the East China Sea not only increases the volume of water 

moving through the strait but also causes a variation in surface salinities and nutrient 

concentrations as well (Tada et al., 1999; Watanabe et al., 2007). Depending on the 

relative contribution of the Tsushima Warm Current (TWC) and East China Sea Coastal 

Water (ECSCW), oxic to euxinic bottom water conditions developed depending on the 

salinity, water density, and degree of vertical mixing within the water column (Tada et 

al., 1999; Watanabe et al., 2007). The complex interaction of oceanographic conditions in 

the Japan Sea and the relative contribution of the TWC and ECSCW influx (and their 

respective nutrient loads) led to varying relative primary productivity rates throughout the 

Pleistocene (Tada et al., 1992, 1994, 1999, 2004).  

Sediment records from marginal seas typically contain both marine and terrestrial 

materials and have a more sensitive response to climatic changes and higher 

sedimentation rates than open-ocean environments. The present oceanographic conditions 

of the marginal Japan Sea are actively controlled by the type and relative contribution of 

water flowing through the narrow, shallow Tsushima Strait (Tada et al., 1999). It is 

therefore expected that major glacio-eustatic sea level changes could have caused 

significant changes in the influx, salinity, and nutrient load of water entering the Japan 

Sea, which could affect paleoceanographic conditions such as productivity and deep- 
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water ventilation (Gallagher et al., 2018; Oba et al., 1991; Tada et al., 1999; Watanabe et 

al., 2007).  

Previous scientific drilling expeditions have occurred in the Japan Sea to 

understand the tectonic evolution of the area including the Deep Sea Drilling Program 

(DSDP) Leg 31 and Ocean Drilling Program (ODP) Legs 127 and 128, which allowed 

extensive analysis of Quaternary paleoceanography of the marginal sea. However, 

Integrated Ocean Drilling Program (IODP) Expedition 346 was the first expedition to 

focus exclusively on the climate dynamics which will develop a better understanding of 

the oceanic-atmospheric circulations in the system and how they have responded to 

previous, and therefore potential future, climate changes (Tada et al., 2015).  

The current study focuses on the isotopic and elemental concentrations of organic 

carbon, total nitrogen, calcium carbonate concentrations and planktic and benthic 

foraminiferal abundances to better understand the role of glacio-eustatic sea level 

variation and the effects on paleoproductivity in the Japan Sea.  Carbon and nitrogen are 

essential in primary productivity since they compose a large proportion of plant and 

animal tissues (Stevenson & Cole, 1999). Changes in physiochemical conditions, such as 

temperature, salinity, light penetration, and nutrient loads, in marine environments can 

alter the concentration of photosynthesis in the photic zone, and therefore the rate of 

primary productivity occurring at the surface (Sato & Moriyama, 2018). The isotopic 

ratios of these elements are also affected by changes in surface productivity and other 

parameters, such as biologic and kinetic fractionations (Fry & Sherr, 1984; Peterson & 

Howarth, 1987; Peterson & Fry, 1987). 
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Organic matter produced at the surface of the water eventually sinks and settles at 

the sea floor where it is either diagenetically altered or stored in the sediment (Lehmann 

et al., 2002). Although only a small proportion of the organic matter produced at the 

surface is preserved in the sedimentary record, it has been shown that the preserved 

sediment is typically geochemically representative of the original organic matter 

(Emerson & Hedges, 1988; Meyers, 1994). The organic matter content of sediment has 

been shown to be representative of the productivity, where increased productivity in the 

surface waters leads to increased organic matter preserved (Finney et al., 1988; Müller & 

Suess, 1979; Pedersen, 1983).  

Carbon and nitrogen isotopes not only can be used to determine organic matter 

source areas, i.e., terrestrial vs marine (Meyers, 1997; Schubert & Calvert, 2001), but can 

also indicate changes in past productivity variations (Calvert et al., 1992; Minoura et al., 

1997; Wada et al., 1990). As primary productivity increases in the surface waters of 

oligotrophic environments, biologically limiting nutrients such as N and P concentrations 

decrease as a result of increased nutrient utilization. Increasing primary production would 

be expected to lead to increases in the concentration of organic carbon and nitrogen 

enriched δ13C and δ15N values (Calvert et al., 1992; Müller & Suess, 1979). Isotopically 

enriched δ15N values are potentially suggesting dissolved inorganic nitrogen limitation in 

the surface waters as a result of increased primary productivity (Farrell et al., 1995). 

Although minor isotopic fractionation occurs during diagenesis in regards to carbon 

(Calvert et al., 1992), nitrogen isotopes may be heavily influenced by bacterial decay, 

especially as a result of denitrification in anoxic environments (Altabet, 1988; Altabet et 

al., 1995).  
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2.3 Oceanographic and Geologic Settings 

The Japan Sea is a semi-enclosed marginal sea with an area greater than 

1,000,000 km2, an average depth of ~1,350 m, and a maximum depth of 3,700 m (Figure 

2.1). The Japan Sea is connected to adjacent seas by narrow, shallow straits with the main 

water influx from the East China Sea through the Tsushima Strait (~130 m sill depth, <90 

km width) and outflow to the North Pacific through the Tsugaru Strait (~130 m depth), 

and the Sea of Okhotsk through the Soya (55 m depth) and Mamiya Straits (~15 m 

depth)(Tada et al., 2015). The shallow sill depths of these straits have significantly 

influenced the paleoceanography of the Japan Sea (Wang, 1999). Presently, the only 

current that flows into the Japan Sea is the TWC, which began ~1.7 Mya (Itaki, 2016), 

with additional evidence of warm-water intrusion as early as 3.5 Ma from warm-water 

mollusks, plankontic foraminifera, and diatom abundances  (Kitamura & Kimoto, 2006; 

Koizumi, 1992).  
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Figure 2.1. Map of the Japan Sea, modern current flux, and Site U1427. TS = Tsushima 
Strait; TGS = Tsugaru Strait; SS = Soya Strait; MS = Mamiya Strait; TWC-1, TWC-2, 
TWC-3 are the first, second, and third branch of the Tsushima Warm Current, 
respectively. The map was created using ArcMap 10.3 (Modified from Gallagher et al., 
2018.) 
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The TWC, a branch of the Kuroshio Current (Gallagher et al., 2009; 2015), is 

formed in the East China Sea by mixing of the warm, saline Kuroshio Current and the 

nutrient-rich, less saline ECSCW before flowing through the Tsushima Strait (Hase et al., 

1999; Isobe, 1998). The most significant contribution of terrestrial freshwater to the 

ECSCW is discharge from the Yangtze (Changjiang) and Yellow (Huang He) Rivers into 

the Yellow and East China seas, which are sensitive to precipitation fluctuations, 

especially regarding monsoonal intensity (Isobe et al., 2002).  Present TWC dynamics 

through the Tsushima Strait include a flow volume of 1.1 to 2.6 Sv, which varies 

seasonally (Isobe, 1998),  and a surface velocity between 0.3 to 0.4 m s-1  (Takikawa & 

Yoon, 2005).  

After entering the Tsushima Strait, the TWC branches into three segments (Hase 

et al., 1999; Watanabe et al., 2006). The first, and largest, branch flows northeasterly 

along the coast of Honshu Island and exits through the Tsugaru Strait (Figure 2.1). The 

second branch of the TWC flows northeasterly along a similar path west of the first 

branch. The third branch flows north along the coast of Korea, eventually moving 

easterly towards the center of the Japan Sea. Seasonal variation of the flow volume of the 

TWC differs between the three branches (Kim & Yoon, 1999), with the first branch 

having a nearly constant volume and the second and third branches are significantly 

reduced in volume during the winter  (Tada, 1994).  In the northern Japan Sea, dense, 

cold water forms because of the presence of sea ice near Vladivostok, Russia and 

becomes the Japan Sea Proper Water (JSPW)(. The cold (0.1-0.3ºC), dense, low salinity 

(34 ppt) water is highly oxygenated (>200 µmol kg-1) and currently covers all of the 

Japan Sea at depths below 300 m (Oba et al., 1991; Tada et al., 1999). 
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In the Japan Sea, there are marked differences between glacial and interglacial 

periods in regard to both climate and oceanographic conditions (Gallagher et al., 2018). 

The Japan Sea has commonly been referred to as a “miniature ocean”  (Gamo, 2011; 

Tada et al., 2018) since these shallow, narrow sill depths prohibit inflow or outflow of 

deep-waters between the Japan Sea and the surrounding seas. The relative isolation of the 

Japan Sea in comparison to open-ocean environments will lead to an improved 

understanding of future global climate changes and the resulting oceanographic variations 

in large marginal seas.  

 Japan Sea sediments characteristically have readily distinguishable alternations of 

dark and light-colored layers (Tada, 1999; Watanabe et al., 2007; Tada et al., 2015, 

2018). The dark layers are occasionally laminated whereas the light layers are 

homogeneous to bioturbated. The meter-scale alternations of light and dark sedimentary 

units record orbital-scale variations in surface and deep-water circulation while 

centimeter-scale alternations in the light and dark sequences record millennial-scale 

climatic oscillations (Tada et al., 2015; Tada et al., 1999). Tada (1992) further 

demonstrated the light/dark sedimentary cycles were synchronous basin-wide and that 

they can be correlated between sites in the study area (Tada et al., 2018).  

 The deposition of light and dark-colored layers has been shown to be a result of 

different circulation modes within the Japan Sea. As sea level fluctuated, it affected the 

volume and type of oceanic currents entering the Japan Sea, resulting in four modes of 

circulation during the last 200 ky (Tada et al., 1999)(Figure 2.2).  1) During sea level low 

stands (<40 m sill depth of the Tsushima Strait), the Japan Sea was nearly isolated from 

influx of both the TWC and ECSCW because of the shallow strait. Precipitation then 
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became the largest influx into the sea, resulting in a lower salinity surface layer with a 

strong pycnocline that reduced vertical mixing, which led to euxinic environments and 

deposition of a thick dark layer. 2) The second mode of Japan Sea circulation was during 

periods of low sea levels (40-70 m sill depth) and oscillated between water column 

dynamics depending on the current influx. Increased relative contributions from the TWC 

increased vertical mixing, which led to winter cooling in the northern Japan Sea and oxic 

water column conditions, resulting in deposition of a thin light sedimentary layer. A 

higher relative contribution of the ECSCW decreased surface salinity, decreased vertical 

mixing and created suboxic environments. The higher nutrient loads of the ECSCW in 

comparison to the TWC led to slightly higher rates of primary productivity in the surface 

waters. The combination of suboxic environments and slightly higher productivity 

resulted in the deposition of a dark layer containing <3% TOC. 3) The third mode of 

circulation occurred during intermediate sea levels (70-110 m sill depth) and also 

oscillated between relative contributions of the TWC and ECSCW. Higher contribution 

from the TWC resulted in a thin, light layer like in the second mode while increased 

contribution from the nutrient-rich ECSCW led to higher rates of primary productivity, 

resulting in suboxic to euxinic water columns and a higher TOC (3-5%) dark layer. 4) 

The fourth circulation mode of the Japan Sea happened during sea level high stands 

(>110 m sill depth) with a predominant influx of the TWC which led to a thick, light 

layer.  
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Figure 2.2. Concept diagram of circulation and oxygenation modes within the Japan Sea 
as a result of increasing sea level and varying ocean current influx. (Modified from Tada 
et al., 1999.)  
 

 Lowering of glacio-eustatic sea level during the last glacial maximum limited 

influx through the Tsushima Strait, causing suboxic bottom water conditions (Lee et al., 

2003) which are associated with thick organic-rich, dark sedimentary layers. The 

resulting reduction in oceanic currents flowing through the Tsushima Strait resulted in the 

development of a low salinity surface layer caused by increased relative contribution by 

precipitation and terrestrial runoff, which in turn increased water column stratification 

and limited deep-water ventilation (Oba et al., 1991). Light sedimentary layers are 

associated with oxic conditions during interglacial periods and interstadial periods during 
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glacials when there was a significant influx of the TWC through the Tsushima Strait 

(Tada et al., 1999). 

Typically during interglacial periods, such as Marine Isotope Stage (MIS) 5 (80-

130 Mya), the TWC and ECSCW have varying relative contributions of water entering 

through the Tsushima Strait (Tada et al., 1999). The Kuroshio Intermediate Water, which 

is the primary nutrient source in the East China Sea, contributes high concentrations of 

phosphorous and nitrates (NO3 ~25 µmol kg-1; PO4 ~1.7 µmol kg-1; SiO2 ~60 µmol kg-1) 

caused by upwelling in the estuary (Chen, 1996; Lee Chen et al., 1999), while the higher 

salinity, nutrient-poor TWC increases vertical mixing between surface and deep-water 

masses, creating oxic bottom water conditions (Tada et al., 1999).  

However, during glacial periods such as MIS 2 and MIS 6, glacio-eustatic sea 

level lowering had significant effects on the oceanographic conditions, such as bottom 

water advection and surface productivity, as a result of the shallow sill depths and near 

isolation of the Japan Sea from the East China Sea (Oba  et al., 1991; Wang, 1999; 

Gallagher et al., 2018). Increased water column stratification occurred during these 

glacial periods as a result of less saline water being the predominant influx to the Japan 

Sea from both precipitation and increased relative contribution of ECSCW (Watanabe et 

al., 2007). The salinity differences limited vertical mixing of surface and deep-waters, 

thus creating suboxic bottom water environments with better organic matter preservation  

(Tada et al., 1999; Usami et al., 2013; Watanabe et al., 2007).   

 

 

 



 42 

2.4 Study Site 

The present study analyzes sediment cores from IODP Expedition 346 collected 

in the Japan Sea in 2013. The expedition had the overall objective of determining the 

onset of orbital and millennial-scale variability of the East Asian Monsoon, position and 

intensity of the Westerly Jet, the paleoceanography of the Japan Sea, and the 

interrelationships between these variables during the last 5 My (Tada et al., 2015). A total 

of seven sites in the Japan Sea and two additional sites in the East China Sea were cored 

to obtain a ~5 My record of the East Asian Monsoonal history (Tada et al., 2015). The 

focus of the present study, Site U1427, is located in the south-central part of the Japan 

Sea on the outer margin of the marginal terrace near Tottori (Figure 2.1). At 35°57.92′N, 

134°26.06′E, it is the shallowest of all IODP Expedition 346 study sites at 330.3 mbsl 

(meters below sea level) and is directly under the influence of the first branch of the 

TWC. Expedition 346 cored nearly 550 m of continuous sedimentary sequences from 

Site U1427, which spans the last 1.1 My (Sagawa et al., 2018).  

The present study focuses on stable isotope analyses and foraminiferal 

assemblages of the upper 130 m and ~350 ky of the site.  The calculated age model 

(Figure 2.3)(Sagawa et al., 2018) suggests a sedimentation rate of ~35 cm/ky in this 

section, providing a high-resolution record of paleoceanographic variability during the 

Late Pleistocene. The shallow depth of Site U1427 implies that it has likely been located 

above the calcite compensation depth (CCD)(Tada et al., 2015) with the exception of the 

sea level low stands during MIS 2, MIS 6, and MIS 10 and has relatively high carbonate 

preservation (Gallagher et al., 2018).  
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Figure 2.3. Age-depth curve (m/ky)(Sagawa et al., 2018) and the mass accumulation rate 
(MAR; g/cm2/ky) of Site U1427.The age model was created by stratigraphic correlation 
of tephra layers and benthic foraminifera δ18O isotope values at Site U1427. MAR was 
calculated by multiplying the linear sedimentation rate (LSR; cm/ky) by the measured dry 
bulk density (g/cm3) of the sediment.  
 

The sediments cored at Site U1427 are predominately clayey silt and nannofossil-

rich clayey silt (Tada et al., 2015; Sagawa et al., 2018; Gallagher et al., 2018). Five age-

diagnostic tephra layers are present: Aira-Tanzawa (AT), Aso-4, Ata-Torihama (Ata-Th), 

Aso-1, and Kakuto (Kkt), and one unknown tephra layer, which allows precise dating and 

basin-wide correlation between IODP 346 sites (Sagawa et al., 2018).  Sediment color 

ranges from an olive gray to grayish green and is typically bioturbated and homogenous 

(Tada et al., 2015).  Nannofossils are abundant throughout the core except for the 
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intervals 160-180 m and 224-245 m depth (Sagawa et al., 2018). Foraminiferal are 

typically well preserved although in low abundance (~300 foraminifera/gram). The 

assemblages are dominated by planktic foraminifera (Gallagher et al., 2018). Periods of 

high foraminiferal abundance include MIS 3, MIS 4, MIS 5, MIS 6, MIS 7, and MIS 9 

(Gallagher et al., 2018). Sediments recovered from Expedition 346 sites deeper than 

800m water depth have distinct centimeter- to decimeter-scale light/dark sedimentary 

alternations (Tada et al., 2015). However, Site U1427 shows only subtle, meter-scale 

color alternations as a result of its shallow depth, which likely remained located above 

the oxic-anoxic boundary (~500m water depth) over the last 1 My (Sagawa et al., 2018).  

 

2.5 Foraminiferal Assemblages 

The most common planktic foraminifera at Site U1427 are Neogloboquadrina 

pachyderma (Ehrenberg, 1861), Globigerina bulloides (d’Orbigny, 1826), and 

Globigerina quinqueloba (Natland, 1938), which are productivity indices (Chapman et 

al., 1996; Conan & Brummer, 2000; Domitsu & Oda, 2005; Prell, 1984; Rohling et al., 

1997; Stefanelli et al., 2005). Dominance of Neogloboquadrina pachyderma (right-

coiling) is indicative of cold (0-9°C), polar front water in the northern Japan Sea (Singh 

et al., 2015) and presently dominates (>50%) the foraminiferal assemblages in central and 

northern Japan Sea sediments (Domitsu & Oda, 2005). However, N. pachyderma is more 

closely related to the presence of a pycnocline rather than the mixing of surface waters 

(Usami et al., 2013). Globigerina bulloides is the next most common species in the Japan 

Sea (>30%)(Domitsu & Oda, 2005) and its dominance is indicative of slightly warmer 

cold water (3-19°C)(. The species is found abundantly in modern sediments near the 
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Tsushima Strait and has been used as a proxy to determine the input of less saline, 

nutrient-rich water from the Yangtze River (Domitsu & Oda, 2005). Unlike N. 

pachyderma, the species thrives in areas of active mixing of subsurface waters 

(Kuroyanagi et al., 2006; Stefanelli et al., 2005). Globigerina quinqueloba is also a 

common species in the Japan Sea, dominates near the Tsushima Strait, and is found in 

high abundance in surface sediments near the mouth of the Yangtze River in the East 

China Sea (Xu & Oda, 1999). It is tolerant of low salinities in surface waters (Kuroyanagi 

& Kawahata, 2004; Rohling et al., 1997) and is a common species in upwelling 

conditions (Abrantes et al., 2001).  

 One of the most common taxa in the benthic foraminiferal assemblages at Site 

U1427 is Uvigerina peregrina (Cushman, 1923)(also referred to as U. akitaensis (Asano, 

1950) by Usami et al., 2013 and Gallagher et al., 2018) and spinose/striate Uvigerina spp. 

The taxa often prevail in upwelling regions and areas with increased productivity in 

surface waters (Bubenshchikova et al., 2015) at depths of 45-4500 m (Schonfeld, 2006; 

Gallagher et al., 2018).  Uvigerina peregrina/akitaensis is an infaunal detritus feeder 

(Bubenshchikova et al., 2008, 2015; Fontanier et al., 2014) whose abundance is 

controlled by variations within the TOC flux rates towards the seafloor (Usami et al., 

2013). Uvigerina spp. is a common species in phosphate and nitrate-rich water masses 

(Usami et al., 2013; Gallagher et al., 2018; Jian et al., 2001), indicating increased nutrient 

loading and increased surface primary productivity.  

 Globigerinoides ruber, Pulleniatina obliquiloculata (Parker & Jones, 1862), 

Globorotalia tumida/menardii (Brady, 1877), and Neogloboquadrina incompta (Cifelli, 

1961) are planktic foraminifera directly associated with the influx of the TWC (Gallagher 
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et al., 2015, 2018; Domitsu & Oda, 2005) and are grouped together as "TWC planktics." 

Globigerinoides ruber is likely the most important indicator of the TWC with abundances 

greater than 30% in modern sediments (Domitsu & Oda, 2005), and occurs abundantly in 

warmer waters (21-29°C) associated with stratified waters outside of upwelling regions 

(Be, 1977). It is also common in the East China Sea in surface sediments near the 

Yangtze River, in the Kuroshio Current, and the Tsushima Strait (Domitsu & Oda, 2005; 

Oda et al., 1992; Gallagher et al., 2015). Neogloboquadrina incompta prefers colder 

waters (10-18°C) than G. bulloides (Salgueiro et al., 2008; Thunell & Sautter, 1992), but 

warmer waters than N. pachyderma (Usami et al., 2013). It is associated with upwelling 

conditions (Reynolds & Thunell, 1985) and high chlorophyll-a concentrations (Abrantes, 

2001). Currently, N. incompta is found in middle to downstream areas of the TWC, 

where mixing between the TWC and colder, northern water occurs (Domitsu & Oda, 

2005).  

 

2.6. Methods 

All sedimentary organic matter samples (n=135) were analyzed for Florida 

International University’s Southeastern Environmental Research Center’s Stable Isotope 

Laboratory (SERC-SIL). All samples were dried and ground until fine before being 

homogenized in a Spex 8000M mixer/mill for 5 minutes. Samples prepared for organic 

carbon isotope analysis were decarbonated by acidifying ~0.1 g of ground sediment 

sample in 10% HCl bath for 24 hours three times followed by decantation in deionized 

water (DI) three times to rinse away acid residue. Five mg of decarbonated sediment for 

organic carbon analysis and 10 mg of non-decarbonated sediment for bulk nitrogen 
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analysis were compacted in 5 x 9 mm tin capsules and analyzed in a NA 1500 elemental 

analyzer (EA) coupled to a Thermo Delta C isotope ratio mass spectrometer (IRMS) for 

%TOC and δ13CTOC, and %N and δ15N, respectively. 

All isotope data is expressed as delta notation (δ‰), using the equation 

                         δR = [(Rsample – Rstandard )/Rstandard ] * 1000         Eq. 1 

where Rsample is the ratio of the heavy to light isotope in the sample and Rstandard is the 

ratio of the heavy to light isotope in the standard (McKinney et al., 1950; Hayes, 1982; 

Coplen, 2011). The δ13C and δ15N data are reported in parts per mil (‰) vs. Vienna Pee 

Dee Belmnite (VPDB) and AIR, respectively. Precision (1σ) was better than ± 0.14‰ 

for organic carbon and ± 0.21‰ for nitrogen using analysis of internal standards over a 

range of isotopic values (Appendix 1).  

The procedure for processing inorganic carbon samples followed a similar method 

to shipboard analyses (Tada et al., 2015). Fifteen mg of ground, homogenized sample 

was acidified in 10 mL of 10% HClO4 in a UIC CM140 Coulometer for inorganic carbon 

analysis. Calcium carbonate concentration (%CaCO3) was calculated from the inorganic 

carbon concentration by multiplying by a factor of 8.33 under the assumption that all 

inorganic carbon acts as CaCO3 (Liu et al., 2014). Precision (1σ) was better than ± 

0.19% CaCO3 on the basis of analysis of Fisher Chemical’s pure calcium carbonate 

standard (CaCO3=100.09) and Nacalai Tesque’s pure sodium carbonate standard 

(Na2CO3=105.99). Eighty-seven samples were analyzed in duplicate with precision 

better than ± 0.84% CaCO3.  

 One hundred and twenty-three samples were processed for foraminifera by 

standard microfossil techniques for paleoenvironmental analyses (see Gallagher et al., 
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2018 for further details)(with emphasis on sea surface conditions and paleoproductivity 

proxies) at the University of Melbourne3. The samples were split using a micro-splitter 

into several fractions. Quantitative benthic and planktic assemblage data were compiled 

from the >150 µm fraction since these species are significantly larger than the standard 

>63 µm fraction. The foraminiferal data are expressed as a percentage of the total fauna 

(e.g. %plankton) or as a percentage of the calcareous benthic or planktic assemblages. 

Foraminiferal concentrations are expressed as numbers of foraminifera per gram of dry 

sediment (see Gallagher et al., 2018 for further details).  For the present work, the 

percentage of Neogloboquadrina pachyderma, Globigerina bulloides, and Globigerina 

quinqueloba in the planktic assemblage, and relative abundance of Uvigerina peregrina 

(akitaensis), and Uvigerina spp. (spinose and striate) are plotted to show periods of 

increased primary productivity and upwelling variability. The total number of 

foraminiferal assemblages for the group “TWC planktics” (Globigerinoides ruber, 

Pulleniatina obliquiloculata, Globorotalia tumida/menardii, and Neogloboquadrina 

incompta) reflect the relative influence of the TWC during sea level maxima (Gallagher 

et al., 2018; Domitsu & Oda, 2005; Usami et al., 2013).  

Continuous sedimentary sequences were constructed from the sediment collected 

during IODP Expedition 346 using the splicing technique correlating physical properties, 

lightness (L*), and color (b*) between multiple holes at each sampling site (Irino et al., 

                                                        
3 Data was collected, analyzed, and published by Gallagher (2018).   
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2018)4. Sample ages were determined via the age models (Figure 2.3) of Sagawa (2018) 

through correlation of tephra layers and δ18O values of benthic calcareous microfossils. 

Water depth through the sill of the Tsushima Strait was calculated from global sea level 

estimates (Spratt & Lisiecki, 2016) and divided into four circulation modes according to 

Tada (1999). All L* and b* data were calculated using color scanning imaging at a 5 mm 

resolution (Irino et al., 2018).  

Principal Component Analysis (PCA) was used to determine the correlation of the 

elemental and isotopic geochemical data (CaCO3, TOC, TN, δ13C, and δ15N) in relation 

to glacial/interglacial MIS stages (MIS 1 to MIS 10) and variations in sill depth (Tada et 

al., 1999) of the Tsushima Strait and was calculated using the JMP statistical software 

package. Principal component analysis is a multivariate statistical analysis that 

determines the underlying variability between discrete independent variables such that 

the first principal component (PC1) explains the largest possible variance, followed by 

PC2, PC3, etc. (Pearson, 1901; Wold et al., 1987; Joliffe, 2002;). All data (CaCO3, TOC, 

TN, δ13C, and δ15N) was mean centered and standardized by variance before PCA 

analysis. The Pearson correlation coefficient (Adler & Parmryd, 2010) was also 

calculated in JMP to determine the correlation between independent variables.  

 

 

 

                                                        
4 Data was collected onboard the Joides Resolution by Expedition 346 Scientists. See Tada (2015) for more 

details.  
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2.7. Results 

The calcium carbonate concentration (%CaCO3) varied from 0.0% to 23.0%, 

TOC 0.2% to 5.0%, δ13C -25.3‰ to -19.6‰, %N 0.0% to 0.2%, and δ15N 3.8‰ to 

13.1‰ (Figure 2.4; Appendix 2; Black et al., 2018). The variation in these data correlate 

with sediment L* and b* color values reflecting distinct differences between glacial and 

interglacial periods. The calculated Pearson correlation coefficient between L* and 

%TOC is r = -0.48, p < 0.0001 and between b* and %CaCO3 is r = 0.51, p < 0.0001.  
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Figure 2.4. Global sea level (m)(Spratt and Lisecki, 2016), δ18O (‰)(Sagawa et al., 
2018), L* (Irino et al., 2018), b* (Irino et al., 2018), calcium carbonate (%CaCO3), total 
organic carbon (%TOC), δ13C, total nitrogen (%N), and δ15N content of sediment 
samples from Site U1427. Sill depth through the Tsushima Strait was divided into four 
modes following Tada et al. (1999).  
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Tada et al. (1999) determined that Japan Sea sediments that are typically lighter in 

color (higher L* values) and have relatively lower calcium carbonate concentrations 

(~15% CaCO3) typify glacial periods. Glacial maxima, however, are the exception when 

dark sediments were deposited likely as a result of increased stratification and 

development of euxinic conditions in the water column. The lighter sediments in MIS 2, 

MIS  6, MIS 8, and MIS 10 have relatively lower  %CaCO3,  %TOC, and %N, and  

depleted δ13C  and enriched  δ15N values (-26‰ to -24‰ and 2‰ to 7‰, respectively) 

when compared to the darker units (-20‰ to -23‰ and 6‰ to 8‰, respectively) 

deposited during MIS 1 (0-11 kya), MIS 3 (24-60 kya), MIS 5 (70-130 kya), MIS 7 (190-

244 kya), and MIS 9 (301-334 kya)(Black et al., 2018).  

The PCA was performed using a subset of 5 variables (%CaCO3, %TOC, δ13C, 

%N, and δ15N) on all samples (n=135) analyzed. The first two principal components (PC) 

in MIS comparisons explain 88.8% of the total data set variance, so the remaining PCs 

can be excluded from the analysis. In the variable space, (Figure 2.5), PC1 explains 

70.2% of the variance and shows a significant positive correlation with %CaCO3, %TOC, 

δ13C, and %N and a significant negative correlation with δ15N. The second principal 

component, PC2, explains 18.6% of the variance and shows a significant positive 

correlation with %CaCO3, moderate positive correlation with %N and δ15N, and a slight 

to moderate negative correlation with %TOC and δ13C. The factor loadings obtained from 

the PCAs are shown in Tables 2.1 and 2.2 for MIS age and sill depth, respectively.  
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Figure 2.5 Principal Component Analysis (PCA) of %CaCO3, %TOC, %N, δ13C, and 
δ15N analyzed by (a) MIS 1 through MIS 9 and (b) varying sill depths of the Tsushima 
Strait according to the four circulation modes of the Japan Sea determined by Tada 
(1999).  
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Table 2.1. The contribution of geochemical proxy variables in PCA calculation for MIS 
1 through MIS 9 (Figure 2.5a).  

 Principal 1 Principal 2 

%CaCO3 0.45 0.87 

%TOC 0.97 -0.07 

δ13C 0.82 -0.35 

%N 0.92 0.12 

δ15N -0.92 0.16 

 

Sill depth of the Tsushima Strait was also analyzed over time for the same subset 

of 5 variables (%CaCO3, %TOC, δ13C, %N, and δ15N) analyzed for depths <40m, 40-

70m, 70-110m, and >110m using the four circulation modes of Tada (1999). The first 

two principal components in the sill depth comparison explain 98.2% of the variance. In 

the variable space (Figure 2.5), PC1 explains 90.8% of all variance between proxies and 

shows a significant positive correlation between %CaCO3, %TOC, δ13C, and %N and a 

significant negative correlation with δ15N. PC2 indicates only 7.4% of the variance, with 

slight to moderate positive correlation between all variables.  
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Table 2.2. The contribution of geochemical proxy variables in PCA calculation for 
varying sill depths of the Tsushima Strait according to the four circulation modes of the 
Japan Sea determined by Tada (1999)(Figure 2.5b). 

 Principal 1 Principal 2 

%CaCO3 0.92 0.37 

%TOC 1.0 -0.01 

δ13C 0.96 0.08 

%N 0.99 0.0 

δ15N -0.88 0.47 

 

Planktic and benthic foraminiferal assemblage variability also correlates to 

variations in the previously discussed geochemical and isotopic proxy data, especially G. 

bulloides, G. quinqueloba, U. peregrina (akitaensis), and Uvigerina spp (Usami et al., 

2013; Gallagher et al., 2018). The abundances of these foraminiferal taxa also increase 

during interglacial periods and are less abundant during glacial periods. Less abundant 

species that are specific to the influx of the TWC into the Japan Sea, such as G. ruber, P. 

obliquiloculata, G. tumida/menardii, and N. incompta (Domitsu & Oda, 2006; Gallagher 

et al., 2015; Kitamura et al., 2001) are only present intermittently in sediment layers 

deposited when the sill depth during interglacial periods was at least 70 m (Figure 2.6).  
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Figure 2.6. Global sea level (m)(Spratt and Lisecki, 2016), δ18O (‰)(Sagawa et al., 
2018), %CaCO3, and abundances of G. bulloides, Uvigerina spp., G. quinqueloba, N. 
pachyderma and TWC planktics (Gallagher et al., 2018). Sill depth through the Tsushima 
Strait was divided into four modes following Tada et al. (1999). 
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2.8. Discussion 

 Latest Pleistocene to Holocene paleoproductivity variations in the Japan Sea have 

previously been interpreted using %TOC, %TN, δ13C, and δ15N data to investigate sea 

level controls of the sedimentary record (Khim et al., 2008; Minoura et al., 1997). These 

authors found that surface productivity controlled the δ13C and δ15N contents of the 

sediment and that these variations were a result of sea level fluctuations and the resulting 

influx of water into the Japan Sea. Similar to Site U1427, other cores in the Japan Sea 

show slightly lighter (higher L* values) sediments in glacial periods compared to 

interglacial sediments except for sea level low stands during MIS 2 and MIS 6 (Oba et 

al., 1991; Tada et al., 1999). Measured L* values at Site U1427 moderately correlate with 

TOC content of the sediments (r = -0.48, p<0.001), with darker sediments (lower L* 

values) yielding higher TOC concentrations than lighter (higher L* values) sediments, 

indicating that TOC content causes the darker color of the interglacial sediments. The b* 

values measured indicate bluer sediments (lower b* values) during glacial periods with 

yellower (higher b* values) during interglacial periods. These b* values moderately 

correlate to %CaCO3 (r=0.51, p<0.001), suggesting that b* may serve as a proxy for 

carbonate concentration in the sediment at Site U1427.   

In hemipelagic sediments, %TOC, %N, δ13C, and δ15N content is generally 

related to the amount of primary productivity in surface waters (Fry & Sherr, 1984; 

Peterson & Howarth, 1987; Peterson & Fry, 1987; Stein, 1991). As primary productivity 

increases, increased concentrations of %TOC and %N, as well as isotopic enrichment of 

δ13C and δ15N, are typically expected. The concentration of TOC and N stored in 

sediment typically increases during periods of increased primary productivity because of 
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the supply of limiting nutrients. Photosynthetic microorganisms also preferentially 

incorporate the lighter stable isotope, i.e., 12C and 14N, into their diets since they require 

slightly less energy to metabolize compared to the heavier stable isotopes, i.e., 13C and 

15N (Fry & Sherr, 1984). As competition for nutrients increases in surface waters, lighter 

isotopes become depleted and organisms incorporate higher concentrations of the heavier 

isotopes, leading to isotopic enrichment (Peterson & Fry, 1987). Site U1427, however, is 

located in close proximity to the Japanese coast, so it is likely that changes in the organic 

matter sources areas (i.e., marine vs. terrestrial) could also influence the carbon and 

nitrogen stable isotope values (Meyers 1994; Schubert & Calvert, 2001). Marine isotopic 

values for carbon and nitrogen stable isotopes average ~-20‰ and 9‰, respectively, 

while terrestrial values average -27‰ and <1‰, respectively (Meyers, 1997; O’Leary, 

1981; Peterson & Howarth, 1987). Site U1427 generally shows a predominantly marine 

source of organic matter throughout the record with average C/N, δ13C, and δ15N values 

of  11.5, -22.2‰ and 9.7‰, respectively. Terrestrial C/N values are only present in a total 

of six samples studied, while the most depleted δ13C and δ15N values in the record are 

1.7‰ and 3.8‰, respectively, more enriched than terrestrial isotopic signatures, 

indicating little terrestrial influence at Site U1427.  

Previous studies share relatively similar elemental and isotopic values with the 

exception of δ15N values, which are 4-5‰ more enriched at Site U1427, which could be a 

result of water depth. Site U1427 is a very shallow site (330 mbsl) in comparison to 

previous Yamato Basin studies (~900-3400 mbsl)(Khim et al., 2008; Minoura et al., 

1997), which would limit the amount of degradation in the water column as organic 

matter settles towards the sea floor, potentially leading to less diagenetically altered 
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organic matter preserved in the surface sediments in oxic conditions than in deeper sites. 

The δ15N values at Site U1427 are only slightly more enriched (4-5‰) than deeper sites 

during the sea level low stands of MIS 2 and MIS 6, indicating potential bacterial 

denitrification conditions in the shallower sites. The most depleted δ13C and δ15N values 

in the Japan Sea are from laminated sedimentary layers deposited during glacial periods 

(Khim et al., 2008; Minoura et al., 1997), which are absent from Site U1427, further 

indicating that water depth and bottom water oxygenation impart a significant control on 

the isotopic values of preserved organic matter.  

According to PCA analysis, clear differentiation between glacial and interglacial 

MIS stages are shown between two principal components (Figure 2.5), which comprise 

89% of all variance between the data. In Component 1, which is most significantly 

controlled by %TOC, %N, and δ15N, all interglacial periods show a positive correlation 

while in all glacial stages share a negative correlation. The concentration of %TOC and 

%N in sediments is likely related to their role in biochemical cycling, nutrient loading, 

and the resulting primary productivity in the surface waters. However, in the Japan Sea 

there is a higher relative contribution of inorganic N (<60%) to total N stored in the 

sediments, because of sorption of NH4+ to clay particles (Tesdal et al., 2013), and that 

process complicates the N analyses. The negative correlation between δ15N and all other 

geochemical data during glacial periods implies suboxic bottom waters and possible 

denitrification conditions (Altabet, 1988), especially since MIS 2 and MIS 6 had the most 

enriched δ15N values and the lowest sea levels in the time interval analyzed.  

In the dark sedimentary layers deposited during interglacial periods, an increase in 

%CaCO3, %TOC, and %N and relative enrichment of δ13C suggests increased primary 
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productivity in surface waters (Black et al., 2018). The volume of water flowing through 

the Tsushima Strait has a direct impact on these proxy values where sill depths greater 

than 70 m show the most significant increases in paleoproductivity, shown both in the 

geochemical proxy data and PCA analysis. As more water flows through the Tsushima 

Strait, it brings with it warmer, more nutrient-rich water, which facilitates vertical mixing 

and oxygenation of deeper waters (Gamo, 2011), further increasing primary productivity 

at the surface.  

 During the transition to glacial periods, however, when the sill depth drops below 

~70 m, %CaCO3, %TOC, and %N values decrease with a relative depletion of δ13C and 

enrichment of δ15N. With limited TWC influx, precipitation becomes a more significant 

contributor to the water entering the Japan Sea as a result of surface runoff, likely causing 

a freshwater lens to develop at the surface. The fresh surface water increases stratification 

in the water column, which limits vertical mixing and leads to potentially hypoxic bottom 

waters (Oba et al., 1991; Tada et al., 1999; Wang, 1999).  

There are differences in the correlation of sill depth and the geochemical proxies 

such that the more extreme sill depths, i.e., <40m and >110m are more similar in 

comparison to intermediate sill depths, 40-110 m according to PCA 2 (Figure 2.5). The 

similarity of intermediate sill depths may indicate that Tada’s (1999) circulation modes 2 

& 3 are not statistically different, corroborating recent results indicating the presence of 

only three circulation modes (Saavedra-Pellitero, in press). Oxic conditions associated 

with a higher influx of the TWC likely resulted in higher %CaCO3 concentrations and 

lower δ15N values while suboxic conditions resulted in lower %CaCO3 through possible 

dissolution and increased denitrification suggested by more enriched δ15N values.  
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There are also marked differences in foraminiferal abundance between glacial and 

interglacial periods that are likely to have been related to by the volume of water moving 

through the sill of the Tsushima Strait (Figure 2.5; Gallagher et al., 2018). With minor 

exceptions, such as MIS 6 and MIS 8, planktic foraminiferal concentration is higher 

during interglacial periods (1000-3000 foram/g) and significantly lower during glacial 

periods (<500 foram/g)(Gallagher et al., 2018). Increases in the abundance of planktic 

foraminifera likely reflect increased surface primary productivity while increases in 

benthic species indicate increased oxygenation at the base of the water column and/or 

sediment interface and differential dissolution. The periodic influx of TWC planktic 

species indicate periods in which significant inflow of the TWC occurred through the 

Tsushima Strait. Tsushima Warm Current indicating coccolithophorids, (i.e., Emiliania 

huxleyi, Gephyrocapsa oceanica, Calcidiscus leptoporus, and Helicospharea carteri) 

also show increased abundances during interglacial periods at Site U1427 when increased 

abundances of TWC planktic species occurred (Saavedra-Pellitero, in press), 

corroborating increased TWC influx. 

 

2.9. Conclusions 

 The Japan Sea is an isolated sea connected to the open-ocean via straits such as 

the Tsushima and Tsugaru Straits with depths less than 130 m. Oceanic conditions such 

as salinity and primary productivity are therefore actively controlled by glacio-eustacy. 

The present work integrates geochemical (%CaCO3, %TOC, %N, δ13C, and δ15N) 

analyses with benthic and planktic foraminiferal data from Site U1427 cored during 

IODP Expedition 346 (Tada et al., 2015) to document the relative influence of variable 
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sill depths in the Tsushima Strait on primary productivity over the last 350,000 years. The 

shallow, narrow strait restricted the inflow of the Tsushima Warm Current and East 

China Sea Coastal Waters to the Japan Sea during glacial periods. When sill depth was < 

70 m there was limited influx of the Tsushima Warm Current and/or the East China Sea 

Coastal Water entering the Japan Sea, causing precipitation to become a more significant 

contributor to the water body, leading to increased stratification and reduced oxygen 

concentration limiting surface primary productivity. Enriched δ15N values during glacial 

periods indicate increased denitrification conditions, suggesting hypoxic water columns 

and oligotrophic waters.  

 When the sill depth of the Tsushima Strait was greater than 70m, however, 

paleoproductivity rapidly increased during interglacial periods, leading to higher values 

of %CaCO3, %TOC, and %N and δ13C enrichment associated with higher planktic and 

benthic foraminiferal abundance. Primary productivity increase in surface waters was 

caused by the warmth and higher salinity of the TWC and high nutrient load of the 

ECSCW and enhanced vertical mixing in the water column. The appearance of TWC 

planktic species during interglacial periods indicates TWC influx to the Japan Sea 

through the Tsushima Strait when the sill depth was greater than 70 m. 
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CHAPTER 3: THE MID-PLEISTOCENE TRANSITION AND THE RESULTING 
PALEOPRODUCTIVITY CYCLES WITHIN THE JAPAN SEA5  
 

3.1 Abstract 

Japan Sea sediments serve as an ideal medium to record changes in 

paleoceanographic conditions because of the clear difference in their characteristics 

between glacial and interglacial periods. Through the use of elemental (%CaCO3, %TOC, 

and %TN) and isotopic (δ13C and δ15N) analysis, temporal changes in relative 

paleoproductivity levels were reconstructed during the last ~1.3 Ma at IODP Expedition 

346 Site U1426 in the Japan Sea, with increased primary production during interglacial 

periods in comparison to glacial periods. The interpreted paleoproductivity signal, as a 

result of the East Asian Summer Monsoon, has been shown to shift dominant orbital 

frequencies during the Mid-Pleistocene Transition (~700 ka to 1.2 Ma), from a higher 

frequency 21-33 ky periodicity to a lower frequency 100 ky periodicity without any 

changes in external orbital forces. The current study identifies an apparent shift in the 

periodicity of paleoproductivity cycles at or near the Matuyama-Brunhes paleomagnetic 

boundary (~774 ka) in all five proxies studied, indicating that the Mid-Pleistocene 

Transition affected not only glacial/interglacial periodicity but primary paleoproductivity 

cycles in surface waters as well.  

 

 

 

                                                        
5 To be submitted to Progress in Earth and Planetary Sciences. Black, H.D., Anderson, 
W.T., and Tada, R.  
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3.2 Introduction 

The East Asian Monsoon (EAM) is an important component of the global climate 

system since its geographical area covers nearly one-third of the global population. The 

EAM has two primary components, the East Asian Summer Monsoon (EASM) which 

brings warm, humid air and increased precipitation, and the East Asian Winter Monsoon 

(EAWM) which increases aridity and eolian inputs to the region (Wang et al., 2005). The 

regulation of the EAM has previously been shown to be related to different orbital cycles, 

e.g., eccentricity (~100 ky), obliquity (~41 ky) and precession (~19 and ~21 ky)(. 

Through spectral analysis, these orbital rhythms can be extracted from continuous 

sedimentary sequences to determine if and when a shift in dominance occurred in these 

orbital parameters (De Boer & Smith, 2009; Hays et al., 1976).  

During the Mid-Pleistocene Transition (MPT), a low-frequency, high-amplitude, 

quasi-periodic signal (~100 ky) emerged from a previous higher-frequency, lower-

amplitude signal (~41 ky) without any changes in external orbital forcing (Clark et al., 

2006; Heslop et al., 2002), leading to an abrupt global cooling. Although a well-accepted 

precise date has not yet defined the MPT, it has been documented to begin at ~1.2 Ma 

and was complete by 700 ka (Clark et al., 2006; Head & Gibbard, 2015).  Within the 

Pacific, Shackelton and Opdyke (1976) were the first to identify the MPT within a single 

paleomagnetic boundary layer, the Matuyama-Brunhes, at 774 ka. The MPT not only 

shifted the dominant orbital signal from ~41 ky to ~100 ky, but also brought about a 

global cooling through decreased sea surface temperatures (~2.2° C) and increased ice 

volume by up to 50% (Clark et al., 2006; Dwyer et al., 1995; Heslop et al., 2002).  
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 Within the EAM region specifically, the MPT increased monsoon intensity (Clark 

et al., 2006; Li et al., 2017). The EAM is caused by seasonal variations within continental 

and oceanic temperatures and the resulting air pressure gradients (Nakagawa et al., 2008). 

During the summer, low pressure areas form over the continents as a result of differential 

heating, which results in winds transporting moisture inland. In contrast, during the 

winter, a high pressure system forms over the continents which increases aridity and 

eolian transport to the oceans (Guo, 1983). During periods of increased monsoon 

intensity, enhanced EASM is associated with increased precipitation (~30% although it 

varies geographically; Lu et al., 2018) and wetter conditions with over 80% of the annual 

precipitation occurring during the monsoon season (Wang 2001). Enhanced EAWM, 

however, is associated with an increased eolian influx 2.5 times greater than summer 

conditions, and therefore drier conditions (Weber et al., 2018; Zhang et al., 2018). 

 Multiple proxies have been used to reconstruct the intensity of the EASM 

throughout the MPT. Speleothem δ18O has been used to reconstruct precipitation 

intensity (Cheng et al., 2016; Clemens et al., 2018; Li et al., 2017; Thomas et al., 2016; 

Wang et al., 2008), grain size analysis of eolian materials to determine wind strength 

(Clemens et al., 1996; Sun et al., 2006), and abundance of eolian material to determine 

aridity (Clemens et al., 1996; Tiedemann et al., 1994); all showing increased monsoon 

intensity and strength beginning at the start of the MPT. To serve as a reliable proxy, 

relatively undisturbed, continuous sequences with a well-defined age model are necessary 

to reconstruct the timing and effects of the MPT. Therefore, the carbon and nitrogen 

geochemistry of sediment cores recovered from Integrated Ocean Drilling Program 

(IODP) Expedition 346 in the Japan Sea would serve as an ideal proxy to study the MPT 
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within the EAM system, specifically how the EASM's precipitation variations influenced 

net primary productivity within the phototrophic zone. 

The Japan Sea is a semi-enclosed marginal sea between the Japanese archipelago, 

the Korean Peninsula, and Russia with an area greater than 1,000,000 km2 and an average 

depth of 1,350 m (Figure 3.1). The sea is unique in that it is connected to surrounding 

water bodies only though shallow, narrow straits. The most significant influx of water 

into the Japan Sea is through the Tsushima Strait (130 m depth), with outflow to the 

Pacific Ocean through the Tsugaru Strait (130 m depth) and the Sea of Okhotsk through 

the Soya Strait (55 m depth) and Mamiya Strait (15 m depth)(Takikawa & Yoon, 2005). 

The shallow depths of these sills have a significant control on the amount of current 

influx into the sea. During significant glacio-eustatic sea level drops during glacial low 

stands, the Japan Sea can be nearly isolated from the surrounding water bodies and the 

predominant influx of water is from precipitation and continental runoff (Tada et al., 

1999; Watanabe et al., 2007). At present, the only current flowing into the Japan Sea is 

the Tsushima Warm Current (TWC) through the Tsushima Strait (Hase et al., 1999).  
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Figure 3.1. Map of the Japan Sea, the modern current system, and Site U1426. TS = 
Tsushima Strait; TGS = Tsugaru Strait; SS = Soya Strait; MS = Mamiya Strait; TWC-1, 
TWC-2, TWC-3 are the first, second, and third branch of the Tsushima Warm Current, 
respectively. The map was created using ArcMap 10.3 (Modified from Gallagher et al., 
2018.)  
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The TWC forms in the East China Sea by the mixing of the nutrient-poor 

Kuroshio Current and the low salinity, nutrient-rich East China Sea Coastal Water 

(ECSCW)(Isobe, 1998; Isobe et al., 2002). Although the Kuroshio Current is generally 

nutrient-poor (N03 < 0.1 µmol kg-1; P04 < 0.02 µmol kg-1; Si02 < l µmol kg-1), the 

Kuroshio Intermediate Water upwells as a result of estuary circulation (Chen et al., 

1999), increasing bio-limiting nutrient loads, especially phosphorous (N03 ~25 µmol kg-1; 

P04 ~1.7 µmol kg-1; SiO2 ~60 µmol kg-1)(. The ECSCW salinity and nutrient 

concentrations are correlated with the discharge of Yangtze (Changjiang) and Yellow 

(Huang He) Rivers (Isobe, 1998; Isobe et al., 2002). A higher proportion of the Kuroshio 

Intermediate flows through the southern channel of the Tsushima Strait while a higher 

proportion of the ECSCW flows through the northern channel (Itaki, 2016). At present, 

the TWC has a flow volume of 1.1 to 2.6 Sv (Isobe, 1998) with a surface velocity of 0.3-

0.4 ms-1 (Takikawa & Yoon, 2005).  

After the TWC has entered the Japan Sea, it separates into three branches (Hase et 

al., 1999; Watanabe et al., 2006). The first, and largest, segment flows northeasterly 

along the coast of Honshu Island and eventually exits through the Tsugaru Strait. The 

second branch is similar to the northeasterly flow of the first branch but is closer to the 

center of the Japan Sea. The third branch flows along the coast of the Korean Peninsula 

until it moves easterly towards the center of the Japan Sea. While the first branch of the 

TWC has a relatively constant flow volume, the second and third branches vary 

seasonally, with significant volume reduction during the winter (Kim & Yoon, 1999; 

Tada, 1994). During the winter, the cold and dense Japan Sea Proper Water (JSPW) is 

formed in the northern Japan Sea as a result of sea ice formation off Vladivostok, Russia 
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(Kawamura & Wu, 1998). The JSPW has a relatively low salinity (34) and high dissolved 

oxygen concentrations (>200 µmol/kg). It currently covers all of the Japan Sea at depths 

>300 m, leading to highly oxic bottom waters (Oba et al., 1991). 

The narrow, shallow sills that connect the Japan Sea to the surrounding water 

bodies cause significant differences in oceanographic conditions depending on sea level 

and oceanic influx. During glacio-eustatic sea level variation, the volume and source of 

water currents into the sea changes significantly (Figure 3.2)(Oba et al., 1991; Tada et al., 

1999). During glacial periods when the sill depth of the Tsushima Strait is <40 m, 

reduced sea levels limit the inflow of water through the Tsushima Strait, which can 

nearly isolate the Japan Sea from the surrounding seas (Lee et al., 2003; Oba et al., 1991; 

Wang, 1999). With limited current influx, the predominant water source is precipitation 

and surface runoff from the surrounding land masses, significantly reducing the surface 

layer salinity (~28) and increasing water column stratification (Oba et al., 1991, 

Watanabe et al., 2007). With reduced vertical mixing that results from the higher salinity 

gradient, suboxic to euxinic deep-water environments persist, which generally lead to 

better preservation of organic material at the sediment-water interface (Tada et al., 1999; 

Usami et al., 2013; Watanabe et al., 2007).  Sea levels between approximately 40 to 110 

m introduce a varying combination of the TWC and ECSCW flowing into the Japan Sea 

(Tada et al., 1999). The high nutrient concentrations from the ECSCW (Chen et al., 1999) 

promote higher levels of net primary productivity in surface waters, i.e., rates of 

phytoplankton production minus the oxidation of organic matter. In contrast, the higher 

salinity TWC increases vertical mixing within the water column, leading to oxic to 

suboxic bottom water environments (Watanabe et al., 2007). Increasing contribution of 
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the ECSCW when compared to the TWC, however, decreases vertical mixing as a result 

of the salinity gradient, which leads to suboxic to euxinic conditions (Tada et al., 1999). 

Sea level high stands that have a sill depth >110 m in the Tsushima Strait allow a 

significant influx of the TWC, leading to thorough vertical mixing and oxic bottom water 

conditions.  

 

Figure 3.2. Concept diagram of circulation and oxygenation modes within the Japan Sea 
as a result of increasing sea level and varying ocean current influx. (Modified from Tada 
et al., 1999.)  
 
 

Paleoproductivity is also linked to the variation in the influx of oceanic currents 

during glacial/interglacial periods. Interglacial periods lead to increased net productivity 

as a result of the increased influx of the ECSCW and TWC in comparison to glacial 
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periods (Black et al., 2018). Through the analysis of C and N concentrations preserved in 

sediment, as well as their respective stable isotopic ratios, paleoproductivity levels can be 

reconstructed where increased paleoproductivity is inferred by increased concentrations 

of the bio-limiting nutrients C and N (Fry & Sherr, 1984; Peterson & Fry, 1987). In 

respect to their stable isotopic ratios, phytoplankton typically incorporate more of the 

light isotope (i.e., 12C and 14N) into their via biologic fractionation (Fry & Sherr, 1984). 

With increased net primary productivity, nutrient competition increases leading the 

surface waters and the resulting organic matter production, to become isotopically 

enriched over time (Peterson & Fry, 1987).  

Although all five of the geochemical parameters can be used to infer qualitative 

paleoproductivity rates, they each have advantages and disadvantages in regard to their 

use. For example, carbonate content (%CaCO3), is affected by the depth of the calcite 

compensation depth (CCD), where dissolution of carbonate occurs at a greater rate than 

the supply due to understauration and increased solubility with depth, preventing the 

preservation of carbonate (Farrell & Prell, 1989). Therefore, it is likely to have better 

preservation of carbonate materials at shallower sites above the CCD than deeper depths. 

Eolian input also has a direct influence on the %CaCO3 preserved within ocean sediment. 

In the Japan Sea specifically, significant eolian input is expected as the eolian dust from 

central Asia as the sea is only 2500 km away from the Gobi and Taklimakan deserts 

(Irino & Tada, 2000). The organic matter content in coastal ocean sediments is rarely 

entirely autochthonous in nature, but instead is influenced by terrestrial organic material 

input as well, affecting both %TOC and %TN. Bottom water conditions also significantly 

affect the organic matter content in sediments as oxidation of sediment in oxic water 
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columns degrade the deposited organic matter. Suboxic to euxinic bottom waters, 

however, lead to better preservation of organic matter as bacterial degradation is limited. 

Total nitrogen is not only affected by terrestrial organic matter influx, but inorganic 

eolian influx as well, as NH4+ sorbs to clay-rich particles like Kosa (Shigemitsu et al., 

2009), such that arid conditions would increase inorganic N concentration in sediments.  

The isotopic parameters are also affected by terrestrial vs. marine input.  The δ13C 

values can differentiate marine (approximately -20‰) and terrestrial (approximately  

-27‰) sources and different terrestrial vegetation types (e.g., C3 vs C4 plants)(O’Leary, 

1981).  Nitrogen stable isotope (δ15N) values are affected by inorganic N contribution, 

like Kosa, such that δ15N values are typically lower in inorganic nitrogen compounds 

than in organic nitrogen (Shigemitsu et al., 2009). Locations with significant inorganic N 

flux, like the Japan Sea, would therefore be expected to have lower δ15N values than 

predominately organic N sediments. The nitrogen cycle is fairly complex with bacterial 

processes converting N between forms, such as nitrification of NH3 to NO3- and 

denitrification of NO3- to N2. Each N conversion introduces isotopic fractionation that 

can significantly affect the δ15N values preserved in the geologic record (Altabet et al., 

1995, 1999).  

 In the present study, the relative paleoproductivity levels within the Japan Sea 

using bulk C and N concentrations and their respective δ13C and δ15N ratios will be 

reconstructed. Numerous studies (Crundwell et al., 2008; Heslop et al., 2002; Medina-

Elizalde & Lea, 2005) have already highlighted the shift in orbital frequencies at the 

MPT, but so far few have analyzed stable isotopes of sediment samples from marginal 

Asian seas (Kitamura & Kawagoe, 2006; Kitaba et al., 2011; Li et al., 2008; Li et al., 
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2017). Since the Japan Sea serves as an ideal location to study the variation in 

paleoceanographic conditions resulting from glacio-eustatic sea level variations, it should 

allow for a well dated and high-resolution paleoproductivity reconstruction. The 

objective of the study is to determine if the MPT has been recorded in the 

paleoproductivity signal and how the orbital frequencies behaved before and after the 

MPT in the Japan Sea.  

 

3.3 Study Site

 Site U1426 is located in the Yamato Basin at 37°2.00’N, 134°48.00’E and 903 

meters below sea level (mbsl), the same location as Ocean Drilling Program (ODP) Site 

798 (Tada et al., 2015). The site is situated near the second branch of the TWC, which is 

a highly meandering current characterized by eddies (Hase et al., 1999).  A total of four 

holes were drilled at Site U1426 with a recovery greater than 770 m of sediment (Tada et 

al., 2015). The sedimentary record covers the Pliocene to Holocene (~5 My) and consists 

of clay and silty clay (Sagawa et al., 2018). Although the abundance of biogenic silica 

and calcareous microfossils vary in millennial-scale throughout the core, this site has 

relatively high concentrations of both organic and inorganic carbon compared to other 

Expedition 346 sites as a result of the shallow depth. Several tephra layers are 

interbedded within the stratigraphic record (Irino et al., 2018; Sagawa et al., 2018; Tada 

et al., 2018), which enables more precise dating and age model production.  
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All samples used in this study are from Unit 16, with nearly all contained within 

Subunit 1A, which consists of clay, silty clay, and nannofossil-rich clay with several 

diatomaceous and calcareous-rich layers throughout the core (Tada et al., 2015). Like 

most other Expedition 346 sites, Site U1426 shows clear centimeter- to decimeter-scale 

alternation of light and dark colored sediment (Irino et al., 2018; Tada et al., 2018). The 

light intervals are typically organic poor, moderately to heavily bioturbated, and mostly 

contain light greenish gray and pale yellowish gray diatomaceous-rich clay (Irino et al., 

2018; Tada et al., 2015). The dark intervals are typically organic-rich, usually laminated, 

and consist of clay that is occasionally calcareous. While the upper ~45m of the core 

typically had clear color banding, lower portions were moderately bioturbated (Sagawa et 

al., 2018).  

Previous studies (Tada et al., 1994, 1999, 2004; Watanabe et al., 2007) suggest 

that the meter-scale variability of sediment color is related to sea level variation between 

glacial and interglacial periods. Centimeter-scale color variability, in contrast, is caused 

by the current influx through the Tsushima Strait and the resulting nutrient concentrations 

reflecting changes in Yangtze River discharge into the East China Sea. Light colored 

sediment was generally deposited during oxic conditions associated with increased influx 

of the TWC while dark colored sediment was deposited during suboxic to euxinic 

conditions with limited current influx or increased contribution from the ECSCW in 

comparison to the TWC (Figure 3.2)(Tada et al., 1999; Watanabe et al., 2007). 

Laminated layers were deposited during both glacial low stands and intermediate sea 

                                                        
6 See Chapter 1 for Unit 1 lithology description. 
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levels. Euxinic conditions during glacial low stands resulted in dark laminated layers 

when the Japan Sea was nearly isolated from any current influx and precipitation was the 

most substantial input into the sea (Khim et al., 2007; Tada et al., 1994, 1999; Watanabe 

2007). Laminated layers also develop in TOC-rich dark layers during intermediate sea 

levels, likely a result of high nutrient influx through the Tsushima Strait and strong 

upwelling conditions (Crusius et al., 1999; Khim et al., 2008). Yet, sediment color 

depends on the amount of organic matter production in addition to the oxidation state of 

the bottom waters. Dark (light) colored sediment can be representative of a high (low) 

rate of primary productivity or decreased (increased) oxygenation levels. The study aims 

to be one of the first to determine relative rates of primary productivity in the Japan Sea 

with records longer than 1 Ma to gain a better understanding of the relationship between 

dark and light color banding, productivity rates, and oxidation state. 

 

3.4 Methods 

 All %CaCO3, %TOC, δ13C, %TN, and δ15N samples were analyzed within Florida 

International University’s Southeastern Environmental Research Center’s Stable Isotope 

Laboratory (SERC-SIL). All samples (n=136) were dried overnight at 60° C, ground until 

fine, and homogenized using a Spex 8000M mixer/mill. Samples prepared for carbon 

isotope analysis were decarbonated using a 10% HCl solution three times followed by 

decantation in deionized water (DI) three times to remove any acidic residue. Each 

decarbonation or decantation bath lasted for ~24 hours. Samples prepared for nitrogen 

isotope analysis were analyzed in bulk. Five mg of decarbonated sediment was used for 

%TOC and δ13C analysis while 15 mg of bulk sediment was used for %TN and δ15N 
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analysis. Each sample was compacted in 5 x 9 mm tin capsules and analyzed in an NA 

1500 elemental analyzer (EA) coupled to a Thermo Delta C isotope ratio mass 

spectrometer (IRMS).  

All isotopic data is expressed with delta notation (δ‰), using the equation: 

                                       δR = [(Rsample – Rstandard )/Rstandard ] * 1000                            Eq. 1 

where Rsample is the ratio of the heavy to light isotope in the sample and Rstandard is the 

ratio of the heavy to light isotope in the standard (McKinney et al., 1950; Hayes, 1982; 

Coplen, 2011). The isotopic data of carbon and nitrogen is reported in parts per mil (‰) 

vs. VPDB and AIR, respectively. Precision (1σ) was better than ± 0.1‰ for organic 

carbon and ± 0.3‰ for nitrogen on the basis of analysis of standards over a range of 

isotopic values (Appendix 1). Thirty-two samples were analyzed in duplicate with 

precision better than ± 0.08‰ and ± 0.22‰ for carbon and nitrogen, respectively. 

 Inorganic carbon was analyzed by use of a UIC CM140 Coulometer using 15 mg 

of dried, homogenized sediment which was acidified in 10 mL of 10% HClO4. Calcium 

carbonate concentration (%CaCO3) was calculated from the inorganic carbon 

concentration by multiplying by a factor of 8.33 under the assumption that all inorganic 

carbon acts as CaCO3. Precision (1σ) was better than ± 0.17% CaCO3 using analysis of 

Fisher Chemical’s pure calcium carbonate standard (CaCO3=100.09) and Nacalai 

Tesque’s pure sodium carbonate standard (Na2CO3=105.99). Twenty-nine samples 

were analyzed in duplicate with precision better than ± 0.68% CaCO3. 

 The construction of continuous sedimentary sequences for Site U1426 was 

completed by use of the splicing technique, which correlates lightness (L*), color (b*), 
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and physical properties between three holes at this site (Irino et al., 2018)7. All sample 

ages were calculated using the age model of Tada (2018), which focused on the 

correlation between dark and light layers, tephra layers, and magneto-stratigraphy at Site 

U1424, which were then projected to Site U1426. The regional tephra layers at Site 

U1426 include AT, Aso-4, Hkd-Ku, and Ss-Pink (Sagawa et al., 2018). The Hkd-Ku 

tephra layer, also known as the KU1 tephra (Satoguchi & Nagahashi, 2012) is slightly 

above the Matuyama-Brunhes boundary at Site U1426. Lightness values (L*) of the 

sediment were determined by use of color scanning imaging at a 5 mm resolution (Irino 

et al. 2018), where higher values indicate lighter sediment color.  The δ18O values are 

from the high-resolution Pliocene-Pleistocene stack of benthic δ18O records (Lisiecki & 

Raymo, 2005). An unpaired t-test was computed to compare glacial and interglacial 

differences between all five proxies (%CaCO3, %TOC, %TN, δ13C, and δ15N) studied.  

 Quantitative statistical analyses included t-Tests, continuous wavelet analysis, and 

multitaper method analysis (MTM). A two-tailed t-Test for uneven variances was 

completed to determine if a significant difference exists between glacial and interglacial 

periods for CaCO3, TOC, TN, δ13C, and δ15N. Continuous wavelet analysis was used to 

determine how the frequencies of the signals in paleoproductivity data changed in power 

over distinct periods of time (Torrence & Compo, 1998) where warmer colors indicate 

increased cyclicity at that time period. A second signal analysis tool, MTM, was 

calculated to determine spectral density in more precise, quantitative frequencies found 

within the paleoproductivity signals (Thomson, 1982). For continuous wavelet and MTM 

                                                        
7 Data was collected onboard the Joides Resolution by Expedition 346 Scientists. See Tada (2015) for more 
details. 
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analyses, all data were interpolated to a constant sampling age of 9 ky and standardized 

by mean-centering and variance. Continuous wavelet analyses were completed using 

Matlab R2017b and its respective signal processing and wavelet toolboxes. Torrence & 

Compo (1998) provided the wavelet analysis software. The MTM analysis was 

completed using kSpectra software using p=2 and K=3 and a significance test using an 

AR(1) null hypothesis (Ghil et al., 2002; Mann & Lees, 1996). The continuous sequence 

of ~1.3 My, as well as the subdivided sequences of 0-773 ky and 774-1314 ky, were used 

to determine the MPT defined at the Matuyama-Brunhes boundary (Shackelton and 

Opdyke, 1976). The LR04 global sea-level stack of benthic foraminifera δ18O values 

(Lisiecki & Raymo, 2005) was included in continuous wavelet and MTM analyses as the 

orbital frequencies within their dataset have been extensively studied within the EAM 

impact area (Clemens et al., 1996, 2010; Tiedmann et al., 1994; Sun et al., 2006, 2015; 

Heslop et al., 2002; Weber et al., 2018; Thomas et al., 2016).  

 

3.5 Results 

 Total organic carbon (TOC) contents average 2.6%, which is relatively high for 

marine sediment (Emerson & Hedges, 1988; Müller & Suess, 1979). The variance in 

TOC contents is relatively small, ranging from 0.6% to 6.4%. The mean value of total 

nitrogen (TN) was 0.2%, which is relatively low for marine sediments and ranges from 

0.0% to 0.4%. Calcium carbonate contents (%CaCO3) average 8.6% and range from 0% 

to 44.3% CaCO3. The carbon stable isotope ratio (δ13C) mean is -22.3‰ and ranges from 

-25.9‰ to -20.7‰ while the nitrogen isotopic ratio (δ15N) averages 6.4‰ and ranges 

from 3.3‰ to 10.5‰ (Figure 3.3; Appendix 3).  
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Figure 3.3. Measured %CaCO3, %TOC, δ13C, %TN, δ15N, and L* values for Site U1426. 
δ18O values are from the LR04 benthic stack (Lisiecki and Raymo, 2005). Marine Isotope 
Stage (MIS) is indicated along secondary y-axis where glacial MIS periods are shaded in 
gray.  
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The elemental and isotopic data indicate significant differences in values between 

glacial and interglacial periods (Figure 3.3). There was a significant difference in t-test 

scores for glacial and interglacial periods for %TOC, δ13C, and %TN, but not for 

%CaCO3 or δ15N (Table 3.1). During glacial periods, %TOC and %TN generally 

decrease in concentration and δ13C is more depleted, whereas interglacial periods 

typically show increased concentration and isotopic enrichment for these proxies (Table 

3.2). The isotopic data remains relatively constant throughout the study period except for 

glacial periods in which δ13C values typically become depleted while δ15N shows both 

depletion and enrichment depending on the individual MIS period.  

 

Table 3.1. T-test scores for %CaCO3, %TOC, %TN, δ13C, and δ15N between glacial 
(n=65) and interglacial periods (n=71). In T-test analysis, t = t-value where larger values 
indicate significant differences between the sample mean and null hypothesis; df = 
degrees of freedom or the number of independent sample values; p = probability value to 
determine statistical significance.  
 

 %CaCO3 %TOC %TN δ13C δ15N 
t 1.98 1.98 1.99 1.98 1.98 
df 120 117 87 128 112 
p 0.10 0.04 0.00 0.00 0.14 

 
Table 3.2. The mean and variance of %CaCO3, %TOC, %TN, δ13C, and δ15N between 
glacial (n=65) and interglacial periods (n=71) calculated in JMP software.  
 

  Glacial Interglacial 
%CaCO3 
 

Mean (%) 10.05 7.41 
Variance 101.52 64.48 

%TOC Mean (%) 2.39 2.79 
 Variance 1.56 0.90 
%TN Mean (%) 0.20 0.24 
 Variance 0.01 0.00 
δ13C Mean (‰) -22.62 -22.03 
 Variance 1.40 0.30 
δ15N Mean (‰) 6.56 6.27 
 Variance 1.75 0.86 
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 Continuous wavelet analysis power spectrums (Figure 3.4) indicates a significant 

shift in periodicity at the MPT for LR04 δ18O (Lisiecki & Raymo, 2005), %CaCO3, δ13C, 

and δ15N with minor changes in periodicity in %TOC and %TN. The 100 ky frequency 

begins at or near the MPT for δ18O, %CaCO3, δ13C, and δ15N while ~40 and ~80 ky 

periodicities dominate before the MPT (Tables 3.3 & 3.4). Within the %TOC and %TN 

power spectrums, minor shifts in periodicity occur near the MPT when an ~80 ky 

frequency ends ~900-950 ka and a 100 ky frequency begins ~600 ka. The δ13C power 

spectrum indicates limited cyclicity in all periods before the MPT and robust cyclicity 

after while the δ15N power spectrum indicates complex cyclicity throughout the entire 

study period (Figure 3.4).  
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Figure 3.4. Continuous wavelet analysis of δ18O (LR04; Lisiecki & Raymo, 2005) and 
%CaCO3, %TOC, δ13C, %TN, and δ15N values for Site U1426. The solid black line 
indicates the 95% cone of influence. The solid white vertical line indicates the MPT at 
the Matuyama-Brunhes boundary, ~774 ka.  
 

Multitaper method (MTM) analyses for the period after the MPT (0-773 ka; Table 

3.3) and before the MPT (774-1314 ka; Table 3.4) indicate a shift in spectral peaks 

during the MPT. Before the MPT, spectral peaks are dominated by higher frequency 

periods of ~18, 31-35, and 40 ky. After the MPTthese periods continue but are dominated 
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by lower frequencies of ~90, 99-100, and 103 ky. In addition to orbital frequencies, 

heterodynes, or the interaction of two orbital periods were identified using the 

calculations of Thomas (2018) where:  

                        ±Heterodyne-1 = Period 1-1 ± Period 2-1.                                   Eq. 2 

 

Table 3.3. Multitaper method (MTM) spectral analyses for the period after the MPT (0-
773 ka) indicate cyclicity peaks in thousands of years (ky) for δ18O, %CaCO3, %TOC, 
δ13C, %TN, and δ15N. 
 
δ18O %CaCO3 %TOC %TN δ13C δ15N 
99.2 63.6 90.4 99.2 101.4 103.0 
40.8 26.7 37.9 26.5 38.7 44.1 
22.9  26.0 20.5  37.0 

 
 

Table 3.4. Multitaper method (MTM) spectral analyses for the period before the MPT 
(774-1314 ka) indicate cyclicity peaks in thousands of years (ky) for δ18O, %CaCO3, 
%TOC, δ13C, %TN, and δ15N. 
 
δ18O %CaCO3 %TOC %TN δ13C δ15N 
92.1 40.6 93.3 31.8 70.4 31.3 
64.3 35.4 35.4 23.2 40.0 18.0 
42.6 25.7 18.2 18.6 18.6  
22.9      

 
 



 93 

 

Figure 3.5. Multitaper method (MTM) spectral analysis of a) δ18O (LR04; Lisiecki & 
Raymo, 2005), b) %CaCO3, c) %TOC, and d) δ13C values after the MPT (0-773 ka; left 
column) and before the MPT (774-1314 ka; right column). Red lines indicate AR(1) 
confidence intervals of 99%, 95%, and 90% against robust red noise. Shaded gray areas 
indicate orbital frequencies of ~100 ky, 41 ky, and 21 ky. Individual spectral peaks are 
indicated numerically in ky units.  
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Figure 3.6. Multitaper method (MTM) spectral analysis of a) %TN and b) δ15N values 
after the MPT (0-773 ka; left column) and after the MPT (774-1314 ka; right column). 
Red lines indicate AR(1) confidence intervals of 99%, 95%, and 90% against robust red 
noise. Shaded gray areas indicate orbital frequencies of ~100 ky, 41 ky, and 21 ky. 
Individual spectral peaks are indicated numerically in ky units. 
 

Spectral analysis of the LR04 stack (Lisiecki & Raymo, 2005) and Site U1426 

after the MPT corroborates previous studies with a dominant ~100 ky frequency present 

(Table 3; Figures 3.5 & 3.6) except for %CaCO3. The δ18O values (Lisiecki & Raymo, 

2005) are indicative of the well-established orbital frequencies (i.e., 100 ky, 41 ky, and 

23 ky) and no heterodynes are present. For %CaCO3, two heterodynes are present after 

the MPT: 63.6 ky and 26.7 ky. In the %TOC data, one heterodyne is present, 37.9 ky. 

The identified 90.4 ky and 36.0 ky frequencies are neither primary orbital periods nor 

resulting heterodynes. For δ13C, a 38.7 ky heterodyne is the present as well as a non-

orbital 101.4 ky frequency. In the %TN power spectrum, one likely orbital period is 
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present, 99.2 ky, and two heterodynes are identified, 26.5 ky, and 20.5 ky. Finally, δ15N 

indicates one heterodyne, 37.0 ky, and two unidentified orbital periods of 103.0 ky and 

44.1 ky.  

 

Table 3.5. Heterodynes and their related primary orbital periods. Bold heterodynes 
represent the frequencies identified after the MPT (0-773 ka) at Site U1426. (Modified 
from Thomas et al., 2016.) 
 

+Heterodyne 
(ky) 

-Heterodyne 
(ky) 

Period 1 
(ky) 

Period 2 
(ky) 

18.4 20.3 404.0 19.3 
37.3 45.8 404.0 41.1 
19.1 27.0 130.6 22.4 
63.6 2377.7 130.6 123.8 
38.2 91.8 130.6 53.9 
13.1 36.4 41.1 19.3 

 
 

While the 100 ky period is significant in the geochemical data used at Site U1426 

and the LR04 stack (Lisiecki & Raymo, 2005) after the MPT, the spectral record is 

dominated by higher frequencies before the MPT and lacks any indication of a significant 

100 ky period (Table 3.4; Figures 3.5 & 3.6). Frequencies identified within the δ18O data 

(Lisiecki & Raymo, 2005) include one precession signal of 22.4 ky, one obliquity 

frequency of 41.1, and two heterodynes, 25.2 ky and 64.0 ky. The 40.6 ky frequency 

present in the %CaCO3 data is likely an obliquity signal with increased error (e.g., > 0.5 

ky)(Thomas et al., 2016) while the 25.7 ky and 35.5 ky periods are heterodynes. In 

%TOC, two heterodynes were identified, 18.2 ky and 35.4 ky as well as a non-orbital 

frequency of 93.3 ky. Within the δ13C data, 18.6 ky and 70.4 ky heterodyne frequencies 

were identified as well as a non-orbital frequency of 39.0 ky. The spectral peaks in the 

nitrogen data are dominated by even higher frequency periods than in the carbon data. 
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For %TN, the primary period of 23.2 ky and two heterodynes, 18.6 ky and 31.3 ky, were 

spectrally significant. The δ15N power spectrum identifies two heterodynes, 18.0 ky and 

31.3 ky.  

 

Table 3.6. Heterodynes and their related primary orbital periods. Bold heterodynes 
represent the frequencies identified before the MPT (774-1314 ka) at Site U1426. 
(Modified from Thomas et al., 2016.) 

+Heterodyne 
(ky) 

-Heterodyne 
(ky) 

Period 1 
(ky) 

Period 2 
(ky) 

22.4 25.2 404.0 23.7 
34.9 118.7 98.7 53.9 
18.3 29.0 98.7 22.4 
29.0 70.4 98.7 41.1 
19.0 31.6 94.8 23.7 

 
 

3.6 Discussion 

 Paleoproductivity levels can be interpreted through the use of %CaCO3, %TOC, 

%TN, δ13C, and δ15N where increased concentration and isotopic enrichment indicate 

higher levels of net primary production occurring in the surface waters (Peterson & Fry, 

1987).  During interglacial periods, %TOC and %TN increase in concentration by 0.40% 

and 0.04%, respectively, while δ13C becomes enriched by 0.59‰, and δ15N becomes 

either enriched or depleted depending on specific MIS periods (Figure 3.3), all of which 

indicate increased net primary production in comparison to glacial periods. During 

interglacial periods, there is a significant influx of water through the Tsushima Strait, 

which brings higher nutrient loads from the TWC and ECSCW that can support higher 

levels of productivity in the surface waters as compared to glacial periods (Tada et al., 

1999). The influx of the TWC and ECSCW through the Tsushima Strait varies through 
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time and depending on which current contributes the largest influx into the sea, can create 

oxic to euxinic bottom waters (Figure 3.2)(Tada et al., 1999). If the TWC dominates the 

current influx, the higher salinity current reduces stratification in the water column, 

allowing for thorough mixing and oxic bottom waters (Tada, 1994). If the ECSCW 

contributes a higher percentage of influx, in contrast, the resulting substantial 

contribution of Yangtze and Yellow River discharges within the current can lead a higher 

salinity gradient, which can stratify the water column, leading to suboxic to euxinic 

environments (Watanabe et al., 2007).  

During glacial periods, however, a significant reduction in sea level can restrict 

current influx, leaving the Japan Sea nearly isolated, which results in freshening events 

with precipitation being the most significant contributor of water into the sea (Tada, 

2004; Tada et al., 1999). Increased relative abundance of precipitation in comparison to 

current influx stratifies the water column as a result of the salinity differences between a 

fresher surface water and higher salinity deep-water (Tada, 1994). Increased stratification 

within the water column limits vertical mixing, which decreases net primary production 

as a result of limited upwelling of nutrients and creates anoxic to potentially euxinic 

bottom waters (Figure 3.2). In general, %CaCO3 concentrations increase by 2.64% during 

glacial periods in comparison to interglacial periods as a result of deepening of the CCD 

during glacial periods (Kitazato, 1984; Tada et al., 1992). However, significant decreases 

in %CaCO3 concentration during specific glacial periods, especially MIS 2, MIS 6, and 

MIS 16, indicates apparent dissolution of carbonate as a result of shallowing of the CCD 

during glacial low stands or relative dilution by siliciclastic material.  
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Although the MPT has a broad range of accepted beginning and ending dates, by 

choosing the Matuyama-Brunhes boundary found within Site U1426 as a specific MPT 

transition point, it enables a clear differentiation of periodicity before and after the MPT 

since dated tephra layers bracket this layer at Site U1426 (Sagawa et al., 2018). For all 

geochemical proxies reported, shifts of periodicity occurred near 774 ka, but the most 

significant changes occur in %CaCO3 and δ13C, where the emergence of a ~100 ky period 

began shortly before the MPT (~800 ka)(Figure 3.4). The wavelets of both %TOC and 

%TN also see shifts in periodicity at the MPT, but the shift in frequency is much smaller 

from ~80 ky to ~100ky periods. This ~80 ky periodicity before the MPT is likely the 

result of heterodynes, or the combination of primary orbital periods (Thomas et al., 

2016). These two elemental proxies also experience a gap in periodicity from ~900 to 

~600 ka, which could be further explained by the wide range of MPT dates reported 

within published literature and the complex interaction of multiple environmental 

parameters during a broad transition period. 

The wavelet for δ15N (Figure 3.4) is more complicated than the other proxies 

studied, which is likely indicative of isotopic fractionation within the water column as a 

result of changes in microbial processes (e.g., denitrification) in anoxic to euxinic 

environmental conditions controlling the biogeochemistry (Altabet et al., 1995). 

Denitrification causes δ15N values of sediment to typically become more enriched as a 

result of the bacterial conversion of dissolved nitrate to N2 (Altabet et al., 1995; 1999). 

The anoxic environment necessary for denitrification to occur would only be present 

during glacial low stands when lower paleoproductivity levels, and therefore more 

depleted δ15N values, would be expected. In some glacial periods, like MIS 12, 



 99 

significant 15N enrichment occurs, indicating anoxic bottom waters instead of increased 

paleoproductivity.  Although the emergence of the 100 ky frequency in δ15N occurs 

earlier (~1 Ma) than the other proxies, it still falls within accepted MPT dates.  

To better understand the individual orbital frequencies found within continuous 

wavelet analyses in relation to the MPT, MTM spectral analysis was used to identify 

significant power spectrum peaks (Thomson, 1982) when compared to a robust red noise 

background (Mann & Lees, 1996). An apparent shift from higher frequency periods 

before the MPT to lower frequency periods after the MPT was found in all five proxies 

studied (Figures 3.5 & 3.6), which identified the emergence of a ~100 ky frequency after 

the MPT except for %TOC, in which the lowest frequency was 90 ky. Before the MPT, 

there are fewer identified peaks, likely as a result of the dominance of higher frequency 

signals, such as that of precession (i.e., 19.3 ky, 22.4 ky, and 23.7 ky) periods.  

Previous studies have noted the importance of the 100 ky frequency in regard to 

controlling monsoonal climate as a result of its regulation of both glacial ice volume and 

polar atmospheric air temperature in recent (<700 ky) sedimentary records (Imbrie et al., 

1984; Guo et al., 2000; Nakagawa et al., 2008). Although the exact cause of the 100 ky 

orbital frequency is still debated because of the lack of change in external orbital forcing, 

multiple theories exist in an attempt to explain the monsoonal cyclicity. Changes in direct 

solar forcing and the resulting variation in heating capacities between the Pacific Ocean 

and Eurasian continent are thought to be the main drivers of the 100 ky frequency 

(Kutzbach, 1981), while the precession cycle regulates boreal summer insolation (Boulay 

et al., 2005; Rossignol-Strick et al., 1998; Yuan et al., 2004) and the sea surface 

temperature of the Pacific (Beaufort et al., 2001). Other theories exist, however, that 



 100 

explain the complex interaction of all three orbital cycles (Clemens & Prell, 2003; Lu et 

al., 2005) and the lead-lag relationship with monsoonal variation as a result of non-linear 

internal forcing mechanisms (Clemens & Prell, 2007; Wang et al., 2005). 

The cyclicity of the EASM has thoroughly been investigated using speleothem 

CaCO3 δ18O (Clemens et al., 2010; Thomas et al., 2016; Wang et al., 2008) and loess-

paleosol sequences from the Chinese Loess Plateau (Li et al., 2017; Sun et al., 2015) 

records to understand precipitation variability better.  Few of these records, however, are 

long enough to identify the monsoonal cyclicity before the MPT. The sedimentary record 

from Site U1426 spans ~1.3 My, which allows for investigation of paleoproductivity 

cyclicity both before and after the MPT. Since previous EASM cyclicity studies have 

predominately focused on more recent (<450 ka) records, most have established the 

importance of the 100 ky frequency since the MPT, however, much is left unknown about 

the dominant cyclicity in the EASM before the MPT.   

While most periodicities identified are correlated with previously published 

orbital periods or their related heterodynes (Thomas et al., 2016) within ±0.5 ky, there are 

some spectral peaks identified at Site U1426 outside of these periods. After the MPT, 

36.0 ky, 44.1 ky, 90.4 ky, 101.4 ky, and 103.0 ky periods are also present, all of which 

are neither primary periods nor heterodynes. Before the MPT, two additional non-orbital 

frequencies were identified, 39.0 ky, and 93.3 ky. These frequencies could be a result of 

numerous factors since the age model of Site U1426 was developed by the stratigraphic 

correlation of dark colored sediment and tephra layers between Sites U1424 and U1426 

where the average time resolution of the age model is ~6 ky. All non-orbital identified 

spectral peaks within MTM data are within ± 4.4 ky of known periods and heterodynes, 
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and the age discrepancies are likely a result of the stratigraphic correlation, or lack 

thereof, between Sites U1424 and U1426. In continuous wavelet and spectral analyses, 

the precision and resolution of the age model is critical to obtaining valid results. If a 

higher resolution age model is produced in the future, it is likely that the spectral results 

could change substantially. The constant sampling time used in spectral analyses could 

also affect the resulting frequencies (Ghil et al., 2002). In this study, a constant sampling 

time of 9 ky was interpolated from the geochemical parameters as the average sampling 

time was 9.4 ky throughout the record. Interpolation to a constant sampling time can 

increase the error, especially when large gaps exist between sample ages. Site U1426 

(903 mbsl) is also one of the three shallowest sites from Expedition 346, which could 

possibly limit the distinction between light and dark sediment layers, similar to the 

presence of only subtle color banding at the shallowest Site U1427 (330 mbsl)(Sagawa et 

al., 2018).  

The frequencies identified both before and after the MPT at Site U1426 (Figures 

3.5 & 3.6) indicate that orbital periods have a strong correlation with the elemental 

concentrations and isotopic values indicative of relative primary productivity. The well 

accepted 100 ky monsoonal period is present after the MPT, which reflects the 

importance of direct solar and glacial forcing and the resulting sea level variation in the 

amount of net primary production occurring within the Japan Sea. Before the MPT, 

however, the 18.3 ky heterodyne frequency is dominant in %TOC, δ13C, %TN, and δ15N, 

likely as a result of monsoonal precipitation from the EASM (Boulay et al., 2005; Cruz et 

al., 2005; Rossignol-Strick et al., 1998; Ruddiman, 2006; Yuan et al., 2004). The use of 

elemental and isotopic proxies can therefore be used to identify relative paleoproductivity 



 102 

cycles within the Japan Sea. More research is necessaryto better understand the role of 

the EASM in the amount of net primary production occurring within the phototrophic 

zone.  

 

3.7 Conclusions 

 The role of the EAM, specifically the EASM, has been extensively studied within 

East Asia to better understand the impact of the monsoon climate on precipitation within 

this densely populated region. Paleoproductivity levels as a result of the EASM have 

previously been shown to exhibit the 100 ky periodicity in recent geological records, but 

this study is one of the first to determine paleoproductivity levels and the resulting 

cyclicity of monsoon intensity in proxy records that are long enough to determine the 

influence and effect of the MPT within the Japan Sea.  

 Previous studies within marginal seas near the Pacific have shown a 100 ky 

period in both paleoproductivity levels and monsoon intensity in relatively recent (<700 

ka) speleothem and sedimentary records. A shift in the frequency of these orbital cycles 

occurred during the MPT, however, that caused the lower frequency 100 ky period to 

develop ~700 ka to 1.2 Ma from a higher frequency 41 ky period before the MPT without 

any changes in external orbital forcing. The MPT, defined as a specific date because of 

the presence of the Matuyama-Brunhes paleomagnetic boundary in Site U1426, has been 

identified in all six geochemical proxies used in this study (δ18O, %CaCO3, %TOC, δ13C, 

%TN, and δ15N) via continuous wavelet analysis, where a shift to lower frequency 

periods developed at or near the MPT.  
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To better understand the underlying orbital frequencies within the periodicities of 

these proxies, MTM analysis was used to identify specific power spectrum peaks when 

compared to a robust red noise background. MTM analysis corroborated previous studies 

with a clear 100 ky frequency present after the MPT and higher frequency periodicities of 

41 ky and 21 ky before the MPT. While specific orbital periods (i.e., eccentricity, 

obliquity, and precession) are found within the geochemical data, numerous heterodynes 

were also identified, which indicate a complex interaction between multiple 

environmental and oceanographic parameters before and after the MPT. The orbital 

periods identified in the relative paleoproductivity reconstruction implies direct 

relationships between solar and glacial forcing, sea level, current and nutrient influx 

through the Tsushima Strait, and surface productivity levels in the Japan Sea. Therefore, 

a connection between oceanographic controls and processes and orbital parameters exist 

within the Japan Sea since the Late Pleistocene.  
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CHAPTER 4: REDUCED UPWELLING OF THE KUROSHIO CURRENT 

DURING STADIAL EVENTS IN MIS 5 AND MIS 78 

 

4.1 Abstract 

Glacio-eustatic sea level changes have a significant impact on the marginal East 

China Sea. During glacial periods, significant portions of the epicontinental shelf were 

exposed, leading to the migration of the Yangtze and Yellow Rivers thousands of 

kilometers across the shelf and discharge near the Okinawa Trough. The migration of 

these two large river systems would therefore increase the deposition of terrestrial 

material during glacial periods. Elemental and stable isotopic analyses of carbon and 

nitrogen, however, indicate no significant differentiation between glacial and interglacial 

conditions within the East China Sea during the past 350,000 years. Instead, a relatively 

stable record of paleoproductivity exists due to continuous presence of the Kuroshio 

Current in the Okinawa Trough with the exception abrupt, negative excursions during 

stadial events Marine Isotope Stage (MIS) 5.2, MIS 5.4, MIS 7.2, and MIS 7.4. 

Continuous influx of the Kuroshio Current into the East China Sea, in addition to the 

increased intensity of EASM conditions during interglacials and EAWM conditions 

during glacials, allowed for continuous upwelling, resulting in elevated rates of primary 

productivity occurring within the surface waters. However, during stadial events, the 

limited Kuroshio Current influx and the resulting reduction in upwelling of the Kuroshio 

Intermediate Water within the East China Sea severely reduced the net primary 

                                                        
8 To be submitted to Paleoceanography and Paleoclimatology. Black, H.D., Anderson, 
W.T., Anderson, C.H., and Murray, R.W.   
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productivity. Potential gravity flow layers, such as turbidites, are also found within the 

stadial events, corroborating a likely decrease in Kuroshio flux and increased terrestrial 

material deposited at Site U1429.  

 

4.2 Introduction 

The East Asian Monsoon (EAM) is a significant component of the earth's climate 

system that influences the societal and economic activity of approximately one-third of 

the world's population in southeast Asia and China. The EAM is comprised of two sub-

systems, the East Asian Summer Monsoon (EASM) and the East Asian Winter Monsoon 

(EAWM), both of which are controlled by temperature and air pressure gradients 

resulting from differential heating of land and sea (Wang et al., 2005). The EASM is 

typically associated with warmer, wetter conditions with increased precipitation while the 

EAWM is associated with colder, dryer conditions and increased wind intensity and 

eolian flux (Guo, 1983; Weber et al., 2018; Zhang et al., 2018). Differences between 

EASM and EAWM conditions within the East China Sea (ECS) between glacial and 

interglacial periods should lead to different paleoceanographic conditions within the sea. 

Changes in flux of oceanic currents, such as the Kuroshio Current, and contribution of 

terrestrial organic matter from the Yangtze and Yellow Rivers should lead to distinct 

variations in surface productivity between glacial and interglacial periods as glacio-

eustatic sea levels vary throughout recent geological history.  

The ECS is a shallow, marginal sea with an area greater than 770,000 km2 

(Kawahata et al., 2006). It is located between China, Taiwan, Korea, and the Japanese 

archipelago. The ECS is separated from the South China Sea by the Taiwan Strait and 
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East Taiwan Strait, Japan Sea from the Tsushima Strait (also known as the Korean Strait; 

Ichikawa & Beardsley, 2002), North Pacific Ocean by the Tokara Straight, and an open 

exchange with the Yellow and Bohai Seas (Wong et al., 2000)(Figure 4.1). The two main 

features of the ECS are the shallow (<200 m) epicontinental shelf and the deep (>2000 

m) Okinawa Trough located northwest of the Ryukyu Island chain (Wong et al., 2000). 

The northern portion of the Okinawa Trough is significantly shallower (<1000 m) than 

the middle and southern portions (Ichikawa & Beardsley, 2002).  

 

Figure 4.1. Map of the East China Sea and surrounding land and water bodies. 
TWC=Tsushima Warm Current; YSWC=Yellow Sea Warm Current; TS=Tsushima 
Strait; TKS=Tokara Strait; TWS=Taiwan Strait; ETWS=East Taiwan Strait. (Modified 
from Kawahata et al., 2006.)  
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 Two large watersheds are presently discharged indirectly into the ECS through 

the Yangtze (Changjiang) River and Yellow (Huanghe) River systems in mainland China. 

The Yangtze River discharges into the Yellow Sea while the Yellow River is discharged 

~850 km farther north into the Bohai Sea and later mixes with the Yangtze and other 

Chinese tributaries as the China Coastal Water (CCW)(Wong et al., 2000). The combined 

transport of these two rivers release 1.6 x 109 tons of sediment annually, which is ~10% 

of the total world sediment discharge (Saito et al., 2001). The Yangtze River has one of 

the world’s largest drainage basins with an area greater than 1.8 million km2 (Beny et al., 

2018) and contributes more than 80-90% of all freshwater discharge into the ECS 

(Beardsley et al., 1985; Ichikawa & Beardsley, 2002) with an annual discharge of 9.28 

x1011 m3 yr-1. The Yellow River has a smaller drainage basin of 750,000 km2 (Beny et al., 

2018) and significantly lower discharge of 0.41x 1011 m3 yr-1 in comparison. The 

sediment supply of the Yellow River, however, is an order of magnitude higher than the 

Yangtze River (Kawahata et al., 2006) and has the second highest sediment discharge 

found in the world (Saito et al., 2001).  

 The topographic features of these two river systems cause significant differences 

between their physical and chemical characteristics (Saito et al., 2001). The Yangtze 

River is located along the edge of the EAM impact area, which causes it to have 

significant seasonal variation in freshwater discharge with highest water fluxes during the 

summer when the EASM produces higher precipitation rates (Gallagher et al., 2015).  

The Yellow River is also located within the EASM impact area but is unique in that it 

flows through the Chinese Loess Plateau (CLP) where numerous speleothem studies have 

identified changes within the EAM during the Pleistocene (Cheng et al., 2009; Wang et 
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al., 2005; Wang et al., 2008; Yuan et al., 2004). At present, ~90% of sediment 

transported by the Yellow River originated in the CLP (Ren & Shi, 1991).  

  A complex oceanic current relationship exists within the ECS. The most 

significant current, the Kuroshio Current, begins east of the Philippines and enters the 

ECS through the East Taiwan Strait and flows along the ECS continental shelf along the 

Okinawa Trough (Kawahata et al., 2006; Zhao et al., 2017, 2018). South of Japan's 

Kyushu Island, the Kuroshio Current branches into three segments. The first and largest 

segment, the Kuroshio Extension, flows eastwardly out of through the Tokara Straight 

into the Pacific; the second segment mixes with the ECSCW and flows through the 

Tsushima Strait into the Japan Sea as the Tsushima Warm Current; the third segment 

moves northwestwardly into the Yellow Sea as the Yellow Sea Warm Current (Gallagher 

et al., 2015). Other contributing currents include the Taiwan Warm Current that flows 

northeastwardly through the Taiwan Strait into the ECS (Diekmann et al., 2008) and the 

Yellow Sea Coastal Current, which flows southeastwardly from the mouth of the Yellow 

River along the coast of mainland China, where it mixes with Yangtze River discharge 

before becoming the CCW (Chen et al., 2004).  

 Water along the continental ECS shelf is predominately (~90%) from the 

Kuroshio Current (Chen et al., 1996), with Kuroshio surface water contributing over 60% 

of the total water flux (Chen et al., 1995). In general, the Kuroshio Current is very low in 

nutrients (NO3 < 0.1 µmol kg-1; PO4 < 0.02 µmol kg-1; SiO2 < l µmol kg-1), but the 

subsurface Kuroshio Intermediate Water contains significantly higher nutrient loads (NO3 

~25 µmol kg-1; PO4 ~1.7 µmol kg-1; SiO2 ~60 µmol kg-1)(Chen et al., 2004) and therefore 

contributes the most to the nutrient fluxes within the ECS (Chen et al., 1996). Most of the 
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nutrient flux within the ECS originates from the subsurface Kuroshio Intermediate Water 

that is upwelled along the edge of the continental slope during the summer (Chen, 1996; 

Chang et al., 2009), which is caused by increased flux from the Taiwan Warm Current, 

CCW, and fluvial discharge from the Yangtze and Yellow Rivers (Chen et al., 2004).  

  Glacial/interglacial cycles have had a significant impact on the ECS as a result of 

its shallow nature as an epicontinental shelf, especially as a river-dominated ocean 

margin (Liu et al., 2007). During periods of glacio-eustatic sea level reductions, such as 

in the Last Glacial Maximum (LGM) when sea levels decreased ~130 m, over one-half of 

the ECS continental shelf is exposed and both the Yangtze and Yellow Rivers migrate 

thousands of kilometers farther south (Figure 4.2)(Uehara et al., 2002; Gallagher et al., 

2015). Depending on the location within the Okinawa Trough of the ECS, relative 

contributions from Yangtze and Yellow River discharge vary during glacial periods 

(Waelbroeck et al., 2002). Within the northern portion of the Okinawa Trough, the mouth 

of the Yellow River migrated near Korea’s Cheju Island and directly fed into the Danjo 

Basin (Oiwane et al., 2011; Xu et al., 2014) while the middle and southern portions of the 

Okinawa Trough were affected by Yangtze River discharge (Jian et al., 2000; Ujiié & 

Ujiié, 1999; Ujiié et al., 2003). During interglacial periods, the CCW expanded as a result 

of increased discharge from the Yangtze River as a result of increased EASM 

precipitation (Gallagher et al., 2015) 

   



 119 

 

Figure 4.2. The relative location of the Kuroshio Current at present, the extent of the East 
China Sea shelf during glacial periods, and the potential deflected path during glacial 
periods. (Modified from Gallagher et al., 2015).  
 

 There is currently extensive scientific debate on the effect of glacial low stands 

on the potential migration of the Kuroshio Current path. Some have argued that the 

Kuroshio Current shifts eastward from the Yonaguni Depression and does not enter 

through the East Taiwan Strait at all as a result of the emergence of a land bridge between 

the East Taiwan Strait and the Ryukyu Arc (Ujiie et al., 1991; Ahagon et al., 1993). 

Instead of entering the ECS, the Kuroshio Current allegedly flows along the eastward 

edge of the Ryukyu Arc to the Pacific (Ujiié et al., 2003). However, other studies have 

argued that the Kuroshio Current does migrate during glacial low stands, but typically 
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only 3° West, which still allowed it to flow through the East Taiwan Strait into the ECS, 

and ultimately through the Okinawa Trough (Dou et al., 2010; Gallagher et al., 2015). 

Although the exact location of the Kuroshio Current within the ECS during glacial 

periods is still debated, the current only has significant impacts on the entire ECS shelf 

during interglacial periods and little to no impact during glacial low stands (Diekmann et 

al., 2008; Jian et al., 2000). During low stands, only the outer portion of the Tsushima 

Strait and Okinawa Trough are submerged as a result of decreased glacio-eustatic sea 

levels (Lim et al., 2006; Park et al., 2000). Deeper portions of the ECS, such as the 

Okinawa Trough, however, are deep enough to allow the Kuroshio Current to flow 

continuously during glacial periods regardless of sea level (Ichikawa & Beardsley, 2002; 

Wong et al., 2000). Study locations within the Okinawa Trough would, therefore, be an 

ideal location to better understand the influence of the Kuroshio Current throughout both 

interglacial and glacial periods.   

 This study aimed to reconstruct temporal variations in relative paleoproductivity 

levels in the Okinawa Trough of the ECS at Integrated Ocean Drilling Program (IODP) 

Expedition 346 Site U1429 through the use of carbon and nitrogen elemental and isotopic 

analyses of preserved sedimentary organic matter. Significant variation between ocean 

current positions and intensities as well as the proximity and discharge of river deltas 

during glacial and interglacial periods should yield new information on the impact of the 

EAM system within the marginal sea and how fluctuations within the monsoonal system 

affected primary productivity within the surface waters of the sea.  
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4.3 Study Site 

  IODP Site U1429 is located within the ECS at 31°37.04’ N, 128°59.85’ E and 

732 meters below sea level (mbsl)(Tada et al., 2015). Site U1429 is located within the 

northern Okinawa Trough of the Danjo Basin and is situated under the second branch of 

the Kuroshio Current where it mixes with the ECSCW before flowing through the 

Tsushima Strait as the TWC (Tada et al., 2015). At present, Site U1429 is located ~700 

km from the Yangtze River mouth and ~1,200 km from the Yellow River mouth 

(Anderson et al., 2018). During significant glacio-eustatic sea level decreases during 

glacial periods, however, these two rivers migrate farther south and Site U1429 is only 

approximately 400 km away from the Yangtze River mouth and 150 km from the Yellow 

River mouth (Uehara et al., 2002).  

Three holes were cored at Site U1429 with over 570 m of sediment recovered that 

spans the Holocene to Middle Pleistocene (~400 ka). This site consists of two major 

lithographic units, Unit A and B, with Unit A penetrating to about 179 m depth and Unit 

B terminated at 179 m to 188 m depth as a result of the presence of thick volcanic sands 

(Tada et al., 2015). Site U1429 has a high sedimentation rate (~48 cm/ky)(Sagawa et al., 

2018) and high concentrations of calcium carbonate (<43% CaCO3). All samples used in 

this study are from Unit A, which has subtle color variability compared to other IODP 

Expedition 346 sites which have distinct alternation of light and dark colored sedimentary 

layers. The sediment is moderately to heavily bioturbated with a homogenous, 

structureless appearance and ranges in color from olive gray to light greenish gray (Tada 

et al., 2015) with 11 tephra layers present (Sagawa et al., 2018).  The sediment primarily 
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consists of nannofossil ooze and nannofossil rich clay with a high abundance of 

foraminifera and diatoms.  

Shipboard observations determined that both color reflectance and %CaCO3 

generally exhibit glacial/interglacial variability where lighter sediment color typically had 

higher concentrations of CaCO3 (Tada et al., 2015). Sediments deposited during 

interglacial periods typically had higher CaCO3 concentrations than glacial sediments. At 

depths > 124 m (~242 ka), the CaCO3 concentration greatly varies (0 to 45%) as a result 

of the presence of interbedded sand layers near the base of Unit A. With the exception of 

sand and tephra layers, the amount of total organic carbon (TOC) remains relatively 

stable (0.1-2.9% TOC) throughout Site U1429, which may indicate better preservation as 

a result of the high sedimentation rate.  

 

4.4 Methods 

 A total of 255 sedimentary samples from the upper ~170 m of Site U1429 were 

analyzed at Florida International University’s Southeastern Environmental Research 

Center’s Stable Isotope Laboratory (SERC-SIL). The samples were dried overnight in a 

60°C oven, ground to a fine powder, and homogenized in a Spex 800M mixer/mill for 5 

minutes. Samples analyzed for %TN and d15N were analyzed as a bulk sample while 

%TOC and d13C were decarbonated using a 10% HCl solution where the acid bath was 

performed three times for ~24 hours followed by three deionized (DI) water baths for ~24 

hours. Both bulk N (~15 mg) and decarbonated C (~5 mg) samples were analyzed in an 

NA 1500 EA coupled to a Thermo Delta C IRMS. Isotopic values are expressed in 

standard delta notation where 
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                                    δR = [(Rsample – Rstandard )/Rstandard ] * 1000                                 Eq. 1 

and Rsample is the ratio of the heavy to light isotope in the sample and Rstandard is the ratio 

of the heavy to light isotope in the standard (McKinney et al., 1950; Hayes, 1982; 

Coplen, 2011). All isotopic values are reported in parts per mil (‰) vs. VPDB and AIR 

for carbon and nitrogen, respectively (Appendix 1). Precision (1σ) was better than ± 

0.08‰ for carbon and ± 0.14‰ for nitrogen. Thirty-two samples were analyzed in 

duplicate with a precision better than ± 0.09‰ and ± 0.28‰ for carbon and nitrogen, 

respectively. 

 The inorganic carbon concentration (%TIC) was measured using a UIC CM140 

coulometer. Fifteen mg of bulk sample was reacted with 10 mL of 10% HClO4 until CO2 

detection ceased. The calcium carbonate concentration (%CaCO3) was calculated by 

multiplying the %IC by 8.33 under the assumption that all inorganic carbon is CaCO3 

(Liu et al., 2014). Precision was determined using two standards: Fisher Scientific’s pure 

carbonate standard and Nacalai Tesque’s pure sodium carbonate standard. Precision (1σ) 

was better than ± 0.18%. Forty-one samples were analyzed in duplicate with σ better 

than ± 0.08%.  

 Continuous sedimentary sequences for Site U1429 were created by the splicing 

technique using physical properties such as the lightness (L*) and color of sediments, 

magnetic susceptibility, natural gamma-ray radiation (NGR), and gamma-ray attenuation 

density (GRA)(Irino et al., 2018)9. Lightness (L*) values were recorded using color 

scanning imaging at a 5 mm resolution (Irino et al., 2018).  A two-tailed t-Test for 

                                                        
9 Data was collected onboard the Joides Resolution by Expedition 346 Scientists. See Tada (2015) for more 
details. 
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uneven variances was used to determine if a significant statistical difference exists 

between glacial and interglacial time periods for each of the geochemical parameters 

(%CaCO3, %TOC, d13C, %TN, and d15N). A two-tailed t-Test was used due to the 

symmetrical, normal distribution of the geochemical data that produced both positive and 

negative tails of the distribution (Boneau, 1960). To better understand the variability 

between the multiple independent geochemical datasets and reduce them to fewer 

variables (principal components), principal component analysis (PCA) was completed 

using JMP statistical software for all geochemical proxies studied (%CaCO3, %TOC, 

d13C, %TN, and d15N) between the different Marine Isotope Stages (MIS 1 to MIS 10). 

 

4.5 Results 

 Carbonate (CaCO3) concentrations ranged from 0.7% to 42.8% with a mean of 

18.2% CaCO3. TOC contents ranged from 0.1% to 2.9% with an average of 1.6% while 

d13C values are typical of mixed marine origin and ranged from -24.7‰ to -17.7‰ with 

an average of -21.2‰. TN ranged from 0.0% to 0.2% with a mean of 0.1% while d15N 

values ranged from 1.2‰ to 13.4‰ with an average of 6.7‰ (Appendix 4). The standard 

deviation of %CaCO3 (9.56%) was the highest out of all geochemical proxies studied, 

with the remaining four proxies’ variance ranging from 0.5% TOC, 1.3‰ d13C, 0.0% TN, 

and 1.3‰ d15N. Except for CaCO3, there was a general increase in 

concentration/enrichment of the geochemical proxies to the present (Figure 4.3).  
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Figure 4.3. Benthic foraminifera d18O (Sagawa et al., 2018), linear sedimentation rate 
(LSR; Sagawa et al., 2018), %CaCO3, %TOC, d13C, %TN, and d15N values for Site 
U1429. Vertical blue lines indicate tephra layers (Sagawa et al., 2018), red lines indicate 
glacial terminations TI, TII, TIII, and TIV, and shaded gray areas are glacial marine 
isotope stages. Dashed blue lines indicate stadial events within the interglacial periods.  
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A two-tailed t-test indicated that none of the geochemical proxy values were 

significantly different between glacial (n=119) and interglacial (n=135) periods (p>0.05). 

PCA identified two significant principal components within the geochemical data, with 

PC1 containing 48.6% of the variance and PC2 containing 29.2% of the variance. PC1 is 

differentiated between the more recent MIS 1 to MIS 6 and older samples from MIS 7 to 

MIS 10. PC2 has a positive correlation with most glacial periods (MIS 4, MIS 6, MIS 8, 

and MIS 10) as well as the interglacial period MIS 5 and a negative correlation with most 

interglacial periods (MIS 1, MIS 3, MIS 7, and MIS 9) as well as the glacial period MIS 

2. PC1 has a positive correlation with all five proxies while PC2 has a positive correlation 

with %CaCO3, d15N, %TOC, and d13C and a negative correlation with %TN.  

 
 %CaCO3 %TOC %TN δ13C δ15N 
t -1.69 0.78 1.75 -0.53 -1.92 
df 250 227 233 228 250 
p 0.09 0.43 0.08 0.60 0.06 

 
Table 4.1. T-test scores for %CaCO3, %TOC, %TN, δ13C, and δ15N between glacial 
(n=119) and interglacial (n=135) periods. In T-test analysis, t = t-value where larger 
values indicate significant differences between the sample mean and null hypothesis; df = 
degrees of freedom or the number of independent sample values; p = probability value to 
determine statistical significance. 
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Figure 4.4. Principal component analysis (PCA) results for Site U1429 comparing the 
geochemical proxies during different marine isotope stages (MIS 1 to MIS 10).  
 

4.6 Discussion  

The controls on the rates of primary productivity occurring within surface waters 

are related to numerous physical and biochemical parameters, such as nutrient 

concentration, light penetration, temperature, and salinity. Relative paleoproductivity 

values can be reconstructed through the use of organic matter geochemical analyses in 

sedimentary sequences. Increased concentrations of CaCO3, TOC, and TN, and isotopic 

enrichment of their respective stable isotopes, d13C and d15N, indicate increased rates of 

primary productivity occurring within the eutrophic zone of water columns (Fry & Sherr, 

1984; Peterson & Howarth, 1987).  

Carbonate concentration within marine sedimentary sequences is generally 

controlled by three main factors: biogenic carbonate production, dilution as a result of 

increased terrestrial input, and the degree of preservation and/or dissolution after 
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deposition (Chang et al., 2005).  The shallow water depth (732 mbsl) of Site U1429 

(Tada et al., 2015) indicates that this site has remained above the carbonate compensation 

depth (CCD) and is unlikely to be significantly affected by dissolution (Hyun et al., 

2007). Therefore, CaCO3 concentrations at Site U1429 are likely relative indicators of 

marine productivity and/or terrestrial input. Although a distinct glacial/interglacial 

differentiation is not apparent within the carbonate data, three apparent ~100 ky cycles 

are present. With the exception MIS 1, all interglacial periods show increasing carbonate 

concentrations in the later portion of the interglacial period, and glacial transitions begin 

a gradual decrease in %CaCO3 concentration.  Carbonate concentration shows the 

greatest variance in sediments older than 250 ka, corroborating shipboard conclusions of 

interbedded sand layers near the base of Unit 1.  

During interglacial periods, EASM conditions are typically intensified, leading to 

significant increases in precipitation across East Asia. As precipitation and the resulting 

freshwater input through the Yangtze and Yellow River discharges increase, upwelling 

along the ECS shelf intensifies, bringing cooler, nutrient-rich water to the surface (Chang 

et al., 2009). The CCW, a mixture of Yangtze, Yellow, and Minjiang River discharges 

along the Chinese coast (Wong et al., 2000), is nutrient- rich but deficient in phosphate, 

resulting in limited primary productivity in surface waters (Chen et al., 2004). When the 

phosphorous-rich Kuroshio Intermediate Water upwells, it increases the amount of 

primary productivity, including carbonate productivity, occurring within the upper water 

column (Chang et al., 2005).  

During glacial periods, carbonate concentration is likely diluted as a result of 

increased terrestrial input as the continental shelf is exposed and the Yangtze and Yellow 
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Rivers migrate towards the Okinawa Trough and deposit directly into the Danjo Basin 

where Site U1429 is located (Chang et al., 2005), as indicated by the relationship 

between d18O of benthic foraminifera and %CaCO3 content of the sediment (Corliss, 

1985). Terrestrial materials are usually trapped near the mouths of these rivers (Anderson 

et al., 2018; Zhao et al., 2018), so the close proximity (150-400 km) of these paleo-river 

mouths significantly increases the terrestrial material deposited on the shelf, potentially 

even providing direct input of fluvially transported terrestrial sediment into the Okinawa 

Trough (Li et al., 2015; Liu et al., 2009). 

Although other studies have determined significant changes at Site U1429 

between glacial and interglacial periods, most have focused on sediment provenance 

(Anderson et al., 2018; Beny et al., 2018; Zhao et al., 2018). Although previous studies 

do not investigate sea surface conditions, they are indirectly connected. T-test results 

indicated that there was no significant difference (p > 0.05) between glacial and 

interglacial periods within any of the five geochemical proxies studied at Site U1429 

concerning primary paleoproductivity. Except for CaCO3, all other geochemical proxies 

increase in concentration to the present, likely corroborating increased monsoon intensity 

during the Pleistocene (Boulay et al., 2005; Sun et al., 2006). Throughout the ~350,000-

year record, the elemental and isotopic data of TOC and TN remain relatively stable 

except for significant abrupt excursions during interglacial periods MIS 1, MIS 3, MIS 5, 

MIS 7, and MIS 9. Within these interglacial periods, stadial events occur during MIS 3.3, 

MIS 5.2, MIS 5.4, MIS 7.2, MIS 7.4, and MIS 9.2 during which periods of colder climate 

and expansion of ice sheets prevail (McManus et al., 1999; Stolz & Baumann, 2010). 

During these stadial events, %CaCO3, %TOC, and %TN typically decrease in 
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concentration (~30%, 1.5%, and 0.1%, respectively), d13C values become ~2-3‰ more 

depleted, and d15N values become more enriched by up to 5‰.  

The last interglacial period, MIS 5, has five isotopic substages (MIS 5.1 to MIS 

5.5) based on foraminiferal d18O variations (Shackleton and Opdyke, 1976), further 

updated by the LR04 global sea-level stack (Lisiecki & Raymo, 2004). The climate 

during MIS 5 was generally unstable (An & Porter, 1997; de Beaulieu & Reille, 1992; 

Grootes et al., 1993; McManus et al., 1999), especially after MIS 5.5 (Adkins et al., 

1997; Chapman & Shackleton, 1999). Typical interglacial conditions persisted during 

MIS 5.1, 5.3, and 5.5 and stadial conditions were present during MIS 5.2 and 5.4 (Oppo 

et al., 2006). Seven major ice-rafted debris (IRD) events occurred during MIS 5 in the 

North Atlantic and Greenland (An & Porter, 1997; Chapman & Shackleton, 1999; Oppo 

et al., 2006), which indicates unstable ice sheets calving, rapidly melting, and depositing 

terrestrial materials within marine sediments (Andrews, 2000). Most of these IRD events 

occur directly after stadials, especially the high amplitude IRD peak events C24 in MIS 

5.2 and C21 during MIS 5.4 (Chapman & Shackleton, 1999), indicating abrupt, short-

lived glacial-like conditions during the interglacial period. The presence of volcanic 

tephra layer Aso-4 during MIS 5.2 could also obstruct the carbon and nitrogen 

paleoproductivity signals, so this stadial event should be interpreted with caution at Site 

U1429.  

The penultimate interglacial period, MIS 7, is also divided into five distinct 

oxygen isotope substages, MIS 7.1 to 7.5 with stadial conditions during MIS 7.2 and MIS 

7.4 (Lisiecki & Raymo, 2004). MIS 7.4 was significantly longer lasting and colder than 

MIS 7.2 (Desprat et al., 2006). Within this stadial period, sea levels were ~70 m lower 
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than present (Siddall et al., 2007; Spötl et al., 2008) and indicate a "prominent glacial 

pulse" (Ruddiman et al., 1977) during the interglacial period. The second cold period, 

MIS 7.2, is less than one-fourth of the duration of MIS 7.4 and is usually not easily 

identified in marine sedimentary records in comparison to terrestrial speleothem records 

(Spotl et al., 2008). Several marine studies from the North Atlantic (McManus et al., 

1999; Chapman & Shackelton, 1999), however, indicate significant IRD deposits during 

both MIS 7.2 and MIS 7.4 (McManus et al., 1999). Multiproxy analysis of a deep sea 

core from the Iberian margin (Desprat et al., 2006) indicates that MIS 7.4 was very 

unusual, even for a stadial event, during interglacial periods. Low temperatures during 

this substage have been identified in Antarctica (Petit et al., 1999), the southwest Pacific 

(Pahnke et al., 2003), and the tropical Pacific (Lea et al., 2000), which likely indicates 

massive ice sheet growth. The significantly lower temperatures and enlargement of ice 

sheets during MIS 7.4 is similar to the glacial period MIS 8 (Desprat et al., 2006), and the 

CO2 concentrations within the Vostok ice core during both MIS 7.4 and MIS 8 are nearly 

equal (Petit et al., 1999).  

In addition to the last and penultimate interglacial periods, two other negative 

excursions are present in the paleoproductivity record. The minor negative excursion 

present during the shorter interglacial period of MIS 3, specifically the MIS 3.3 event 

would at first appear to be similar to the other stadial events discussed. While MIS 3 was 

traditionally categorized as an interglacial period, recent literature suggests that the 

duration of MIS 2 to MIS 4 be treated as one long glacial period with MIS 3 acting as a 

long-lived interstadial event (Berger et al., 2016). Therefore, the negative excursion 

present in MIS 3 has not been included with the stadial events in this study. A second 
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major negative excursion near the end of MIS 9.2 is also identified within the 

paleoproductivity record. It could be the result of another stadial event, but the low 

sample resolution of this stage precludes any definitive analysis. More samples are 

necessary from this time period to better understand the stadial events during MIS 9. 

 During glacial periods, significant portions of the ECS shelf is exposed and the 

Yellow and Yangtze Rivers migrate farther south. As fluvial flux increases, it would be 

expected that the organic matter preserved would shift to a more terrestrial signal, i.e., 

increases in TOC and depletion in d13C, during glacial periods. At Site U1429, however, 

the d13C record (Black et al., 2018) only indicates a relatively higher terrestrial source 

during short term stadial events of interglacial periods, not during glacial periods. The 

lack of terrestrial source signals during glacials could be the result of fluvial material 

being trapped near the Yangtze and Yellow River paleo-deltas (Zhao et al., 2018) and not 

being deposited within the Okinawa Trough. During glacial periods, the EAWM is 

typically intensified, increasing the wind speed and the resulting upwelling along the path 

of the Kuroshio Current (Ujiié & Ujiié, 1999; Xu & Oda, 1999). Increased EAWM 

conditions have been associated with millennial-scale abrupt cold excursions in the 

subtropical North Pacific (Li et al., 2017; Yang & Ding, 2014).   

During interglacial periods, EASM intensity increases, which increases the 

precipitation within the drainage basins of the Yellow and Yangtze Rivers, increasing 

freshwater flux into the ECS, therefore increasing upwelling of the Kuroshio Current 

(Chang et al., 2009)(Figure 4.5). Stadial events occurring during interglacial periods 

typically indicate decreases in both sea and air temperature as well as increases in 

northern hemispheric ice volume, signifying colder environments than the typically 
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warmer interglacial conditions, acting like a short-lived glacial period (Cheng et al., 

2016; McManus et al., 1999; Stolz et al., 2010). With increased precipitation occurring 

during the EASM and increased wind intensity during the EAWM, the Kuroshio Current, 

and its related Kuroshio Intermediate Water is upwelled nearly year-round. The upwelled 

Kuroshio Intermediate Water provides the nutrients necessary, especially phosphorous, to 

increase rates of primary productivity within surface waters of the ECS (Chang et al., 

2009).  

 

 

Figure 4.5. A conceptual model of increased EASM precipitation and the resulting 
Yangtze River discharge onto the East China Sea shelf. Lower salinity surface water from 
increased fluvial discharge is transported further offshore, inducing upwelling of the 
Kuroshio Intermediate Water (KIW) in the Okinawa Trough, which increases primary 
productivity levels within the East China Sea. (Modified from Chang et al., 2009.)  
 

A significant difference between glacial and interglacial periods was not present 

in Site U1429's carbon and nitrogen record as a result of the constant presence of the 
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Kuroshio Current flowing through the East Taiwan Strait and upwelling of the Kuroshio 

Current along the shelf break. The presence and degree of Kuroshio intrusion into the 

ECS during glacial periods has been heavily debated within the paleoceanographic 

community and only recently have indications that the Kuroshio has been a constant 

fixture within the ECS been moderately accepted (Gallagher et al., 2015). This study 

identifies a nearly constant primary productivity level over the sedimentary record except 

for four stadial events during MIS 5 and MIS 7, likely indicating nearly continuous input 

of the Kuroshio Current through the East Taiwan Strait during at least the past ~350 ky. 

The path of the Kuroshio Current along the shelf break in addition to increased 

precipitation during EASM and increased wind intensity during EAWM would allow 

continuous upwelling of the Kuroshio Intermediate Water and therefore relatively 

constant rates of net primary productivity.   

If inflow of the Kuroshio Current into the ECS is limited during glacial periods, 

as some have defended (Ujiie & Ujiie, 1999; Ujiie et al., 2003), most of the nutrient flux 

into the Okinawa Trough would be from Yangtze and Yellow River discharges through 

the CCW (Anderson et al., 2018; Beny et al., 2018; Zhao et al., 2017, 2018). The Yangtze 

River presently accounts for 80% of the total freshwater discharge into the ECS 

(Ichikawa & Beardsley, 2002), and although it has high nitrate concentrations, it is 

deficient in bio-limiting phosphate (Chen et al., 2004), which limits the amount of 

primary production that can occur within surface waters. The N:P ratio of the rivers 

contributing to the Chinese Coastal Water is 111 (Chen, 2000), which is significantly 

higher than the Redfield Ratio of 16 necessary for the production of phytoplankton 

(Geider & La Roche, 2002). Such a high N:P ratio likely indicates reduced productivity 
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as a result of the bio-limiting phosphorus deficiency or excessive N from terrestrial 

sources. Increased precipitation, and the resulting fluvial transport of nutrients would 

increase primary productivity in the surface waters to a certain extent, but without the 

upwelled Kuroshio Intermediate Water and its high phosphorous concentrations, net 

productivity would be limited (Chen, 1996; Chen & Wang, 1999). 

 During stadial events of interglacial periods, negative excursions are present in 

the otherwise relatively stable carbon and nitrogen records. The relatively quick 

emergence of a cold stadial event during an otherwise warm interglacial might limit the 

flux of the Kuroshio through the East Taiwan Strait such that the resulting eddy northeast 

of Taiwan weakened, decreasing upwelling of the Kuroshio Intermediate Water and 

limiting cross shelf transport of POM through the Okinawa Trough (Kim & Yoon, 1999; 

Wong et al., 2000). Instead, potential fluvial signatures are present within the carbon 

isotope data during these stadials, likely indicating that there is increased deposition of 

Yellow River sediments. The TOC contents of the sediment during these stadial events, 

however, decreases in concentration and therefore does not indicate increased terrestrial 

input, as carbon would be expected to increase as a result of higher lignin concentrations 

in terrestrial material (Prahl et al., 1994). It can be argued instead that the stadial events 

are identifying periods of decreased upwelling of the Kuroshio Current, which would 

limit primary production as a result of phosphate deficiencies. The TN content of the 

preserved sediment would not serve as a good differentiator of upwelled vs. fluvial 

source of the nutrients necessary for primary productivity as a result of the significance of 

Yangtze River discharge and its excess N loading to the ECS (Chen, 2004). 
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 Upwelling within the ECS occurs on the basis of three factors: the bathymetry of 

the shelf break along the Okinawa Trough (Wong et al., 2000), freshwater input through 

the Yangtze and Yellow Rivers (Chang et al., 2009), and flow rate of the Kuroshio 

Current through the East Taiwan Strait (Wong et al., 2000). It is likely that the Kuroshio 

Current has continuously flowed through the East Taiwan Strait (Gallagher et al., 2015), 

which would limit upwelling to two factors: freshwater input and the Kuroshio Current 

flow rate into the ECS. Decreased upwelling of the Kuroshio Intermediate Water could 

be caused by decreased monsoonal conditions (Chen et al., 2004; Chang et al., 2009). If 

the EASM decreased in intensity, it would decrease upwelling rates by decreasing 

freshwater discharge (Diekmann et al., 2008) while if the EAWM intensity decreased, it 

would limit wind intensity and the resulting upwelling along the shelf break in the ECS 

(Kawahata et al., 2006). On this basis, it is likely that during stadial events in MIS 5 and 

MIS 7, decreased monsoon intensities prevailed, decreasing upwelling of the Kuroshio 

Current and a corresponding decrease in primary productivity within the ECS.   

 At present, only two studies within the Danjo Basin of the Okinawa Trough have 

been published with sedimentary records older than ~85 ky (Anderson et al., 2018; Beny 

et al., 2018), and are therefore long enough to investigate stadial events during MIS 5 and 

MIS 7. Although both studies focus on the sediment provenance instead of surface 

processes within the ECS, the use of SiO2/AlO3 (g/g) and Ca/Fe ratios can give a better 

understanding of the grain size and terrestrial influence throughout time at Site U429. 

Anderson (2018) identified increased SiO2/AlO3 values during or near MIS 5.4, MIS 7.2, 

and MIS 7.4, indicating increased terrigenous contribution during these stadial events. 

The SiO2/AlO3 values during these stadial events were the highest throughout their ~400 
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ky record, even in comparison to glacial periods when higher terrestrial inputs would be 

expected. Interglacial periods at Site U1429 typically have higher Ca/Fe ratios (Beny et 

al., 2018), however, negative excursions within the XRF data also exist within stadial 

events MIS 5b (5.2), MIS 5d (5.4), MIS 7b (7.2), and MIS 7d (7.4)(Figure 4.5), 

indicating a more terrestrial influence during these time periods (Beny et al., 2018).10    

 
Figure 4.6. Ca/Fe (green line), benthic δ18O (black line; Sagawa et al., 2018), and 
relative sea level (RSL; red line) data for Site U1429 (Modified from Beny et al., 2018).  
 

 Gravity flow layers, such as turbidites, are typically identified by sorting 

sequences but can also be qualitatively identified through the use of other physical and 

chemical properties such as low concentrations of CaCO3 and TOC, low Ca/Fe ratios, 

and high SiO2/AlO3 ratios.  The combination of the geochemical proxies in this study, in 

addition to SiO2/AlO3 and Ca/Fe ratios indicate the possible presence of gravity flow 

layers during these stadial events. Gravity flow layers are typically fine- or coarse-

grained muds indicative of submarine fans (Yu et al., 2017). Sloping shelves, like that of 

the ECS shelf break, can trigger density-based avalanches and climate-controlled pulses 

                                                        
10 Lettered MIS substages are continuous intervals of time while decimal-style substages are discrete 
events (Railsback et al., 2015). 
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of sediment supply (Lehu et al., 2015). The morphological characteristics of the ECS are 

dominated by marine landslides, debris flows, and turbidity currents (Ramsey et al., 

2006). The Okinawa Trough is not only one of the most tectonically active regions in the 

world but is also affected by monsoon dynamics (Lehu et al., 2015), which can increase 

the marine erosional processes that may lead to gravity flow layer deposition.  

The Kuroshio Current is an essential component in the transport of suspended 

materials within the Okinawa Trough (Lehu et al., 2015). If the Kuroshio Current 

decreased in volume or flow rate during stadial events, the water mass would be limited 

in the concentration of suspended materials it could transport and deposition of coarse-

grained sediments would be expected within the Okinawa Trough, as shown by 

significantly increased SiO2/AlO3 ratios at Site U1429 (Anderson et al., 2018). A 

reduction in the Kuroshio Current would also lead to an increase of terrestrial material 

deposited, as indicated by a decrease in Ca/Fe values that are more typical of glacial 

periods than interglacial periods (Beny et al., 2018). According to low-resolution 

Expedition 346 shipboard analyses, interbedded sand layers typical of turbidites are 

common from 242 ka throughout the end of the record where Site U1429 drilling was 

terminated as a result of the presence of a thick, sandy turbidite layer that impeded further 

collection (Tada et al., 2015). It is therefore likely that the abrupt excursions of 

geochemical data present during stadial events in MIS 5 and MIS 7 are also as a result of 

gravity flow layers preserved in the sedimentary sequences at this site.  
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Figure 4.7. Shipboard core section images of Site U1429 sediment show interbedded 
sand layers indicative of potential gravity flow layers. a) Sample U1429A-13H-4W-107-
108cm from MIS 5.2 and b) sample U1429A-15H-1W-57-58cm from MIS 7.4. 
 

 Other short-lived excursions of the elemental and isotopic record during MIS 1, 

MIS 5, MIS 8, and MIS 10 exist outside of the stadial events. The decrease in elemental 

concentrations and isotopic depletion at 6 ka and 350 ka are likely a result of the presence 

of tephra layers K-Ah and Kkt within the sediments of Site U1429 (Sagawa et al., 2018). 
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Three other tephra layers, Sz-S, Aso-4, and Aso-1, are also present within the study site 

at 14 ka, 91 ka, and 266 ka, respectively (Sagawa et al., 2018), which are identified by 

rapid oscillations in %CaCO3, %TOC, and d13C values. These tephra layers can, 

therefore, be excluded from analysis because of the volcanic nature of the sample diluting 

potential terrestrial and oceanic source signals. Tephra layer Sz-S (14 ka) was deposited 

directly after Termination T1 between the last glacial and current interglacial period. The 

short-lived but large amplitude oscillations during this time could also be a result of 

rapidly changing environmental conditions as the last glacial period ended and rapidly 

increasing sea levels prevailed, or the preservation of volcanic material.  

 While this study focused on the carbon and nitrogen records preserved at Site 

U1429, additional work is necessary to better understand the role of the Kuroshio 

Current, upwelling intensity, and the resulting paleoproductivity rates within the ECS. 

Additional geochemical and biogenic proxy records from Site U1429, such as opal 

content, foraminifera and radiolarian abundances, and lipid biomarkers, would ideally 

improve the discussion by including other parameters to measure primary productivity 

rates. At this time, however, only a limited number of data sets have been published from 

the northern end of the Okinawa Trough, especially from Site U1429. Future publications 

from IODP Expedition 346 will allow better collaboration, and therefore better 

interdisciplinary interpretations of the sedimentary record of the ECS, including 

upwelling and paleoproductivity rates. 
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4.7 Conclusions 

 The ECS consists of the wide, shallow epicontinental shelf and the significantly 

deeper Okinawa Trough. With glacio-eustatic sea level variations, various amounts of the 

ECS shelf have been exposed during glacial/interglacial periods. It would be expected 

that during sea level low stands, migration of the Yellow and Yangtze Rivers over the 

shelf to the northern end of the Okinawa Trough would deposit terrestrially sourced 

material during glacial low stands while interglacial periods leave the shelf submerged, 

allowing for better cross-shelf transport of materials. Although a clear differentiation of 

glacial and interglacial periods was not found at Site U1429, it is likely a result of nearly 

constant upwelling of the Kuroshio Current, regardless of sea level variation within the 

ECS.  

The presence and intensity of the Kuroshio Current entering the ECS through the 

East Taiwan Strait causes intense upwelling of the nutrient-rich subsurface Kuroshio 

Intermediate Water along the continental shelf break. Increased upwelling transfers more 

bio-limiting nutrients to the surface, promoting elevated primary productivity rates. The 

carbonate contents at Site U1429 have a clear inverse relationship with sea level while 

the carbon and nitrogen elemental and isotopic data are relatively stable throughout the 

~350,000-year sedimentary record. However, significant negative excursions of the 

geochemical data occur during stadial events within the interglacial periods of the study 

period, specifically MIS 5.2, MIS 5.4, MIS 7.2, and MIS 7.4.  

 It is still debated whether or not the Kuroshio Current entered the ECS during 

glacial periods or instead flowed east of the Ryukyu Arc to the Pacific. The relative 

stability of the TOC, TN, and d13C contents of the sediment at Site U1429 indicate a 
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constant influx of the Kuroshio Current through the East Taiwan Strait during both 

interglacial and glacial periods. Abrupt, negative excursions of these geochemical proxies 

occur during stadial events, identifying decreased rates of net productivity, likely a result 

of decreased upwelling of the Kuroshio Intermediate Water as a result of decreased 

monsoonal conditions associated with the EASM and EAWM. Potential gravity flows 

could also be the source of the negative excursions during stadial events, but future 

research will clarify the sedimentology. 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 
 
 
 The East Asian Monsoon (EAM) has a tremendous effect on climate systems 

within East Asia. Due to differential heating differences between land and sea, the East 

Asian Summer Monsoon (EASM) brings intense precipitation while the East Asian 

Winter Monsoon (EAWM) increases aridity and wind strength. The intensity of the 

EASM and EAWM have varied throughout recent geologic history, but interglacial 

periods typically have strengthened EASM conditions while glacial periods have 

intensified EAWM conditions. The EAM system has a direct impact on the shallow 

marginal seas within East Asian, especially the Japan Sea and East China Sea. The Japan 

Sea is unique in that it is connected to other seas through shallow, narrow straits. Glacio-

eustatic sea level fluctuation therefore has a significant control on the current flux into the 

Japan Sea with input of the Tsushima Warm Current (TWC) and East China Sea Coastal 

Water (ECSCW) during interglacial periods (Chapter 1). Reduced sea levels during 

glacial periods, however, nearly isolate the Japan Sea from the East China Sea due to the 

shallow sill depths of the straits, limiting current flux within the sea. 

 Results from the current study indicate distinct differences in the 

paleoceanography of the Japan Sea between glacial and interglacial periods (Chapters 2 

& 3). Depending on the source and volume of the oceanic flux to the Japan Sea, different 

oceanographic conditions developed, such as nutrient availability, density stratification, 

and bottom water conditions (Chapter 2). The combination of multiple oceanographic 

factors led to the deposition of sediment with distinct dark and light color banding, 

synchronous throughout the Japan Sea. Site U1427 in the Japan Sea lacks these dark and 
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light color bands due to its shallow depth (330 m), but material deposited during 

interglacial periods typically had higher CaCO3, TOC, and TN concentrations and 

enriched d13C values. Glacial sediments, however, had lower concentrations of CaCO3, 

TOC, and TN and depleted d13C values, indicating that relatively decreased rates of 

primary productivity occurred in the surface waters, thereby producing less biogenic 

material. Planktic and benthic foraminiferal assemblages also increase significantly 

during interglacial periods, corroborating sea level and oceanic flux have a direct impact 

on productivity rates within the water column. The d15N values did not follow 

paleoproductivity levels, likely indicating denitrification in suboxic to anoxic bottom 

waters.  

While Site U1427 was used to determine the impact on sea level, oceanic current 

flux, and relative primary productivity rates, nearby Site U1426 expanded upon this 

concept to better understand the role of the Mid-Pleistocene Transition (MPT) ~700-1200 

ka (Chapter 3). The continuous sedimentary record at Site U14126 was nearly 3 times as 

long as Sites U1427 and U1429, which allowed for a long-term study on the cyclicity of 

relative primary productivity preserved within the sediment. Similar to Site U1427, 

increased concentrations of CaCO3, TOC, and TN concentrations and enriched d13C 

values occurred during interglacial periods, indicating increased primary productivity in 

the surface waters. The frequency of primary productivity cycles indicated by continuous 

wavelet and multimethod spectral analysis, however, indicated a significant shift in 

periodicities at the MPT boundary. Before the MPT, higher frequency orbital signals and 

their respective heterodynes are dominant in the spectral records while lower frequency 

~100 ky cycles are present after the MPT. Numerous studies have described the effects of 
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the MPT in marine sediments, but few records from the Japan Sea have been long enough 

to establish the periodicity before the MPT. The orbital periods and their respective 

heterodynes identified indicate a direct relationship between orbital forcing, sea level, 

oceanic influx, and nutrient concentrations within the Japan Sea. 

Unlike the enclosed Japan Sea, the East China Sea has open exchange with 

several marginal seas and the Pacific Ocean, but glacio-eustatic sea level fluctuation also 

has a direct impact on oceanographic conditions within the sea (Chapter 4). The East 

China Sea consists of a shallow (<200 m deep) epicontinental shelf and deep (>2000 m) 

Okinawa Trough system. With significant reductions in sea level during glacial periods, 

the shoreline regresses farther south, exposing over one-half of the epicontinental shelf. 

With increased aerial exposure of the shelf, the Yangtze and Yellow Rivers migrated 

thousands of kilometers from their present location towards the Okinawa Trough. It 

would therefore be expected that East China Sea sediments would indicate clear 

differentiation between glacial and interglacial periods. Site U1429, however, has nearly 

constant concentrations of CaCO3, TOC, TN, and d13C values throughout the ~350,000-

year record with the exception of abrupt, short-lived stadial events during interglacial 

periods. 

Stadials during MIS 5.2, MIS 5.4, MIS 7.2 and MIS 7.4 show clear negative 

excursions from the geochemical records (Chapter 4). Nutrient loads and the resulting 

primary productivity within the East China Sea are not controlled by the Yangtze and 

Yellow Rivers, but instead upwelling of the Kuroshio Current throughout the Okinawa 

Trough. The fluvial discharge into the East China Sea is rich in carbon and nitrogen but 

deficient in phosphorous, limiting the amount of biogenic material produced near the 
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deltas. The Kuroshio Intermediate Water that is upwelled within the Okinawa Trough, 

however, is phosphorous-rich and therefore has a greater control on the relative rates of 

primary productivity occurring at Site U1429. The path of the Kuroshio Current during 

glacial periods has been debated within the scientific community with some claiming that 

the Kuroshio Current does not enter the East China Sea during glacial low stands and 

others identifying only a small migration of the Kuroshio within the sea. This study 

indicates that the Kuroshio Current has had a constant flux in the sea and due to the shelf 

topography and current flux, constant upwelling conditions have prevailed in the 

Okinawa Trough. The four stadial events identified at Site U1429 are likely the result of 

decreased volume of the Kuroshio Current or change in current path and gravity flow 

deposition, corroborated by grain size and Ca/Fe analysis. 

The Japan Sea serves as an ideal proxy into past oceanographic conditions in East 

Asia, specifically the effects of the complex oceanic-atmospheric EAM system. As 

climate and sea levels vary in the future, having a clear understanding of paleoclimatic 

and paleoceanographic conditions will allow for a better understanding of future changes 

in a region that contains nearly one-third of the global population. Changes within the 

EAM climate system as a result of future climate change will alter the precipitation and 

humidity patterns within East Asia, likely having a significant effect on water supply 

within the region. Developing a better understanding of the EAM variability throughout 

the recent geological past, especially the role of EASM in precipitation and nutrient flux 

during interglacial periods, will better prepare future generations of scientists to combat 

climate change within this densely populated region.  The complex relationship between 

orbital forcing, sea level, oceanic current flux, nutrient loads, and primary productivity 
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within marginal Asian seas will require additional expeditions, sampling, and 

interdisciplinary collaborations, but the research of IODP Expedition 346 within the 

Japan Sea and East China Seas will serve as a significant contribution to the scientific 

community. 
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APPENDIX 1 
 
Appendix 1: Internal standards analyzed to determine the precision of TOC (%), TN (%), d13C (‰ vs. VPDB), and d15N (‰ vs. 
AIR) values.  
 

Standard TOC TN d13C d15N 
Glycine 32.00 18.66 -17.94 5.57 
Citrus leaves (SRM 1524) 49.69 10.31 -27.21 ±0.07 4.77±0.13 
Bovine liver (SRM 1577) 43.22 2.74 -21.52±0.17 7.46±0.08 
Anu sucrose (IAEA-CH-6)   -10.25±0.05  
IAEA-N1  21.20  0.4±0.2 
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APPENDIX 2 
 
Appendix 2. Sample name, corresponding depth (m), age (ky), %CaCO3, %TOC, δ13C (‰ vs. VPDB), %TN, and δ15N (‰ vs. 
AIR) for Site U1426.  
 

Sample Depth (m) Age %CaCO3 %TOC δ13C  
 

TN δ15N 
 

1426C-1H-1W-73 
1426C-1H-2W-23 
1426C-1H-2W-123 
1426C-1H-3W-63 
1426A-2H-1W-73 
1426A-2H-2W-23 
1426A-2H-2W-123 
1426A-2H-3W-73 
1426A-2H-4W-23 
1426A-2H-4W-123 
1426A-2H-5W-73 
1426A-2H-6W-23 
1426C-2H-4W-73 
1426C-2H-5W-23 
1426C-2H-5W-123 
1426C-2H-6W-73 
1426A-3H-2W-83 
1426A-3H-3W-23 
1426A-3H-3W-123 
1426A-3H-4W-73 

0.73 
1.73 
2.73 
3.63 
3.93 
4.90 
5.91 
6.91 
7.91 
8.91 
9.91 
10.91 
11.96 
12.96 
13.96 
14.96 
15.44 
16.33 
17.33 
18.33 

5.21 
12.83 
20.46 
27.65 
30.04 
36.77 
47.24 
56.38 
67.05 
73.82 
85.15 
94.86 
107.95 
117.94 
127.18 
136.54 
141.02 
149.41 
158.77 
168.10 

1.96 
0.04 
3.56 
0.04 
1.14 
5.24 
9.22 
7.41 
11.91 
15.20 
8.15 
2.64 
7.32 
22.77 
10.23 
1.36 
2.55 
1.94 
1.86 
1.33 

1.14 
1.21 
1.14 
6.36 
0.55 
1.97 
3.14 
2.78 
1.67 
2.33 
2.07 
2.75 
2.26 
2.75 
2.70 
2.68 
1.60 
0.68 
0.79 
1.57 

-24.14 
-24.13 
-24.24 
-22.06 
-22.83 
-22.22 
-22.14 
-22.84 
-21.76 
-21.47 
-21.39 
-21.54 
-21.23 
-22.15 
-21.21 
-22.13 
-21.78 
-23.29 
-23.11 
-23.46 

0.30 
0.30 
0.11 
0.14 
0.09 
0.19 
0.24 
0.26 
0.17 
0.16 
0.24 
0.31 
0.26 
0.38 
0.22 
0.24 
0.17 
0.13 
0.12 
0.15 

5.51 
5.22 
5.06 
5.68 
7.51 
7.11 
6.80 
7.42 
7.35 
7.04 
6.89 
5.99 
6.61 
4.47 
5.34 
5.42 
6.73 
7.43 
5.63 
7.19 
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1426A-3H-5W-23 
1426A-3H-5W-123 
1426A-3H-6W-73 
1426C-3H-3W-133 
1426C-3H-4W-22 
1426C-3H-4W-122 
1426C-3H-5W-72 
1426C-3H-6W-17 
1426A-4H-2W-73 
1426A-4H-3W-23 
1426A-4H-3W-123 
1426A-4H-4W-73 
1426A-4H-5W-23 
1426A-4H-5W-123 
1426A-4H-6W-73 
1426C-5H-2W-23 
1426C-5H-2W-123 
1426C-5H-3W-72 
1426C-5H-4W-23 
1426C-5H-5W-73 
1426C-5H-6W-23 
1426D-5H-2W-122 
1426D-5H-3W-72 
1426D-5H-4W-22 
1426D-5H-4W-122 
1426D-5H-5W-73 

19.33 
20.33 
21.37 
21.70 
22.08 
23.08 
24.09 
25.04 
25.63 
26.52 
27.52 
28.43 
29.17 
30.17 
31.08 
31.72 
32.72 
33.69 
34.65 
36.39 
37.35 
38.29 
39.30 
40.30 
41.30 
42.23 

178.21 
188.55 
202.36 
205.05 
207.88 
215.31 
223.17 
231.70 
237.05 
241.02 
253.79 
266.96 
275.79 
287.47 
299.10 
307.28 
320.08 
332.73 
345.45 
368.50 
381.22 
393.44 
404.35 
414.31 
424.27 
433.51 

4.73 
2.53 
1.21 
2.82 
0.03 
0.00 
6.74 
4.84 
0.11 
1.02 
9.65 
1.57 
3.62 
0.09 
8.18 
13.50 
0.05 
21.35 
13.42 
2.99 
3.41 
1.34 
7.75 
1.78 
0.01 
0.09 

1.60 
1.36 
2.84 
2.30 
2.44 
2.87 
1.82 
1.64 
2.33 
1.53 
1.99 
1.1 
1.07 
4.72 
3.21 
2.78 
4.28 
2.35 
1.84 
1.06 
2.61 
3.12 
3.65 
1.96 
2.11 
0.98 

-22.22 
-22.83 
-22.09 
-21.69 
-21.69 
-22.00 
-22.17 
-22.70 
-21.92 
-22.87 
-23.75 
-23.87 
-23.57 
-22.23 
-22.64 
-22.40 
-22.70 
-22.04 
-22.28 
-23.80 
-22.27 
-21.98 
-22.33 
-21.57 
-22.34 
-25.75 

0.24 
0.14 
0.27 
0.22 
0.26 
0.33 
0.19 
0.23 
0.26 
0.16 
0.18 
0.12 
0.15 
0.38 
0.28 
0.22 
0.37 
0.16 
0.16 
0.12 
0.23 
0.32 
0.29 
0.22 
0.21 
0.13 

7.36 
7.40 
6.05 
6.17 
5.82 
6.33 
7.35 
7.37 
4.53 
6.47 
5.92 
4.65 
6.32 
5.77 
6.13 
5.91 
5.04 
6.11 
6.26 
4.54 
6.19 
5.88 
5.70 
5.59 
6.02 
8.19 
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1426D-5H-6W-22 
1426A-6H-8W-23 
1426D-5H-6W-123 
1426D-5H-7W-63 
1426C-6H-3W-143 
1426C-6H-4W-23 
1426C-6H-5W-73 
1426C-6H-6W-23 
1426C-6H-6W-123 
1426C-6H-7W-53 
1426A-6H-5W-73 
1426A-6H-6W-23 
1426A-6H-7W-73 
1426C-7H-3W-123 
1426C-7H-4W-73 
1426C-7H-5W-23 
1426C-7H-5W-123 
1426C-7H-6W-73 
1426C-7H-7W-23 
1426A-7H-3W-117 
1426A-7H-4W-73 
1426A-7H-5W-23 
1426A-7H-5W-123 
1426A-7H-6W-72 
1426C-8H-3W-123 
1426C-8H-4W-73 

42.82 
43.23 
43.83 
44.73 
44.82 
45.11 
46.34 
47.34 
48.34 
49.05 
49.91 
50.47 
52.36 
54.12 
55.12 
55.66 
56.66 
57.16 
58.61 
59.33 
60.10 
61.01 
62.00 
63.00 
66.17 
67.17 

439.41 
443.45 
449.47 
458.44 
459.31 
462.20 
474.45 
484.41 
494.37 
501.44 
510.00 
515.79 
548.20 
591.34 
612.89 
612.89 
612.89 
612.89 
617.03 
621.07 
626.12 
637.58 
650.10 
662.65 
702.71 
716.02 

0.98 
22.23 
1.66 
25.86 
31.62 
35.71 
3.37 
44.29 
2.83 
11.82 
0.28 
0.05 
24.51 
16.79 
18.54 
12.54 
4.85 
20.70 
8.15 
0.74 
0.12 
1.41 
2.80 
13.45 
18.70 
2.85 

1.44 
3.09 
1.57 
1.12 
1.15 
2.69 
3.96 
3.74 
3.47 
4.55 
4.50 
4.76 
2.65 
3.07 
2.20 
3.19 
3.40 
2.53 
1.86 
2.43 
1.18 
1.47 
0.39 
1.27 
1.85 
1.12 

-24.62 
-21.11 
-23.16 
-24.1 
-23.34 
-23.52 
-21.13 
-21.33 
-21.57 
-21.57 
-22.34 
-22.39 
-22.40 
-22.45 
-21.66 
-21.72 
-21.55 
-21.45 
-21.66 
-21.58 
-25.87 
-25.31 
-25.66 
-22.90 
-21.96 
-22.22 

0.14 
0.23 
0.13 
0.08 
0.09 
0.14 
0.21 
0.17 
0.27 
0.33 
0.35 
0.35 
0.24 
0.21 
0.18 
0.24 
0.28 
0.18 
0.18 
0.20 
0.12 
0.12 
0.05 
0.14 
0.15 
0.15 

5.92 
6.72 
5.49 
5.55 
10.46 
8.87 
7.05 
5.27 
5.89 
5.92 
5.93 
4.93 
7.16 
6.36 
6.93 
6.66 
6.75 
5.51 
5.82 
5.22 
3.40 
6.38 
9.06 
6.67 
7.33 
7.17 
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1426C-8H-5W-23 
1426C-8H-5W-123 
1426C-8H-6W-73 
1426D-8H-2W-123 
1426D-8H-3W-23 
1426D-8H-3W-123 
1426D-8H-4W-73 
1426D-8H-5W-23 
1426D-8H-5W-122 
1426D-8H-6W-73 
1426C-9H-3W-43 
1426C-9H-3W-123 
1426C-9H-4W-77 
1426C-9H-5W-23 
1426C-9H-5W-123 
1426C-9H-6W-73 
1426C-9H-7W-23 
1426C-9H-7W-123 
1426D-9H-4W-73 
1426D-9H-5W-23 
1426D-9H-5W-123 
1426D-9H-6W-73 
1426D-9H-7W-23 
1426C-10H-4W-23 
1426C-10H-5W-23 
1426C-10H-5W-123 

68.13 
69.14 
69.98 
70.48 
70.79 
71.74 
72.60 
73.12 
74.12 
74.88 
75.65 
76.45 
77.39 
78.21 
79.21 
80.10 
81.05 
82.05 
83.16 
84.15 
85.16 
86.16 
87.10 
87.73 
89.11 
90.11 

731.89 
748.58 
757.58 
761.64 
764.15 
771.83 
778.76 
782.99 
791.08 
799.74 
809.28 
819.21 
830.88 
841.06 
853.47 
864.52 
876.32 
886.54 
896.70 
905.76 
914.99 
925.03 
934.90 
941.51 
956.48 
965.10 

5.69 
10.10 
15.95 
10.65 
6.69 
4.48 
2.84 
1.10 
12.85 
36.42 
22.40 
9.42 
10.08 
16.52 
0.00 
23.44 
15.19 
1.85 
16.65 
9.07 
15.56 
26.35 
20.97 
0.00 
7.69 
22.06 

2.96 
2.54 
3.07 
2.85 
2.26 
2.81 
2.70 
2.21 
2.11 
3.82 
3.29 
3.38 
2.86 
1.56 
3.14 
1.97 
1.77 
2.37 
2.14 
2.43 
2.94 
3.90 
2.22 
3.42 
2.42 
1.63 

-21.75 
-22.67 
-22.32 
-22.35 
-22.20 
-21.94 
-22.18 
-22.59 
-23.60 
-22.82 
-21.74 
-21.39 
-21.85 
-21.92 
-22.32 
-22.31 
-22.61 
-24.47 
-22.66 
-21.68 
-21.98 
-21.38 
-22.46 
-22.01 
-21.98 
-21.51 

0.28 
0.25 
0.26 
0.23 
0.24 
0.20 
0.24 
0.16 
0.23 
0.18 
0.23 
0.30 
0.2 
0.14 
0.27 
0.14 
0.17 
0.22 
0.15 
0.13 
0.14 
0.16 
0.25 
0.18 
0.20 
0.17 

5.53 
6.49 
6.02 
7.26 
6.31 
8.32 
6.61 
4.79 
7.78 
8.11 
5.60 
6.57 
6.51 
7.34 
5.95 
6.16 
6.73 
3.33 
6.46 
9.33 
7.51 
8.21 
6.28 
5.82 
7.93 
7.76 
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1426D-10H-3W-88 
1426D-10H-4W-23 
1426D-10H-4W-123 
1426D-10H-5W-73 
1426D-10H-6W-23 
1426D-10H-6W-123 
1426C-11H-3W-68 
1426C-11H-4W-23 
1426C-11H-4W-123 
1426C-11H-5W-73 
1426C-11H-6W-23 
1426D-11H-3W-73 
1426D-11H-4W-23 
1426D-11H-5W-73 
1426D-11H-6W-22 
1426D-11H-6W-123 
1426D-11H-7W-73 
1426C-12H-3W-43 
1426C-12H-4W-73 
1426C-12H-5W-23 
1426C-12H-5W-123 
1426C-12H-6W-73 
1426A-12H-5W-23 
1426A-12H-5W-123 
1426A-12H-6W-73 
1426A-12H-7W-23 

93.03 
93.82 
94.82 
95.80 
96.79 
97.79 
98.04 
98.70 
99.70 
100.70 
101.71 
103.25 
104.16 
106.16 
107.16 
108.16 
109.16 
110.20 
111.99 
113.01 
114.01 
115.02 
115.53 
116.53 
117.45 
118.36 

981.03 
987.28 
995.19 
1002.95 
1010.78 
1018.69 
1020.71 
1025.93 
1033.84 
1041.76 
1049.75 
1061.93 
1069.13 
1084.95 
1092.84 
1100.78 
1108.70 
1116.92 
1131.08 
1139.15 
1147.06 
1155.05 
1159.09 
1167.00 
1174.31 
1181.48 

2.63 
10.75 
2.61 
2.26 
4.86 
1.64 
0.93 
0.00 
4.85 
29.10 
16.72 
8.90 
1.58 
23.16 
18.54 
4.30 
24.02 
28.57 
8.22 
13.27 
0.85 
0.00 
0.03 
0.07 
9.05 
6.83 

2.46 
2.86 
3.74 
4.61 
4.66 
3.17 
3.11 
3.35 
2.66 
4.56 
1.76 
2.12 
5.28 
5.39 
1.66 
4.51 
5.87 
2.52 
2.00 
2.98 
2.69 
2.65 
3.00 
4.63 
4.06 
2.7 

-21.68 
-21.63 
-21.14 
-21.60 
-21.90 
-21.90 
-21.74 
-20.95 
-21.85 
-21.78 
-21.82 
-22.00 
-22.45 
-21.96 
-22.82 
-21.84 
-22.27 
-23.8 
-22.12 
-20.73 
-21.66 
-21.85 
-22.62 
-22.23 
-22.37 
-22.73 

0.31 
0.23 
0.36 
0.35 
0.32 
0.24 
0.28 
0.31 
0.20 
0.22 
0.14 
0.36 
0.25 
0.29 
0.32 
0.16 
0.30 
0.15 
0.19 
0.23 
0.24 
0.25 
0.29 
0.39 
0.25 
0.25 

5.66 
5.70 
6.06 
5.64 
5.55 
7.26 
5.48 
5.38 
7.74 
6.32 
7.59 
5.96 
6.15 
6.50 
6.14 
9.73 
6.79 
7.84 
9.19 
6.44 
7.47 
4.74 
5.29 
5.20 
6.75 
6.57 
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1426A-12H-7W-113 
1426C-13H-2W-113 
1426C-13H-3W-73 
1426C-13H-4W-73 
1426C-13H-5W-23 
1426C-13H-5W-123 
1426C-13H-6W-73 
1426C-13H-7W-23 
1426A-13H-5W-73 
1426A-13H-6W-23 
1426A-13H-6W-123 
1426C-14H-2W-23 

 

119.26 
119.92 
120.73 
121.89 
122.55 
123.55 
124.55 
125.55 
127.05 
128.06 
129.06 
129.81 

 

1188.60 
1193.82 
1200.23 
1209.41 
1214.63 
1222.54 
1230.45 
1238.36 
1250.20 
1258.22 
1266.13 
1272.07 

 

4.87 
1.91 
9.45 
9.79 
3.12 
6.21 
7.83 
2.02 
1.08 
0.05 
9.36 
8.31 

 

1.91 
2.06 
1.33 
2.12 
2.10 
1.32 
1.49 
2.65 
3.66 
1.75 
2.97 
2.87 

 

-22.69 
-20.92 
-21.14 
-21.75 
-22.77 
-23.29 
-21.79 
-21.28 
-22.43 
-21.87 
-21.56 
-21.01 

 

0.20 
0.22 
0.17 
0.22 
0.21 
0.13 
0.17 
0.25 
0.21 
0.31 
0.17 
0.22 

 

5.56 
5.60 
6.71 
5.19 
7.03 
6.10 
5.82 
5.39 
5.71 
5.66 
5.40 
6.92 
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Appendix 3: Sample name, corresponding depth (m), age (ky), %CaCO3, %TOC, δ13C (‰ vs. VPDB), %TN, and δ15N (‰ vs. 
AIR) for Site U1427. 

Sample Depth (m) Age %CaCO3 %TOC δ13C  
 

TN δ15N 
 

1427C-1H-1W-74 
1427C-1H-2W-24 
1427C-1H-2W-124 
1427C-1H-3W-74 
1427C-1H-4W-24 
1427C-1H-4W-124 
1427C-1H-5W-74 
1427B-2H-3W-24 
1427B-2H-3W-124 
1427B-2H-4W-74 
1427B-2H-5W-24 
1427B-2H-5W-124 
1427C-2H-3W-74 
1427C-2H-4W-24 
1427C-2H-4W-125 
1427C-2H-5W-74 
1427B-3H-1W-124 
1427B-3H-2W-74 
1427B-3H-3W-24 
1427B-3H-3W-123 
1427B-3H-4W-74 
1427B-3H-5W-24 
1427C-3H-3W-124 

0.74 
1.74 
2.74 
3.74 
4.74 
5.74 
6.74 
8.10 
9.10 
10.10 
11.10 
12.10 
12.54 
13.55 
14.56 
15.58 
16.62 
17.62 
18.62 
19.61 
20.57 
21.57 
22.57 

2.22 
5.21 
8.21 
11.20 
14.20 
17.19 
19.87 
23.36 
25.92 
28.49 
30.96 
33.29 
34.31 
36.67 
39.02 
41.40 
43.83 
46.16 
48.49 
50.80 
53.03 
55.20 
57.25 

5.65 
4.04 
8.45 
6.06 
2.68 
1.24 
0.56 
8.80 
2.23 
2.57 
10.10 
4.13 
8.41 
7.32 
6.85 
7.44 
2.45 
2.98 
5.58 
6.46 
5.14 
8.24 
5.56 

4.56 
2.56 
2.01 
2.66 
1.72 
0.90 
0.83 
1.92 
1.66 
0.85 
2.04 
1.80 
1.62 
0.96 
1.56 
1.44 
2.55 
0.77 
1.72 
1.47 
1.38 
2.08 
1.11 

-19.78 
-21.95 
-21.29 
-21.87 
-22.22 
-22.81 
-23.18 
-21.78 
-19.56 
-20.37 
-20.14 
-22.21 
-22.12 
-22.31 
-22.92 
-21.62 
-22.15 
-22.50 
-21.30 
-22.81 
-21.67 
-21.55 
-23.33 

0.19 
0.26 
0.20 
0.15 
0.07 
0.10 
0.09 
0.15 
0.07 
0.07 
0.15 
0.14 
0.16 
0.14 
0.14 
0.14 
0.08 
0.14 
0.09 
0.16 
0.11 
0.17 
0.13 

7.02 
6.51 
8.24 
8.50 
10.74 
7.83 
3.76 
9.86 
12.85 
13.08 
10.02 
11.93 
7.57 
10.42 
7.80 
7.77 
6.54 
10.24 
12.87 
10.02 
12.16 
9.65 
8.50 
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1427C-3H-4W-74 
1427C-3H-5W-24 
1427C-3H-5W-124 
1427C-3H-6W-74 
1427B-4H-2W-128 
1427B-4H-3W-74 
1427B-4H-4W-24 
1427B-4H-4W-124 
1427B-4H-5W-74 
1427C-4H-3W-74 
1427C-4H-4W-24 
1427C-4H-4W-124 
1427C-4H-5W-74 
1427C-4H-6W-24 
1427B-5H-2W-74 
1427B-5H-3W-24 
1427B-5H-3W-124 
1427B-5H-4W-74 
1427B-5H-5W-24 
1427B-5H-5W-124 
1427C-5H-3W-24 
1427C-5H-3W-124 
1427C-5H-4W-74 
1427C-5H-5W-24 
1427C-5H-5W-124 
1427C-5H-6W-74 
1427B-6H-2W-124 

23.57 
24.57 
25.57 
26.57 
27.17 
28.13 
29.12 
30.12 
31.11 
31.40 
32.40 
33.40 
34.30 
35.26 
36.90 
37.90 
38.90 
39.74 
40.74 
41.74 
42.34 
43.34 
44.17 
44.88 
45.88 
46.67 
47.96 

59.31 
61.36 
63.41 
65.46 
66.69 
68.66 
70.69 
72.75 
74.78 
75.37 
77.42 
79.48 
81.32 
83.29 
86.12 
88.71 
93.47 
97.47 
102.23 
106.99 
109.84 
114.60 
118.55 
121.93 
125.32 
127.69 
131.55 

6.09 
8.03 
7.45 
8.95 
8.89 
11.49 
14.62 
17.56 
15.38 
13.72 
12.55 
22.99 
16.28 
9.42 
8.89 
15.43 
15.69 
18.92 
10.50 
13.16 
10.52 
11.95 
13.69 
8.61 
2.69 
0.43 
0.06 

1.48 
1.36 
1.14 
1.83 
1.67 
1.69 
1.60 
0.67 
2.02 
2.14 
2.59 
2.36 
2.53 
2.46 
2.27 
2.37 
2.65 
1.66 
3.03 
2.52 
2.49 
2.18 
2.40 
1.49 
1.41 
1.59 
1.15 

-21.54 
-21.97 
-21.84 
-24.37 
-22.43 
-21.62 
-21.48 
-21.54 
-21.28 
-20.86 
-21.11 
-21.06 
-21.36 
-20.77 
-21.85 
-21.61 
-21.60 
-20.98 
-21.27 
-21.40 
-21.10 
-21.03 
-21.74 
-21.91 
-21.47 
-22.31 
-24.48 

0.11 
0.12 
0.12 
0.12 
0.14 
0.11 
0.17 
0.14 
0.16 
0.16 
0.17 
0.18 
0.16 
0.18 
0.19 
0.19 
0.23 
0.21 
0.19 
0.19 
0.15 
0.16 
0.16 
0.13 
0.14 
0.11 
0.13 

11.44 
12.19 
11.51 
10.88 
11.13 
11.32 
10.17 
10.28 
9.56 
9.15 
8.46 
7.80 
7.20 
8.54 
8.72 
8.05 
8.90 
7.57 
7.60 
7.66 
8.12 
7.34 
6.96 
7.87 
8.96 
9.12 
7.12 
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1427B-6H-3W-74 
1427B-6H-4W-24 
1427B-6H-4W-124 
1427B-6H-5W-74 
1427C-6H-3W-96 
1427C-6H-4W-74 
1427C-6H-5W-24 
1427C-6H-5W-124 
1427B-8H-2W-124 
1427C-6H-6W-74 
1427B-8H-2W-48 
1427B-8H-3W-74 
1427B-8H-4W-24 
1427B-8H-4W-124 
1427B-8H-6W-24 
1427C-7H-4W-74 
1427C-7H-5W-24 
1427C-7H-5W-124 
1427C-7H-6W-74 
1427C-7H-7W-24 
1427B-9H-2W-118 
1427B-9H-3W-74 
1427B-9H-4W-24 
1427B-9H-4W-116 
1427B-9H-5W-74 
1427C-8H-4W-24 
1427C-8H-4W-124 

48.80 
49.80 
50.80 
51.80 
52.57 
53.57 
54.11 
55.11 
55.75 
56.07 
56.49 
58.25 
59.25 
60.25 
62.25 
62.54 
63.11 
64.11 
65.01 
65.95 
67.11 
67.89 
68.86 
69.78 
70.58 
73.43 
74.43 

134.07 
137.06 
140.04 
142.17 
143.80 
145.93 
147.08 
149.20 
150.56 
151.24 
152.13 
156.35 
159.64 
162.94 
169.52 
170.48 
172.36 
175.65 
178.61 
181.71 
185.53 
188.10 
191.29 
194.32 
196.96 
206.34 
209.64 

2.85 
0.94 
4.42 
0.00 
0.18 
1.24 
1.52 
1.47 
2.35 
0.35 
2.86 
2.46 
4.58 
7.26 
10.49 
9.63 
12.10 
5.85 
4.32 
3.97 
4.14 
4.19 
5.52 
3.91 
3.89 
5.10 
4.12 

1.26 
0.82 
0.88 
0.79 
1.61 
0.65 
0.55 
0.66 
0.64 
0.72 
0.73 
0.99 
0.86 
1.12 
1.01 
1.21 
1.83 
1.41 
1.30 
1.18 
1.31 
4.95 
1.36 
1.78 
1.44 
0.67 
1.49 

-21.56 
-23.90 
-24.03 
-23.70 
-23.71 
-22.48 
-23.59 
-23.3 
-20.83 
-23.78 
-21.67 
-22.37 
-22.53 
-22.27 
-22.27 
-22.26 
-21.66 
-21.44 
-21.71 
-22.13 
-21.6 
-22.52 
-21.25 
-21.71 
-21.83 
-22.02 
-20.88 

0.08 
0.10 
0.11 
0.10 
0.09 
0.09 
0.09 
0.09 
0.10 
0.1 
0.09 
0.09 
0.10 
0.11 
0.13 
0.17 
0.13 
0.17 
0.16 
0.15 
0.12 
0.11 
0.16 
0.16 
0.15 
0.16 
0.16 

12.24 
9.37 
8.59 
11.03 
10.96 
12.24 
7.67 
12.58 
10.83 
5.86 
11.34 
11.49 
11.47 
11.71 
10.53 
11.42 
11.09 
8.70 
10.14 
11.46 
11.56 
11.03 
10.74 
9.96 
10.36 
10.84 
10.67 
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1427C-8H-5W-74 
1427C-8H-6W-24 
1427C-8H-6W-124 
1427C-8H-7W-24 
1427B-10H-2W-124 
1427B-10H-3W-74 
1427B-10H-4W-124 
1427B-10H-5W-74 
1427B-10H-6W-24 
1427C-9H-3W-118 
1427C-9H-4W-74 
1427C-9H-5W-24 
1427C-9H-6W-74 
1427B-11H-2W-24 
1427B-11H-3W-74 
1427B-11H-4W-24 
1427B-11H-4W-124 
1427B-11H-5W-74 
1427C-10H-2W-124 
1427C-10H-3W-74 
1427C-10H-4W-24 
1427C-10H-4W-124 
1427C-10H-5W-74 
1427C-10H-6W-36 
1427B-12H-2W-24 
1427B-12H-2W-124 
1427B-12H-3W-74 

75.43 
76.43 
77.43 
77.91 
78.29 
79.26 
81.21 
82.21 
83.21 
84.07 
85.13 
86.14 
87.89 
88.33 
89.95 
90.95 
91.95 
92.95 
93.03 
93.84 
94.67 
95.67 
96.61 
97.74 
98.41 
99.41 
100.28 

212.93 
216.22 
219.39 
220.89 
222.07 
225.10 
231.19 
234.32 
237.44 
240.13 
243.20 
245.83 
250.39 
251.53 
254.86 
256.84 
258.83 
260.81 
260.97 
262.58 
264.23 
266.21 
268.08 
270.28 
271.19 
272.55 
273.74 

8.46 
8.34 
3.39 
3.67 
4.43 
8.91 
7.97 
8.88 
3.24 
0.67 
4.08 
2.69 
4.10 
3.77 
4.22 
4.45 
3.00 
8.04 
2.42 
2.10 
2.03 
2.25 
3.09 
7.92 
11.53 
9.59 
5.33 

1.71 
1.37 
1.78 
1.65 
1.40 
1.57 
1.92 
1.65 
1.62 
1.47 
1.99 
1.30 
1.52 
1.33 
1.17 
1.05 
1.17 
1.17 
0.78 
0.77 
0.75 
0.74 
2.08 
0.72 
0.98 
1.22 
0.87 

-21.45 
-20.63 
-20.74 
-21.98 
-22.14 
-22.64 
-21.64 
-21.82 
-21.96 
-23.21 
-21.40 
-22.94 
-22.31 
-24.77 
-22.24 
-22.78 
-22.56 
-22.95 
-20.65 
-20.87 
-21.05 
-22.35 
-21.34 
-23.71 
-23.53 
-22.31 
-23.55 

0.18 
0.16 
0.20 
0.15 
0.18 
0.16 
0.17 
0.14 
0.16 
0.18 
0.16 
0.14 
0.10 
0.18 
0.12 
0.12 
0.13 
0.13 
0.12 
0.09 
0.10 
0.09 
0.10 
0.11 
0.13 
0.13 
0.20 

9.35 
8.52 
8.84 
9.96 
9.58 
8.76 
9.06 
9.31 
9.78 
8.02 
8.88 
9.92 
11.34 
8.89 
10.74 
10.38 
10.68 
10.04 
11.01 
12.60 
11.81 
12.70 
12.31 
9.07 
11.13 
10.55 
8.96 
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1427B-12H-4W-24 
142712H-4W-124 
1427B-12H-5W-74 
1427B-12H-6W-124 
1427B-12H-7W-74 
1427C-12H-1W-74 
1427C-12H-2W-24 
1427C-12H-2W-124 
1427C-12H-3W-74 
1427C-12H-4W-24 
1427C-12H-4W-124 
1427C-12H-5W-68 
1427B-14H-3W-24 
1427B-14H-3W-124 
1427B-14H-4W-74 
1427B-14H-5W-24 
1427B-14H-5W-125 
1427C-13H-1W-124 
1427C-13H-2W-74 
1427C-13H-3W-24 
1427C-13H-3W-124 
1427C-13H-4W-74 
1427C-13H-5W-24 
1427C-13H-5W-124 
1427B-15H-5W-24 
1427B-15H-5W-124 
1427B-15H-6W-44 

101.13 
102.13 
103.00 
105.00 
106.00 
106.37 
107.37 
108.37 
109.31 
110.31 
111.31 
112.25 
112.49 
113.49 
114.49 
115.45 
116.46 
117.72 
118.70 
119.58 
120.58 
121.55 
122.40 
123.40 
125.01 
126.01 
126.71 

274.90 
276.26 
277.44 
280.16 
281.52 
282.03 
283.39 
284.75 
287.61 
291.07 
294.53 
297.78 
298.61 
302.07 
305.53 
308.85 
312.35 
316.71 
320.10 
323.14 
326.60 
329.52 
331.10 
332.97 
335.97 
337.84 
339.14 

11.40 
10.37 
6.23 
7.07 
11.23 
2.91 
13.77 
11.68 
9.75 
9.21 
10.70 
18.16 
12.04 
14.46 
15.51 
12.95 
0.58 
10.79 
19.78 
19.69 
1.14 
0.44 
1.48 
2.53 
0.78 
0.04 
0.28 

0.86 
1.18 
0.97 
2.37 
1.31 
1.93 
2.65 
2.46 
1.91 
2.54 
2.40 
1.98 
2.03 
1.89 
2.25 
2.67 
1.80 
2.39 
2.36 
2.36 
1.13 
1.55 
1.78 
1.20 
1.24 
1.08 
0.16 

-24.39 
-23.10 
-23.35 
-21.29 
-22.46 
-22.03 
-21.11 
-21.13 
-21.21 
-22.30 
-20.97 
-21.56 
-21.53 
-21.68 
-21.74 
-21.65 
-21.69 
-21.50 
-21.41 
-21.96 
-22.22 
-21.92 
-23.23 
-24.18 
-24.65 
-24.75 
-25.33 

0.11 
0.15 
0.14 
0.12 
0.12 
0.18 
0.22 
0.20 
0.19 
0.18 
0.18 
0.17 
0.17 
0.20 
0.17 
0.14 
0.18 
0.18 
0.17 
0.17 
0.10 
0.13 
0.19 
0.14 
0.04 
0.16 

 

11.87 
10.19 
10.69 
11.34 
11.25 
8.87 
7.37 
7.83 
8.34 
9.39 
8.53 
8.92 
9.54 
8.99 
9.79 
7.68 
9.75 
8.19 
7.42 
8.30 
9.35 
8.66 
7.79 
8.67 
6.42 
7.38 
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1427C-14H-2W-124 
1427C-14H-3W-74 
1427-14H-4W-24 
1427-14H-4W-124 

 

129.54 
130.41 
131.30 
132.30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

344.43 
346.05 
346.48 
 

 

3.23 
2.43 
4.12 
2.71 

 

0.80 
0.85 
0.92 
1.79 

 

-24.14 
-23.99 
-24.06 
-21.72 

 

0.12 
0.10 
0.11 
0.11 

 

9.93 
11.08 
9.87 
10.31 
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APPENDIX 4 
 
Appendix 4: Sample name, corresponding depth (m), age (ky), %CaCO3, %TOC, δ13C, %TN, and δ15N for Site U1429. 

Sample Depth (m) Age %CaCO3 %TOC δ13C  
 

TN δ15N 
 

1429A-1H-1W-7        
1429A-1H-1W-57       
1429A-1H-1W-107      
1429A-1H-1W-147      
1429A-1H-2W-57       
1429A-1H-2W-107      
1429A-1H-2W-108      
1429A-1H-2W-147      
1429A-1H-4W-57       
1429B-2H-2W-107 
1429B-2H-2W-147 
1429B-2H-3W-57 
1429B-2H-3W-107 
1429B-2H-3W-147 
1429B-2H-4W-57 
1429B-2H-4W-107 
1429A-2H-2W-107      
1429A-2H-3W-8        
1429A-2H-3W-57       
1429A-2H-3W-107      
1429A-2H-3W-108      
1429A-2H-3W-147      
1429A-2H-4W-57       

0.07 
0.57 
1.07 
1.47 
2.07 
2.57 
2.57 
2.97 
3.57 
5.41 
5.80 
6.38 
6.87 
7.36 
7.85 
8.33 
8.97 
9.48 
9.97 
10.97 
10.97 
11.37 
11.97 

0.17 
1.39 
2.62 
3.60 
5.08 
6.31 
6.32 
7.30 
8.38 
11.68 
12.38 
13.37 
14.12 
14.87 
15.62 
16.36 
17.34 
18.11 
18.79 
20.18 
20.18 
20.73 
21.56 

21.54 
22.14 
21.49 
18.94 
3.58 
2.58 
3.21 
18.79 
12.57 
9.21 
14.34 
14.94 
12.12 
11.43 
9.98 
9.75 
9.38 
9.73 
9.98 
10.22 
10.22 
10.56 
10.96 

2.85 
2.50 
2.58 
1.97 
0.51 
0.39 
0.40 
1.81 
1.87 
2.75 
1.25 
2.49 
1.67 
1.86 
1.50 
1.59 
1.64 
1.59 
1.69 
1.64 
1.52 
1.70 
1.53 

-20.64 
-20.83 
-21.39 
-21.23 
-21.92 
-22.68 
-23.33 
-21.12 
-21.25 
-21.18 
-20.95 
-21.02 
-21.07 
-21.02 
-21.21 
-20.68 
-21.33 
-20.89 
-21.20 
-21.37 
-20.95 
-21.38 
-20.87 

0.24 
0.19 
0.18 
0.15 
0.24 
0.20 
0.02 
0.14 
0.15 
0.13 
0.20 
0.19 
0.16 
0.15 
0.15 
0.15 
0.14 
0.14 
0.15 
0.14 
0.12 
0.20 
0.14 

4.63 
5.35 
5.60 
6.00 
5.19 
5.45 
1.20 
5.98 
6.44 
7.20 
7.48 
6.38 
6.01 
5.78 
6.69 
5.69 
6.54 
4.41 
6.92 
6.65 
3.99 
5.40 
6.39 
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1429A-2H-4W-107      
1429A-2H-4W-108      
1429A-2H-4W-147      
1429A-2H-5W-8        
1429A-2H-5W-107      
1429A-2H-5W-108      
1429A-2H-5W-147      
1429B-3H-2W-107      
1429A-2H-6W-57       
1429A-2H-6W-107      
1429A-2H-6W-147      
1429B-3H-3W-8        
1429B-3H-3W-107      
1429B-3H-3W-108      
1429B-3H-3W-147      
1429A-3H-2W-8        
1429A-3H-2W-57       
1429A-3H-2W-107      
1429A-3H-2W-108      
1429A-3H-2W-147      
1429A-3H-3W-57 
1429A-3H-3W-107      
1429A-3H-3W-108      
1429A-3H-3W-147      
1429A-3H-4W-8        
1429A-3H-4W-57       
1429A-3H-4W-107      
1429A-3H-4W-108      

12.47 
12.47 
12.87 
12.98 
13.97 
13.98 
14.37 
14.86 
14.97 
15.47 
15.87 
15.29 
16.28 
16.29 
16.68 
17.48 
17.97 
18.47 
18.48 
18.47 
19.07 
19.57 
19.58 
19.97 
20.08 
20.57 
21.07 
21.08 

22.25 
22.26 
22.81 
22.96 
24.33 
24.35 
24.89 
25.56 
25.72 
26.41 
26.97 
26.16 
27.53 
27.55 
28.08 
29.20 
29.88 
30.96 
30.98 
30.96 
32.36 
33.53 
33.56 
34.47 
34.73 
35.87 
37.04 
37.06 

11.46 
12.52 
11.65 
11.38 
12.69 
12.54 
13.53 
13.17 
12.72 
12.70 
12.56 
15.20 
14.13 
14.15 
12.45 
14.28 
13.43 
15.54 
10.53 
13.05 
13.72 
11.97 
13.37 
12.25 
13.03 
9.42 
9.98 
10.02 

1.80 
1.77 
1.71 
1.79 
2.03 
2.02 
1.92 
1.66 
1.76 
1.83 
1.85 
1.87 
1.65 
1.69 
1.14 
1.67 
1.89 
2.19 
2.01 
2.06 
1.99 
1.60 
1.76 
2.04 
2.06 
2.02 
1.63 
1.69 

-21.39 
-21.11 
-20.83 
-20.96 
-20.96 
-20.79 
-20.65 
-20.55 
-20.56 
-20.50 
-20.69 
-20.64 
-20.46 
-20.94 
-21.17 
-20.45 
-20.26 
-20.30 
-20.42 
-20.18 
-20.29 
-20.57 
-21.15 
-20.35 
-20.53 
-20.51 
-20.70 
-21.10 

0.15 
0.14 
0.16 
0.15 
0.17 
0.16 
0.17 
0.16 
0.16 
0.16 
0.16 
0.15 
0.15 
0.14 
0.10 
0.14 
0.16 
0.17 
0.15 
0.17 
0.17 
0.15 
0.14 
0.17 
0.17 
0.18 
0.15 
0.13 

6.42 
4.47 
6.42 
4.91 
6.16 
5.66 
6.21 
5.65 
6.22 
6.02 
6.07 
4.35 
6.63 
6.59 
5.49 
6.29 
5.88 
6.06 
8.25 
5.93 
5.95 
6.25 
4.98 
5.97 
4.95 
6.42 
6.27 
3.26 
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1429A-3H-4W-147      
1429A-3H-5W-57       
1429A-3H-5W-107      
1429A-3H-5W-108      
1429A-3H-5W-147      
1429A-3H-6W-8        
1429A-3H-6W-57       
1429A-3H-6W-107      
1429B-4H-2W-107      
1429B-4H-2W-147      
1429B-4H-3W-107      
1429B-4H-3W-147      
1429B-4H-4W-57       
1429B-4H-4W-107      
1429B-4H-5W-57       
1429B-4H-5W-147      
1429B-4H-6W-57       
1429B-4H-6W-107      
1429B-4H-6W-147      
1429B-4H-7W-57       
1429A-4H-4W-147 
1429A-4H-5W-57 
1429A-4H-5W-107 
1429A-4H-5W-147 
1429A-4H-6W-57 
1429A-4H-6W-107 
1429A-4H-6W-147 
1429B-5H-3W-57       

21.47 
22.07 
22.57 
22.58 
22.97 
23.08 
23.57 
24.07 
24.34 
24.71 
25.76 
26.13 
26.70 
27.18 
28.12 
28.98 
29.52 
30.02 
30.40 
30.97 
31.37 
31.97 
32.47 
32.87 
33.47 
33.97 
34.37 
34.81 

37.98 
38.65 
39.20 
39.21 
39.64 
39.76 
40.30 
40.85 
41.14 
41.55 
42.70 
43.11 
43.74 
44.26 
45.41 
46.68 
47.49 
48.24 
48.80 
49.65 
50.25 
51.15 
51.90 
52.49 
53.39 
54.13 
54.73 
55.61 

10.64 
12.81 
12.40 
12.30 
12.08 
13.14 
12.29 
11.68 
11.85 
11.04 
13.47 
8.59 
14.51 
10.27 
16.26 
18.68 
18.12 
20.55 
22.90 
25.25 
12.21 
11.22 
11.36 
11.89 
12.85 
15.18 
14.30 
29.17 

1.59 
2.03 
1.94 
1.87 
1.87 
1.80 
1.95 
1.78 
1.76 
1.96 
1.93 
1.57 
1.85 
1.77 
1.0 
1.1 
1.1 
1.2 
1.3 
1.6 
1.99 
1.73 
1.39 
1.5 
1.35 
1.84 
1.92 
1.5 

-21.00 
-20.38 
-20.43 
-20.48 
-20.5 
-21.10 
-20.39 
-20.35 
-20.40 
-20.24 
-20.40 
-20.55 
-20.17 
-20.43 
-21.20 
-20.97 
-21.00 
-20.77 
-21.19 
-20.76 
-20.87 
-20.75 
-21.66 
-21.31 
-21.31 
-21.12 
-20.56 
-21.19 

0.15 
0.17 
0.17 
0.16 
0.16 
0.15 
0.17 
0.15 
0.16 
0.17 
0.15 
0.17 
0.17 
0.15 
0.10 
0.10 
0.10 
0.11 
0.15 
0.12 
0.17 
0.15 
0.16 
0.14 
0.12 
0.13 
0.12 
0.11 

6.35 
5.95 
5.90 
4.42 
5.92 
5.01 
5.76 
6.06 
5.26 
6.60 
5.45 
5.68 
5.68 
5.45 
8.10 
9.26 
10.28 
7.89 
8.06 
8.89 
6.47 
6.72 
6.53 
6.66 
6.52 
6.51 
6.14 
8.82 



 172 

1429B-5H-3W-107      
1429B-5H-3W-147      
1429B-5H-4W-147      
1429B-5H-5W-57 
1429B-5H-5W-107      
1429B-5H-5W-147      
1429B-5H-6W-47       
1429A-5H-4W-107 
1429A-5H-4W-147 
1429A-5H-5W-57 
1429A-5H-5W-107 
1429A-5H-5W-147 
1429B-6H-2W-107      
1429B-6H-3W-57       
1429A-5H-6W-107 
1429B-6H-3W-107      
1429A-5H-6W-147 
1429B-6H-3W-147      
1429B-6H-4W-107      
1429B-6H-4W-147      
1429A-7H-1W-57       
1429A-7H-1W-107 
1429A-7H-1W-147 
1429A-7H-2W-57 
1429A-7H-2W-107 
1429A-7H-2W-147 
1429A-7H-3W-57 
1429A-7H-3W-107 

35.31 
36.70 
37.14 
37.72 
38.20 
38.58 
39.04 
40.47 
40.87 
41.47 
41.97 
42.37 
42.73 
43.45 
43.47 
43.82 
43.87 
44.11 
44.90 
45.18 
52.17 
52.67 
53.07 
53.67 
54.17 
54.57 
55.17 
55.67 

56.78 
60.00 
61.03 
62.37 
63.49 
64.39 
65.46 
68.78 
69.71 
71.11 
72.28 
73.21 
74.04 
75.75 
75.81 
76.67 
76.79 
77.37 
79.31 
80.01 
91.00 
91.00 
91.00 
92.25 
93.36 
94.26 
95.59 
96.71 

35.77 
36.30 
37.43 
16.15 
29.28 
34.70 
34.46 
25.49 
23.06 
25.72 
27.58 
32.19 
39.77 
37.84 
22.74 
42.84 
19.78 
40.54 
41.59 
41.02 
29.97 
30.78 
31.38 
26.79 
26.10 
26.85 
23.60 
25.26 

2.2 
2.1 
1.8 
1.8 
1.8 
2.2 
2.2 
2.27 
2.12 
1.73 
2.14 
1.50 
2.2 
1.4 
1.84 
2.5 
2.55 
2.5 
2.0 
1.9 
1.45 
2.22 
1.80 
2.06 
2.02 
1.87 
2.19 
2.4 

-21.19 
-21.12 
-21.32 
-20.76 
-20.70 
-20.95 
-20.73 
-20.56 
-20.81 
-20.24 
-20.51 
-20.29 
-20.69 
-20.99 
-20.39 
-21.10 
-20.42 
-21.31 
-20.88 
-21.28 
-17.73 
-20.71 
-20.27 
-20.69 
-20.34 
-20.47 
-21.94 
-20.84 

0.13 
0.12 
0.11 
0.11 
0.14 
0.10 
0.13 
0.16 
0.15 
0.13 
0.14 
0.13 
0.13 
0.09 
0.15 
0.12 
0.14 
0.12 
0.13 
0.10 
0.14 
0.14 
0.14 
0.14 
0.13 
0.13 
0.14 
0.16 

7.43 
7.97 
9.19 
7.95 
7.06 
9.10 
8.31 
5.97 
5.45 
6.25 
5.82 
5.82 
6.89 
10.17 
6.75 
8.07 
6.68 
7.02 
4.83 
7.82 
5.58 
6.22 
5.72 
6.16 
6.03 
6.34 
5.71 
6.20 
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1429A-7H-3W-147 
1429A-7H-4W-57 
1429A-7H-4W-107 
1429A-7H-5W-57 
1429A-7H-5W-107 
1429A-7H-5W-147 
1429A-7H-6W-107 
1429A-7H-6W-147 
1429B-8H-3W-107      
1429B-8H-4W-57       
1429B-8H-4W-107      
1429B-8H-4W-147      
1429B-8H-5W-57       
1429B-8H-5W-107 
1429B-8H-5W-147      
1429C-10H-2W-57      
1429B-8H-6W-57       
1429C-10H-2W-107     
1429C-10H-2W-147     
1429C-10H-3W-57      
1429C-10H-3W-107     
1429C-10H-3W-147     
1429C-10H-4W-57      
1429C-10H-4W-107     
1429C-10H-4W-147     
1429C-10H-5W-57      
1429C-10H-5W-107     
1429C-10H-5W-147     

56.07 
56.67 
57.17 
58.17 
58.67 
59.07 
60.17 
60.57 
61.28 
62.21 
62.70 
63.06 
63.65 
64.13 
64.51 
65.07 
65.08 
65.57 
65.97 
66.57 
67.07 
67.47 
68.07 
68.57 
68.97 
69.57 
70.07 
70.47 

97.60 
98.94 
100.06 
102.29 
103.40 
104.29 
106.75 
107.64 
109.39 
113.25 
115.30 
116.80 
119.25 
121.22 
122.79 
125.13 
125.18 
127.21 
128.88 
130.65 
131.63 
132.41 
133.59 
134.57 
135.35 
136.53 
137.51 
138.29 

24.79 
26.46 
26.35 
25.99 
19.09 
29.03 
36.78 
28.93 
38.12 
11.96 
37.91 
26.38 
19.69 
33.19 
11.69 
14.72 
15.67 
13.29 
13.58 
11.08 
12.49 
13.27 
12.22 
15.70 
17.56 
15.82 
16.43 
13.28 

2.15 
2.27 
1.74 
2.21 
1.61 
2.11 
2.04 
1.99 
1.5 
0.4 
1.5 
1.27 
1.26 
1.30 
1.06 
1.52 
1.13 
1.48 
1.58 
1.64 
1.66 
1.61 
1.57 
1.57 
1.54 
1.31 
1.42 
1.32 

-20.87 
-20.42 
-20.75 
-20.95 
-20.64 
-21.28 
-21.29 
-21.45 
-21.08 
-21.14 
-21.08 
-22.30 
-22.25 
-22.07 
-22.11 
-20.71 
-22.28 
-21.19 
-21.19 
-21.35 
-21.03 
-20.96 
-20.91 
-21.22 
-21.11 
-21.20 
-21.35 
-20.71 

0.13 
0.16 
0.16 
0.15 
0.14 
0.14 
0.13 
0.13 
0.11 
0.13 
0.10 
0.11 
0.11 
0.12 
0.11 
0.14 
0.11 
0.13 
0.14 
0.14 
0.15 
0.14 
0.14 
0.13 
0.13 
0.12 
0.12 
0.13 

6.39 
5.55 
5.43 
5.36 
5.68 
5.64 
6.27 
5.95 
8.97 
6.55 
9.27 
8.70 
8.44 
8.58 
8.64 
7.23 
8.57 
7.28 
6.50 
8.27 
7.38 
7.31 
7.71 
7.32 
7.11 
8.60 
7.53 
7.36 
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1429C-10H-6W-57      
1429C-10H-6W-107     
1429C-10H-6W-147     
1429A-9H-1W-148 
1429A-9H-2W-107 
1429A-9H-2W-147 
1429A-9H-3W-57 
1429A-9H-3W-107 
1429A-9H-4W-147 
1429A-9H-5W-107 
1429A-9H-6W-57 
1429A-9H-6W-107 
1429B-10H-4W-57      
1429B-10H-4W-107     
1429B-10H-5W-57      
1429B-10H-5W-107      
1429A-10H-3W-57      
1429B-10H-6W-57      
1429A-10H-3W-147     
1429B-10H-6W-147     
1429A-10H-4W-57      
1429A-10H-4W-107     
1429A-10H-4W-147     
1429A-10H-5W-57      
1429A-10H-5W-107     
1429A-10H-5W-147     
1429B-11H-2W-107 
1429B-11H-3W-57 

71.07 
71.57 
71.97 
72.08 
73.17 
73.57 
74.17 
74.67 
76.57 
77.67 
78.67 
79.17 
81.26 
81.74 
82.70 
83.17 
83.67 
84.12 
84.57 
84.97 
85.17 
85.67 
86.07 
86.67 
87.17 
87.57 
88.37 
89.35 

139.47 
140.36 
140.98 
141.15 
142.84 
143.46 
144.39 
145.17 
148.12 
149.83 
151.38 
152.16 
155.51 
156.44 
158.32 
159.24 
160.22 
161.11 
161.98 
162.77 
163.15 
164.13 
164.91 
166.08 
167.06 
167.83 
169.39 
171.29 

14.61 
15.21 
17.41 
16.38 
12.78 
13.13 
9.68 
12.15 
11.95 
12.02 
12.32 
14.06 
15.86 
12.89 
11.99 
12.17 
17.49 
10.35 
22.19 
11.29 
20.07 
21.29 
18.25 
21.34 
18.91 
16.92 
12.74 
10.08 

1.45 
0.26 
2.03 
1.31 
1.40 
1.37 
1.28 
1.42 
1.29 
1.24 
1.19 
1.14 
1.18 
1.05 
1.03 
1.32 
1.50 
1.35 
1.90 
1.32 
1.87 
1.46 
1.37 
1.98 
1.91 
1.43 
1.51 
1.56 

-20.94 
-22.82 
-20.28 
-20.44 
-21.17 
-20.91 
-20.80 
-20.78 
-20.97 
-21.08 
-21.17 
-21.14 
-22.46 
-22.34 
-22.40 
-20.92 
-20.89 
-21.38 
-20.46 
-20.84 
-20.61 
-20.43 
-20.55 
-20.51 
-20.36 
-20.7 
-20.93 
-20.97 

0.13 
0.12 
0.12 
0.12 
0.13 
0.14 
0.13 
0.13 
0.13 
0.13 
0.12 
0.12 
0.11 
0.11 
0.11 
0.11 
0.13 
0.12 
0.14 
0.12 
0.14 
0.12 
0.11 
0.14 
0.15 
0.12 
0.12 
0.12 

7.67 
7.78 
7.87 
7.16 
7.24 
6.97 
7.18 
7.49 
7.13 
7.49 
7.20 
7.09 
8.70 
8.07 
9.08 
9.16 
6.62 
6.38 
6.95 
8.66 
7.01 
7.19 
7.07 
6.75 
6.86 
7.02 
8.22 
7.71 
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1429B-11H-3W-107 
1429B-11H-3W-147 
1429B-11H-4W-57 
1429B-11H-4W-107 
1429B-11H-4W-147 
1429B-11H-5W-57 
1429B-11H-5W-107 
1429B-11H-5W-147 
1429C-13H-2W-57 
1429B-11H-6W-57 
1429B-11H-6W-107 
1429B-11H-6W-147 
1429C-13H-2W-107 
1429C-13H-3W-57 
1429C-13H-2W-147 
1429C-13H-3W-107 
1429C-13H-3W-147 
1429C-13H-4W-57 
1429C-13H-4W-107 
1429C-13H-4W-147 
1429C-13H-5W-57 
1429C-13H-5W-107 
1429C-13H-5W-147 
1429C-13H-6W-57 
1429A-12H-1W-57      
1429C-13H-6W-107 
1429A-12H-1W-107     
1429A-12H-2W-57      

89.83 
90.22 
90.80 
91.29 
91.67 
92.25 
92.73 
93.09 
93.57 
93.67 
94.17 
94.55 
95.07 
95.07 
95.47 
95.57 
95.97 
96.57 
97.07 
97.47 
98.07 
98.57 
98.97 
99.57 
99.67 
100.07 
100.17 
101.17 

172.22 
172.97 
174.09 
174.94 
175.61 
176.62 
177.46 
178.10 
178.93 
179.10 
179.98 
180.65 
181.55 
181.55 
182.25 
182.43 
183.13 
184.18 
185.07 
186.07 
187.57 
188.81 
189.81 
191.31 
191.55 
192.55 
192.80 
195.29 

13.61 
14.59 
26.20 
27.90 
30.48 
31.30 
34.05 
24.68 
26.16 
27.87 
36.67 
41.37 
31.65 
26.32 
18.02 
13.88 
25.17 
20.58 
28.08 
28.32 
21.88 
23.07 
20.52 
2.46 
4.11 
29.44 
2.16 
3.07 

1.10 
1.88 
1.91 
1.97 
1.35 
1.41 
1.06 
1.60 
1.50 
1.60 
1.58 
1.83 
1.82 
1.25 
1.10 
1.37 
1.50 
1.73 
1.53 
1.72 
1.92 
1.71 
2.06 
1.65 
0.30 
1.85 
0.17 
0.16 

-20.95 
-20.86 
-20.76 
-21.16 
-21.51 
-21.45 
-21.36 
-21.55 
-21.18 
-21.31 
-21.13 
-21.09 
-21.01 
-20.99 
-21.36 
-22.06 
-21.37 
-21.07 
-20.83 
-21.22 
-21.26 
-20.51 
-21.22 
-20.77 
-22.64 
-21.15 
-23.68 
-23.46 

0.11 
0.13 
0.11 
0.10 
0.11 
0.11 
0.13 
0.12 
0.11 
0.13 
0.12 
0.13 
0.12 
0.11 
0.08 
0.09 
0.09 
0.12 
0.11 
0.10 
0.12 
0.11 
0.10 
0.03 
0.03 
0.12 
0.03 
0.02 

8.91 
8.11 
8.15 
8.52 
8.38 
8.85 
6.63 
6.83 
5.64 
6.68 
7.84 
5.70 
5.43 
6.83 
7.13 
9.26 
7.35 
6.45 
7.61 
6.00 
7.09 
6.11 
6.69 
13.40 
7.00 
7.49 
8.72 
9.46 



 176 

1429A-12H-2W-107     
1429A-12H-2W-147     
1429A-12H-3W-57      
1429A-12H-3W-107     
1429A-12H-4W-57      
1429A-12H-4W-107     
1429A-12H-4W-147     
1429A-12H-6W-57      
1429B-13H-4W-57      
1429B-13H-4W-107     
1429B-13H-5W-57      
1429B-13H-5W-107     
1429B-13H-5W-147     
1429B-13H-6W-57      
1429B-13H-6W-107     
1429B-13H-6W-147     
1429B-13H-7W-57      
1429A-13H-3W-57      
1429B-13H-7W-107     
1429A-13H-4W-57 
1429A-13H-4W-107     
1429A-13H-5W-57      
1429A-15H-1W-57      
1429A-15H-1W-107     
1429A-15H-2W-57      
1429A-15H-2W-147     
1429A-15H-3W-57      
1429A-15H-3W-107     

101.67 
102.07 
102.67 
103.17 
104.17 
104.67 
105.07 
107.17 
107.56 
108.04 
109.00 
109.48 
109.87 
110.44 
110.92 
111.31 
111.89 
112.17 
112.38 
113.67 
117.17 
118.17 
118.67 
119.17 
120.17 
121.07 
121.67 
122.17 

196.54 
197.54 
199.03 
200.28 
202.66 
203.83 
204.77 
209.69 
210.60 
211.72 
213.98 
215.10 
216.00 
217.33 
218.39 
219.23 
220.52 
221.13 
221.58 
224.42 
232.10 
234.30 
235.40 
236.50 
238.48 
240.21 
241.37 
242.00 

0.70 
5.45 
23.44 
25.74 
19.00 
17.70 
17.33 
16.64 
15.22 
10.66 
18.78 
19.60 
20.43 
19.04 
11.68 
2.37 
2.51 
22.51 
1.19 
3.70 
3.48 
2.25 
7.69 
13.96 
10.29 
12.22 
11.32 
12.88 

0.10 
0.28 
1.74 
1.92 
1.52 
1.35 
1.41 
1.60 
1.66 
2.16 
1.32 
1.34 
1.69 
1.75 
2.17 
2.14 
2.11 
1.32 
1.82 
0.33 
0.21 
0.10 
0.07 
1.27 
1.41 
1.62 
1.68 
1.33 

-24.74 
-23.15 
-21.51 
-20.95 
-21.35 
-21.15 
-21.06 
-21.16 
-21.58 
-21.77 
-22.26 
-22.15 
-21.27 
-21.34 
-21.27 
-21.27 
-21.62 
-21.49 
-21.70 
-23.10 
-23.24 
-23.72 
-23.81 
-21.34 
-21.05 
-20.98 
-21.07 
-21.28 

0.02 
0.03 
0.12 
0.13 
0.12 
0.11 
0.12 
0.13 
0.13 
0.15 
0.10 
0.11 
0.13 
0.12 
0.14 
0.14 
0.13 
0.12 
0.11 
0.04 
0.03 
0.02 
0.02 
0.13 
0.14 
0.16 
0.16 
0.13 

7.56 
5.41 
6.85 
7.18 
7.42 
6.93 
6.90 
6.65 
6.86 
6.13 
5.50 
7.83 
6.21 
5.18 
5.86 
6.36 
5.71 
7.32 
6.29 
5.82 
6.12 
6.53 
8.05 
7.47 
6.83 
6.78 
6.91 
6.58 
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1429A-15H-3W-147     
1429B-16H-2W-57      
1429B-16H-2W-107     
1429B-16H-3W-57      
1429B-16H-3W-107     
1429B-16H-4W-57      
1429C-18H-4W-107 
1429C-18H-4W-147 
1429C-18H-5W-57 
1429C-18H-5W-107 
1429C-18H-5W-148 
1429C-19H-3W-57 
1429C-19H-3W-107     
1429C-19H-3W-147     
1429C-19H-4W-57      
1429C-19H-4W-107     
1429C-19H-4W-147     
1429C-19H-5W-57 
1429C-19H-5W-107 
1429C-19H-5W-147 
1429C-19H-6W-57 
1429C-20H-3W-57 
1429C-20H-3W-107 
1429C-20H-3W-147 
1429A-18H-2W-107     
1429A-18H-3W-107     
1429A-20H-2W-57      
1429A-20H-2W-147     

122.57 
124.08 
124.58 
125.40 
125.90 
126.90 
130.27 
130.67 
131.27 
131.77 
132.18 
137.72 
138.22 
138.62 
139.22 
139.72 
140.12 
140.75 
141.25 
141.65 
142.25 
146.36 
146.86 
147.26 
149.17 
150.67 
159.67 
160.57 

242.00 
242.00 
242.00 
242.00 
242.00 
243.39 
252.48 
253.19 
254.25 
255.14 
255.87 
265.70 
266.59 
267.30 
268.36 
269.32 
270.24 
271.68 
272.82 
273.74 
275.11 
285.02 
286.55 
287.78 
293.63 
298.22 
325.78 
328.54 

11.32 
11.33 
10.96 
3.91 
12.28 
13.20 
16.51 
19.60 
6.34 
3.65 
15.70 
31.05 
31.66 
24.86 
28.38 
39.55 
27.51 
23.34 
28.53 
23.67 
23.45 
26.44 
34.92 
36.30 
2.76 
41.20 
10.13 
15.70 

1.35 
1.58 
1.26 
1.54 
1.71 
1.77 
1.28 
1.28 
0.81 
1.05 
1.41 
2.09 
1.67 
1.40 
1.30 
1.62 
1.26 
1.60 
1.36 
1.34 
1.62 
1.79 
1.19 
1.55 
0.13 
0.90 
0.69 
0.94 

-21.43 
-21.75 
-20.96 
-21.04 
-21.37 
-21.03 
-21.18 
-21.28 
-21.80 
-21.86 
-21.48 
-21.18 
-21.48 
-21.47 
-21.13 
-22.21 
-21.37 
-21.37 
-20.97 
-21.54 
-21.14 
-21.20 
-22.19 
-21.67 
-24.17 
-21.80 
-23.55 
-21.10 

0.14 
0.13 
0.13 
0.14 
0.15 
0.15 
0.11 
0.10 
0.08 
0.10 
0.12 
0.13 
0.11 
0.11 
0.09 
0.09 
0.09 
0.11 
0.09 
0.10 
0.11 
0.12 
0.08 
0.09 

 
0.06 
0.06 
0.11 

7.01 
3.59 
7.72 
5.72 
7.49 
7.58 
7.26 
7.57 
6.13 
8.55 
7.30 
6.94 
7.63 
5.50 
7.58 
6.68 
5.66 
7.12 
7.35 
5.46 
7.16 
6.49 
7.86 
7.40 

 
3.78 
6.44 
4.04 
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1429A-20H-3W-57      
1429A-20H-4W-57      
1429A-20H-4W-107     
1429A-21H-2W-57      
1429A-21H-2W-107     
1429A-21H-2W-147     
1429A-21H-3W-57      

 

161.17 
162.67 
163.17 
167.67 
168.17 
168.57 
169.17 

 

330.18 
334.13 
335.45 
347.29 
348.61 
349.66 
351.24 

 

19.81 
18.85 
17.47 
39.64 
33.33 
4.17 
41.17 

 

0.51 
0.93 
0.93 
2.20 
1.56 
0.31 
2.00 

 

-21.45 
-21.80 
-21.16 
-21.12 
-21.21 
-23.38 
-21.00 

 

0.10 
0.09 
0.10 
0.12 
0.10 
0.04 
0.10 

 

7.64 
7.59 
4.95 
4.77 
4.18 
8.10 
3.94 
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