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ABSTRACT OF THE DISSERTATION  

STUDY OF CHARGE CARRIER TRANSPORT IN GRAPHENE AND GRAPHITE AS 

TWO DIMENSIONAL AND QUASI-TWO DIMENSIONAL MATERIALS AND 

THEIR INTERFACES 

by 

Nalat Sornkhampan 

Florida International University, 2019 

Miami, Florida 

Professor Grover L. Larkins, Co-Major Professor 

Professor Jean H. Andrian, Co-Major Professor 

Evidence of superconductivity in phosphorous-doped graphite and graphene has 

been observed at temperatures in the vicinity of 260 K. This evidence includes transport 

current, magnetic susceptibility, Hall and Nernst measurements. All of these measurements 

indicate a transition of a type II superconductor without a phase of type I until below the 

limits of the measurement capabilities.  

Vortex states are inferred from periodically repeated steps in the R vs. T 

characteristics of Highly Oriented Pyrolytic Graphite and exfoliated doped multilayer 

graphene. The presence of vortices has been confirmed with thermal gradient driven Nernst 

measurements. Magnetic susceptibility measurements have shown results qualitatively 

similar to those expected (and experimentally observed by others) for ultra-thin films 
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(thickness ≪ the London penetration depth). The magnetic susceptibility is negative for 

field-cooled and zero-field-cooled measurements. The susceptibility for field-cooled and 

zero-field-cooled measurements begin to diverge at approximately 260 K. Hall effect 

measurements show a sign reversal in the Hall voltage as the temperature is reduced from 

300 K to 78 K. The Nernst effect confirms a Berezinskii-Kosterlitz-Thouless (BKT) vortex 

transition at 𝑇 ~ 40 K and several pinned vortices’ melting temperatures which correlate 

with the resistive measurements.  

Finally, in completeness, we have observed a charge BKT transition at 𝑇 ~ 4 K in 

both susceptibility and resistive measurements, and a vortex BKT transition in both the 

resistive, Nernst, and susceptibility measurements at 𝑇 ~ 40 K.  
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1.1. Introduction to Graphite and Graphene 

Graphite is a carbon polymorph found in metamorphic rocks. It is the most stable 

form of carbon under standard conditions for temperature and pressure (approximately 273 

Kelvin and 1 Bar) [1 – 4]. Graphite consists of layers of carbon atoms uniquely bonded 

together. Each carbon atom is covalently bonded to three other atoms in the same plane 

creating hexagonal rings of carbon atoms (honeycomb lattices) through the plane. Each 

atomic layer in graphite is also weakly bonded to its adjacent layers with the interlayer 

spacing of 3.35 Å [1 – 6]. The properties of graphite vary depending on the type of graphitic 

stacking sequences [8, 9]. Graphitic stacking refers to the way the carbon-bonded atomic 

layers are stacked, and there are four different types of stacking sequences that can occur 

in graphite: AAA stacking (simple hexagonal structure), ABA stacking (can be Bernal or 

orthorhombic structure), ABC stacking (rhombohedral structure), and turbostratic stacking 

(disordered structure).  

 

Figure 1.1: Graphite. Reprinted with permission from Chowdhury Al-Amin [11].  
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Figure 1.2: AAA, ABA, and ABC graphite stacking forms [20]. 

In nature, the composition of graphite is usually turbostratic. However, after 

graphitization (detail is in section 1.2), the composition happens to be approximately 85% 

Bernal ABA and 15% ABC, where AAA has only been observed in graphite intercalation 

compounds [19 – 26]. The most common stacking observed in graphite is the Bernal ABA, 

however orthorhombic ABA can be obtained by the shifting process in layer “B” of the 

Bernal ABA [19 – 21]. The force that bonds the carbon atomic layers in graphite together 

is a weak Van der Waals force [9, 27 – 29]. A monoatomic layer of graphite is known as 

“graphene” [5 – 7]. 

 

 Figure 1.3: Different stacking structures of graphite [19]. 

Graphene was successfully exfoliated for the first time at the University of 

Manchester in 2004 by A. K. Geim and K. S. Novoserov, the 2010 Nobel Laureates in 

physics for the “groundbreaking experiments regarding the two-dimensional material 



4 

 

graphene” [95, 96]. Since graphene is a monoatomic layer material, it is claimed by A. K. 

Geim and K. S. Novoserov to be the 2-dimensional (2D) allotrope of carbon. The carbon 

atoms in an atomic layer of graphite (graphene) are hexagonally bonded together in 2D 

space which creates honeycomb lattice structures. In detail, these honeycomb lattices are 

formed by the 𝑠𝑝2 hybridization of the 2𝑠, 2𝑝𝑥, and 2𝑝𝑦 orbitals with the lattice constant, 

𝑎0, (the distance between two bonded carbon atoms) of 1.42 Å and the angle between two 

bonds of 120° [9 – 12, 30]. 

  

(a) 

 

(b) 

Figure 1.4: (a) 𝒔, 𝒑𝒙, and 𝒑𝒚 orbitals. (b) 𝒔𝒑𝟐–hybridization. 

 

Figure 1.5: Graphene atomic structure [12]. 
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1.2. Highly Ordered Pyrolytic Graphite 

Pyrolytic graphite is a graphite material with a high degree of crystallographic 

orientation, obtained by graphitization (heat treatment) or by Chemical Vapor Deposition 

(CVD) at above 2,200 °C (2,473.15 K). Graphitization or CVD at above 3,000 °C (3,273.15 

K) results in Highly Ordered Pyrolytic Graphite (HOPG) [109]. HOPG is a high-purity 

form of pyrolytic graphite which has impurity level less than 10 parts per million (ppm).  

Graphitization is the formation of graphite by exposing turbostratic carbon to 

elevated temperatures over a long period of time. At elevated temperatures, carbon tends 

to migrate to the grain boundaries. The interlayer spacing of graphite and crystallite size 

also changes with temperature. When the graphitization temperature is between 1,500 °C 

and 2,000 °C (1,773.15 K and 2,273.15 K), the interlayer spacing of turbostratic carbon 

decreases sharply from approximately 3.5 Å to 3.4 Å. Eventually, the interlayer spacing 

approaches the graphitic interlayer spacing of 3.35 Å at a temperature above 3,000 °C 

(3,273.15 K). Thus, any amorphous carbon materials can be graphitized. [31 – 36] 
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Figure 1.6: A model of changes of carbon structure during graphitization [262]. 

In this dissertation, HOPG materials are used as experimental substrates and to 

exfoliate undoped and doped samples. The experimental HOPG materials with dimensions 

of 10 mm 𝘹 10 mm 𝘹 1.2 mm each were ordered from NT–MDT Spectrum Instruments 

Company and MikroMasch Inc. From Micromasch’s product specifications, HOPG has 

been categorized into three different grades of quality classified by the mosaicity, a 

measure of the arrangement of crystal lattices in a molecular plane, of materials. HOPG 

materials that have lesser angles of mosaic spread will be considered of a higher quality 

grade. Thus, the HOPG labeled as ZYA possesses the highest grade of quality, ZYB 

possesses the second highest grade of quality, and ZYH possesses the lowest grade of 

quality as shown in the Table 1.1. 
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  Table 1.1: HOPG grades of quality.  

Image courtesy of MikroMasch [37]. 

Grade 
Mosaic Spread 

Value Accuracy 

ZYA 0.4° ±0.1° 

ZYB 0.8° ±0.2° 

ZYH 3.5° ±1.5° 

 

 

 

Figure 1.7: HOPG 

1.3. Graphene and Graphite Thin Film 

Many reports and experiments have concluded that properties of graphene can be 

diverse depending on the number of layers in the graphene material. Therefore, the 

graphene community has distinguished intrinsic (undoped) graphene into 3 categories by 

the number of layers, which are single-layer graphene (SLG, 1 layer), bilayer graphene 

(BLG, 2 layers), and few-layer graphene (FLG, 3 to 9 layers) due to the properties they 

exhibit. A structure consisting of 10 or more layers of graphene is considered a graphite 

thin film since it essentially exhibits properties of graphite [9, 13 – 18]. 
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1.4. Properties of Graphene 

1.4.1. Physical and Mechanical Properties 

1.4.1.1. Lattice Structure 

The carbon atoms in graphene are covalently bonded into a honeycomb lattice with 

armchair and zigzag edges as shown in Figure 1.8. However, the honeycomb lattice is not 

a Bravais lattice (the lattice that can perfectly fill 2D or 3D space without opening or 

overlapping by the repetition of its own units) because it is formed by nonequivalent carbon 

atoms A and B [9, 38, 39].  

  

Figure 1.8: Nonequivalent carbon atoms A and B in a honeycomb lattice with 

armchair and zigzag edges. Reprinted with permission from S. -R. Eric Yang [40]. 

 

In section 1.1, 𝑎0 denotes the distance between two bonded carbon atoms with the 

length of 1.42 Å. Thus, a lattice spacing constant of graphene, 𝑎, will be equal to √3𝑎0 or 

~2.46 Å.  

In real space, the unit cell vectors 𝑎⃑1 and 𝑎⃑2 can be written as: 

      𝑎⃑1 = 𝑎(√3 2⁄  ,  1 2⁄ )    ,    𝑎⃑2 =  𝑎(√3 2⁄  ,  −1 2⁄ )    

and the nearest–neighbor vectors 𝛿1, 𝛿2, and 𝛿3 will be: 

𝛿1 = 𝑎(1 2√3⁄  ,  1 2⁄ )  ,  𝛿2 = 𝑎(1 2√3⁄  , −1 2⁄ )  ,  𝛿3 = 𝑎(−1 2√3⁄  , 0)   

In the reciprocal, the lattice vectors 𝑏⃑⃑1 and 𝑏⃑⃑2 can expressed as: 
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       𝑏⃑⃑1 = (1/𝑎)(2𝜋 √3⁄  , 2𝜋)     ,     𝑏⃑⃑2 = (1/𝑎)(2𝜋/√3  , −2𝜋)     

where Г, M, K, and K' represent high symmetry points in a reciprocal space [9]. 

                              
(a)                                                  (b) 

Figure 1.9: (a) Graphene lattice with unit cell vectors in a real space.  

(b) Graphene reciprocal lattice with reciprocal lattice vectors and high 

symmetry points in a reciprocal space. Reprinted with permission from Vitor 

M. Pereira, National University of Singapore [107, 108].  

  

1.4.1.2. Stress, Strain, and Melting Point 

Graphene was confirmed to be the hardest material, since its values of Young’s 

modulus (elastic modulus), 𝐸, third-order elastic stiffness, 𝐷, and intrinsic strength, 𝜎𝑖𝑛𝑡, 

reach 1.0 terapascals (TPa), –2.0 TPa, and 130 gigapascals (GPa) respectively. [9, 41, 44, 

45]. Other mechanical measurements of graphene also show that it has a tensile stress of 

42 N/m, and a fracture strain of 25% which means graphene can expand nearly 25% before 

failing [9, 41].  

In chemistry, graphene is a quasi-2D crystalline membrane which will become a 

3D liquid phase when it is melted. This was described in the theory of 2D melting of 

Kosterlitz, Thouless, Halperin, Nelson, and Young also known as the KTHNY theory [46, 

47]. With the intensive studies of the melting point of graphene, researchers and scientists 
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have concluded that an unambiguously defined bulk melting temperature, 𝑇𝑚, of graphene 

is 4510 K [47 – 49]. 

1.4.2. Chemical Properties 

Chemical reactions in the lattice structure of graphite have been tested and adapted 

in many purposes. However, moving from the 3D material of graphite to the 2D material 

of graphene, new avenues for chemistry emerge. Graphene is typically a 2D hexagonal 

array of carbon with 𝑠𝑝2 bonding, and this 𝑠𝑝2 bonding is a double bond of carbon atoms 

which is called a “carbon-carbon bond (C-C)”. With this bonding structure, graphene can 

be covalently or noncovalently functionalized with other chemicals to improve or change 

its properties [9]. 

1.4.2.1. Covalent Functionalization  

Covalent Functionalization of graphene is the breaking of 𝑠𝑝2 bonds of graphene 

using chemical reactions. For example, when graphene is hydrogenated, hydrogen atoms 

will covalently bond with carbon atoms of graphene and the bonding structure of the 

material will convert to 𝑠𝑝3. Since the chemical structure of graphene has been changed 

due to the hydrogenation, the hydrogenated graphene will be called “graphane” [9, 50]. 

The same chemical bonding can also occur when graphene is fluorinated. Carbon and 

fluorine atoms are covalently bonded through the exposure of graphene to atomic fluorine 

formed by decomposing xenon difluoride (𝑋𝑒𝐹2) at 70 °C. This covalent bonding forms 

another stoichiometric derivative of graphene called “fluorographene” [9, 51].  
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Figure 1.10: Schematic representation of the atomic structure of graphane and 

fluorographene. Image courtesy of GLOSSARY of NANO technology and related 

TERMS [52]. 

 

Oxidation is another way of covalent functionalization of materials in chemistry. 

The oxidization of graphite can form a compound of carbon, oxygen, and hydrogen in 

various ratios, and the chemical composition of fully oxidized graphite has been estimated 

to be 𝐶4𝑂(𝑂𝐻) [53]. The oxidized graphite is called “graphite oxide”, and when it is 

exfoliated into a single layer it will be called “graphene oxide (GO)”. Due to the 

dispersibility of graphite oxide, it is easy to exfoliate GO from graphite oxide using 

sonication in water [9, 54]. 

 
Figure 1.11: Chemical structure of graphene oxide. Image courtesy of The Green 

Optimistic [100]. 
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1.4.2.2. Noncovalent Functionalization 

Noncovalent Functionalization of graphene changes the properties of graphene by 

depositing or doping a graphite substrate with other chemicals without breaking its 𝑠𝑝2 

hybridization, then mechanically exfoliating the functionalized layers of the graphite 

substrate which can be chemically deposited or doped graphene. For example, negative 

type dopant such as boron and positive type dopant such as phosphorus can be deposited 

into HOPG substrates to shift the superconducting transition in 3D materials of graphite 

and the 2D materials of graphene [55 – 57]. 

1.4.3. Thermal Properties 

The measurement of thermal conductivity of graphene using the optothermal 

Raman technique was developed by Balandin et al. [74, 77]. The G mode (elongation of 

the C-C bond) shift decreases linearly from ~1,584 cm−1 at –200 °C to ~1,578 cm−1 at 

100 °C. The frequency shift of G mode as a function of temperature enables a Raman 

spectrometer to function as an optical thermometer which results in the measured thermal 

conductivity, 𝐾, of mechanically exfoliated graphene to be ~3,000 W/m∙K near room 

temperature (~298 K). Cai et al. [75]. also used Raman technique on CVD grown graphene. 

The result shows a value of 𝐾 is approximately equal to 2,500 W/m∙K near room 

temperature and 1,400 W/m∙K at 500 K [9, 74, 75]. 
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Figure 1.12: Optothermal Raman measurement technique. Reprinted with 

permission from A. A. Balandin et al [74]. 

 

Compared to other thermal conductors, graphene has higher thermal conductivity. 

Several studies have found that graphene has a high potential for heat conduction based on 

the size of the sample in the micrometer scale which contradicts Fourier’s law (the law of 

thermal conduction). In many experiments [74 – 77], the researchers found that the larger 

the segment of graphene, the more heat it could transfer. Theoretically, graphene could 

absorb heat with its thermal conductivity increases logarithmically. This could be because 

of the stable atomic bonding pattern of graphene as well as being a 2D material [78]. 
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Table 1.2: Thermal conductivities of materials/mediums at room temperature. 

Material/Medium Thermal conductivity, 𝑲, (W/m∙K) 

Aluminum 205 

Beryllium 218 

Brass 109 

Bronze 110 

Copper 401 

Diamond 1,000 

Gold 310 

Graphene [9] 
~2,500 (CVD grown) 

~3,000 (mechanically cleaved) 

Graphite 168 

Indium 86 

Iron 80 

Lithium 301 

Magnesium 156 

Mercury 8.3 

Oxygen 0.024 

Silver 429 

Stainless Steel 16 

Titanium 22 

Vacuum 0 

Water 0.58 

Zinc 116 
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1.4.4. Electronic Properties 

Graphene exhibits unique characteristics for electron transport and other electronic 

properties. In this section, the electronic properties of graphene such as the electronic band 

structure, quantum Hall effect, and fractional quantum Hall effect will be briefly explained.  

1.4.4.1. Electronic Band Structure 

Section 1.4.1.1. shows that the lattice structure of graphene is a hexagonal lattice 

formed by the 𝑠𝑝2 hybridization of nonequivalent carbon atoms in a 2D plane and each 

carbon atom is covalently bonded to the other three nearest neighbor atoms. Because of the 

honeycomb lattice formed by nonequivalent carbon atoms, A and B, it has been described 

as consisting of two triangular sublattices A and B. This sublattice description was first 

used in 1947 by P. L. Wallace to calculate the energy bands of the band structure of 

monolayer graphite [9, 58]. The energy bands of monolayer graphite can be derived as: 

𝐸±(𝑘𝑥, 𝑘𝑦) =  ±𝑡0√1 + 4𝑐𝑜𝑠2
𝑎0

2
𝑘𝑥 + 4𝑐𝑜𝑠

𝑎0

2
𝑘𝑥𝑐𝑜𝑠√3

𝑎0

2
𝑘𝑦 

where “+” applies to the upper band, “−” the lower band, 𝑡0 ≈ 2.7 𝑒𝑉 is the nearest 

neighbor hopping energy, 𝑎0 ≈ 2.46 Å is a lattice spacing constant of graphene, and 𝑘𝑥,𝑦 

is the 2D 𝑘-space [9, 59]. 

 

Figure 1.13: Sublattices of nonequivalent carbon atoms A and B in graphene. 
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The band structure of graphene exhibits valence and conduction bands intersecting 

at high symmetry points K and K' in the reciprocal space or 𝑘-space (𝑘𝑥, 𝑘𝑦). At the K and 

K' points, the electronic dispersion corresponds to massless relativistic particles (Dirac 

fermions) which means the charge carriers satisfy an equation of motion that has the same 

form as a relativistic wave equation (Dirac equation). Thus, K and K' are referred to as the 

charge neutrality points or “Dirac points” [9, 41, 79]. The coordinates in 𝑘-space of the 

Dirac points K and K' can be expressed as: 

    K = (1/𝑎0)(2𝜋 √3⁄  , 2𝜋/3)    and    K' = (1/𝑎0)(2𝜋/√3  , −2𝜋/3) 

             
Figure 1.14: The Coordinates in the 𝒌-space of the Dirac points K and K' [79]. 

 

Figure 1.15: Band Structure of graphene [79]. 
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1.4.4.2. Quantum Hall Effect 

The Quantum Hall Effect (QHE) or Integer Quantum Hall Effect (IQHE) is a 

quantum-mechanical version of the Hall effect. It can be observed in a thin layer or 2D 

electron systems near absolute zero temperature (0 K) in a strong magnetic flux density. In 

1980, von Klitzing found that the simple one-electron picture for the Hall effect of an ideal 

2D system in a strong magnetic flux density, 𝐵, leads to the correct value for the quantized 

Hall resistance at integer filling factors of the degenerate energy levels, the discrete set of 

energy levels of a particle that become equally spaced with the gap between each level 

proportional to the magnetic flux density, known as Landau Levels (LLs) [84]. The 

discovery of the QHE led von Klitzing to be awarded the Nobel prize in physics 1985 and 

to a new metrological standard.  

 

Figure 1.16: A heterostructure used for the Hall effect measurements. Reprinted 

with permission from Klaus von Klitzing, the 1985 Nobel Laureate in Physics [84]. 

 

The resistance quantum was designated as the von Klitzing constant which is: 

𝑅𝐾 =
ℎ

𝑒2 ≈ 25.813 kΩ 
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where ℎ ≈ 6.626 𝘹 10−34 m2kg/s is the Planck’s constant and 𝑒 ≈ 1.602 𝘹 10−19 C is the 

elementary electric charge. 

In the quantum state, the Hall resistivity 𝜌𝑥𝑦 and the longitudinal resistivity 𝜌𝑥𝑥 

exhibit interesting behavior as shown in Figure 1.16.  

When a strong magnetic flux density is applied at low temperature, 𝜌𝑥𝑦 exhibits 

quantized plateaus as: 

𝜌𝑥𝑦 =  
𝑅𝐾

𝑝
 

where 𝑝 is an integer. 

When 𝜌𝑥𝑦 is on a plateau, the longitudinal resistivity vanishes: 𝜌𝑥𝑥 = 0. This 

vanishing of 𝜌𝑥𝑥 results in a contrary conversion of a resistivity to a conductivity. Hence, 

the Hall conductivity and longitudinal conductivity can be expressed as: 

𝜎𝑥𝑦 =  
−𝜌𝑥𝑦

𝜌𝑥𝑥
2  + 𝜌𝑥𝑦

2           and          𝜎𝑥𝑥 =  
𝜌𝑥𝑥

𝜌𝑥𝑥
2  + 𝜌𝑥𝑦

2  

respectively [9, 41, 80 – 81]. 
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Figure 1.17: A graph of typical measurement of the IQHE. 

The data was obtained from 2-D electron gas in a GaAs/GaAlAs heterojunction at 

30 mK. Reprinted with permission from D. R. Leadley, University of Warwick 

(1997). 

 

In graphene, the observation of QHE shows an anomalous 2D electron system 

which leads to a new type of IQHE known as Unconventional Quantum Hall Effect 

(UQHE) or Quantum Anomalous Hall Effect (QAHE). UQHE exhibits an anomalous 

behavior with half-integer filling factors. The Hall conductivity of the UQHE in graphene 

is given by: 

𝜎𝑥𝑦 = ±(𝑖 +  
1

2
)

4𝑒2

ℎ
 

where 𝑖 is a nonnegative integer [85 – 87]. 
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Figure 1.18: A schematic of a Hall bar where 𝑽𝑳 = 𝑰 𝝈𝒙𝒙⁄  is the longitudinal voltage 

and 𝑽𝑯 = 𝑰 𝝈𝒙𝒚⁄  is the Hall voltage [106]. 

 

The work of Novoselov et al. [83]. also shows that the QHE in graphene can survive 

at high temperatures. The 𝜎𝑥𝑦 exhibits a set of quantized plateaus situated symmetrically 

due to the massless Dirac like nature of the charge carriers. The energy of Dirac fermions 

in quantized fields can be derived as: 

𝐸𝑁 =  √2𝑒𝐵ℏ𝑣𝐹
2|𝑝| 

where 𝐵 is a magnetic flux density, ℏ ≈ 6.582 𝘹 10−16 eV⋅s is the reduced Planck’s 

constant, 𝑣𝐹 ≈ 106 m/s is the Fermi velocity, and 𝑝 is an integer. 

Novoselov et al. have also made assumptions about their experiment that the factors 

which may help the QHE in graphene to survive at room temperature can be attributed to 

the large cyclotron gap, ℏ𝜔𝑐, characteristic to Dirac fermions in graphene, the mobility of 

Dirac fermions, 𝜇, does not chance from liquid-helium to room temperature [9, 41, 82, 83].  
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Figure 1.19: A graph of the integer quantum Hall effect in graphene. Reprinted with 

permission from Sir Konstantin Sergeevich Novoselov, the 2010 Nobel Laureate in 

Physics [82]. 

 

1.4.4.3. Fractional Quantum Hall Effect 

In a strong magnetic flux density, 𝐵, and at a temperature near absolute zero, 

electron gas in 2D system condenses into a quantum liquid state, and the Hall plateaus of 

this quantum liquid are corresponding to a fractional value of the filling factor, 𝑣, of the 

Hall resistivity as: 

𝜌𝑥𝑦 = 𝑅𝐻 =  
𝑅𝐾

𝑣
 

where 𝑣 is a fractional filling factor with the rational number of 𝑝/𝑞. 

  The fraction 𝑝/𝑞 will be defined as 𝑝 ≠ 𝑞 where 𝑝 is an integer and 𝑞 is an odd 

integer except for two factors 5/2 and 7/2. The discovery of a new form of quantum fluid 

with fractionally charged excitations led R. B. Laughlin, H. L. Störmer, and D. C. Tsui to 
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be awarded the 1998 Nobel prize in physics. Thus, the wavefunction of the ground state to 

describe the behavior of the quantum liquid for the original 1/3 effect was proposed by R. 

B. Laughlin as: 

Ѱ𝑞(𝑧1, 𝑧2, … , 𝑧𝑁) = ∏ (𝑧𝑗 − 𝑧𝑘)𝑞𝑒𝑥𝑝 [−
1

4ℓ𝐵
2 ∑|𝑧𝑗|

2
𝑁

𝑗

]

𝑁

𝑗<𝑘>

 

where 𝑞 is an odd integer, 𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 is the complex coordinate of the 𝑗𝑡ℎ particle, ℓ𝐵 =

√ℏ/𝑚𝜔𝑐 is the magnetic length, with 𝜔𝑐 = 𝑒𝐵/𝑚 is the cyclotron frequency, 𝑒 ≈

1.602 𝘹 10−19 C is the elementary electric charge, 𝐵 is a magnetic flux density, and 𝑚 ≈

9.109 𝘹 10−31 kg is the mass of an electron [88 – 90]. This counterintuitive physical 

phenomenal of the fractional Hall filling factors has been called a “Fractional Quantum 

Hall Effect (FQHE)”. 
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Figure 1.20: The results of the original experiment where the FQHE was discovered 

for filling factor v = 1/3. Reprinted with permission from Horst Ludwig Störmer, the 

1998 Nobel Laureate in Physics [91]. 

 

Figure 1.21: A graph of the FQHE where N is LL quantum number and v indicates 

values of filling factors. Reprinted with permission from Daniel Chee Tsui, the 1998 

Nobel Laureate in Physics [92]. 
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The FQHE depends upon the combined effects of the magnetic flux density and 

Coulomb interaction between electrons which require lower temperature, stronger 

magnetic flux density, and higher mobility compared to IQHE. In graphene, the variation 

of 𝜎𝑥𝑦 with respect to different values of filling factors, v, has been recorded as shown in 

the graph of Figure 1.20. 

 

Figure 1.22: Quantized Hall conductivity of graphene in FQHE for different filling 

factors [86]. 

 

In 2010, Dean et al. also observed features of the FQHE in graphene in which Hall 

plateaus appear at the filling factor 𝑣 = ±4(𝑛 +
1

2
) where 𝑛 = 0, 1, 2, … is the integer index 

of the LLs [93].  

For n = 0, the fractional filling factors, 𝑣 =
1

3
,

2

3
,  and 

4

3
.  

For n = 1, the fractional filling factors, 𝑣 =
7

3
,

8

3
,

10

3
,

11

3
,  and 

13

3
. 
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1.4.5. Magnetic Properties 

Graphene is a nonmetallic material containing no magnetic atoms. Magnetism in 

graphene comes from the local states caused by defects or molecular adsorption.  

1.4.5.1. Atomic Vacancies 

Vacancies of atoms are the most common type of intrinsic defect in a crystal lattice 

structure. In graphene, vacancies of carbon atoms alter the molecular symmetry of the 

honeycomb structure and induce magnetism [65 – 67]. The evidence of magnetism induced 

by point defects in graphene was reported in the works of Ugeda et al. that by removing 

some carbon atoms, magnetic moments will form near these atomic vacancies which 

induce magnetic properties in graphene [97, 98].  

Besides the vacancies of atoms, defects in graphene can also be created by external 

doping. By doping boron (B) and nitrogen (N) atoms into graphene, the atoms around the 

border regions of the hexagonally bonded honeycomb structure of graphene and boron 

nitride (BN) are localized and they are responsible for magnetism [68, 69]. 

Yazyev and Helm observed magnetism induced by the presence of quasi-localized 

defect states in the case of both defect types (vacancy and doping) [70]. The hydrogen 

chemisorption defect gives rise to the strong Stoner ferromagnetism [101 – 103] with a 

magnetic moment of 1 𝜇𝐵 per defect, and the vacancy defect gives 1.12 𝜇𝐵 to 1.53 𝜇𝐵 per 

defect depending on the defect concentration where 𝜇𝐵 =
𝑒ℏ

2𝑚
≈ 5.788 𝘹 10−5 eV/T is 

Bohr magneton; the natural unit for expressing the magnetic moment of an electron (an 

electron has intrinsic magnetic moment approximately 1 Bohr magneton) [94]. 
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(a)                                                                       (b) 

Figure 1.23: (a) hydrogen chemisorption defect represented by Δ. (b) the vacancy 

defect. Reprinted with permission from Prof. Yazyev Oleg, Ecole Polytechnique 

Federale de Lausanne [70]. 

 

1.4.5.2. Molecular Absorption 

The remarkable results of magnetism in graphene are present when hydrogen atoms 

are absorbed onto the surface of graphene [72]. The absorption leads to magnetic moments 

on neighboring carbon atoms, and spin-polarized states are mainly localized around the 

adsorptive hydrogen [104, 105]. 

Theoretically, if a hydrogen atom is absorbed onto the surface of graphene, it can 

induce a magnetic moment to the surface due to its magnetic properties [99]. However, 

when hydrogen atoms are absorbed by nonequivalent carbon atoms in the different 

sublattices, the magnetic moments induced by hydrogen atoms of sublattices A and B will 

repeal each other which results the hydrogen absorbed graphene to lose its magnetic 

moment. On the other hand, if hydrogen atoms are absorbed by the carbon atoms in the 
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same sublattice, the magnetic moments of absorbed hydrogen atoms will be added [69 – 

72]. 

  
(a) 

 
(b) 

     
(c) 

  
(d) 

Figure 1.24: (a) A hydrogen atom.  

(b) Graphene honeycomb lattice structure. 

(c) An absorbed hydrogen atom induces a magnetic moment on graphene. 

(d) The magnetic moments are added when hydrogen atoms are absorbed 

in the same sublattice. Reprinted with permission from Ivan Brihuega, 

Associate Professor, Universidad Autónoma de Madrid [73]. 
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1.4.6. Spintronic Properties 

1.4.6.1. Introduction to Spintronics 

Spintronics or spin-electronics is advanced electronics that aims to exploit the spin 

of electrons. The spin of electrons is an intrinsic property of electrons which creates a 

quantum phenomenon known as a spin angular momentum of electrons, 𝑆, given by: 

𝑆 =  √𝑠(𝑠 + 1)ℏ 

where 𝑠 =
1

2
 is a spin quantum number and ℏ =

ℎ

2𝜋
≈ 6.582 𝘹 10−16 eV⋅s is the reduced 

Planck’s constant. And the spin magnetic dipole moment, 𝜇𝑠, can be expressed as: 

𝜇𝑠 = 𝑔𝜇𝐵𝑆 

where 𝑔 = −2 is a dimensionless magnetic moment quantity of electron known as “Landé 

𝑔-factor” and 𝜇𝐵 =
𝑒ℏ

2𝑚
≈ 5.788 𝘹 10−5 eV/T is Bohr magneton where 𝑒 ≈ 1.602 𝘹 10−19 

C is the elementary electric charge and 𝑚 ≈ 9.109 𝘹 10−31 kg is the mass of an electron 

[42]. 

The relationship between 𝜇𝑠 and the magnetic flux density generated by the relative 

motion of the electron and the nucleus, 𝐵, can be defined by the change of energy equation:  

∆𝐸 =  −𝜇𝑠 ∙ 𝐵 

A change of energy in the spin of electron occurs because 𝐵 creates a spin torque 

that rotates 𝜇𝑠 as shown in Figure 1.23. 
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Figure 1.25: A spin torque acting on 𝝁𝒔 created by 𝑩.  

The spin torque can be calculated as: 

𝜏 =  𝜇𝑠 𝘹 𝐵  

While 𝐵 is proportional to the angular momentum of a particle, 𝐿, and 𝜇𝑠 is 

proportional to 𝑆, the change of energy equation can be rewritten as:  

∆𝐸 ∝ 𝑆 ∙ 𝐿 

where the relationship between 𝑆 and 𝐿 is call the “spin-orbit interaction” [61, 62]. 

Because 𝜇𝑠 can be affected by 𝐵, spintronics engineers attempt to manipulate the 

spins of electrons in materials by applying an external magnetic field to spintronic devices. 

When electrons move through a nonmagnetic medium, they will exhibit random spins. 

However, the spins can be aligned up or down according to the direction of the applied 

magnetic field. In solid state materials, the spins might be aligned in an orderly fashion on 

a crystal lattice forming a nonmagnetic material. Or the spins may be on a lattice and be 

aligned as a magnetic material [42, 43]. 
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 (a)                                                                     (b) 

 
(c)                                                                    (d) 

Figure 1.26: (a) Random spin; electrons spin randomly in a material.  

(b) Spin alignment; electronic spins are aligned by an external magnetic field. 

(c) Unmagnetized; spins are located orderly in an unmagnetized solid state material. 

(d) Magnetized; spins are located orderly and aligned in a magnetized solid-state     

material [43]. 

 

1.4.6.2. Spintronic Properties of Graphene 

Since the exfoliation of graphene was achieved, there have been many reports and 

experiments in the field of graphene spintronics. Many investigations conclude that 

graphene has the potential to be a promising material for spintronics due to its remarkable 

electronic spin properties such low intrinsic spin-orbit interaction which causes graphene 
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to have a longer period of electron spin lifetimes compared to other materials [9, 63, 64] as 

shown in Table 1.3.  

Table 1.3: Spin-dependent properties of graphene, metals, and semiconductor 

measured by spin valve measurements. Reprinted with permission from Fabian 

Jaroslav [64]. 

 

There are also reports of spin injection and transport in graphene with 

ferromagnetic electrodes in the non-local geometry. Depending on the interface between 

graphene and the electrodes, the interfacial contacts can be categorized into three classes: 

pinhole contacts, transparent contacts, and tunneling contacts. The interface between 

graphene and ferromagnetic electrodes can also be used to measure the local 

magnetoresistance, the difference in the resistance between the magnetization alignments 

of two electrodes, which is a sign of spin transport [64]. 
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1.5. Tables of Symbols and Acronyms  

Table 1.4: Table of Symbols. 

Symbols Description Value 

𝑎0 
The distance between two covalently bonded 

carbon atoms in graphene. 
1.42 Å 

𝑎 The lattice spacing constant of graphene. √3𝑎0 

𝑎⃑1 A unit cell vector of graphene. 𝑎(√3 2⁄  ,  1 2⁄ )     

𝑎⃑2 A unit cell vector of graphene. 𝑎(√3 2⁄  ,  −1 2⁄ )    

𝛿1 A nearest-neighbor vector of graphene. 𝑎(1 2√3⁄  ,  1 2⁄ ) 

𝛿2 A nearest-neighbor vector of graphene. 𝑎(1 2√3⁄  , −1 2⁄ )   

𝛿3 A nearest-neighbor vector of graphene. 𝑎(−1 2√3⁄  , 0) 

𝑏⃑⃑1 A reciprocal lattice vector of graphene (1/𝑎)(2𝜋 √3⁄  , 2𝜋)   

𝑏⃑⃑2 A reciprocal lattice vector of graphene (1/𝑎)(2𝜋/√3  , −2𝜋) 

Г 
A high symmetry point in the reciprocal space 

of graphene. 
– 

M 
A high symmetry point in the reciprocal space 

of graphene. 
– 

K 
A high symmetry point in the reciprocal space 

of graphene. 
(

1

𝑎0
)(

2𝜋

√3
 ,

2𝜋

3
) 

K' 
A high symmetry point in the reciprocal space 

of graphene. 
(

1

𝑎0
)(

2𝜋

√3
 ,

−2𝜋

3
) 

𝐸 Young’s modulus. – 

𝐷 Third-order elastic stiffness. – 

𝜎𝑖𝑛𝑡 Intrinsic strength. – 

Tm Melting temperature. – 

𝑋𝑒𝐹2 Xenon difluoride. – 

𝐶4𝑂(𝑂𝐻) 
The chemical composition of fully oxidized 

graphite. 
– 

𝐾 Thermal conductivity. – 

𝑅𝐾 von Klitzing constant. 25.813 kΩ 
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ℎ The Planck’s constant. ≈ 6.626 𝘹 10−34 m2kg/s 

𝑒 The elementary electric charge. ≈ 1.602 𝘹 10−19 C 

𝜌𝑥𝑦 Hall resistivity. – 

𝜌𝑥𝑥 Longitudinal resistivity. – 

𝜎𝑥𝑦 Hall conductivity. – 

𝜎𝑥𝑥 Longitudinal Conductivity. – 

𝑝 An integer. …, –2, –1, 0, 1, 2, … 

𝑖 A nonnegative integer. 0, 1, 2, 3, … 

𝐸𝑁 
The energy of Dirac fermions in quantized 

fields. 
– 

𝐵 Magnetic flux density. – 

ℏ The reduced Planck’s constant. ≈ 6.582 𝘹 10−16 eV⋅s 

𝑣𝐹 The Fermi velocity. ≈ 106 m/s 

ℏ𝜔𝑐 Cyclotron gap. – 

𝜇 The mobility of Dirac fermions. – 

𝑅𝐻 Hall resistivity. – 

𝑣 A fractional filling factor (a rational number). – 

𝑞 An odd integer. …, –5, –3, –1, 1, 3, 5, … 

Ѱ𝑞 The quantum liquid wavefunction. – 

ℓ𝐵 Magnetic length. – 

𝜔𝑐 Cyclotron frequency. – 

𝑚 The mass of an electron. ≈ 9.109 𝘹 10−31 kg 

𝑛 Index of Landau Levels. 0, 1, 2, … 

𝜇𝐵 Bohr magneton. ≈ 5.788 𝘹 10−5 eV/T 

𝑆 A spin angular momentum of electrons. – 

𝑠 A spin quantum number. 1/2 

𝜇𝑠 Spin magnetic dipole moment. – 

𝑔 A dimensionless magnetic moment quantity 

of electron known as “Landé 𝑔-factor”. 
–2 
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∆𝐸 A change of energy in the spin of electron – 

𝜏 Spin torque. – 

𝐿 The angular momentum of a particle. – 

 

Table 1.5: Table of Acronyms. 

Acronym Description 

2D 2-dimensional 

3D 3-dimensional 

B Boron 

BLG Bilayer graphene 

BN Boron nitride 

C-C Carbon-carbon 

CVD Chemical Vapor Deposition 

FLG Few-layer graphene 

FQHE Fractional Quantum Hall Effect 

GO Graphene oxide 

HOPG Highly Ordered Pyrolytic Graphite 

IQHE Integer Quantum Hall Effect 

KTHNY Kosterlitz, Thouless, Halperin, Nelson, and Young 

LLs Landau Levels 

N Nitrogen 

QHE Quantum Hall Effect 

SLG Single-layer graphene 

UQHE Unconventional Quantum Hall Effect 
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Chapter 2 

Superconductivity 
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2.1. Introduction to Superconductivity 

Superconductivity is a phenomenon of the disappearance of electrical resistance 

and magnetic field in a material when the material reaches its critical temperature, 𝑇𝑐, and 

critical magnetic field, 𝐻𝑐. When a material exhibits its superconducting state, it is called 

a “superconductor”. 

Superconductivity was discovered in 1911 by a Dutch physicist H. K. Onnes, the 

1913 Nobel Laureate in Physics, while he was working on the cryogenics of mercury. 

When mercury was cooled by liquid helium, at 4.2 K, its electrical resistance abruptly drops 

from 0.002 Ω to a millionth part as shown in Figure 2.1 [117].  

 
Figure 2.1: A graph of the electrical resistance of mercury, the resistance abruptly 

drops to zero at 4.2 Kelvin [117]. 

 

Since the first superconductor was discovered, many elements have been tested for 

superconductivity and a number of effects have been discovered and theory proposed. For 

example, if a superconducting material is placed on a magnet which has a magnetic field 
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lower than 𝐻𝑐 of the material, a repulsive force will levitate to a height where the force of 

repulsion balances its weight. This phenomenon of levitation is a proof of near-perfect 

diamagnetism in superconductors which is called the “Meissner Effect” [112]. 

2.2. Meissner Effect 

The Meissner effect or Meissner-Ochsenfeld effect is a quantum phenomenon 

where all magnetic fields penetrating through a material are repelled when the material 

reaches its superconducting state. The effect was named after the German physicists W. 

Meissner and R. Ochsenfeld who discovered this phenomenon in 1933. 

When the temperature, 𝑇, of a material is lowered to the critical temperature, 𝑇𝑐, 

the material will reach its superconducting state. In that state, the interior magnetic field in 

the material will decrease, on the other hand, the exterior magnetic field will increase. If 

the interior field is completely repelled, the exterior field will increase to the maximum due 

to the conservation law of magnetic flux. The Meissner effect shows that a superconductor 

will not allow magnetic fields to easily penetrate through it. That is because the 

microscopic magnetic dipoles induced in a superconductor will oppose the applied 

magnetic field, 𝐻, with the magnetic flux density, 𝐵. Therefore, beside a perfect conductor, 

a superconductor is also said to be a “perfect diamagnetic material” [110, 111].  

Since a superconductor is also a perfect diamagnetic material, if a superconductor 

is placed in a magnetic field, the magnetic field will be repelled by the diamagnetic property 

of the superconductor causing a repulsive force that will trap the superconductor into the 

air. This phenomenon is known as the “Meissner levitation”. 
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Figure 2.2: The Meissner effect [115]. 

If a small magnet is placed on a superconductor, the magnet will be lifted by the 

repulsive force produced by the induced supercurrents in the superconductor. The induced 

supercurrents will act as mirror images of the magnetic poles of the magnet and repel the 

magnetic field away from the superconductor [116]. 

 

Figure 2.3: A permanent magnet is levitated by the repulsive force produced by the 

induced supercurrents in a superconductor where N and S represent magnetic 

north and south poles respectively. Reprinted with permission from Rod Nave, 

Georgia State University [116]. 
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Figure 2.4: A permanent magnet is levitated over liquid nitrogen-cooled Yttrium 

Barium Copper Oxide (YBCO). 

 

2.3. Theories of Superconductivity 

2.3.1. London Theory 

In 1935, “the electromagnetic equations of the supraconductor” were proposed by 

F. London and H. London to describe the electromagnetic behavior of superconductors 

where Ohm’s law of normal current density, 𝑗𝑛, is replaced by supercurrent density, 𝑗𝑠 

[113]. In the standard Drude “free electron gas” model [134], normal electrical 

conductivity is defined as: 

𝜎𝑛 =
𝑒2𝑛𝑛𝜏

𝑚
 

where 𝑒 is the elementary electric charge, 𝑛𝑛 is the number of free electrons per unit 

volume of a normal conductor, 𝜏 is the mean free time between electron collision which is 

also known as relaxation time, and 𝑚 is the mass of an electron. The Drude model results 

a linear relationship between normal current density, 𝑗𝑛, and an electric field, 𝐸, as: 
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𝑗𝑛 =  𝜎𝑛𝐸 = (
𝑒2𝑛𝑛𝜏

𝑚
) 𝐸 =  −𝑛𝑛𝑣𝑛𝑒 

where 𝑣𝑛 is the velocity of electrons in a normal conductor [118, 119]. 

In a superconductor, F. and H. London assumed 𝜏 to be infinite, since the electrical 

resistance in a superconductor is proved to be zero (no collision). Then, when a normal 

conductor reaches its superconducting state, the normal current density is replaced by the 

supercurrent density which can be defined as: 

𝑗𝑠 = −𝑛𝑠𝑣𝑠𝑒 

By applying Newton’s classical equation of motion to the electrons, the electric 

force in a superconductor will be: 

𝐹𝑠 = 𝑚
𝑑𝑣𝑠

𝑑𝑡
= −𝑒𝐸 

where 𝑣𝑠 is the velocity of the electrons in the superconductor. 

 This classical equation of motion was used to derive the first London equation:  

𝑑𝑣𝑠

𝑑𝑡
 = −

𝑒𝐸

𝑚
 

The total derivative and the partial derivative of the velocity of electrons in a 

superconductor can be interchangeably employed as: 

𝑑𝑣𝑠

𝑑𝑡
 =  

𝜕𝑣𝑠

𝜕𝑡
+ (𝑣𝑠 ∙ ∇)𝑣𝑠 

where ∇ = 𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
 is the differential operation and (𝑣𝑠 ∙ ∇)𝑣𝑠 is the appearance 

of a non-linear term which will vanish if the superconducting system is symmetry [112]. 

Thus, the “first London equation” is obtained: 

𝜕𝑗𝑠

𝜕𝑡
 = −𝑛𝑠𝑒

𝜕𝑣𝑠

𝜕𝑡
 =  

𝑒2𝑛𝑠𝐸

𝑚
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where 𝑛𝑠 is the number of free electrons per unit volume of a superconductor [110 – 112]. 

 The second London equation is derived by taking the curl of the first London 

equation together with taking Maxwell’s equation into account as: 

∇ 𝘹 (
𝜕𝑗𝑠

𝜕𝑡
) = ∇ 𝘹 (

𝑒2𝑛𝑠𝐸

𝑚
) =  

𝑒2𝑛𝑠(∇ 𝘹𝐸)

𝑚
 

From Maxwell’s equation (∇ 𝘹𝐸) = − (
𝜕𝐵

𝜕𝑡
), the equation can be derived as: 

𝑒2𝑛𝑠(∇ 𝘹𝐸)

𝑚
= −

𝑒2𝑛𝑠

𝑚
(

𝜕𝐵

𝜕𝑡
) = −

1

𝜇0𝜆𝐿
2 (

𝜕𝐵

𝜕𝑡
) 

where 𝐵 is a magnetic flux density, 𝜇0 = 4𝜋 𝘹 10−7 Henries per meter (H/m) is the 

magnetic permeability in free space, and 𝜆𝐿 =  √𝑚𝑐2 4𝜋𝑛𝑠𝑒2⁄  is the London penetration 

depth. Therefore, the “second London equation” can be expressed as: 

∇ 𝘹 𝑗𝑠 = −
1

𝜇0𝜆𝐿
2 𝐵 = −

𝑐

4𝜋𝜆𝐿
2 𝐵 

where 𝑐 ≈ 3 𝘹 108 m/s is the speed of light measured in a vacuum. 

In a superconductor, 𝐸 does not change quickly, the fourth Maxwell’s equation will 

be:  

∇ 𝘹 𝐵 =  
4𝜋

𝑐
𝑗𝑠 

 By using the vector relation: 

∇ 𝘹 (∇ 𝘹 𝐵) = ∇ (∇ · 𝐵) − ∇2𝐵 = ∇ 𝘹 (
4𝜋

𝑐
𝑗𝑠) 

where (∇ · 𝐵) = 0 because of the nonexistence of the magnetic monopole by the definition 

of the second Maxwell’s equation [111, 112]. Therefore: 

∇ 𝘹 
4𝜋

𝑐
𝑗𝑠 =  −∇2𝐵 = −

4𝜋𝑛𝑠𝑒2

𝑚𝑐2
𝐵 
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−∇ 𝘹 
4𝜋

𝑐
𝑗𝑠 = ∇2𝐵 =

1

𝜆𝐿
2 𝐵 

The equation that determines the spatial variation of 𝐵 is: 

∇2𝐵 −
𝐵

𝜆𝐿
2 = 0 

and the equation that determines the spatial variation of 𝑗𝑠 is: 

∇2𝑗𝑠 −
𝑗𝑠

𝜆𝐿
2 = 0 

2.3.2. Ginzburg-Landau Theory 

In 1950, V. L. Ginzburg and L. D. Landau proposed a theory which introduced a 

pseudo-wave function order parameter, 𝜓, and other parameters of superconductors. Thus, 

the theory was named after them as Ginzburg-Landau (GL) theory. According to the GL 

theory, the numbers of electrons, 𝑛𝑠, in a superconductor can be described as:  

𝑛𝑠 = |𝜓|2 

and the free energy density of a material in a superconducting state can be written in a 

Taylor series as:  

𝑓𝑠 =  𝑓𝑛 + 𝛼|𝜓|2 +
1

2
𝛽|𝜓|4 + ⋯ 

where 𝑓𝑛 is the free energy density of a material in a normal state, 𝛼 is the coefficient of 

superconducting pair density which is proportional to |𝜓|2, and 𝛽 is the coefficient of pair 

interaction term which is proportional to |𝜓|4 [120]. 

 This form of free energy density can be fully expanded as a function of magnetic 

flux density when 𝐵 ≠ 0 as: 

𝑓𝑠(𝐵) = 𝑓𝑛(𝐵) +  𝛼|𝜓|2 +
1

2
𝛽|𝜓|4 +

1

2𝑚
|(−𝑖ℏ∇ − 𝑒𝐴)𝜓|2 +

𝐵2

2𝜇0
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where 𝐴 is the magnetic vector potential of 𝐵 which can be defined as 𝐵 = ∇ 𝘹 𝐴. 

 In a superconducting state, 𝐵 can be considered as zero which makes the surface 

kinetic energy density, 
1

2𝑚
|(−𝑖ℏ∇ − 𝑒𝐴)𝜓|2, and the magnetic energy, 

𝐵2

2𝜇0
, negligible 

[112, 121]. Therefore, the total free energy density can be simply described as: 

𝑓 = 𝑓𝑠 − 𝑓𝑛 = 𝛼|𝜓|2 +
1

2
𝛽|𝜓|4 

The equation can be minimized by setting the derivative of 𝑓 with respect to |𝜓| to 

be equal to zero as: 

𝜕𝑓

𝜕|𝜓|
= (2𝛼|𝜓| +

4

2
𝛽|𝜓|3) = 2|𝜓|(𝛼 + 𝛽|𝜓|2) = 0 

Thus, |𝜓| can be determined as |𝜓| = 0 when 𝑇 > 𝑇𝑐 (normal state) and |𝜓| =

√−
𝛼

𝛽
 when 𝑇 < 𝑇𝑐 (superconducting state) [121]. 

 In a superconducting state of a material when 𝑇 < 𝑇𝑐 where |𝜓| ≠ 0, it indicates 

that 𝛽 > 0 and 𝛼 < 0. 

 To find the minimum free energy density, the value of |𝜓| = √−
𝛼

𝛽
 is substituted 

into the free energy equation as:  

𝑓𝑚𝑖𝑛 = (𝑓𝑠 − 𝑓𝑛)𝑚𝑖𝑛 = 𝛼 (√−
𝛼

𝛽
)

2

+
1

2
𝛽 (√−

𝛼

𝛽
)

4

= −
𝛼2

2𝛽
 

 The free energy density of a superconductor, 𝑓𝑠, can also be determined by 

subtracting the magnetic field energy of a superconductor, 
𝐵𝑐

2

2𝜇0
, from 𝑓𝑛 as: 

𝑓𝑠 = 𝑓𝑛 −
𝐵𝑐

2

2𝜇0
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where 𝐵𝑐 is the critical magnetic flux density of the material and 𝜇0 is the magnetic 

permeability in free space. This leads to: 

𝐵𝑐
2

2𝜇0
=

𝛼2

2𝛽
 

𝐵𝑐 = √
𝜇0𝛼2

𝛽
 

 From the equation 𝑛𝑠 = |𝜓|2, the London penetration depth can be rewritten as: 

𝜆𝐿 =  √
𝑚𝑐2

4𝜋𝑒2|𝜓|2 = √
𝑚𝛽

𝜇0𝑒2𝛼2  

 If the surface kinetic energy density and the magnetic field energy are taken into 

account, the derivative of the full form of free energy density equation: 

𝑓𝑠(𝐵) = 𝑓𝑛(𝐵) +  𝛼|𝜓|2 +
1

2
𝛽|𝜓|4 +

1

2𝑚
|(−𝑖ℏ∇ − 𝑒𝐴)𝜓|2 +

𝐵2

2𝜇0
, 

can be minimized as: 

𝜕𝑓𝑠(𝐵)

𝜕|𝜓|
= 𝛼|𝜓| + 𝛽|𝜓|3 +

1

2𝑚
(−𝑖ℏ∇ − 2𝑒𝐴)2𝜓 = 0 

where 
1

2𝑚
(−𝑖ℏ∇ − 2𝑒𝐴)2𝜓 is the minimized surface kinetic energy density.  

When 𝐵 = 0, hence 𝐴 = 0, the minimized surface kinetic energy density equation 

can be written as 
−ℏ2𝜓

2𝑚
. 

 The surface kinetic energy density of a superconductor can develop over a certain 

length in space, 𝑥, therefore the changes of the surface kinetic energy density of a 

superconductor can be calculated by taking the second derivative of 𝜓 of the minimized 

surface kinetic energy density term with respect to a certain length in space, then the total 

free energy density at 𝐵 = 0 can be minimized as: 
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𝜕𝑓𝑠(0)

𝜕|𝜓|
= 𝛼|𝜓| + 𝛽|𝜓|3 −

ℏ2

2𝑚
∙

𝑑2𝜓

𝑑𝑥2
= 0 

 If the function of free energy density which corresponds to 𝑥 is introduced as 

𝑓(𝑥) =
𝜓

𝜓∞
, then the minimized free energy density equation can be rewritten as: 

𝛼𝜓∞𝑓(𝑥) + 𝛽𝜓∞
3 𝑓3(𝑥) −

𝜓∞ℏ2

2𝑚
∙

𝑑2𝑓(𝑥)

𝑑𝑥2
= 0 

where 𝜓∞ is the pseudo-wave function in a superconductor which approaches an infinite 

value. 

 In a superconducting state, where 𝛼 < 0, the pseudo-wave function will be:  

𝜓∞ = √𝑛𝑠 = |𝜓| = √−
𝛼

𝛽
 

where −
𝛼

𝛽
> 0, and the minimized free energy density equation will be: 

𝑓(𝑥) − 𝑓3(𝑥) −
ℏ2

2𝑚𝛼
∙

𝑑2𝑓(𝑥)

𝑑𝑥2
= 0 

where −
ℏ2

2𝑚𝛼
=

ℏ2

2𝑚|𝛼|
= 𝜉𝐺𝐿

2  which 𝜉𝐺𝐿 is the GL coherence length [122]. The ratio between 

the London penetration depth and the GL coherence length is called the GL parameter, 𝜅, 

where 𝜅 is given as: 

𝜅 =
𝜆𝐿

𝜉𝐺𝐿
 

2.3.3. Bardeen-Cooper-Schrieffer Theory 

The Bardeen-Cooper-Schrieffer theory is commonly known as BCS theory. It was 

proposed by J. Bardeen, L. N. Cooper, and J. R. Schrieffer who jointly received the Nobel 

Prize in Physics 1972 for their theory of superconductivity [123 – 125]. 
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2.3.3.1. Cooper Pairs 

In 1956, L. N. Cooper proposed that two electrons in a metal bound together by a 

small attraction at low temperatures [128]. While an electron is passing through the lattices 

of a conductor, the electron is attracting the lattices because the electron possesses a 

negative charge which will attract the positive charges from the lattices described by the 

Coulomb’s law of charges [126]. When the lattices are attracted by the electron, they are 

distorted from their origins. This distortion of the lattices or “virtual” phonon creates a 

region of positive charge which can attract electrons. This interaction of the electron and 

the virtual phonon is called an “electron-phonon interaction”, and the phonon created by 

the distortion of the lattices may be referred as a virtual phonon because it is localized and 

does not propagate through the lattice like a wave. Due to the Pauli exclusion principle 

which describes that two or more identical Fermions cannot occupy the same quantum 

state, therefore only one electron which is drawn by the phonon will have a weak bond to 

the first electron that attracts the lattices, and the two electrons will have different spin 

states. A pair of the two electrons formed by the weak bond between them is called a 

“Cooper pair” [127]. 
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(a)                                                         (b) 

Figure 2.5: (a) Lattices of a conductor are attracted by an electron creating a phonon 

(red region). (b) Another electron is drawn by the phonon forming a Cooper pair 

[127]. 

 

In general, electrons are not attracted to each other. The weak bond between two 

electrons in a Cooper pair is a phonon which constitutes a coupling between two electrons 

known as electron-electron (e-e) interaction depicted by a Feynman diagram as shown in 

Figure 2.6. 

  
Figure 2.6: A Feynman diagram showing the e-e interaction of a Cooper pair. 

 

Consider an example where the energy of the phonon bond of the two electrons in 

a Cooper pair is approximately 10−3 eV, therefore thermodynamic energy can easily break 

the bond of a Cooper pair when the temperature of the conductor is too high (𝑇 > 𝑇𝑐). 

According to the formula of energy 𝐸 = 𝑘𝐵𝑇 where 𝑘𝐵 ≈ 8.62 𝘹 10−5 eV/K is 

Boltzmann’s constant, if the thermodynamic energy in the conductor should not be greater 
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than 10−3 eV in order to keep the bonding of Cooper pairs, then the temperature of the 

conductor must be equal to or below 11.6 K. Thus, Cooper pairs can be formed at any 

temperature, but they can only continue to exist when the thermodynamic energy is below 

the pair breaking value. This occurs when the thermal energy is below 11.6 K in this work 

[127 – 129]. 

2.3.3.2. Microscopic Theory of Superconductivity 

In quantum mechanics, electrons are treated as wave-particles and the planewave 

product function of the two-electron system was described by L. N. Cooper as:  

𝜓(𝑘⃑⃑1, 𝑘⃑⃑2; 𝑟1, 𝑟2) =
1

Ω
𝑒𝑖(𝑘⃑⃑1∙𝑟1+𝑘⃑⃑2∙𝑟2) 

where 𝑘⃑⃑1 and 𝑘⃑⃑2 are the states that electrons occupy in the wavevector space (𝑘–space) 

which 𝑘⃑⃑1 is assumed to have a spin up and 𝑘⃑⃑2 is assumed to have a spin down, 𝑟1 and 𝑟2 

are the coordinate of electron one and electron two, and Ω is a box of volume [110 – 112, 

130]. 

  This planewave function can be written in the center-of-mass and relative-motion 

coordinates as: 

𝜓(𝐾⃑⃑⃑, 𝑘⃑⃑; 𝑅⃑⃑, 𝑟) =
1

Ω
𝑒𝑖(𝐾⃑⃑⃑∙𝑅⃑⃑+𝑘⃑⃑∙𝑟) 

where 𝑅⃑⃑ =
1

2
(𝑟1 + 𝑟2) is the location of the center of mass, 𝑟 = 𝑟1 − 𝑟2 is the relative 

electron–position coordinate, 𝐾⃑⃑⃑ = (𝑘⃑⃑1 + 𝑘⃑⃑2) is the momentum of the center of mass, 𝑘⃑⃑ =

1

2
(𝑘⃑⃑1 − 𝑘⃑⃑2) is the difference of the momenta [111, 130]. 

 And the Hamiltonian of this two-electron system is: 

ℋ = 𝑛𝑘ℇ𝑘 + 𝑉𝑘𝑘´ 



49 

 

where ℇ𝑘 =
ℏ2

2𝑚
𝑘⃑⃑2 =

ℏ2

2𝑚
(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2) =
ℏ2𝑘2

2𝑚
 is the free electron energy in 𝑘-space, 𝑉𝑘𝑘´ 

is the matrix elements of the electron interaction potential, and 𝑛𝑘 is the number of 

electrons in 𝑘-space in the case of a two-electron system it can be consider as 𝑛𝑘 = 2. 

 Without interactions of electrons, the term 𝑉𝑘𝑘´ is negligible and the Hamiltonian 

of each electron is:  

ℋ0 = ℇ𝑘 =
ℏ2

2𝑚
𝑘⃑⃑2 = −

ℏ2

2𝑚
∇2 

and the Eigenvalue equation is given by: 

ℋ0𝜓𝑘 = ℇ𝑘𝜓𝑘 

where 𝜓𝑘 represents the planewave function in 𝑘-space. 

 When electrons interact with each other in a two-electron system, the Hamiltonian 

becomes: 

ℋ0(𝑟1, 𝑟2) = −
ℏ2

2𝑚
∇1

2 −
ℏ2

2𝑚
∇2

2 + 𝑉𝑘𝑘´ 

where the matrix elements of the electron interaction potential, 𝑉, is: 

𝑉𝑘𝑘´ = ⟨𝑘⃑⃑´↑, −𝑘⃑⃑´↓|𝑉(𝑟1 − 𝑟2)|𝑘⃑⃑↑, −𝑘⃑⃑↓⟩ 

which represents the scattering by 𝑉(𝑟1 − 𝑟2) of the pair state occupying │𝑘⃑⃑↑, −𝑘⃑⃑↓⟩ into the 

other pair state │𝑘⃑⃑´↑, −𝑘⃑⃑´↓⟩ where 𝑘⃑⃑↑ and represents 𝑘⃑⃑1 before emitting a phonon and −𝑘⃑⃑↓ 

represents 𝑘⃑⃑2 before absorbing a phonon. 

In the e–e interaction, the electron of the wavevector 𝑘⃑⃑↑ emits a phonon, 𝛾, and the 

electron of the wavevector −𝑘⃑⃑↓ absorbs it which results new wavevectors 𝑘⃑⃑´↑ = 𝑘⃑⃑↑ − 𝛾  

and −𝑘⃑⃑´↓ = −𝑘⃑⃑↓ + 𝛾 as shown in Figure 2.7. 



50 

 

 

Figure 2.7: A diagram of the e-e interaction. 

 The simplification of the BCS theory is done by approximating: 

𝑉𝑘𝑘´ = {
−𝑉             if ℇ𝐹 < ℇ𝑘 and ℇ𝑘´ < (ℇ𝐹 + ℏ𝜔𝐷)

0              otherwise                                         
 

where ℇ𝐹 is the Fermi energy, ℏ𝜔𝐷 is the energy of the highest energy phonon, known as 

the Debye energy, and ℇ𝑘 =
ℏ2𝑘2

2𝑚
  and ℇ𝑘´ =

ℏ2𝑘´2

2𝑚
 are the free electron energies in 𝑘-space 

of the states 𝑘 and 𝑘´ respectively [110 – 112].  

At energies below the Fermi level, all the states are occupied. Above the cutoff 

energy, a Cooper pair cannot be formed. Therefore, the range from ℇ𝐹 to (ℇ𝐹 + ℏ𝜔𝐷) is 

the energy range of states available for the electron delocalization of a Cooper pair [112]. 

 

Figure 2.8: Pair states accessible to delocalization of a Cooper pair. 
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 The total summation of 𝑉𝑘𝑘´ with the coefficient ℎ𝑘´ is equal to:   

∑ 𝑉𝑘𝑘´

𝑘⃑⃑´↑

ℎ𝑘´ = (𝐸𝐸𝑖𝑔𝑒𝑛 − 2ℇ𝑘)ℎ𝑘 

where 𝐸𝐸𝑖𝑔𝑒𝑛 is the energy Eigenvalue of the electrons in the e-e interaction, and ℎ𝑘 and 

ℎ𝑘´ are the probabilities that the states 𝑘 and 𝑘´ are occupied respectively [110 – 112, 131]. 

Since 𝑉𝑘𝑘´ = −𝑉 where ℇ𝐹 < ℇ𝑘 and ℇ𝑘´ < (ℇ𝐹 + ℏ𝜔𝐷), then: 

−𝑉 ∑ ℎ𝑘´

𝑘⃑⃑´↑

= (𝐸𝐸𝑖𝑔𝑒𝑛 − 2ℇ𝑘)ℎ𝑘 

 The coefficient ℎ𝑘 can be calculate as: 

ℎ𝑘 = (−𝑉 ∑ ℎ𝑘´

𝑘⃑⃑´↑

) (𝐸𝐸𝑖𝑔𝑒𝑛 − 2ℇ𝑘)⁄  

ℎ𝑘 = −𝑉 ∑
ℎ𝑘´

(𝐸𝐸𝑖𝑔𝑒𝑛 − 2ℇ𝑘)
𝑘⃑⃑´↑

 

The total wavefunction must be antisymmetric with respect to the exchange state 

of the two electrons. If the spin part is antisymmetric, then the spatial part must be 

symmetric [132]. Therefore, the probabilities that states 𝑘 and 𝑘´ are occupied must be, by 

definition, equal, hence:  

ℎ𝑘 ≡ ℎ𝑘´ 

 The relation can then be derived to be:  

−
1

𝑉
= ∑

1

(𝐸𝐸𝑖𝑔𝑒𝑛 − 2ℇ𝑘)
𝑘⃑⃑´↑

 

1

𝑉
= ∑

1

(2ℇ𝑘 − 𝐸𝐸𝑖𝑔𝑒𝑛)
𝑘⃑⃑´↑
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 The summation over 𝑘⃑⃑´↑ can be substituted by the integral over total energy with 

respect to the kinetic energy of a free electron, ℇ, when 𝑉 ≠ 0: 

1

𝑉
= 𝑁(0) ∫

𝑑ℇ

2ℇ − 𝐸𝐸𝑖𝑔𝑒𝑛

ℏ𝜔𝐷

0

 

where 𝑁(0) is the density of states at the Fermi surface [131]. 

 Since the interaction potential is not equal to zero, 𝑉 ≠ 0, only within the range of 

the Fermi level, ℇ𝐹, to the cutoff level, ℇ𝐹 + ℏ𝜔𝐷, the range of the integration can be: 

1

𝑉
= 𝑁(ℇ𝐹) ∫

𝑑ℇ

2ℇ − 𝐸𝐸𝑖𝑔𝑒𝑛

ℇ𝐹+ℏ𝜔𝐷

ℇ𝐹

 

which results: 

1

𝑉
=

1

2
𝑁(ℇ𝐹) ln (

2ℇ𝐹 − 𝐸𝐸𝑖𝑔𝑒𝑛 + 2ℏ𝜔𝐷

2ℇ𝐹 − 𝐸𝐸𝑖𝑔𝑒𝑛
) 

where 𝑁(ℇ𝐹) is the density of states above the Fermi level that has an almost constant 

value. 

If the interaction between the electrons is weak, it will result a weak electron 

interaction potential and the electron coupling limit will be 𝑉𝑁(ℇ𝐹) ≪ 1. Thus, the energy 

Eigenvalue of the electrons in the e-e interaction can approximately be:  

𝐸𝐸𝑖𝑔𝑒𝑛 = 2ℇ𝐹 − 2ℏ𝜔𝐷𝑒−2 𝑉𝑁(ℇ𝐹)⁄  

and the binding energy of the Cooper pair can be calculated as: 

𝐸𝐸𝑖𝑔𝑒𝑛 − 2ℇ𝐹 = −2ℏ𝜔𝐷𝑒−2 𝑉𝑁(ℇ𝐹)⁄  

2ℇ𝐹 − 𝐸𝐸𝑖𝑔𝑒𝑛 = 2ℏ𝜔𝐷𝑒−2 𝑉𝑁(ℇ𝐹)⁄  
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where 2ℏ𝜔𝐷𝑒−2 𝑉𝑁(ℇ𝐹)⁄ = ℇ𝑏 is the binding energy which can be used to approximate the 

average distance between the two electrons in a Cooper pair, 𝛿, as: 

𝛿 =
ℏ𝑣𝐹

ℇ𝑏
 

where 𝑣𝐹 is the Fermi velocity [112]. 

 At the absolute zero, 𝑇 = 0, the excitation energy of electrons is:  

𝐸𝑘 = √∆𝑘
2 + (ℇ𝑘 − ℇ𝐹)2 

where ∆𝑘 is the superconducting energy gap in the state 𝑘 which can be obtained by: 

∆𝑘= − ∑ 𝑉𝑘𝑘´

𝑘⃑⃑´↑

𝑣𝑘´𝑢𝑘´ = 𝑉 ∑ 𝑣𝑘´𝑢𝑘´

𝑘⃑⃑´↑

 

where 𝑣𝑘´ and 𝑢𝑘´ are the probabilities of occupancy and vacancy in the state 𝑘´ and the 

probabilities of occupancy and vacancy in the state 𝑘 are denoted by 𝑣𝑘 and 𝑢𝑘 

respectively.  

The relationship between the probabilities of occupancies and vacancies in states 𝑘 

and 𝑘´ can be defined as: 

𝑣𝑘
2 + 𝑢𝑘

2 = 1 

and 

𝑣𝑘´
2 + 𝑢𝑘´

2 = 1 

and the value of ∆𝑘 can be assumed that: 

∆𝑘 =  {
∆                 if |ℇ𝑘 − ℇ𝐹| < ℏ𝜔𝐷

0                 otherwise                
 

where the superconducting energy gap, ∆, can be obtained from the following: 
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2

𝑉
= 𝑁(0) ∫

𝑑(ℇ𝑘 − ℇ𝐹)

√∆2 + (ℇ𝑘 − ℇ𝐹)2

ℏ𝜔𝐷

−ℏ𝜔𝐷

 

∆ =
ℏ𝜔𝐷

sinh (
1

𝑉𝑁(0)
)

= 2ℏ𝜔𝐷𝑒−1 𝑉𝑁(0)⁄  

The superconducting energy gap approaches zero when 𝑇 → 𝑇𝑐, therefore the 

temperature-dependent superconducting energy gap, ∆(𝑇), can be derived from: 

2

𝑉
= 𝑁(0) ∫

𝑑(ℇ𝑘 − ℇ𝐹)

√∆2(𝑇) + (ℇ𝑘 − ℇ𝐹)2

ℏ𝜔𝐷

−ℏ𝜔𝐷

tanh (
√(ℇ𝑘 − ℇ𝐹)2 + ∆2(𝑇)

2𝑘𝐵𝑇
) 

∆(𝑇) ≈ 3.2𝑘𝐵𝑇𝑐 (1 −
𝑇

𝑇𝑐
)

1 2⁄

 

when 𝑇 is approaching 𝑇𝑐 [111]. 

When 𝑇 = 𝑇𝑐, the ∆(𝑇) will be equal to zero which is: 

1

𝑉
= 𝑁(0) ∫

𝑑(ℇ𝑘 − ℇ𝐹)

(ℇ𝑘 − ℇ𝐹)

ℏ𝜔𝐷

0

tanh (
(ℇ𝑘 − ℇ𝐹)

2𝑘𝐵𝑇𝑐
) 

1

𝑉𝑁(0)
= ln (

1.14ℏ𝜔𝐷

𝑘𝐵𝑇𝑐
) 

𝑘𝐵𝑇𝑐 = 1.14ℏ𝜔𝐷𝑒−1/𝑉𝑁(0) 

 The normalized energy gap, ∆(0), can be determined by:  

∆

𝑘𝐵𝑇𝑐
=

(2ℏ𝜔𝐷𝑒−1 𝑉𝑁(0)⁄ )

(1.14ℏ𝜔𝐷𝑒−1 𝑉𝑁(0)⁄ )
=

2

1.14
≈ 1.754 

∆ = 1.754𝑘𝐵𝑇𝑐 = ∆(0) 

where 𝑘𝐵 ≈ 8.62 𝘹 10−5 eV/K is the Boltzmann’s constant. 
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 According to the BCS theory, the ∆ is specific to a superconductor and it will 

remain zero in normal states above the critical temperature of the superconductor. The 

graph in Figure 2.9 shows the relationship between the temperature dependence of reduced 

energy gap, 
∆(𝑇)

∆(0)
, and the reduced temperature, 

𝑇

𝑇𝑐
, in the BCS theory, and it is a valid 

approximation in most cases of superconductors [110, 168, 169]. 

 

Figure 2.9: The characteristic of the temperature-dependent energy gap. 
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2.4. Types of Superconductors 

Superconductors can be classified into two types depending on their behavior in an 

external magnetic field. The difference between type I and type II superconductors are 

described in the sections 2.4.1. and 2.4.2 respectively. 

2.4.1. Type I Superconductors 

In type I superconductors, the superconductivity abruptly vanishes when the 

applied magnetic field, 𝐻, is greater than the critical magnetic field, 𝐻𝑐. In Figure 2.9, the 

graph of the relationship between 𝐻𝑐 and 𝑇𝑐 shows the superconductivity of type I 

superconductors is in the region under 𝐻𝑐  and 𝑇𝑐 only.  

 
Figure 2.10: The relationship between 𝑯𝒄 and 𝑻𝒄 of type I superconductors. 

From section 2.2, when a material is in its superconducting state, it is also a perfect 

diamagnetic material which completely repels the magnetic field penetrating through it 

[111]. In general, the relationship between magnetic flux density, 𝐵, and the applied 

magnetic field, 𝐻, is defined by: 
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𝐵 =  𝜇0(𝐻 + 𝑀) 

for a magnetizing magnetic field, and: 

𝐵 = 𝜇0𝐻 

for a demagnetizing magnetic field [112, 135] where 𝜇0 is the magnetic permeability in 

free space, and 𝑀 is a magnetic polarization which is commonly known as a magnetization.  

Because of the diamagnetic characteristic, a superconductor prevents a weak 

magnetic field from penetrating it. This implies that 𝐵 is equal to zero inside the bulk of a 

superconducting material which leads to the relation: 

𝑀 = −𝐻 

 From the relationship between 𝑀 and 𝐻 in the magnetic susceptibility equation  

𝑀 = 𝜒𝐻, therefore 𝜒 = −1, where 𝜒 is a magnetic susceptibility. The graph of the 

relationship of the 𝑀 and 𝐻 of type I superconductors is shown in Figure 2.11 where the 

slope represents 𝜒 = −1. 

 

Figure 2.11: The relationship of the M and H of type I superconductors. 



58 

 

 The GL parameter, 𝜅, can be used to determine the type of a superconductor where 

𝜅 = 𝜆𝐿 𝜉𝐺𝐿⁄  which 𝜆𝐿 is the London penetration depth and 𝜉𝐺𝐿 is the GL coherence length. 

If 𝜅 <
1

√2
 , the superconductor is a type I superconductor [110 – 114]. 

2.4.2. Type II Superconductors 

Superconductors that have different magnetic behavior from type I superconductors 

are categorized as type II superconductors. Type II superconductors will not abruptly lose 

their superconductivity when the applied magnetic field is higher than the critical field, but 

they will gradually lose their superconductivity when the magnetic field increases until 

they completely lose their superconductivity when they reach their normal conducting 

states. The state that type II superconductors gradually lose their superconductivity is called 

the “mixed state” between the normal conducting and superconducting states. This is also 

called the “semi-superconducting state”. 

 
Figure 2.12. The phase diagram of type II superconductors. 
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As shown in Figure 2.12, type II superconductors start to lose their 

superconductivity at the lower critical magnetic field, 𝐻𝑐1, and completely lose their 

superconductivity at the upper critical magnetic field, 𝐻𝑐2. 

When the applied magnetic field of a type II superconductor is less than its lower 

critical magnetic field, 𝐻 < 𝐻𝑐1, the type II superconductor will have the same 

characteristic of a type I superconductor. When the applied magnetic field, 𝐻, of a type II 

superconductor is less than the lower critical magnetic field, 𝐻𝑐1, the material will be 

perfectly diamagnetic that yields 𝜒 = −1 which gives 𝑀 = −𝐻 and 𝐵 = 0. 

When 𝐻𝑐1 < 𝐻 < 𝐻𝑐2, the material will be in the semi-superconducting state and 

remains diamagnetic (𝜒 < 0) but is no longer perfectly so |𝜒| < 1. When 𝐻𝑐2 < 𝐻, the 

material becomes normal [112] as shown in Figure 2.13. 

 
Figure 2.13: The relationship of the M and H of type I superconductors [112]. 

The mixed state or semi-superconducting state of type II superconductors also 

known as “Shubnikov phase” which was named after L. V. Shubnikov a Soviet physicist 

who experimentally discovered the phenomenon of type II superconductivity [149 – 151]. 

Unfortunately, Shubnikov was accused of an attempt to organize an “anti-Soviet strike”, 
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arrested, and executed by the KGB when he was only 36 years of age. This was considered 

a great loss to Physics.  

A. A. Abrikosov, one of the 2003 Nobel Laureates in Physics, stated that in the 

Shubnikov phase, magnetic fields do not fully penetrate through a superconductor. 

However, they penetrate the superconductor in narrow columns and each column holds a 

quantum of magnetic flux with a supercurrent surrounding it. Each column where magnetic 

fields penetrate through has a supercurrent that flows around it like a whirlpool. The 

columns of magnetic fields in type II superconductors, which supercurrents flow around, 

are called “Abrikosov vortices”. [152]. 

By applying the description of the numbers of electrons in a superconductor, 

𝑛𝑠 = |𝜓|2, from the GL theory into the second London equation, ∇ 𝘹 𝑗𝑠, the supercurrent 

density, 𝑗𝑠, will be: 

∇ 𝘹 𝑗𝑠 = −
1

𝜇0𝜆𝐿
2 𝐵 = −

𝑛𝑠𝑒2

𝑚𝑐
𝐵 

∇ 𝘹 𝑗𝑠 = −
|𝜓|2𝑒2

𝑚𝑐
𝐵 = −

|𝜓|2𝑒2

𝑚𝑐
∇ 𝘹 𝐴 

𝑗𝑠 = −
|𝜓|2𝑒2

𝑚𝑐
𝐴 

 When the phase of wave function, 𝜃, is taken into account, the pseudo-wave 

function order parameter will be: 

𝜓 = |𝜓|𝑒𝑖𝜃 

and the supercurrent density will be: 

𝑗𝑠 =
ℏ𝑒

𝑚
|𝜓|2 (∇𝜃 −

2𝑒

ℏ𝑐
𝐴) 
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 In the polar coordinate system, the wave function can be converted to be as follows: 

|𝜓|𝑒𝑖𝜃 = 𝑟𝑒𝑖𝜑  

where 𝑟 is the amplitude of wave function on the radial coordinate in the polar coordinate 

system and 𝜑 is the phase of wave function on the angular coordinate in the polar 

coordinate system. 

In the vicinity of 𝜓 = 0, 𝜃 = 𝜑, and ∇𝜃 has only a 𝜑-component which is equal to:  

1

𝑟
·

𝜕𝜃

𝜕𝜑
=

1

𝑟
 

Hence, it is much larger than the second term in the supercurrent density equation, 

and the current forms a vortex [152]. 

 
Figure 2.14: Magnetic flux lines penetrating a type II superconductor. The currents 

in the superconducting material generate a magnetic field which, together with the 

applied field, result in bundles of quantized flux [153]. 
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Figure 2.15: The vortices of type II superconductors appear in the Shubnikov phase 

where the flux within each vortex is generated by a supercurrent [154]. 

 

 

Figure 2.16: Vortices in 𝑵𝒃𝑺𝒆𝟐 defined by scanning tunneling microscopy [152]. 

The GL parameter, 𝜅, of a type II superconductor is greater than 
1

√2
 and, as a result, 

the surface kinetic energy density of the superconductor is negative [152]. 

2.5. Josephson Effect 

The Josephson effect was proposed by B. D. Josephson, one of the 1973 Nobel 

Laureates in Physics. The Josephson effect states that the supercurrent can flow through 

two superconductors separated by a thin weak link which is usually measured in nanometer 
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scale without any applied voltage. When two superconductors are separated by a weak link, 

this creates region of lowered order parameter in the weak link and a junction between the 

superconductors called the “Josephson Junction” is formed. Tunneling of the electron-pairs 

through the weak link called “Josephson Tunneling” [136]. 

The weak link between the two superconductors may be an insulator which forms 

a superconductor-insulator-superconductor (S-I-S) junction, a normal conductor which 

makes a superconductor-normal conductor-superconductor (S-N-S) junction, or a 

constricted superconductor which forms a superconductor-constriction-superconductor (S-

c-S) junction. 

The wavefunctions of superconductor 1 and superconductor 2 can be written as: 

Ѱ1 = √𝑛1𝑒𝑖𝜃1   and   Ѱ2 = √𝑛2𝑒𝑖𝜃2 

where 𝑛1, 𝑛2 are the densities of Cooper pairs and 𝜃1, 𝜃2 are the phases in superconductor 

1 and superconductor 2, respectively. 

 

Superconductor 1 Weak link Superconductor 2 

Ѱ1                                                                            Ѱ2 

Figure 2.17: Two superconductors separated by a thin weak link. 

The dynamic time evolution of the two wavefunctions of the superconductors on 

each side of a coupled Josephson junction can be determined by the following Schrödinger 

equations: 

𝑖ℏ
𝜕Ѱ1

𝜕𝑡
= 𝑈1Ѱ1 + 𝐾Ѱ2 

𝑖ℏ
𝜕Ѱ2

𝜕𝑡
= 𝑈2Ѱ2 + 𝐾Ѱ1 



64 

 

where 𝑈1, 𝑈2 are energies of the wavefunctions in superconductor 1 and superconductor 2 

and 𝐾 is a coupling constant. 

 Substituting Ѱ1 and Ѱ2  with √𝑛1𝑒𝑖𝜃1 and √𝑛2𝑒𝑖𝜃2 into the Schrödinger equations 

of the dynamic time evolution of the wavefunctions gives: 

ℏ
𝜕𝑛1

𝜕𝑡
= 2𝐾√𝑛1𝑛2 sin ∅ 

ℏ
𝜕𝑛2

𝜕𝑡
= −2𝐾√𝑛1𝑛2 sin ∅ 

ℏ
𝜕𝜃1

𝜕𝑡
= −𝐾√

𝑛2

𝑛1
cos ∅ +

𝑒

2ℏ
𝑉𝑠𝑜𝑢𝑟𝑐𝑒 

ℏ
𝜕𝜃2

𝜕𝑡
= −𝐾√

𝑛1

𝑛2
cos ∅ −

𝑒

2ℏ
𝑉𝑠𝑜𝑢𝑟𝑐𝑒 

where ∅ is the phase difference which equals to 𝜃2 − 𝜃1, and 𝑉𝑠𝑜𝑢𝑟𝑐𝑒 is the applied voltage 

that can affect the energy levels of the wavefunctions as: 

𝑉𝑠𝑜𝑢𝑟𝑐𝑒 =
𝑈2 − 𝑈1

2𝑒
 

this equation yields: 

(2𝑒)𝑉𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑈2 − 𝑈1 = ℏ
𝜕∅

𝜕𝑡
 

 The time derivative of the density of Cooper pairs describes a charge transport, thus 

the supercurrent density, 𝑗𝑠, can be determined by: 

𝜕𝑛1

𝜕𝑡
= −

𝜕𝑛2

𝜕𝑡
= 𝑗𝑠 

 Therefore, the supercurrent density equation can be derived as: 

𝑗𝑠 = 𝑗𝑐 sin ∅ 
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where 𝑗𝑐 =
2𝐾√𝑛1𝑛2

ℏ
 is the critical current density [110 – 112]. 

2.5.1. Direct Current Josephson Effect 

When an applied direct current (DC), 𝐼𝐷𝐶, is smaller than the critical current, 𝐼𝑐, it 

can pass through the Josephson junction without any voltage drop across the junction as in 

the equation: 

𝐼𝐷𝐶 = 𝐼𝑠 = 𝐼𝑐 sin ∅ 

where 𝐼𝑠 and 𝐼𝑐 are the supercurrent and critical current which are equal to the supercurrent 

density, 𝑗𝑠, and critical current density, 𝑗𝑐, divided by the cross-sectional area of the 

superconductors.  

 

Figure 2.18: A voltage is applied to a Josephson junction.  

 The phase difference can be calculated as: 

∅ = sin−1 (
𝐼𝑠

𝐼𝑐
) 

When an applied DC current is greater than 𝐼𝑐, a voltage drop across the Josephson 

junction appears [111, 112]. 
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2.5.2. Alternating Current Josephson Effect 

When there is a voltage drop across the junction, the constant DC current will start 

to oscillate due to the potential differences in the two superconductors and the phase 

difference will be defined according to the time evolution as: 

∅(𝑡) = ∅(0) +
(2𝑒)𝑉𝑠𝑜𝑢𝑟𝑐𝑒

ℏ
𝑡 

and the alternating current (AC) will be: 

𝐼𝐴𝐶(𝑡) = 𝐼𝑐 sin(∅(0) + 𝜔𝐽𝑡) 

This equation shows that: 

𝜔𝐽 =
(2𝑒)𝑉𝑠𝑜𝑢𝑟𝑐𝑒

ℏ
 

which yields: 

𝑓𝐽 =
(2𝑒)𝑉𝑠𝑜𝑢𝑟𝑐𝑒

2𝜋ℏ
 

where 𝜔𝐽 is the Josephson angular velocity and 𝑓𝐽 is the Josephson frequency [111, 112]. 

2.6. Superconductivity in Graphene 

Since the exfoliation of single-layer graphene (SLG) was achieved in 2004, 

superconductivity in intrinsic graphene has not been observed. The superconductivity in 

graphene is experimentally induced by placing graphene on a superconductor or modifying 

properties of graphene by adding other chemicals into the atomic structure of graphene 

[137 – 139]. For example, placing graphene on a superconductor was done by growing 

SLG on a 30-nanometer rhenium (Re) thin-film via chemical vapor deposition (CVD). The 

result of the experiment shows that the critical temperature, 𝑇𝑐, on the graphene layer is 

approximately equal to 2.1 K [139]. 
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Intercalating graphene with alkali metal ions such as lithium (Li) or alkaline earth 

metal ions such as calcium (Ca) shows the superconductivity in the intercalated graphene 

which can be explained by the electron-phonon coupling enhancement that arises from the 

presence of an intercalant-derived band as well as graphitic 𝜋-bands [144, 145] at the Fermi 

level [140 – 143].  In the intercalated graphene where a bulk of graphite is inserted with Li 

or Ca ions then exfoliated as graphene shows that the 𝑇𝑐 was recorded at 11.5 K for Ca-

intercalated bilayer (BLG) graphene and at 7.4 K in Li-intercalated few-layer (FLG) 

graphene [146, 147]. 

 

Figure 2.19: The process to obtain layers of Li-intercalated graphene [148].  

 Implanting graphene with phosphorous (P) exhibited deviations from the expected 

rise in resistance (R) as the temperature (T) is reduced to some point above 100 K. The 

relatively large drop in resistance at lower temperatures was also considered a possible 

indication of superconductivity in the sample. Figure 2.20 shows that phosphorus-

implanted and then argon-implanted graphene led to the discovery of a strong connection 

between resistance and temperature [159 – 161]. 
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Figure 2.20: R vs. T of a thin-film graphene sample peeled off from phosphorus-

implanted and then argon-implanted bulk HOPG sample # 023. Curves 1, 2, 3, and 

4 are four identical sequential runs with the same probe position [56, 57]. 

 

The apparent superconductivity in phosphorus-doped graphene and HOPG can be 

quenched by a magnetic field (as shown in Figure 2.21 and 2.22 below). 

 

Figure 2.21: R vs. T measurement of phosphorus-doped HOPG 

samples # 005 in the presence of magnetic field from 0 to 1 T. (These 

tests were performed at the University of Maryland by Dr. Paul 

Bach) [55]. 
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Figure 2.22: R vs. T of thin film exfoliated from phosphorus-doped HOPG.  

Curve 1 was measured without an applied magnetic field.  

Curve 2 was measured under an applied magnetic field with  

the field strength of 0.035 tesla [56, 57]. 

 

The doped-while-grown graphene was prepared in a CVD system using plasma-

enhanced CVD on HOPG substrates. The HOPG was being used as a seed crystal, as it was 

easier to remove the doped-while-grown graphene layers from the HOPG via a mechanical 

exfoliation than to remove graphene layers from a copper foil sheet. [55 – 57]. 

2.7. Berezinskii-Kosterlitz-Thouless Transition 

In 2016, the Nobel Prize in Physics was awarded to D. J. Thouless, F. D. M. 

Haldane, and J. M. Kosterlitz for their theoretical discoveries of topological phase 

transitions and topological phases of matter [155, 156]. The Berezinskii-Kosterlitz-

Thouless (BKT) transition is an unconventional phase transition in 2-dimensional (2D) 

materials occurring through topological defects in materials such as point-defects or 
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vortices (or antivortices). In 1972, the work of D. J. Thouless, and J. M. Kosterlitz [157] 

shows that at:  

𝑘𝐵𝑇𝑐 ≈
1

2
𝑞2 

a phase transition to a conducting state of material begins to occur where 𝑘𝐵 is the 

Boltzmann’s constant, 𝑇𝑐 is the critical temperature corresponding to a phase transition into 

a superconducting state, and 𝑞 is the charge of particles. 

The critical temperature at which a single dislocation (a vortex) is likely to occur is 

at which the free energy, 𝐹𝑣, change sign. For the 𝑥𝑦-model (2D model), it gives 

𝑘𝐵𝑇𝑐 =
𝜋ℏ2𝜌

2𝑚𝑒𝑓𝑓
= 𝜋𝐽 

where 𝐽 is the spin-spin coupling constant which ℏ is the reduced Planck’s constant, 𝜌 is 

the density of particles or superfluid per unit area, and 𝑚𝑒𝑓𝑓 is the effective atomic mass 

of particles which is not necessarily the same as the atomic mass for a particle moving on 

a substrate [157, 158]. 

2.7.1. Topological Defects and Phase Transitions 

In the BKT transition, free energy, 𝐹𝑣, associates with each vortex core as a vortex 

core is a region where the pseudo-wave function order parameter, 𝜓 = √𝜌𝑒𝑖𝜃, of the thin 

film superconductor or superfluid (fluid helium that reaches its property of zero viscosity) 

surface vanishes which causes a finite free energy to exist. Each vortex corresponds to a 

hole in the 2D material (thin film or superfluid surface) and the free energy of a single 

vortex is 
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𝐹𝑣 = 𝐸𝑣 − 𝑇𝑆𝑣 = 𝜋𝐽 ln (
𝐿

𝑎
) − 𝑇𝑘𝐵 ln (

𝐿2

𝑎2
) 

where 𝐸𝑣 = 𝜋𝐽 ln (
𝐿

𝑎
) is the vortex energy, 𝑆𝑣 = 𝑘𝐵 ln (

𝐿2

𝑎2) is the entropy, 𝐿 is the finite 

system size, and 𝑎 is the material lattice spacing. Thus, a vortex can be considered as a 

topological defect [156 – 158]. 

 At the BKT characteristic transition temperature, 𝑇𝐵𝐾𝑇 =
𝜋𝐽

2𝑘𝐵
, the vortex energy, 

𝐸𝑣, balances the entropy, 𝑆𝑣, which is considered as a topological phase transition of the 

vortices. At 𝑇 > 𝑇𝐵𝐾𝑇, the vortices are free to move, and the material will be electrical 

conducting, while at 𝑇 < 𝑇𝐵𝐾𝑇, the vortices will bound in pairs of zero vorticity and the 

material will be electrical insulating.  

The interaction energy between vortices at under 𝑇𝐵𝐾𝑇 can be calculate as 

𝐸𝑝𝑎𝑖𝑟 = 2𝜋𝐽 ln (
𝑑

𝑎
) 

where 𝑑 is the distance between two vortices of a vortex pair [156, 157]. 

 

Figure 2.23: An illustration of the topological phase transition of the vortices. 

Image courtesy of J. Jarnestad / The Royal Swedish Academy of Sciences. 
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The work of Mironov et al. [163] shows that the phase transition of a material 

depends on 𝑇 and 𝐵. The 𝑇𝐵𝐾𝑇 of a niobium titanium nitride (𝑁𝑏𝑇𝑖𝑁) thin film (10nm) 

starts to emerge at 𝑇 ≈ 0.2 𝐾 for 𝐵 = 0.12 𝑇. However, in a higher 𝐵, the phase transition 

will emerge at a higher 𝑇 as shown in In Figure 2.24. 

 

Figure 2.24: R (in the log scale) vs. T at different magnetic fields listed in the legend 

in panel [163]. 

 

 The works of A. M. Goldman et al. show that the thickness of material also has an 

impact on its phase transition [165 – 167]. 
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Figure 2.25: Evolution of the temperature dependence of the sheet resistance R(T) 

with thickness for a 𝑩𝒊 film deposited onto 𝑮𝒆. Reprinted with permission from 

David Haviland [166].  
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Figure 2.26: Sheet R vs. T of amorphous 𝑩𝒊 flims for a series of films with 

thicknesses, from top to bottom, of 11.15, 11.25, 11.37, 11.38, 11.43, 11.48, 11.55, 

11.65, 11.75, 11.85, 11.95, 12.03, 12.17, 12.27, 12.4, 12.55, 12.65, 12.85, and 13.35 Å. 

Reprinted with permission from Allen M. Goldman , Regents Professor, University 

of Minnesota [167]. 

 

 Thus, the phase transition of a thin material under the influence of an applied 

magnetic field can be analyzed as at below 𝑇𝐵𝐾𝑇, the material is in an insulating phase 

where the vortices are bound together, but at above 𝑇𝐵𝐾𝑇, the material is in conducting state 

where the vortices are free to move [164]. 

2.7.2. Topological Insulators 

A topological insulator is a material which will not conduct current through the 

bulk of the material but will carry current along the surface. In a 2D material, if a certain 

magnetic flux density penetrates through it, charges would localize in closed orbital circles 

(trapped in loops). While charges are trapped in loops, the material cannot conduct 

electricity. However, around the edges of the material, charges can travel in open orbits 

without any losses of energy. While on the edges of a topological insulator conducts 
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electricity, but in the middle of the material is electrically insulated is called a “quantum 

Hall state” of a 2D material. [159 – 162]. 

 

Figure 2.27: A 2D quantum Hall state. 

 

2.8. Tables of Symbols and Acronyms 

Table 2.1: Table of Symbols 

Symbols Description Value 

𝑇 Temperature. – 

𝑇𝑐 Critical temperature. – 

𝐻 An applied magnetic field. – 

𝐻𝑐 Critical magnetic field. – 

N Magnetic north pole. – 

S Magnetic south pole. – 

𝑗𝑛 Normal current density. – 

𝑗𝑠 Supercurrent density. – 

𝜎𝑛 Normal electrical conductivity. – 

𝑛𝑛 
The number of free electrons per unit volume of 

a normal conductor. 
– 

𝜏 
The mean free time between electron collision 

which is also known as relaxation time. 
– 

𝑒 The elementary electric charge. ≈ 1.602 𝘹 10−19 C 

m The mass of an electron. ≈ 9.109 𝘹 10−31 kg 

𝐸 An electric field. – 
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𝑣𝑛 The velocity of electrons in a normal conductor. – 

𝑛𝑠 
The number of free electrons per unit volume of 

a superconductor. 
– 

𝑣𝑠 The velocity of electrons in a superconductor. – 

𝑡 Time. – 

∇ The differential operation. 𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
 

𝐵 Magnetic flux density. – 

𝐵𝑐 Critical magnetic flux density. – 

𝜇0 The magnetic permeability in free space. 4𝜋 𝘹 10−7 H/m 

𝜆𝐿 London penetration depth. – 

𝑐 The speed of light measured in a vacuum. ≈ 3 𝘹 108 m/s 

𝜓 A pseudo-wave function order parameter. – 

𝑓𝑠 
The free energy density of a material in a 

superconducting state. 
– 

𝑓𝑛 
The free energy density of a material in a normal 

state. 
– 

𝑓 Total free energy density. – 

𝑓𝑚𝑖𝑛 Minimum free energy density. – 

𝛼 
The coefficient of superconducting pair density 

which is proportional to |𝜓|2. 
– 

𝛽 The coefficient of pair interaction term which is 

proportional to |𝜓|4. 
– 

𝐴 Magnetic vector potential of 𝐵. – 

h The Planck’s constant. 
≈ 6.626 𝘹 10−34 

m2kg/s 

ℏ The reduced Planck’s constant. ≈ 6.582 𝘹 10−16 eV ⋅ s 

𝑥 A certain length in space. – 

𝜓∞ 
Pseudo-wave function in a superconductor which 

approaches an infinite value. 
– 

𝜉𝐺𝐿 The GL coherence length. – 

𝜅 The GL parameter. – 
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𝑘𝐵 The Boltzmann’s constant. ≈ 8.62 𝘹 10−5 eV/K 

𝑘⃑⃑1 
The states that spin-up electrons occupy in the 

wavevector space. 
– 

𝑘⃑⃑2 
The states that spin-down electrons occupy in the 

wavevector space. 
– 

𝑟1 The coordinate of electron one. – 

𝑟2 The coordinate of electron two. – 

Ω A box of volume. – 

𝐾⃑⃑⃑ The momentum of the center of mass. – 

𝑘⃑⃑ The difference of the momenta. – 

𝑅⃑⃑ The location of the center of mass. – 

𝑟 The relative electron position coordinate. – 

ℋ The Hamiltonian. – 

𝑛𝑘 The number of electrons in 𝑘-space. – 

𝑉 The electron interaction potential. – 

𝑉𝑘𝑘´ 
The matrix elements of the electron interaction 

potential. 
– 

ℋ0 The Hamiltonian of each electron. – 

𝑘⃑⃑↑ A wave vector which represents 𝑘⃑⃑1 before 

emitting a phonon. 
– 

−𝑘⃑⃑↓ A wave vector which represents 𝑘⃑⃑2  before 

absorbing a phonon. 
– 

𝑘⃑⃑´↑ 
A new wave vector resulted from the phonon 

emission of 𝑘⃑⃑1. 
– 

−𝑘⃑⃑´↓ 
A new wave vector resulted from the phonon 

absorption of 𝑘⃑⃑2. 
– 

ℇ𝐹 The Fermi energy. – 

ℏ𝜔𝐷 The energy of a phonon known as Debye energy. – 

ℇ𝑘 
The free electron energy in 𝑘-space of the states 

𝑘. 
– 

ℇ𝑘´ 
The free electron energy in 𝑘-space of the states 

𝑘´. 
– 
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𝐸𝐸𝑖𝑔𝑒𝑛 Energy Eigenvalue of the electrons in the e-e 

interaction. 
– 

ℎ𝑘 The probability that the state 𝑘 is occupied. – 

ℎ𝑘´ The probability that the state 𝑘´ is occupied. – 

𝑁(0) The density of states at the Fermi surface. – 

𝑁(ℇ𝐹) The density of states above the Fermi level. – 

ℇ𝑏 The binding energy. – 

𝛿 
The average distance between the two electrons 

in a Cooper pair. 
– 

𝑣𝐹 The Fermi velocity. – 

∆𝑘 The superconducting energy gap in the state 𝑘. – 

𝑣𝑘 The probability of occupancy in the state 𝑘. – 

𝑣𝑘´ The probability of occupancy in the state 𝑘´. – 

𝑢𝑘 The probability of vacancy in the state 𝑘. – 

𝑢𝑘´ The probability of vacancy in the state 𝑘´. – 

∆ The superconducting energy gap – 

∆(𝑇) 
The temperature-dependent superconducting 

energy gap. 
– 

𝜒 Magnetic susceptibility. – 

𝐻𝑐1 Lower critical magnetic field. – 

𝐻𝑐2 Upper critical magnetic field. – 

Ѱ1 The wavefunction of the superconductor 1. – 

Ѱ2 The wavefunction of the superconductor 2. – 

𝑛1 
The density of Cooper pairs in the 

superconductor 1. 
– 

𝑛2 
The density of Cooper pairs in the 

superconductor 2. 
– 

𝜃 
The phase of wave function (in the Cartesian 

coordinate system). 
– 

𝑟 
The amplitude of wave function on the radial 

coordinate in the polar coordinate system. 
– 

𝜑 
The phase of wave function on the angular 

coordinate in the polar coordinate system. 
– 
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𝑁𝑏𝑆𝑒2 Niobium diselenide. – 

𝜃1 The phase in superconductor 1. – 

𝜃2 The phase in superconductor 2. – 

𝑈1 
The energy of the wavefunctions in the 

superconductor 1. 
– 

𝑈2 
The energy of the wavefunctions in the 

superconductor 2. 
– 

𝐾 A coupling constant. – 

∅ Phase difference. – 

𝑉𝑠𝑜𝑢𝑟𝑐𝑒 Applied voltage. – 

𝑗𝑐 Critical current density. – 

𝐼𝐷𝐶  Applied direct current. – 

𝐼𝑠 Supercurrent. – 

𝐼𝑐 Critical current. – 

𝜔𝐽 The Josephson angular velocity. – 

𝑓𝐽 The Josephson frequency. – 

𝑇𝐵𝐾𝑇 The BKT characteristic transition temperature. – 

𝐽 The spin-spin coupling constant. – 

𝜌  The density of particles per unit area. – 

𝑚𝑒𝑓𝑓 Effective atomic mass. – 

𝐹𝑣  The free energy of a single vortex. – 

𝐸𝑣 Vortex energy. – 

𝑆𝑣 Entropy. – 

𝐸𝑝𝑎𝑖𝑟 The interaction energy between vortices. – 

𝑑 The distance between two vortices of the vortex 

pair. 
– 

𝑁𝑏𝑇𝑖𝑁 Niobium titanium nitride. – 

𝐵𝑖 Bismuth. – 

𝐺𝑒 Germanium. – 
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Table 2.2: Table of Acronyms. 

Acronym Description 

2D 2-dimensional 

AC Alternating current 

BCS Bardeen-Cooper-Schrieffer 

BKT Berezinskii-Kosterlitz-Thouless 

BLG Bilayer graphene 

Ca Calcium 

CVD Chemical Vapor Deposition 

DC Direct current 

e-e Electron-electron 

FLG Few-layer graphene 

GL Ginzburg-Landau 

HOPG Highly Ordered Pyrolytic Graphite 

Li Lithium 

P Phosphorous 

R Resistance 

R vs. T Resistance versus Temperature 

Re Rhenium 

RF Radio frequency 

S-c-S Superconductor-constriction-superconductor 

S-I-S Superconductor-insulator-superconductor 

S-N-S Superconductor-normal conductor-superconductor 

SLG Single-layer graphene 

T Temperature 

YBCO Yttrium Barium Copper Oxide 
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Chapter 3 

Electric Charge Carriers and Thermoelectric Effects 
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3.1. Introduction to Electric Charge Carriers 

Electric charge is a physical property of a material that causes the material to 

experience a force when placed in an electromagnetic field. Basically, electric charge is 

classified into two types: positive and negative charges. Electric charge can move from one 

place to another in a material via mobile particles that can carry electric charge. These 

particles are “electric charge carriers”. 

In metals, the charges are usually negative. The negative charge carriers are free 

electrons that have the ability to move under the influence of an electric field. The free 

electrons in a metal are from the valence electrons from each metal atom. These electrons 

can move freely within the crystal structure.  

On the other hand, the absence of valence electrons in atoms creates “holes”. Holes 

are the charge carriers that carry positive charge. Holes or electron holes commonly refer 

to the vacancies of electrons in the valence band of atoms which leave a net positive charge 

at the hole’s location. In general, the electric charge of a hole is equal to the electric charge 

of an electron with opposite polarity. 

3.1.1. Doping 

Doping is a process to induce more available charge carriers in the material for 

conduction by introducing impurities into the crystal structure of a material in order to 

modify its conductivity. This process is often utilized in semiconductors such as silicon. 

The most common dopants in silicon and other tetravalent semiconductors are trivalent 

dopants such as boron (B), aluminum (Al), gallium (Ga), and indium (In) which have an 

ability to accept electrons, and pentavalent dopants such as phosphorus (P), arsenic (As), 

antimony (Sb), or bismuth (Bi) which have an ability to donate electrons. A similar 
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situation exists for compound III-V and II-VI semiconductors. We will restrict our 

discussion to the tetravalent materials as carbon, like silicon, is tetravalent. 

 

Figure 3.1: Pentavalent and trivalent atoms [192]. 

3.1.1.1. p-doping 

p-doping or hole doping is the process of adding a trivalent dopant or an electron 

acceptor to a material. Trivalent dopants have three valence electrons in their outer shell, 

therefore they can catch an additional outer electron. When a trivalent dopant atom is added 

into an intrinsic semiconductor, it would leave a “hole” instead of the fourth electron. An 

intrinsic semiconductor such as Silicon (Si) is a material that has number of excited 

electrons equal to number of holes [183]. 

 

Figure 3.2: p-doping with boron [183]. 
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3.1.1.2. n-doping 

In contrast to p-doping, n-doping or electron doping is involves adding pentavalent 

impurities or electron-donor atoms to a material. Pentavalent dopants have five valence 

electrons in their outer shell and donate their free electron to the semiconductor [183]. 

 

Figure 3.3: n-doping with phosphorus [183]. 

3.2. Charge Carriers in Superconductors 

In conventional, Bardeen-Cooper-Schreiffer (BCS), superconductors, lattice 

vibrations (phonons) do not impede the motion of the electrons. Moreover, the lattice 

vibrations draw electrons into the regions of the phonons creating phonon mediated or 

linked pairs of electrons. These phonon paired electrons are known as Cooper pairs. Cooper 

pairs are the dominant charge carriers in conventional superconductors. In the base BCS 

theory superconductor a spherical pair wavefunction shell is presumed and, for many 

metallic superconductors this model is surprisingly accurate. 

In unconventional superconductors and the newer high-𝑇𝑐 superconductors, 

electron pairs have been shown to exist. However, the pairing does not obey the BCS theory 

and the pair wavefunction cannot be described by the simple spherical 𝑠-wave order 

parameter (attractive forces between pairs are isotropic in all spatial directions) in the base 
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BCS theory [184, 185]. The mechanism(s) of two negatively charged electrons bonding 

together and transport characteristics of charge carriers in unconventional superconductors 

are still being studied. Many experiments have used electron- or hole-doped materials to 

investigate the electron pairing and charge carriers in unconventional superconductors [186 

– 188]. In the work of Di Bernardo et al., single-layer graphene (SLG) has revealed 

evidence of an unconventional superconductor while it was placed in proximity to an 

electron-doped oxide superconductor [189]. The results of their work has led to a larger 

study of charge carrier transport in electron-doped graphene and graphite with the 

hypothesis that electron-doped SLG, bilayer graphene (BLG), few-layer graphene (FLG), 

or graphite thin film can be an unconventional superconductor. 

3.3. Hall Effect 

The Hall effect is the demonstration of the forces acting on charge carriers in a 

conductor in a magnetic field. It was discovered by the American physicist Edwin Hall in 

1879. The basics of this effect are shown in Figures 3.4 and 3.5. The current density, 𝐽, is 

in the 𝑥-direction and magnetic flux density, 𝐵, penetrates through the plane in the 𝑦-

direction. The magnetic force, 𝐹, is upward for both cases (𝑧-direction). The charge carriers 

in each case are pushed toward the upper edge of the plane by the magnetic force: 

𝐹𝑧 = |𝑞|𝑣𝑑𝐵 

where |𝑞| is the magnitude of the electric charge and 𝑣𝑑 is the drift velocity of the charge 

carriers. 



86 

 

 

Figure 3.4: The Hall effect of negative charge carriers (electrons) [190]. 

 

Figure 3.5: The Hall effect of positive charge carriers [190]. 

 If charge carriers in the plane are negative (electrons), as in Figure 3.4, the negative 

charges will accumulate at the upper edge of the plane, leaving the lower edge with positive 

charges. The accumulation of charge carriers continues until the transverse electric field, 

𝐸𝑒, with the magnitude |𝑞|𝐸 becomes equal to the magnetic force in the 𝑧-direction, 𝐹𝑧. 

 If the charge carriers are positive, as in Figure 3.5, then the accumulated charges at 

the upper edge will be positive, and the potential difference is opposite to the negative 

charge carrier situation [190]. 
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3.4. Hall Effect in Superconductors 

In most cases, if a conventional superconductor is in its superconducting state, the 

magnetic field is entirely expelled from the superconductor. Therefore, there will not be a 

Hall effect in the material. If the superconductor is in the mixed state, where both 

superconducting and Meissner phases are “mixed” with “normal”, non-superconducting 

volumes, the Hall effect will be present in the “normal” non-superconducting cores of the 

vortices, and the Hall conductivity will show the same sign as in the normal state. However, 

in high-𝑇𝑐 and some conventional superconductors, the Hall effect sign changes in the 

superconducting state. This effect is called the “Hall anomaly”. The sign change is a result 

of vortex dynamics, and not a spurious Hall effect resulting from extrinsic effects such as 

atomic defects. It has become a challenge for the theorists to explain why sign changes 

appear in the combination of the different terms of the total Hall conductivity and there is 

an ongoing body of research into this [191]. 

3.5. Introduction to Thermoelectricity 

Thermoelectricity is a process where electricity is generated by applying a 

temperature difference between two sides of a material. The thermoelectric effect can also 

be used to generate a temperature difference between two sides of a material by the 

application of an electrical current. As a result, thermoelectricity can be a bi-directional 

conversion of heat into electricity or electricity into heat [171]. 

3.6. Thermoelectric Effects and Relations 

3.6.1. Seebeck Effect 

The thermoelectric effect was first observed by T. J. Seebeck in 1821 and it was 

named after him as the “Seebeck effect” [174]. The Seebeck experiment showed that if two 
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dissimilar metals are joined together then connected to a galvanometer to form a closed 

circuit as shown in Figure 3.6, heating the junction between the metals induces an electric 

current to flow in the circuit. The joined metals are called a “thermocouple” [170]. 

 

Figure 3.6: A demonstration of the thermocouple Seebeck effect. 

In an open loop circuit, the magnitude of the thermoelectric voltage is found to be 

proportional to the temperature difference at the thermal junction. The Seebeck coefficient 

is then defined to be:  

𝑆𝐴𝐵 =
𝑉𝑡ℎ

∆𝑇
 

where 𝑆𝐴𝐵 is the Seebeck coefficient of 𝐴 and 𝐵 where 𝐴 and 𝐵 are different types of 

metals, 𝑉𝑡ℎ is a thermoelectric voltage, and ∆𝑇 is a temperature difference [170, 172, 175]. 

 

Figure 3.7: A schematic of a thermocouple. 
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The Seebeck coefficient, 𝑆𝐴𝐵, is also known as thermoelectric power which is an 

electromotive force with the SI unit of volts per kelvin (V/K) that drives an electric current 

from hot junction to cold junction through 𝐴 [170]. 

3.6.2. Peltier Effect 

The Peltier effect was discovered in 1834 by J. C. A. Peltier. It was the second 

thermoelectric effect discovered. The Peltier effect is that when an electric current is 

flowing through a junction of two different metals 𝐴 and 𝐵 (thermocouple), heat will be 

increased (heating) or reduced (cooling) depending on the direction of the electric current 

flow [170]. 

The Peltier coefficient can be defined as: 

𝛱𝐴𝐵 = 𝛱𝐴 − 𝛱𝐵 =
𝑄

𝐼
 

where 𝑄 is a temperature changing rate at the junction, 𝐼 is an electric current, 𝛱𝐴𝐵 is the 

Peltier coefficient of the junction between metals 𝐴 and 𝐵, and 𝛱𝐴 and 𝛱𝐵 are the Peltier 

coefficients of metals 𝐴 and 𝐵 repectively. 

 

Figure 3.8: A setup for observing the Peltier effect. 

3.6.3. Thomson Relations 

W. Thomson, the 1st Baron Kelvin of Largs (Lord Kelvin), determined the value of 

the absolute zero as to be approximately −273.15 degrees Celsius (ºC) or −459.67 
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degrees Fahrenheit (ºF). The use of Thompson’s titular name, Kelvin, as the unit of 

absolute temperature is in his honor. 

Lord Kelvin expressed that the Seebeck and Peltier effects obey the theory of 

thermoelectric energy conversion. Thus, the Seeback and Peltier coefficients are relevant 

to each other as:  

𝛱𝐴𝐵 = 𝑇 · 𝑆𝐴𝐵 

which is the first Thomson relation [170, 176]. 

 Lord Kelvin also showed the connection between his coefficient (Thomson 

coefficient) and the Seebeck coefficient at the junction of two metals 𝐴 and 𝐵 in the second 

Thomson relation as: 

𝜏𝐴𝐵 = 𝜏𝐴 − 𝜏𝐵 = 𝑇
𝑑𝑆𝐴𝐵

𝑑𝑇
 

where 𝜏𝐴𝐵 is the Thomson coefficient of the junction between metals 𝐴 and 𝐵, 𝜏𝐴 and 𝜏𝐵 

are the Thomson coefficients of metals 𝐴 and 𝐵 repectively. 

3.6.4. Nernst Effect 

In 1886, W. H. Nernst, the Nobel Laureate in Chemistry (1920), and his colleague, 

A. von Ettingshausen, jointly discovered the thermoelectric phenomena which were named 

after them. The Nernst effect, also known as the first Nernst-Ettingshausen effect, is a 

thermoelectric phenomenon where a Nernst current density arises when a magnetic field, 

𝐻, is applied perpendicularly to the thermal gradient (the difference of temperature in the 

direction of the heat flow) in a conductor.  
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Figure 3.9: The Nernst effect [177]. 

 As shown in Figure 3.9, the Nernst current density, 𝑗𝑐
𝑁𝑒𝑟𝑛𝑠𝑡, is driven in the 

transverse direction (𝑧-direction) of the heat flow or corresponding thermal current density 

(heat current), 𝑗ℎ, in the 𝑥-direction when 𝐻 is applied along the 𝑦-direction. The electric 

charges of 𝑗𝑐
𝑁𝑒𝑟𝑛𝑠𝑡 causes a transverse electric field, 𝐸𝑒, to occur in the conductor. 

Particularly, the Nernst effect depends on the heat flow rather than on a heat current [170, 

177] 

 To simplify the calculation of the Nernst coefficient, a 𝑥𝑦-plane diagram is 

presented in Figure 3.10. 
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Figure 3.10: The Nernst effect diagram. 

The Nernst coefficient, 𝑁, is defined as:  

|𝑁| =
𝐸𝑦

∇𝑇𝑥𝐻𝑧
=

(
𝑑𝑉
𝑑𝑦

)

𝐻𝑧 (
𝑑𝑇
𝑑𝑥

)
 

where 𝐸𝑦 =
𝑑𝑉

𝑑𝑦
 is the electric field in the 𝑦-direction (transverse electric field), 𝑉 is a 

transverse voltage, 𝐻𝑧 is an applied magnetic field in the z-direction, and ∇𝑇𝑥 =
𝑑𝑇

𝑑𝑥
 is the 

thermal gradient in the 𝑥-direction. 

3.6.5. Ettingshausen Effect 

The Ettingshausen effect or the second Nernst-Ettingshausen effect is a 

thermoelectric effect where a thermal gradient is a result from a transverse magnetic field 

and longitudinal flow of electric current [170] as shown in Figure 3.11. 
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Figure 3.11: The Ettingshausen effect diagram. 

The Ettingshausen coefficient, 𝑃, is defined as:  

|𝑃| =
(

𝑑𝑇
𝑑𝑦

)

𝐻𝑧𝐼𝑥
 

where 𝐼𝑥 is the electric current flow in the 𝑥-direction. 

3.7. Thermal Conductivity of Graphene  

The thermal transport in graphene essentially depends on the quantized oscillations 

of the crystal lattice which propagate as phonons. Phonon propagation through the2-

dimensional (2D) materials shows differences as compared to 1-dimensional (1D) and 3-

dimensional (3D) materials. In 2D systems, the thermal conductivity, 𝐾, goes 

logarithmically as: 

𝐾 ≈ ln(𝑛) 

where 𝑛 is the number of atoms [173].  

The phonon dispersion relation of graphene comprises three acoustic branches and 

three optical branches. The branches are associated with out-of-plane, in-plane 

longitudinal, and in-plane transverse atomic motions. The six phonon dispersion branches 
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of graphene are originated from the Г-point of graphene reciprocal lattice in the reciprocal 

space. The three dispersion branches which correspond to the acoustic mode are a ZA (out-

of-plane), a TA (in-plane transverse), and an LA (in-plane longitudinal) branches, and the 

remaining three branches which correspond to the optical mode are a ZO (out-of-plane), a 

TO (in-plane transverse), and an LO (in-plane longitudinal) branches [178]. 

In graphene, the thermal conductivity is size-dependent since a weak scattering of 

low energy phonons by other phonons within the sheet is present. Thus, the phonon 

scattering on the sheet boundaries causes their relaxation. In order to make the thermal 

conductivity size-independent, the graphene sheet must be sufficiently large (> 10 𝜇𝑚). 

The phonon part of the thermal conductivity is: 

𝐾𝑝 = ∑ 𝐶𝑗

𝑗

(𝜔)𝑣𝑗
2(𝜔)𝜏𝑗(𝜔)𝑑𝜔 

where 𝜏𝑗(𝜔) is the phonon relaxation time, 𝑗 is the index of phonon polarization branches, 

𝐶𝑗(𝜔) is the contribution to heat capacity from the 𝑗-th branch, and 𝑣𝑗(𝜔) is the phonon 

group velocity of the 𝑗-th branch [173]. 

 The relevant phonon branches, which contribute in 𝐾𝑝, include one LA branch and 

two TA branches, and the Bose-Einstein distribution function of phonons will be: 

𝑁0(𝜔𝑗) = 1 (𝑒𝑥𝑝[ℏ𝜔𝑗 𝑘𝐵𝑇⁄ ] − 1)⁄  

where 𝜔𝑗 is the phonon frequency of the of the 𝑗-th branch. 

 Due to spatial confinement of acoustic phonons in nanostructures of graphene, the 

phonon energy spectra are quantized. The quantization of the phonon energy spectra 

results a decrease of the phonon group velocity. 
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 Where 𝑠 = 𝑇𝐴, 𝐿𝐴 is the index denotes the TA and LA branches of phonon, the 

thermal conductivity of graphene is obtained as: 

𝐾 =
1

4𝜋𝑇𝑍0
∑ ∫ [𝐸𝑞

𝑠𝑣𝑠(𝑞)]
2

𝜏𝑈,𝑠
𝐾 (𝑞)

𝑞𝑚𝑎𝑥

𝑞𝑚𝑖𝑛

(−
𝜕𝑁0

𝜕𝐸𝑞
𝑠) 𝑞 𝑑𝑞

𝑠=𝑇𝐴,𝐿𝐴

 

where 𝑞 is the wave vector, 𝑍0 = 0.335 𝑛𝑚 is the thickness of a graphene layer, 𝐸𝑞
𝑠 =

ℏ𝜔𝑠(𝑞) is the phonon energy, 𝑣𝑠(𝑞) = 𝑑𝜔𝑠(𝑞) 𝑑𝑞⁄  is the phonon group velocity, 𝜏𝑈,𝑠
𝐾 (𝑞) 

is the Umklapp relaxation time obtained by taking into account of different lifetimes for 

the LA and TA phonon branches [173]. 

The steady state Bose-Einstein function is given as follows: 

𝑁0(𝐸𝑞) =
1

𝑒
𝐸𝑞

𝑠

𝑘𝐵𝑇 − 1

 

 The calculation of the thermal conductance of graphene in a pure ballistic region 

has obtained a value which was translated to a thermal conductivity, 𝐾 ≈ 6.6 kW/mK. This 

result showed the higher 𝐾 is expected for the ballistic regime when no scattering is 

included [180, 181]. However, in experiments, there is scattering on defects, edges, or 

impurities, and thus the transport is partially diffusive. The measurement reports of thermal 

conductivity of graphene found that the near room-temperature thermal conductivity of 

partially suspended SLG was in the range of ~3 – 5 kW/mK depending on the size of 

graphene flake [77, 179, 180].  

3.8. Tables of Symbols and Acronyms 

Table 3.1: Table of Symbols 

Symbols Description Value 

𝑇𝑐 Critical temperature. – 
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𝐽 Current density. – 

𝐵 Magnetic flux density. – 

𝐹 A magnetic force. – 

|𝑞| The magnitude of the electric charge. – 

𝑣𝑑 The drift velocity of the charge carriers. – 

𝐸𝑒 A transverse electric field. – 

𝐸 An electric field. – 

𝑆𝐴𝐵 The Seebeck coefficient of metals 𝐴 and 𝐵. – 

𝑉𝑡ℎ A thermoelectric voltage. – 

∆𝑇 A temperature difference. – 

𝛱𝐴𝐵 
The Peltier coefficient of the junction between 

metals 𝐴 and 𝐵. 
– 

𝛱𝐴 The Peltier coefficients of metals 𝐴. – 

𝛱𝐵 The Peltier coefficients of metals 𝐵. – 

𝑄 A temperature changing rate at the junction. – 

𝐼 An electric current. – 

𝑇 Temperature. – 

𝜏𝐴𝐵 
The Thomson coefficient of the junction between 

metals 𝐴 and 𝐵. 
– 

𝜏𝐴 The Thomson coefficient of the metals 𝐴. – 

𝜏𝐵 The Thomson coefficient of the metals 𝐵. – 

𝑗𝑐
𝑁𝑒𝑟𝑛𝑠𝑡 The Nernst current density. – 

𝐻 An applied magnetic field. – 

𝑁 The Nernst coefficient. – 

𝑉 A transverse voltage. – 

∇𝑇 Thermal gradient. – 

𝑃 The Ettingshausen coefficient. – 

𝐾 Thermal conductivity. – 

𝑛 Number of atoms. – 
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Г A high symmetry point in the reciprocal space of 

graphene. 
– 

𝐾𝑝 The phonon part of the thermal conductivity. – 

𝜏𝑗(𝜔) The phonon relaxation time. – 

𝑗 The index of phonon polarization branches. – 

𝐶𝑗(𝜔) The contribution to heat capacity from the 𝑗-th 

branch. 
– 

𝑣𝑗(𝜔) The phonon group velocity of the 𝑗-th branch. – 

𝑁0(𝜔𝑗) The Bose-Einstein distribution function of 

phonons. 
– 

𝜔𝑗 The phonon frequency of the of the 𝑗-th branch. – 

𝑞 The wave vector. – 

𝑍0 The thickness of a graphene layer. 0.335 𝑛𝑚 

𝐸𝑞
𝑠 The phonon energy. – 

𝑣𝑠(𝑞) The phonon group velocity. – 

𝜏𝑈,𝑠
𝐾 (𝑞) The Umklapp relaxation time. – 

𝑁0(𝐸𝑞) The steady state Bose-Einstein function. – 

Table 3.2: Table of Acronyms. 

Acronym Description 

1D 1-dimensional 

2D 2-dimensional 

3D 3-dimensional 

Al Aluminum 

As Arsenic 

B Boron 

BCS Bardeen-Cooper-Schrieffer 

Bi Bismuth 

BLG Bilayer graphene 
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FLG Few-layer graphene 

Ga Gallium 

In Indium 

LA In-plane longitudinal (acoustic mode) 

LO In-plane longitudinal (optical mode) 

P Phosphorous 

Sb Antimony 

Si Silicon 

SLG Single-layer graphene 

TA In-plane transverse (acoustic mode) 

TO In-plane transverse (optical mode) 

ZA Out-of-plane (acoustic mode) 

ZO Out-of-plane (optical mode) 
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Part II 

Experimentation 

Chapter 4 

Problem Statement and Experimental Design 
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4.1. Overview 

Carbon has many allotropes exhibiting different chemical, mechanical, and 

electrical properties. Graphene, a single layer of hexagonally-bonded carbon atoms, has 

been widely studied [1 – 5] because of its unique thermodynamic stability, electronic band 

structure, orientation of atoms [219, 220], and other properties. In 2005, A. K. Geim and 

K. S. Novoselov successfully obtained the first single-layer graphene by mechanical 

exfoliation of HOPG. Their groundbreaking experiments on graphene led them to be 

awarded the 2010 Nobel Prize in Physics. Mechanically exfoliated graphene can be further 

separated into 2D (single layer) or quasi-2D (multilayer) conducting materials. These can 

then be used as test objects to study possible electron pairing and BKT transitions necessary 

for superconductivity.  

The thermoelectric Nernst effect can be used to investigate charge carrier transport 

in mechanically exfoliated SLG, BLG and FLG as 2D and quasi-2D materials. In this 

dissertation, a Voltage versus Temperature (V vs. T) Nernst effect measurement was used 

as the main method to test and identify the behavior of electric charge carriers in graphene 

under an applied thermal gradient and magnetic field. In conductors, the electric charge 

carriers are electrons. A thermal gradient in a conductor can cause electrons to diffuse from 

the hot end to the cold end of the material [170], A magnetic field perpendicular to the 

charge diffusion current exerts a transverse force on the moving charge carriers due to the 

Lorentz force. This Lorentz force pushes the charge carriers to one side of the conductor 

in a direction perpendicular to both the thermally diffusing charge flow and the applied 

magnetic field [233]. 
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A similar effect also occurs in a mixed state superconductor when magnetic vortices 

are present and mobile. They, analogously to thermally diffusing charge carriers, move via 

diffusion from the hot end of the material to the cold end. The application of an external 

magnetic field perpendicular to the diffusing vortices also gives rise to a force 

perpendicular to both the diffusing vortices and the applied magnetic field. This pushes the 

vortices transverse to the thermal gradient and, as a result of the motion of the magnetic 

flux gives rise to an electric field via:  

∇ × 𝐄 = −𝜕𝐁/𝜕𝑡 

where the equation is the differential form of Maxwell’s third equation. 

The purpose of this study is to examine the behavior of charge carrier transport in 

doped and undoped graphene in the temperature range between ~ 290 K to ≥10 K via a 

thermoelectric Nernst effect measurement, and to explore any means to increase the critical 

temperature, 𝑇𝑐, of graphene to be close to the room temperature or even above it, if it is 

possible. 

4.2. Theoretical Background 

It has been hypothesized that the close coupling or strong scattering of electrons by 

both phonons and plasmons in graphene indicates a potential for superconductivity at 

considerable temperatures in doped graphene [201 – 206]. Typically, graphene is a 

nonmetallic material containing nonmagnetic atoms which does not react to an externally 

applied magnetic field. The magnetism in graphene comes from the local states caused by 

atomic vacancy defects or molecular adsorption as mentioned in Section 1.4.5. Vacancies 

of carbon atoms break the molecular symmetry of the honeycomb structure causing 
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magnetic flux pinning that induces magnetism in graphene [212 – 214], and chemical 

absorption leads to a forming of magnetic moments on neighboring carbon atoms causing 

spin-polarized states to mainly localize around the adsorbed atoms [210, 211]. Bombarding 

graphene with argon (Ar) via ion implantation can cause atomic vacancy defects, and 

doping graphene with a chemical such as boron (B), nitrogen (N), or phosphorus (P) can 

cause the atoms around the border regions of the honeycomb structure of graphene to 

localize. Then the graphene can be responsible for magnetism [55, 56, 208, 209].  

The work of Larkins et al. shows that boron-doped HOPG samples show no sign of 

possible superconductivity at any temperature down to below 20 K [55]. On the other hand, 

phosphorus-implanted HOPG samples exhibit a deviation from the expected monotonic 

rise in resistance as temperature goes down at some point above 100 K. Their following 

work [56] was able to observe a response consistent with the presence of magnetic field 

flux vortices in phosphorus-implanted and in phosphorus-doped multilayer graphene. The 

observation of possible superconductivity in phosphorus-implanted and in phosphorus-

doped multilayer graphene has led to the thermal gradient-based Nernst effect 

measurements to study and understand more about the transports and behaviors of electrons 

in 2D and quasi-2D materials under an influence of a magnetic field at temperatures above 

and below the 𝑇𝐵𝐾𝑇. The phosphorus-implanted and phosphorus-doped-while-grown 

multilayer graphene has exhibited an evidence of superconductivity (or another unknown 

physical phenomenon) with a 𝑇𝑐 in the region of 260 K [56] which is considered to be in a 

region of high-𝑇𝑐 superconductors. Thus, this dissertation was conducted to observe large 

Nernst signals below and above the hypothesized 𝑇𝑐 of the samples to confirm the 
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existences of vortex transport and high-𝑇𝑐 superconductivity in phosphorus implanted and 

phosphorus doped graphene. 

4.2.1. BKT Theory 

The motion of vortices is created by phase fluctuations above the BKT 

characteristic transition temperature, 𝑇𝐵𝐾𝑇, and the Nernst Effect can be attributed to this 

motion of vortices [200]. Many experiments have demonstrated that an enhanced Nernst 

magnetic vortex signal is observed in hole-doped (electron-accepter doped) cuprates when 

a motion of vortices is induced in a superconductor at temperatures significantly above the 

superconducting transition temperature, 𝑇𝑐 [194 – 198].  

Susceptibility and transport measurements on a 2D superconductor should 

demonstrate a characteristic double BKT transition. At temperatures below 𝑇𝐵𝐾𝑇, there 

should be a magnetic vortex BKT transition at a higher temperature, and a charge BKT 

transition at a lower temperature [237]. This represents a characteristic signature of 

superconductivity in two dimensions and, along with diamagnetic susceptibility which 

tracks these BKT transitions, is strong evidence of superconductivity.  

The charge BKT transition is the phenomenon where charge carriers becoming 

“frozen”. As a result, the freezing of charge carriers causes conduction and magnetic 

screening to cease which makes the susceptibility and the conduction becoming effectively 

zero at and below this temperature. The magnetic vortex BKT transition is where magnetic 

vortices in a 2D material become frozen in a lattice and unable to move. In multilayer 

graphene, not only vortices in the same layer freeze into a lattice, but those in adjacent 

layers would freeze as well. The transition temperature will be higher for lattices with all 

vortices in the same layer and lower for vortices in adjacent layers. This is due to the 
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distance between adjacent vortices in the same layer being smaller than the inter-vortex 

distance of adjacent vortices in adjacent layers. As a result, the repulsive force between the 

same layer vortices is stronger than between adjacent layer vortices. This leads to the 

expectation that the transition will be somewhat broadened as compared with the simple 

single layer model’s transition. This effect should be visible in both the susceptibility 

(magnetization) and transport (resistance and Nernst) data. 

4.2.2. Hall Effect 

In Hall effect measurements on mixed-state multilayered superconductors with 

weak flux pinning, it has been widely observed that the presence of a vortex state with 

mobile vortices often leads to a sign reversal in the Hall voltage as the sample goes through 

the transition [237 – 241]. This sign reversal in the Hall voltage is also seen in thin-film 

materials with anomalous ferromagnetism. Anomalous ferromagnetism is only found in 

materials with 𝑑 shell and/or 𝑓 shell electrons and these materials also universally exhibit 

susceptibilities and magnetizations greater than zero [242, 243]. Magnetization and 

susceptibility measurements of the doped graphene demonstrate hysteresis in the field-

cooled (FC) and zero-field-cooled (ZFC) data. This is consistent with diamagnetism 

(negative susceptibility) and magnetic field storage (hysteresis with the susceptibility of 

ZFC films more negative than FC films). This is not consistent with ferromagnetism. 

4.2.3. Nernst Effect 

A conductor exhibits a transverse voltage when a magnetic field is applied on a 

perpendicular direction of the direction of thermal gradient [232]. In a conventional 

superconductor, a large Nernst magnetic vortex signal below 𝑇𝑐 is a sign of vortex 

transport. But it was unexpected that large Nernst magnetic vortex signals were discovered 
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above the 𝑇𝑐 in high-𝑇𝑐 superconductors (hole-doped cuprates) [194 – 199]. A description 

of this phenomenon was raised by Pourret et al. that a large Nernst magnetic vortex signal 

in conventional superconductors and cuprates is generated by vortices as they are displaced 

by an applied thermal gradient which exerts a force on the vortices [207]. 

4.2.4. Pancake Vortices and Flux Pinning 

Several works and experiments [221 – 228] have been done to characterize and 

model the behavior of magnetic vortices in layered superconductors lead to the conclusion 

that pancake vortices are the preferred vortex form in this extremely anisotropic material 

(the ratio of the in-plane resistivity to the normal direction resistivity in pure multilayer 

graphene is greater than 100,000 ∶ 1) [229, 230]. Normally, the thicknesses of high-

temperature superconducting thin films are often less than 200 layers. When the 

superconducting layers are separated by relatively thick insulating or normal conducting 

layers, the formation of an Abrikosov vortex is only possible within the superconducting 

layers. These vortices are generally called “pancake vortices”, due to their flat shape [234]. 

For multilayer graphene (graphene and graphite are diamagnetic materials with significant 

magnetic anisotropy [231]) with graphitic layers < 200, interlayer distances ~3.4 – 3.5 Å, 

and relatively long magnetic penetration depths, if the graphene was superconducting, A 

magnetic self-pinning attractive force or coupling force, 𝐹(𝑟𝑗, 𝑗, 𝑖), that tended to bring the 

two pancake vortices into alignment in layers 𝑖 and 𝑗 would be given as: 

𝐹(𝑟𝑗, 𝑗, 𝑖) ≈ 𝜌̂(𝜑𝑗) (
Ф0

2𝜋Ʌ
)

2 (√𝜌𝑗
2 + |𝑖 − 𝑗|2𝑠2) − |𝑖 − 𝑗|𝑠

𝜌𝑗
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where 𝜌̂(𝜑𝑗) =  𝑖̂ cos 𝜑𝑗 + 𝑗̂ sin 𝜑𝑗 is the unit vector pointing from the 𝑧 axis (an axis that 

passes through the center of pancake in layer 𝑖), 𝑟𝑗 = (𝜌𝑗, 𝜑𝑗) is the coordinates of pancake 

vortices in layer 𝑗, Ф0 is magnetic flux quantum, 𝑠 is the interlayer spacing, and Ʌ = 2𝜆ǁ
2 𝑠⁄  

is the 2D thin-film screening length which 𝜆ǁ is the effective penetration depth parallel to 

the graphene planes [223]. 

 Where the layers 𝑖 and 𝑗 are adjacent and the vortices are directly vertically aligned, 

the coupling force reduces to: 

𝐹(𝑧, 0,1) ≈ 𝑧̂
Ф0

2𝑠2

16𝜋2𝜆ǁ
4 

where 𝑧 is the axis of the pancake vortices in layer 𝑖. 

In general, pancake vortices in different layers attract to each other via an attractive 

force caused by the magnetic field associated with each pancake vortex. In multilayer 

superconducting materials, pancake vortices will be stacked together by a flux line of 

attractive force. This line of force is a Josephson interaction between adjacent layers of a 

layered superconductor, therefore it is called the “Josephson coupling or Josephson line” 

[222, 234, 235]. 
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Figure 4.1: A flux line in a strongly layered superconductor is made up of pancake 

vortices in the superconducting layers interconnected by Josephson lines [234]. 

 

From 𝐹(𝑧, 0,1) ≈ 𝑧̂
Ф0

2𝑠2

16𝜋2𝜆ǁ
4, it is obvious that the coupling force between two 

pancake vortices in adjacent layers is proportional to the square of the interlayer spacing 

and inversely proportional to the fourth power of the magnetic field penetration depth 

within the layer. Since the interlayer spacing in graphene stacks is ~3.4 – 3.5 Å, in the 

absence of external pinning, flux-flow resistance is a probable factor in the resistance of 

graphene to very low temperatures. The single pancake vortex pinning energy is given by: 

𝑈0 = (𝜙0 4𝜋⁄ )2 𝑠 𝜆𝑎𝑏
2⁄  

where 𝜆𝑎𝑏 is the in-plane penetration depth which corresponds to 𝜆ǁ [224]. 

 This pinning energy gives a self-pinning characteristic temperature for a single 

pancake vortex in YBa2Cu3O7–x of 1,200 K and vortex motion begins to be a problem at 

about 1/20 of that temperature [224]. The expression 𝑈0 𝑘𝐵⁄ = 1,200 𝐾 is given for 

YBa2Cu3O7–X where the flux motion temperature regime is (𝑈0 𝑘𝐵⁄ ) 20⁄ = 60 𝐾. 
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Given that the measured normal state conduction anisotropy in multilayer graphene 

is significantly greater than conduction anisotropy of YBa2Cu3O7–x, if the 𝜆𝑎𝑏 is the same, 

the expected temperature where a flux motion regime begins in graphene would be about 

10 K. This is expected to be an upper-value estimated temperature. Realistic estimates for 

the onset temperature for flux flow could be lower than 10 K. Hence, even if the multilayer 

and highly anisotropic material is superconducting with Cooper pairs, the resistance would 

not be “zero” even at low temperatures and currents. 

The strength of a pinning force of a pancake vortex to an atomic vacancy caused 

by ion–implantation is related to the size of the vacancy and 𝜆𝑎𝑏 that governs the physical 

size of the pancake vortex. At low temperatures, a pancake vortex could be pinned to a 

vacancy. However, the pinning force of a vortex would not be strong in this highly 

anisotropic material unless there were other pancake vortices pinned to similar vacancies 

in adjacent layers. In this case, the vacancies would provide condensation sites for the 

formation of columns of pancake vortices called “stacks” and the pinning forces of these 

stacks could be calculated as the summation of the vortices in the stack’s mutual magnetic 

fields and Josephson interactions (Josephson lines) [224]. 

To deform or “melt” a stack requires a temperature that is proportional to the 

pinning energy from the inter-vortex pinning of the stack. Usually, numbers of pancake 

vortices in each stack are varied depending on the size of the vacancy and 𝜆𝑎𝑏. Thus, stacks 

with different numbers of vortices would melt at different temperatures. Once a stack is 

melted, all the vortices which were in the stack are now free to move and immediately 

contribute resistive losses in the material. This would lead to the expectation of upward 

steps in resistance at the melting temperatures of the various stacks. Thermal effects and 
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angular misalignment of some of the vortices in the stacks (tilted stacks of pancake 

vortices) would give rise to smearing of the steps. 

In other doping processes which do not cause a copious amount of atomic 

vacancies, pancake vortices would still form but would be less likely to stack vertically as 

there would be no columnar defect to stack along. For example, A doped-while-grown 

material would be less likely to have sharp steps as the pancake vortices would be less 

vertically aligned and more tilted away from the normal to the layers (greater spread in 

layer-to-layer offsets). If the vortices are separated by additional layers and not vertically 

stacked, the magnetic interaction will be lowered by the separation. However, the 

interaction potential will still be logarithmic and repulsive giving rise to a BKT transition. 

4.2.5. Magnetic Characteristics in Thin-Film Superconductors 

Magnetization measurements on thin-film superconductors where the penetration 

depth is many times greater than the film’s thickness have shown that the magnetization is 

negative and has a “valley” or quasi-parabolic shape as a function of temperature and/or 

applied field. This is quite different from what can be seen form thick conventional 

superconductors where pancake vortices are not formed, and the applied magnetic field is 

expelled from the bulk of the superconductors [56, 57, 236]. In AC susceptibility 

measurements [55 – 57], the primary differences between thin films where the thickness is 

considerably less than the magnetic penetration depth and materials with a unity ratio of 

thickness to penetration depth are  

1. A smaller net signal as the magnetic screening is smaller; 

2. A broader and depressed transition as a function of temperature due to the 

field penetration and vortices.  
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For a thin film that has its thickness measured in nanometers, many films may be 

required to stack together to provide sufficient magnetic screening to obtain a stable and 

comprehensible signal. The magnetic screening fraction of a thin film usually behaves as: 

𝑆𝐹 = 1 − 𝑒(−𝑍 Ʌ⁄ ) 

where 𝑍 is the total sample thickness perpendicular to the applied magnetic field. 

4.3. Problem Statement and Hypotheses  

4.3.1. Problem Statement 

A vortex in a superconductor can only exist in a mixed state superconductor. Vortex 

motion can only be observed for temperatures and magnetic fields below the upper critical 

zone. The term critical zone refers to the condition when the material is under the upper 

critical field (𝐻𝑐2) and the critical temperature (𝑇𝑐) which are interdependent functions of 

each other. In the presence of thermal gradient, the resulting Nernst signal is a tilted peak, 

not a step, with a steep onset on the low temperature side and a longer tail on the high 

temperature side. As an extension of this problem, an array of pinned vortices with a 

common de-pinning temperature should be formed in the material. These vortices would 

give rise to a Nernst signal with a similar tilted peak characteristic shape. For a sample 

such as hypothesized phosphorous doped then argon damaged graphene, a series of Nernst 

tilted peak signals at temperatures correlating to the various depinning energies for vortices 

in the sample is highly anticipated to be observed. 

4.3.2. Hypotheses 

• The Nernst signal for a charge versus a vortex is differentiable insofar as a charge 

leads to a slope change with onset at the activation temperature and a vortex leads to 

a tilted peak at the depinning temperature. For a sample with multiple pinning 
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energies, there should be multiple depinning temperatures observable in the Nernst 

signal. 

• Vortices in different layers of superconducting phosphorous doped then argon 

damaged graphene are expected to be interconnected by Josephson lines through the 

columnar defects caused by the argon bombardment.  

• T ~ 40 K is expected to be the melting temperature of pinned vortices [110] which is 

also the same temperature where the thermoelectric Figure of Merit (𝑍𝑇) of the 

graphene-based topological insulators with nanopores [244] is found to reach its 

maximum of 𝑍𝑇 ~ 3. 

• Phosphorous-nano-doped graphene can become a superconductor when properly 

doped. The critical temperature for a flux-flow vortex state appears to be above 260 K 

in this material.  

• The critical temperature in doped-while-grown graphene samples should be 

considerably higher than ion-implanted and ion-damaged graphene samples. This is 

because the phonon coherence lengths, Debye temperatures, and electron mean free 

paths are larger for samples with less damage to the lattice. 

• Doping graphene using phosphorus or other electron-donor dopants could create a 

high-𝑇𝑐 superconductor. 

4.4. Testing Samples 

As mentioned in Section 1.2, the host samples or substrates to create thin-film 

testing samples of this work was HOPG ZYH specimen with the dimensions of 

10 mm 𝘹 10 mm 𝘹 1.2 mm, a mosaic spread of 3.5° ± 1.5°, gran size of 30 – 40 nm, and 

density of 2.255 – 2.265 gcm–3 [26]. Bulks of HOPG were ordered from MikroMasch Inc. 
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and NT-MDT Spectrum Instruments Company. After doping and peeling (mechanical 

exfoliation) the substrates, the testing samples were numbered and categorized into three 

types which were phosphorus and argon implanted samples (samples # 023 and 201 – 225), 

phosphorus doped-while-grown samples (sample # 151, 163 – 170), and undoped samples 

(sample # 401 and 402). 

 For the ion-implanted samples # 023 and 201 – 225, phosphorus was implanted into 

bulks of HOPG ZYH via ion implantation. Then, argon was used to deliberately damage 

the phosphorus-implanted HOPG to create vacancy columns for pinning of magnetic flux. 

The energy of the implanted phosphorus was 10 keV with the implantation dose of 

1.2 𝘹 108 cm−2. All the ion-implanted samples were ion implanted by the CuttingEdge 

Ions, LLC on a mail-in basis. After the ion implantation was done, the HOPG substrates 

were mechanically exfoliated using silicon adhesive Kapton® film tape [216] to remove 

multilayer graphene sheets to be the testing samples. 

From the previous work of Larkins et al. [56], the consecutive Resistance versus 

Temperature (R vs. T) measurements of a peeled thin-film of the sample # 023 had shown 

large and abrupt drops of resistance at high temperatures for a superconductor (Figure 

2.18). Therefore, the sample # 023 was selected to be one of the samples used in this work. 

 For the doped-while-grown samples # 151, 163, and 170, the samples were 

prepared in a proven Chemical Vapor Deposition (CVD) system using Plasma-Enhanced 

CVD (PECVD) [215] on HOPG substrates. The HOPG was used as a seed crystal as it was 

easier to remove the doped-while-grown layer from the HOPG via exfoliation than a 

monolayer from copper foil. The gas mixture to create the phosphorus doped-while-grown 

samples on HOPG substrates was methane at 20 Standard Cubic Centimeters per Minute 
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(sccm), hydrogen at 10 sccm, argon at 14 sccm, and 0.1% phosphine in an argon carrier at 

5 sccm. After the PECVD process, the samples were obtained via exfoliation using 

Kapton® film tape. 

 For samples # 401 and 402, the samples were exfoliated with the same method 

directly from undoped HOPG substrates. 

4.5. Mechanical Exfoliation 

In this dissertation, the mechanical exfoliation was the procedure to obtain the 

graphene testing samples from HOPG substrates. The polyimide silicon adhesive Kapton® 

film tape [216] was the main tool to perform the exfoliation. Due to the usage of the tape 

in a high vacuum, the uniform silicone adhesive layer of the tape would not allow air 

bubbles to be trapped in between the tape and the graphene sheets which were peeled off 

from HOPG substrates.  

To mechanically exfoliate a testing sample, a chuck with a through hole and a 

vacuum device in Figure 4.2 were used to hold down the substrate (a bulk of HOPG) in 

place as shown in Figure 4.3. After the substrate was set up on the chuck, a layer of 

Kapton® film tape was laid on top of the substrate and carefully pressed down to remove 

all air bubbles between the tape and the substrate. Then the tape was gently removed off 

the substrate and a multilayer graphene sample was obtained as shown in Figure 4.4. 

Since the Kapton® film tape has high electrical insulation and is lighter than other 

insulators [193], after the tape was used to produce testing samples, it was left under the 

testing samples to insulate the sample from the experimental fixture during the experiment. 
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Figure 4.2: The sample preparation devices. 

A vacuum device with a blue vacuum tube (left). 

A chuck with a through hole (right) [57]. 

 

 

Figure 4.3: A HOPG sample secured to the chuck via vacuum seal [57]. 
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(a) 

 

          

                                (b)                                                                (c) 

Figure 4.4: (a) A roll of Kapton® film tape. (b) Mechanical exfoliation.  

(c) A graphene testing sample with a sheet of Kapton® film tape adhering underneath.  

4.6. Experimental Design and Methodology  

 After testing samples were prepared, the samples were mounted on a custom-made 

fixture in the cryogenic chamber of the closed-circle refrigeration system. The diagram in 
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Figure 4.5 shows that the fixture was designed to have one mounting hole and four 

measurement pin holes. The mounting hole was designed to mount the fixture onto the 

cryogenic refrigerator’s cold finger. Two measurement pin holes were used to install 

voltage measuring pins to measure the transverse thermoelectric voltage across the sample 

undergoing testing. The other two measurement pins holes were used to install pins to 

supply an electric current when a current for Resistance or Hall type measurements was 

desired. 

 

Figure 4.5: Top view of the simulated fixture. Image courtesy of Julian Gil Pinzon. 
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Figure 4.6: Side view of the simulated fixture. Image courtesy of Julian Gil Pinzon. 

The experimental fixture was made from aluminum alloy 6061 [217] which is a 

paramagnetic material that can efficiently transfer heat and does not retain magnetization 

from the externally applied magnetic field. The cold end of the fixture was anchored to the 

cold head on the closed cycle refrigerator leaving the other end (hot end) free floating. The 

hot end (free-floating end) of the fixture had a resistive heater (Nernst Heater) attached to 

it. A 10 Ω-power film resistor model no. MP930 TO-220 with the tolerance of ±1% [218] 

was used as the Nernst Heater to drive a thermal gradient from the hot end (Point B) to the 

cold end (Point A) as shown in Figure 4.6. Phosphor bronze contacts were used to make 

the contact to the sample and care was taken to place them at the same distance along the 

thermal gradient fixture to minimize differences in the temperature at the contacts. These 

contacts were placed on a line nominally normal to the thermal gradient (transverse to the 

anticipated thermally driven flux flow). 
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During a thermoelectric Nernst effect measurement, a magnetic flux density, 𝐵, 

was applied perpendicularly to the thermal gradient, ∇𝑇, under the testing sample at Point 

C in Figure 4.6. Temperature sensors were installed at the points A, B, and C to observe 

temperatures at the cold end, hot end, and under the testing sample. These sensors were 

also used to estimate the thermal gradient and heat transport through the testing material 

for the data calculations. 

To run an experiment, a graphene sample was placed on the fixture at point C in 

Figure 4.6 with the Kapton® film tape under the sample insulating the sample and the 

fixture. The Kapton® film tape was also used as an insulator preventing electrons to 

transport from the sample to the aluminum fixture. After a sample was placed on the 

experimental fixture and probed with voltage measuring pins, 1 – 3 watts of electric power 

was supplied to the Nernst Heater to create a thermal gradient through the experimental 

fixture. A magnetic field was applied perpendicularly to the sample where an adjustable 

magnetic field was generated by a DC copper solenoid, and a non-adjustable magnetic field 

was generated by neodymium rare earth disc magnets. 

The DC copper solenoid was placed outside of the refrigerator’s vacuum shroud to 

apply an adjustable magnetic field where the magnetic field could be adjusted from 0 to 

~300 Gauss. To apply a non-adjustable magnetic field, disc magnets were inserted in the 

gap between the Nernst fixture and the cold head without touching the fixture in order to 

minimize distortion of the thermal gradient. 

The setup of a sample on the fixture, thermometers, Nernst Heater, and neodymium 

rare earth disc magnets are shown in Figure 4.7. 
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Figure 4.7: Photograph of the Nernst fixture. The aluminum fixture is bolted to the 

cold head on the left, the thermometers, magnets, and heater are labeled. Note that 

the magnets have an approximately 1 mm space between themselves and the 

aluminum fixture. Image courtesy of Dr. Grover L. Larkins. 

 

After the experiment was set up in a high vacuum cryogenic system, the V vs. T 

characteristic of the sample was measured. The voltage was measured in microvolt-scale 

by a Keithley 2182A Nanovoltmeter. The temperatures at points A, B, and C in Figure 4.6 

were measured by LakeShore 330 and LakeShore 335 Temperature Controllers from room 

temperature (~290 K) down to 40 K at the position under the testing sample (point C in 

Figure 4.6). A LabVIEW program was used to control the compressor (F-70 Sumitomo) 

via a serial communication interface port and the data collecting instruments (LakeShore 

330, LakeShore 335, and Keithley 2182A) via General Purpose Interface Bus (GPIB). The 
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Measurement speed was approximately 5 s per final averaged data point recorded. In this 

experiment, an electrical current was not applied to the sample. 

To change the orientation of the non-adjustable magnetic field required opening the 

refrigeration system at ambient temperature, flipping the magnets, re-evacuating the 

system, and re-running the experiment of the same sample. This was important as the field 

might not be completely symmetrically reversed, and there was a possibility of mechanical 

motion of the contacts; despite this, the results would be remarkably consistent and 

symmetric. In the Nernst experiment, a magnetic field was applied normal to the surface 

of the sample and a thermal gradient perpendicular to the field is applied. Magnetic vortices 

(as well as charge carriers) then thermally diffuse from the cold end to the hot end of the 

sample. While moving, they experienced a Lorentz force due to the magnetic field, and a 

voltage (electromotive force) was induced in the direction of the cross product of the 

diffusion velocity and the magnetic bias field. Placing the electrodes on both edges of the 

sample in the direction of the Lorentz force allowed the induced electromotive force to be 

detected as a DC voltage. 

4.7. Preliminary Result 

The designed system was examined by performing a few trial runs to capture the 

Nernst effect voltages in a sample at room temperature. Trial runs of the undoped sample 

# 401 layer # 3 with an applied magnetic field of 2,900 G (0.29 T) showed that the Nernst 

effect voltage across the testing sample was affected by the increasing temperature from 

the heat flow. Figure 4.8 displays the voltages across the sample (transverse voltages) of 4 

trial runs at room temperature. The data of each run have been captured for 900 seconds 

(15 minutes). When the Nernst heater was on, heat flowed from B to A and increased to 
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the maximum depending on the power supplied to the heater. The polarities of the 

transverse voltages were determined by the polarity of the magnetic field from the magnet 

underneath the testing sample. In this dissertation, when the magnetic field penetrated out 

of the plain of the testing sample, it was labeled as “North up” and when the magnetic field 

penetrated onto the plain of the testing sample, it was labeled as “North down” (or “South 

up” in later experiments in Chapter 6). 

 

 

Figure 4.8: A graph of the room temperature Nernst effects of the undoped sample # 

401, layer # 3 under 2,900 G magnetic field. 

 

The graph of Voltage versus Time (V vs. t) in Figure 4.8 shows that the transverse 

voltage of each run was increasing (or decreasing in the opposite polarity of the magnetic 
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flux density) when the temperature increased from the room-temperature to the maximum, 

and the voltage became stable when the temperature has stabilized (reached its maximum). 

The graphs indicated that the voltage across the sample, 𝑉, was proportional to the 

thermal gradient, ∇𝑇, caused by the applied power of the Nernst Heater and the strength of 

the magnetic field, 𝐻. And the polarity of the transverse voltage was determined by the 

polarity of 𝐻 as in the thermoelectric Nernst effect equation: 

𝑑𝑉

𝑑𝑦
= |𝑁|𝐻𝑧 ∙ ∇𝑇𝑥 

where 𝑁 is the Nernst coefficient. 

4.8. Tables of Symbols and Acronyms 

Table 4.1: Table of Symbols. 

Symbols Description Value 

𝑇𝐵𝐾𝑇 BKT characteristic transition temperature. – 

𝑇𝑐 Critical temperature. – 

𝐹 
A magnetic self–pinning attractive force or 

coupling force. 
– 

𝜌̂(𝜑𝑗) The unit vector pointing from the 𝑧 axis. 𝑖̂ cos 𝜑𝑗 + 𝑗̂ sin 𝜑𝑗 

𝑟𝑗 The coordinates of pancake vortices in layer 𝑗. (𝜌𝑗 , 𝜑𝑗) 

Ф0 Magnetic flux quantum. 

ℎ 2𝑒⁄ ≈ 2.068 𝘹 10−15 

Wb 

or 

ℎ𝑐 2𝑒⁄ ≈ 2.07 𝘹 10−7 

Gauss cm2 

𝑠 The interlayer spacing. – 

Ʌ The 2D thin-film screening length. – 

𝜆ǁ 
The effective penetration depth parallel to the 

graphene planes. 
– 

𝑧 The axis of the pancake vortices in layer 𝑖. – 
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𝑈0 The single pancake vortex pinning energy. – 

𝜆𝑎𝑏 The in-plane penetration depth. – 

𝑘𝐵 The Boltzmann’s constant. ≈ 8.62 𝘹 10−5 eV/K 

𝑆𝐹 The magnetic screening fraction of a thin film. – 

𝑍 
The total sample thickness perpendicular to the 

applied magnetic field. 
– 

𝑍𝑇 Thermoelectric Figure of Merit. – 

∇𝑇 Thermal gradient. – 

∇𝑇𝑥 The thermal gradient on the 𝑥 axis. – 

𝐻 Magnetic field. – 

𝐻𝑧 The magnetic field on the 𝑧 axis. – 

𝑁 The Nernst coefficient. – 

 

Table 4.2: Table of Acronyms. 

Acronym Description 

2D 2-dimensional 

Ar Argon 

AC Alternating Current 

B Boron 

BKT Berezinskii-Kosterlitz-Thouless 

BLG Bilayer graphene 

CVD Chemical Vapor Deposition 

FLG Few-layer graphene 

HOPG Highly Ordered Pyrolytic Graphite 

N Nitrogen 

P Phosphorous 

PECVD Plasma-Enhanced Chemical Vapor Deposition 

R Resistance 



124 

 

R vs. T Resistance versus Temperature 

SLG Single-layer graphene 

T Temperature 

V Voltage 

V vs. T Voltage versus Temperature 

V vs. t Voltage versus Time 
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Chapter 5 

Phosphorus-Doped HOPG 
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5.1. Introduction to Ion Implantation 

Ion implantation is a low-temperature process to modify electronic properties of a 

substrate which is usually used to implant electron-donor or electron-acceptor atoms into 

silicon to create a P-type or N-type semiconductor. In the ion implantation, ions of the 

dopant are accelerated to hit and penetrate the substrate. Then the accelerated ions are 

decelerated by collisional and stochastic processes and come to rest within femtoseconds 

at the top micrometer layers [245]. The concentration of the dopant in an ion-implanted 

substrate is commonly defined by the dose and energy. 

Ions (charged atoms or molecules) are created via an enormous electric field 

stripping away an electron. The ions are filtered and accelerated toward a target substrate, 

where they are buried in the substrate. The depth of the implantation depends on the 

acceleration energy (voltage), and the dose is controlled by integrating the measured ion 

current. This integration process tends to minimize noise in the measurement of the ion 

current, resulting in several decimal places of accuracy in the dose [248]. 

At low doses (below 1014/cm2), the predominant damage type is point defects such 

as vacancies and interstitials, or clusters of point defects. At high doses, extended defects 

are created, and even amorphization can take place. High dose phosphorus and arsenic 

implants can amorphized a target such as silicon. The critical dose for amorphization is 

approximately 1014/cm2 [245]. 
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        (a)                                                                 (b) 

Figure 5.1: (a) Phosphorous implantations with different energies: 50 keV, 100 keV 

and 150 keV (dose constant 1015/cm2). (b) Phosphorous implantations with different 

doses: 1012/cm2, 1014/cm2, and 1016/cm2 (energy constant at 200 keV). The shape of 

dose 1016/cm2 is different because it is above the amorphization limit, and different 

stopping parameters are applied for the amorphized region. Reprinted with 

permission from Sami Franssila [245]. 

 

Point defects created by ion implantation cannot be seen by physical analysis, but 

extended defects like dislocations can be seen by Transmission Electron Microscopy 

(TEM). Amorphization can be measured by TEM or by X-Ray Diffraction (XRD). 

Implantation simulation such as the Monte Carlo (MC) simulation offers many 

advantages over semi-analytical implantation simulations. The Monte Carlo simulation can 

predict not only ranges and straggles, but it also enables physically based damage 

prediction, including amorphization. The MC simulations are, of course, more 

computationally intensive than the semi-analytic ones. The simulator SRIM (Simulation of 

Ranges of Ions in Matter) is a widely used MC simulator for implantation and other ion-

beam processes [245]. 
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SRIM is a group of programs which calculate the stopping and range of ions into 

matter using a quantum mechanical treatment of ion-atom collisions (assuming a moving 

atom as an "ion", and all target atoms as "atoms"). This calculation is made very efficient 

using statistical algorithms which allow the ion to make jumps between calculated 

collisions and then averaging the collision results over the intervening gap [253]. Examples 

of SRIM simulation are shown in Figure 5.2 and 5.3. 

 

Figure 5.2: Al contamination profiles resulting from a B implantation. For 

comparison, with SRIM simulated profiles are shown [254]. 
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Figure 5.3: SRIM simulation results of implanted ion concentration for 2 × 1021 

Ti/m2, 5 × 1021 He/m2, and 5 × 1021 D/m2 and displacement damage for 5 × 1021 D/m2 

as a function of depth in W (Pure Tungsten) [255]. 

 

An ion-beam implanter is the machine used to perform the ion implantation process. 

A diagram of an ion beam implanter is shown in Figure 5.4. 

 

Figure 5.4: Ion-beam implanter. Reprinted with permission from the Plansee Group 

[249]. 



130 

 

The ion source is a radio frequency (RF), and the multicusp ion source produces 

the desired beam species. The beam passes through a pre-acceleration section, known as 

the ion source extraction. The bias voltage gives the beam sufficient energy to allow 

selection of the desired species required for implantation by a 90-degrees mass analyzing 

magnet. The mass analyzing magnet is positioned along the beam path between the source 

and the acceleration column deflects ions through controlled arcuate paths to filter ions 

from the beam with the mass analyzing slit while allowing certain other ions to enter the 

ion acceleration column. In order to achieve higher ion energies and effectively penetrate 

a substrate, the ions must be accelerated in the ion accelerating column. Quadrupole lenses 

are installed at locations along the beam line for optimal beam focusing according to the 

ion optics requirements, and electronic scanning systems are used for correction of the lens 

aberration and for scanning the ion beam [250 – 252]. 

5.2. Introduction to Chemical Vapor Deposition 

Chemical Vapor Deposition (CVD) is a process to produce high quality, purity, and 

performance solid materials. In a CVD reaction chamber, the depositing materials are 

delivered in a gas phase called “gas precursors” flow into the vicinity of the substrate, 

where they decompose and react to deposit a film on the substrate. Decomposition of 

depositing gases can normally be induced either by temperature or plasma. The 

temperature-induced CVD is called Rapid Thermal CVD (RTCVD), and the plasma-

induced CVD is called Plasma-Enhanced CVD (PECVD). Typically, RTCVD processes 

in the range of 300 to 900 °C, and PECVD processes at 300 °C, but there is no fundamental 

lower limit to deposition temperature [245, 246]. 
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5.3. Phosphorus-Doped HOPG 

For testing samples where ion implantation doping was used to implant phosphorus 

followed by argon atoms (sample # 1 – 40, 55 – 58, and 201 – 225), the implantation was 

performed by CuttingEdge Ions, LLC. According to the result from the works of Larkins 

et al., phosphorus-implanted graphite and graphene showed evidence of superconductivity. 

Thus, this research which is the continuation of [56], the phosphorus-implanted samples 

would absolutely be considered. 

After phosphorus was implanted into the HOPG substrates, argon was used to 

deliberately damage the phosphorus-implanted HOPG to create vacancy columns for 

pinning of magnetic flux. The energy of the implanted phosphorus was 10 keV with doses 

ranging from 6 𝘹 107 cm−2 to 1.2 𝘹 109 cm−2. In the samples where argon was implanted, 

an energy of 5 keV and a dose of 1.2 𝘹 108 cm−2 were used for the argon implantation. The 

implantation was performed at a room temperature while the substrates were placed at 7 

degrees of tilt to avoid channeling. 

Figure 5.5 is the SRIM simulation of phosphorus ions implanted in graphite. The 

simulation was used predict the implant ranges and straggles, determine the final atom 

position after implantation, and avoid implant saturation. 



132 

 

 

Figure 5.5: SRIM simulated distribution. 

(1) Phosphorus ions implanted in graphite at 𝑬𝒑 = 10 keV. 

(2) Damage in graphite lattice caused by the implant. 

(3) The probable region of effect [55]. 
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Table 5.1: The list of ion-implanted HOPG samples # 1 – 40 and 55 – 58. 

HOPG 

sample 

number 

Type 
Substrate 

manufacturer 
Implant 

(ion implantation) 
Energy 

(KeV) 

Current 

(nA) 

Implantation 

dose (cm-2) 
Dopant / ºC 

(thermal diffusion) 
Comments 

001 ZYH MikroMasch boron 10 – 4.0×108 B (1200ºC) New B-diffusant B154 

002 ZYH MikroMasch boron 10 – 8.0×108 P (1200ºC) New P-diffusant P509 

003 ZYH MikroMasch boron 10 – 2.0×109 B (1200ºC) New B-diffusant B154 

004 ZYH MikroMasch boron 10 – 4.0×109 –  

005 ZYH MikroMasch phosphorus 10 – 1.2×108 –  

006 ZYH MikroMasch phosphorus 10 – 3.0×108 –  

007 ZYH MikroMasch phosphorus 10 – 5.9×108 none (900ºC)  

008 ZYH MikroMasch phosphorus 10 – 1.2×109 none (900ºC)  

009 ZYH MikroMasch phosphorus 10 – 1.2×108 –  

010 ZYH MikroMasch phosphorus 10 – 6×107 –  

011 ZYH NT-MDT phosphorus 10 – 1.2×108 –  

012 ZYH NT-MDT phosphorus 10 – 6×107 –  

013 ZYH NT-MDT phosphorus 5 – 1.2×108 –  

014 ZYH NT-MDT phosphorus 5 – 6×107 –  

015 ZYH NT-MDT – – – – – Scratch sample 

016 ZYH NT-MDT phosphorus 10 1.04 1.2×108 B (900ºC) New B-diffusant B154 

017 ZYH NT-MDT phosphorus 10 1.04 1.2×108 P (900ºC) New P-diffusant P509 

018 ZYH NT-MDT phosphorus 10 1.04 1.2×108 –  

019 ZYH NT-MDT phosphorus 10 1.04 1.2×108 –  

020 ZYH NT-MDT phosphorus 10 1.04 1.2×108 –  

021 ZYH NT-MDT phosphorus 10 1.04 1.2×108 –  

022 ZYH NT-MDT phosphorus 10 2 1.2×108 –  

023 ZYH NT-MDT phosphorus 10 2 1.2×108 –  

024 ZYH NT-MDT phosphorus 10 2 1.2×108 –  

025 ZYH NT-MDT phosphorus 10 2 1.2×108 –  

026 ZYH NT-MDT sulphur 10 2 6.0×107 –  

027 ZYH NT-MDT sulphur 10 2 1.2×108 –  

028 ZYH NT-MDT sulphur 10 4 3.0×108 –  

029 ZYH NT-MDT sulphur 10 4 6.0×108 B (1200ºC) Old B-diffusant B154 

030 ZYH NT-MDT phosphorus 10 2 1.2×108 –  

031 ZYA NT-MDT phosphorus 10 1.04 1.2×108 B (900ºC) Old B-diffusant B154 

032 ZYA NT-MDT phosphorus 10 1.04 1.2×108 P (900ºC) Old P-diffusant 

033 ZYA NT-MDT – – – – B (1000ºC) Old B-diffusant B154 

034 ZYA NT-MDT – – – – none (1200ºC)  

035 ZYH MikroMasch phosphorus 10 2 1.2×108 –  

036 ZYH MikroMasch phosphorus 10 2 1.2×108 –  

037 ZYH MikroMasch phosphorus 10 2 1.2×108 –  

038 ZYH MikroMasch phosphorus 10 2 1.2×108 –  

039 ZYH MikroMasch phosphorus 10 2 1.2×108 –  

040 ZYH MikroMasch – – – – – Scratch sample 

055 ZYB NT-MDT Ca 10  2.5E7 –  

056 ZYB NT-MDT Ca 10  1.2E8 –  

057 ZYB NT-MDT Ca 10  6.0E8 –  

058 ZYB NT-MDT Ca 10  3.0E9 –  
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The samples # 201 – 225 are the most recent phosphorus and argon implanted 

samples ordered from CuttingEdge Ions, LLC. To ion implant, 25 HOPG substrates were 

set up as a 5 by 5 array attached to a silicon carrier wafer via double-sided carbon tape as 

shown in Figure 5.6. The numbers of the substrates were assigned as in Figure 5.7. The 

specifications of the implantation are listed in Figure 5.8. 

 

Figure 5.6: A 5 by 5 array of HOPG substrates prepared for ion implantation. 
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Figure 5.7: The assigned numbers of HOPG substrates. 

 

Figure 5.8: The specifications of implantation of the samples # 201 – 225. 
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In Figure 5.9, the computed depth profile of the ion-implanted phosphorous in 

graphite and the computed damage profile are shown in curves 1 and 2. The corresponding 

computed profiles for the ion-implanted argon in graphite are shown in curves 3 and 4. 

Since there is no characterized implantation model for the stopping power of HOPG as a 

substrate we selected the closest substrate material in the library, graphite, for the 

simulation. 

 

Figure 5.9: This represents the simulated normalized distributions of implanted 

atoms and lattice damage caused by implanted atoms versus depth in HOPG.  

Curve 1: The calculated distribution of the implanted phosphorus.  

Curve 2: The computed damage caused by the implanted phosphorus.  

Curve 3: The calculated distribution of the implanted argon.  

Curve 4: The computed damage caused by the implanted argon [56]. 
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For the phosphorus doped-while-grown samples (sample # 151, 163, and 170), the 

method used to deposit phosphorus into the doped-while-grown samples on the substrates 

was PECVD. Deposition is achieved by introducing reactant gases between parallel top 

and bottom electrodes and an RF power supply. The capacitive coupling between the 

electrodes excites the reactant gases into a plasma, which induces a chemical reaction and 

results in the reaction product being deposited on the substrate. The substrate is typically 

heated to 600 °C or 800 °C, depending on the specific requirements [215]. 

 

Figure 5.10: A schematic of a PECVD system. Reprinted with permission from Jeon 

Geon Han [247]. 

 

In this dissertation, the method of producing phosphorus doped-while-grown 

graphene on HOPG was modelled after the CVD growth of graphene on a sheet of a 

transition metal such as copper (Cu) or Nickel (Ni). The process of CVD grown graphene 
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on Cu or Ni usually uses methane (𝐶𝐻4) and molecular hydrogen (𝐻2) as gas sources. A 

hydrocarbon compound such as methane has highly stable saturated molecules, thus the 

dehydrogenation in the gas phase of 𝐶𝐻𝑥 to 𝐶𝐻𝑥–1 is highly endothermic. At an elevated 

temperature, hydrocarbon atoms are thermally decomposed, and surface absorption, 

desorption, or segregation of carbon occurs depending on carbon-metal solubility for 

graphene growth. Homogeneous layer/layers of graphene can be grown by simply 

annealing the metallic substrate due to graphitization of amorphous carbon previously 

deposited on the surface or coming from furnace walls desorption. By reducing the partial 

pressure of methane gas in the overall gas flow, the concentration of carbon precursors can 

be made to be low enough to favor the growth of graphene honeycomb structure over 

nucleation [256 – 260].  

 

Figure 5.11: The CVD process includes the decomposition of methane to use the 

carbon needed in order to grow on the substrate surface. Reprinted with permission 

from ACS Material, LLC [259]. 

  

 

Figure 5.12: The most stable relaxed structures of phosphorus-doped graphene. The 

yellow and green balls represent the carbon and phosphorus atoms, respectively. 

Reprinted with permission from Jianmin Yuan, National University of Defense 

Technology [261]. 
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To create the doped samples, 𝐶𝐻4 was used as the main gas source to release carbon 

atoms by dehydrogenation. 𝐻2 cleaned and crystallized the substrates as diluent gas of the 

carbon precursor. Indication of the important role of hydrogen in determining the graphene 

growth kinetics and in limiting the graphene thickness comes from previous observations 

such as that when the fraction of 𝐶𝐻4 with respect to 𝐻2 is increased, the graphene growth 

on Cu is no longer self-limiting [260]. 𝐴𝑟 assists the annealing by providing a protective 

atmosphere. Annealing a substrate under an inert gas atmosphere reduces the presence of 

oxygen to avoid or minimize the chance of oxidation or contamination. 𝑃𝐻3 is used to 

provide phosphorus dopant atoms via dehydrogenation to attain the doped-while-grown 

graphene. 

The phosphorus doped-while-grown graphene samples were prepared via a 

PECVD on HOPG bulks under an argon atmosphere with a plasma power of 30 W for 15 

minutes (900 seconds). Bulks of HOPG were used as bed substrates because removing the 

phosphorus doped-while-grown layers from the HOPG substrates was easier than 

removing them from Cu or Ni sheets. Due to the weak Van der Waals force of HOPG, a 

mechanical exfoliation technique to remove layers of graphene from the substrates was 

simply performed by using Kapton® adhesive tape. To grow phosphorus doped-while-

grown graphene on HOPG bulks required methane at 20 sccm (Standard Cubic Centimeters 

per Minute), hydrogen at 10 sccm, argon at 14 sccm, and 0.1% phosphine in an argon 

carrier gas at 5 sccm as the ratio of the gas mixture as shown in Table 5.2. 

In order to redress the interlayer spacing of the HOPG and incinerate unwanted 

particles, the HOPG substrates were graphitized at the temperature of 900 °C in the reaction 

chamber under the vacuum pressure of 2 𝘹 10−6 Torr for 30 minutes before the deposition 
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process. Then, the PECVD took place when the gas inlets allowed the gas mixture to flow 

into the chamber when the pressure and temperature reached the requirements. 

Table 5.2: The ratio of the gas mixture to grow phosphorus doped-while-grown 

graphene on HOPG. 
 

Flow Rate (sccm) 

Methane 

(𝑪𝑯𝟒) 

Hydrogen 

(𝑯𝟐) 

Argon 

(𝑨𝒓) 

Phosphine* 

(𝑷𝑯𝟑) 

20 10 14 5 

* Phosphine was 1000 ppm (Parts per Million) in argon. 

 

 

Figure 5.13: An array of HOPG samples loaded on the PECVD machine’s sample 

holder. Two sheets of copper were placed at the upper left corner of the array to 

indicate the position of the first sample in the series [57]. 
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5.4. Tables of Symbols and Acronyms 

Table 5.3: Table of Symbols. 

Symbols Description Value 

𝐶𝐻4 The chemical formula of methane. – 

𝐻2 The chemical formula of molecular hydrogen. – 

𝑃𝐻3 The chemical formula of phosphine. – 

 

Table 5.4: Table of Acronyms. 

Acronym Description 

2D 2-dimensional 

Ar Argon 

Cu Copper 

CVD Chemical Vapor Deposition 

HOPG Highly Ordered Pyrolytic Graphite 

MC Monte Carlo 

Ni Nickel 

ppm Parts per Million 

PECVD Plasma-Enhanced Chemical Vapor Deposition 

RF Radio Frequency 

RTCVD Rapid Thermal Chemical Vapor Deposition 

sccm Standard Cubic Centimeters per Minute 

SRIM Simulation of Ranges of Ions in Matter 

TEM Transmission Electron Microscopy 

XRD X-Ray Diffraction 
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Chapter 6 

Results, Discussion, Conclusions, and Future Work 
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6.1. Results 

The key to understanding the potential causes for the observed results is to examine 

number of R vs. T characteristics, shown in Figure 6.1, of similarly exfoliated films taken 

from bulk HOPG implanted using phosphorous ions. 

 

Figure 6.1: Measured R vs. T of four thin films exfoliated from phosphorus 

implanted (𝑬𝒑 = 𝟏𝟎 keV, dose 𝟐 𝙭 𝟏𝟎𝟖 cm–2) HOPG samples. (a) HOPG-008, layer 

3; (b) HOPG-019, layer 3; (c) HOPG-019, layer 6; (d) HOPG-021, layer 7. The layer 

numbers indicate the number of multilayers peeled from the host sample, i.e. layer 7 

would be the 7th layer exfoliated from that sample [56]. 
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Comparing characteristics (a) through (d) in Figure 6.1, there is a step-in resistance 

at a temperature of approximately 50 – 60 K in all the samples. When the data is closely 

examined, there is a second resistance step at temperatures approximately between 100 – 

120 K, 150 – 180 K, and 200 – 240 K. These steps in the R vs. T characteristics cause a 

suspicion that the features are due to magnetic vortex lattice melting and subsequent flux 

flow losses. 

To see if additional lattice damage by neutral ion species could increase pinning, 

which could only occur if magnetic vortices were present, and reduce losses, a sample 

which had been previously implanted with phosphorous but had not yet been exfoliated 

was sent back for implantation with argon. This implantation was done at reduced energy 

(5 keV) and the same dose as the phosphorous implantation (2 𝘹 108 cm–2) to place the 

damage in front of the peak in the phosphorous. 

The Superconducting QUantum Interference Device (SQUID) magnetometer 

measurements of a doped-while-grown exfoliated thin-film graphite is shown with the R 

vs. T plots for the same sample superposed in Figure 6.2. The plots consist of a Zero-Field-

Cooled (ZFC) magnetization run followed by a Field-Cooled (FC) magnetization run. The 

hysteresis loop in the ZFC to FC curves begins to open at a temperature of approximately 

260 K. The R vs. T plots were done prior to the samples being tested the susceptibility 

versus temperature (S vs. T). It is evident on the combined R vs. T and S vs. T plots that 

there is a charge carrier Berezinski-Kosterlitz-Thouless (BKT) transition at low 

temperatures, nominally below T ~ 5 K in Figure 6.2. It is also clear that there is hysteresis 

in the susceptibility data up to temperatures in excess of 240 K which is qualitatively 

matched by the cooling versus warming of R vs. T data. The 5 Oersted (Oe) ZFC data 
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exhibits a small but distinct downturn at a temperature of approximately 80 – 90 K which 

correlates with the inflection point in the R vs. T. This is the BKT transition for the magnetic 

vortices. Hence, for temperatures from approximately 80 K through 240 K the sample is in 

the flux flow regime. 

 

Figure 6.2: ZFC and FC magnetic susceptibility plots along with the associated 

cooling and warming R vs. T plots for a film exfoliated from a doped-while-grown 

PECVD sample. The susceptibility measurements are courtesy of Dr. Deng of Dr. 

Paul Chu’s group at the University of Houston. Note the onset of the charge carrier 

BKT transition at T ~ 5 K and the onset of the vortex BKT transition at T ~ 80 K. 

 

A Raman spectrum of an exfoliated sample was done to estimate the film’s 

thickness. Hall effect measurements have also been done on the same sample that was 

tested the Raman spectrum. 
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Figure 6.3: Raman spectra for a film on Kapton tape exfoliated from a phosphorous 

doped-while-grown CVD graphene sample. The peak ratios give a thickness of 

approximately 5 monolayers. Measurement courtesy of Laurens Henry Willems 

Van Beveren of Dr. Steven Prawer’s group at the University of Melbourne [57]. 

 

 

Figure 6.4: Hall effect at T = 300 K and T = 80 K for the same film on Kapton tape 

exfoliated from a phosphorous doped-while-grown CVD graphene sample as is 

shown in the Raman spectrum in Figure 6.3. Measurement courtesy of Laurens 

Henry Willems Van Beveren of Dr. Steven Prawer’s group at the University of 

Melbourne [57]. 
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The results from Dr. Prawer’s group also included van der Pauw configuration Hall 

effect measurements at temperatures of 297 K and 80 K in Figure 6.4. Note that the change 

of sign in the Hall voltage is real and not due to instrumentation; neither the contacts nor 

the extraction calculations were altered between the two runs. The sign change is an 

indication of the possible presence of a vortex state superconductor and, although not 

conclusive in and of itself, a strong indicator that this material is a superconductor. This 

was one of the motivations for attempting to measure the Nernst effect in this material to 

conclusively determine if magnetic vortices were present. 

The differential Nernst effect measurements (𝑉𝑁𝑒𝑟𝑛𝑠𝑡 ∆𝑇⁄  North subtracted from 

𝑉𝑁𝑒𝑟𝑛𝑠𝑡 ∆𝑇⁄  South) for a small applied field are shown in Figure 6.4. The Nernst heater 

power was 1 Watt for the data in Figures 6.5 – 6.9. 
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Figure 6.5: PECVD phosphorous doped-while-grown sample. Thermally driven 

Nernst voltage at 40 Gauss applied field. This is the difference of the Nernst signal 

with the magnetic field-oriented North Up through the sample subtracted from the 

South Up oriented field Nernst signal. This reduces any measurement errors due to 

thermoelectric or another non-field dependent phenomenon. Note the tilted negative 

peak at T ~ 48 K. This is characteristic of a vortex Nernst signal. 

 

From the observation, there is a large peak (negative) in the South Up – North Up 

Nernst signals at approximately 50 K which extends up to a temperature of approximately 

130 K. They appear to be smaller peaks at temperatures above 100 K as well. Figure 6.6 

displays this region more clearly. 
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Figure 6.6: PECVD phosphorous doped-while-grown sample. Differential Nernst 

signal with magnetic field-oriented North Up through the sample subtracted from 

the Nernst signal with magnetic field-oriented South Up through the sample at an 

applied field of 40 Gauss. Note there are peaks at T ~ 158 K and T ~ 240 K that 

exhibit the tilted peak characteristic of a Nernst vortex signature. However, the 

peak at T ~ 240 K may be due to instrumentation. 

 

Figure 6.7 is the differential (North subtracted from South) 𝑉𝑁𝑒𝑟𝑛𝑠𝑡 ∆𝑇⁄  for a sample 

with deliberate argon ion implant damage to enhance pinning. It is also for a considerably 

larger magnetic field of 1,500 Gauss. The additional damage is expected to give rise to 

peaks in the Nernst signal at the depinning temperatures of the various pinning sites. Even 

at full scale, it is apparent that there are peaks in the Nernst signal at T ~ 42 K, 70 K, and 

238 K. 
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Figure 6.7: Ion-implanted phosphorous followed by argon ion implant to create 

pinning. Magnetic field is 1500 Gauss and the plot is of the Nernst signal for the 

North Up oriented field subtracted from the South Up oriented Nernst signal. There 

are tilted peaks characteristic of Nernst vortex signals apparent at temperatures of 

42 K, 70 K, and 238 K. 

 

Figure 6.8 is an expansion of the plot in Figure 6.7 to obtain a better resolution at 

the peak at T ~ 70 K. the observation in Figure 6.8 shows that this peak is a classical Nernst 

tilted peak characteristic of a vortex signal. In addition, there is also a somewhat smaller 

but nonetheless distinguishable peak at a temperature of approximately 130 K which is not 

clear on the full-scale plot. The periodicity of these peaks suggested that an additional small 

peak should be present at a temperature of approximately 180 K. The further magnification 

of the plot is shown in Figure 6.8. As can be seen on the plot, there are some small peaks 

near 180 K. However, these small peaks are not nearly as prominent as those at 130 K and 
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238 K. This suggests that there either are few pinning sites at this energy or that the existing 

vortices are preferentially pinned at other sites. 

 

Figure 6.8: Same data as in Figure 6.7 expanded to show the details of the T ~ 70 K 

peak as well as some of the smaller peaks. 
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Figure 6.9: Further magnification of the data in Figure 6.7. Note that the peaks at T 

~ 130 K and T ~ 238 K are clearly the tilted peak of a vortex signature in the Nernst 

effect. There are also small peaks in the vicinity of T ~ 180 K, but they are very 

small indicating few vortices are undergoing depinning at this temperature. 

 

For further examination on the Nernst effect in phosphorous and argon implanted 

samples, identical samples were created in July of 2018 with the same procedure which 

was ion implanted with phosphorous and then ion damaged with argon. The samples were 

also created by the same company using the same conditions as the prior samples which 

were done in 2011.  

One of the made-in-2018 samples was selected to test, and the results were 

qualitatively identical to the samples that were seven years in storage. A few questions 

which were addressed by this experiment were;  

1) were these results repeatable over a period of years? 



153 

 

2) what did the cooling-warming cycle look like?  

The first question was answered as “yes”, despite a seven-year gap in time between 

runs the behavior is reproducible. The second question was more difficult to answer with 

the older samples as they were thin, fragile and well measured (hence, mechanically 

damaged). The results of the cooling cycle are particularly problematic as the vibration of 

the refrigerator adds serious mechanical noise to the cooling results due to contact motion. 

After an effort to ensure a measurable contact on a new implanted and damaged 

sample, the plot shown in Figure 6.10 was obtained. As an experimental note, a typical 

Nernst cooling cycle takes approximately 20,000 data points and a warming plot consists 

of from 380,000 to 400,000 data points. The simple −𝑉𝑁𝑒𝑟𝑛𝑠𝑡 ∆𝑇⁄  plots are shown from 

Figures 6.10 – 6.22. 
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Figure 6.10: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  and ∆𝑻 versus T for sample 213 in a 1,500 Gauss 

magnetic field oriented normal to the sample’s surface. There is 1 Watt of input 

power on the Nernst heater. This is the first run with the sample in a magnetic field. 

The cooling curve is, effectively, one enormous peak. The warming curve hints of 

the BKT transition seen in the later, lower power and lower gradient plots. Note the 

hysteresis. 

 

The cooling curve has a large Nernst voltage signal which begins at T ~ 245 K and 

that there is a large, obvious, and magnetically induced hysteretic character to the Nernst 

signal between the cooling and warming data. This hysteresis is consistent with the 

eventual magnetic field exclusion at low temperature. The small step in the warming data 

at T ~ 122 K does appear to be due to a small jump in the reading of one of the gradient-

measuring thermometers. The other peaks in the warming curve are many data points each 

and should be considered as real measurements. In the warming curve, the large Nernst 

features are at T ~ 50 K and 220 K < T < 280 K. The low-temperature Nernst feature is 
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the onset of the vortex BKT transition melting signal and the Nernst signal nominally at T 

~ 236 K is the actual superconducting to normal transition. 

Figure 6.10 also includes the thermal gradient information on the secondary vertical 

axis. This data is what is divided into the measured Nernst voltage to give the 𝑉𝑁𝑒𝑟𝑛𝑠𝑡 ∆𝑇⁄  

plots. An examination of this thermal gradient data makes it clear that the 𝑉𝑁𝑒𝑟𝑛𝑠𝑡 ∆𝑇⁄  plots 

are real signals and not a thermally driven electric effect. 

The same sample was tested further at various magnetic field intensities with a 

Nernst heater power of 0.2 Watts to extend the measurements to lower temperatures in 

order to examine the features at T between 30 to 40 K. The overall results of this 

experiment are shown in Figures 16 – 27.  

In Figure 6.11, an obvious peak of each run can be seen at T ~ 36 K which 

corresponds with the expected BKT transition. At below 36 K, the antivortices have been 

expelled and a vortex lattice has been formed (hence, very few vortices can move), and the 

Nernst signal is small. As the sample transitions through 36 K during the warming run, the 

BKT lattice melts, only a few vortices are free to move, and the Nernst signal is large until 

they are balanced by antivortices. Once the balancing between vortices and antivortices 

occurs the Nernst signal becomes smaller. 
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Figure 6.11: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  curves from 20 – 180 K for warming direction only. Peak 

at approximately 36 K remains constant with respect to applied magnetic field. The 

peak amplitude is a strong function of the applied magnetic field. This peak is at the 

approximate BKT transition. 

 

In figure 6.12, the cooling plots of the same runs of the warming plots shown in 

figure 15 are added in order to observe a temperature hysteresis of each run. As seen in the 

figure, there is an obvious hysteresis between the cooling and warming plots of each run. 

This hysteresis indicates that magnetic flux occurred and trapped in the material which 

validates the presence of magnetic vortices. 
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Figure 6.12: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  curves for cooling and warming direction cycle for the 

same sample as in Figure 6.11 from 20 – 70 K. Peaks at approximately 36 K remain 

constant with respect to applied magnetic field. Each peak amplitude is a strong 

function of the applied magnetic field. These peaks are at the approximate BKT 

transition. Note the clear hysteresis between the cooling and the returning warming 

plots. 

 

Figures 6.13 through 6.16 show the entirety of each cooling – warming Nernst 

measurement for a single applied magnetic field normal to the sample’s surface on each 

plot. The vertical axis has been selected to allow better visibility of structure in the curves 

at the upper end of the temperature scale and the low-temperature BKT peaks have been 

allowed to go off scale as they are comprehensively presented in Figures 6.11 and 6.12. 

Figure 6.13 is a plot of the cooling and warming −𝑉𝑁𝑒𝑟𝑛𝑠𝑡 ∆𝑇⁄  curves with 120 

Gauss of magnetic field applied normal to the sample’s surface. The figure presents a large 

step in the cooling curve that extends from virtually the start of the plot to about 224 K and 

that there are additional features at about 180 K and 63 K. The warming curve appears to 
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be smooth with some structure from 216 K to 265 K and, perhaps, a broad peak in the 265 

K region. The hysteresis shown is indicative of flux trapping. 

 

Figure 6.13: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  curves for cooling and warming direction cycle for the 

same sample as in Figure 6.11 taken with an applied field of 120 Gauss normal to 

the sample surface. Notice the hysteresis and the large step in the cooling curve that 

extends from virtually the start of the plot to about 224 K. 

 

A plot of the cooling and warming −𝑉𝑁𝑒𝑟𝑛𝑠𝑡 ∆𝑇⁄  curves with 290 Gauss of 

magnetic field applied normal to the sample’s surface is presented in Figure 6.14. There is 

a large step in the cooling curve that extends from virtually the start of the plot down to 

about 216 K. There are additional features at about 180 K and 53 K. The warming curve 

appears to be smooth with some structure from 210 K to 265 K. The warming curve has a 

definite peak at 234 K and, perhaps, a broad peak in the 265 K region. The hysteresis 



159 

 

shown is indicative of flux trapping. The fact that the cooling curve appears to drop to the 

warming curve in the notches at 53 K, 185 K, 195 K and again at 232 K tends to strongly 

suggest that there is unstable “catch and release” flux trapping occurring during cooling. 

 

Figure 6.14: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  curves for cooling and warming direction cycle for the 

same sample as in Figure 6.11 taken with an applied field of 290 Gauss normal to 

the sample surface. Notice the hysteresis and the large step in the cooling curve that 

extends from virtually the start of the plot to about 216 K. There is structure in the 

cooling plot down to 178 K. There is notable structure in the warming plot from a 

broad peak at about 210K through to a broad peak at 260 K. 

 

A plot of the cooling and warming −𝑉𝑁𝑒𝑟𝑛𝑠𝑡 ∆𝑇⁄  curves with 641 Gauss of 

magnetic field applied normal to the sample’s surface is presented in Figure 6.15. There is 

a large step in the cooling curve that extends from virtually the start of the plot down to 

about 216 K. There are additional features at about 180 K and 60 K. Figure 6.11 also shows 
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a notch at 48 K in the cooling curve for this sample, this is off scale in Figure 6.15. This is 

the 53 K notch in the 290 Gauss cooling curve which has moved downwards with the 

applied field. In addition, the peak at 80 K has noticeably broadened from the 290 Gauss 

curve in Figure 6.14, and now extends from 180 K down to 155 K. 

The warming curve in Figure 6.15 appears to be smooth with structure from 210 K 

to 265 K. The curve has definite peaks at 232 K and 255 K. The fact that the cooling curve 

appears to drop to the warming curve in the notches at 155 K, 195 K, and again at 225 K 

tends to strongly suggest that there is unstable “catch and release” flux trapping occurring 

during cooling. 
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Figure 6.15: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  curves for cooling and warming direction cycle for the 

same sample as in Figure 6.11 taken with an applied field of 641 Gauss normal to 

the sample surface. Notice the hysteresis and the large step in the cooling curve that 

extends from 265 K to about 216 K. There is structure in the cooling plot down to 

150 K. There is notable structure in the warming plot from a broad peak at about 

148 K through to a broad peak at 260 K. 

 

Figure 6.16 shows the sample with 1,113 Gauss of magnetic field applied normal 

to the sample’s surface. There are obvious changes in the cooling curve; the large step in 

the cooling curve that extended from 265 K to 216 K in the 641 Gauss data of figure 20 

now is a single broad step from 265 K to about 144 K. The warming data in Figure 6.16 

has changed. There is a broad flat-topped tilted peak extending from 145 K to about 227 

K. There is a peak at 230 K and a notch at 240 K. 
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More interestingly, in Figure 6.16, the hysteresis between 144 K and 216 K has 

closed. This tends to suggest that, in this region and at this field, there is no mobile flux 

trapped. As the hysteresis opens again above 220 K this may be indicative of the fact that 

there are equal numbers of vortices and antivortices in this region at an applied field of 

1,113 Gauss. 

 

Figure 6.16: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  curves for cooling and warming direction cycle for the 

same sample as in Figure 6.11 taken with an applied field of 1,113 Gauss normal to 

the sample surface. Notice the hysteresis and the large step in the cooling curve that 

extends from 265 K to about 144 K. There is structure in the cooling plot down to 

144 K. There is notable structure in the warming plot from a broad peak at about 

164 K through to 260 K. 

 

Figures 6.17 through 6.20 are a closer look at the upper end of the temperature 

scales of Figures 6.13 through 6.16. The step in the cooling curve at 144 K in Figure 6.20 
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was investigated and found to contain 50 data points. The progression of structures to lower 

temperatures with increases in the applied magnetic field is now more distinct. The upper 

end of the temperature range of the 𝑉𝑁𝑒𝑟𝑛𝑠𝑡 ∆𝑇⁄  plots clearly has structures in it through to 

temperatures in the range of 260 – 265 K. 

 

Figure 6.17: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  curves in the range of 140 – 300 K for cooling and 

warming direction cycle for the same sample as in Figure 6.11. This data was taken 

with 120 Gauss of magnetic field applied normal to the sample surface. Note the 

step at approximately 224 K in the cooling direction and the associated structure 

ranging from 260 K to 224 K. There is hysteresis between the cooling and the 

returning warming plots. 
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Figure 6.18: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  curves in the range of 140 – 300 K for cooling and 

warming direction cycle for the same sample as in Figure 6.11. This data was taken 

with 290 Gauss of magnetic field applied normal to the sample surface. Note the 

step at approximately 216 K in the cooling direction and the structure from 

approximately 260 K to 180 K. Note the structure from 200 K to 260 K in the 

warming plot. Cooling to warming hysteresis is present. 
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Figure 6.19: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  curves in the range of 140 – 300 K for cooling and 

warming direction cycle for the same sample as in Figure 6.11. This data was taken 

with 641 Gauss of magnetic field applied normal to the sample surface. Note the 

features that span from approximately 260 K to 160 K in the cooling direction and 

the structure between about 220 K and 265 K in the warming plot. Hysteresis is 

visible. 
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Figure 6.20: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  curves in the range of 140 – 300 K for cooling and 

warming direction cycle for the same sample as in Figure 6.11. This data was taken 

with 1,113 Gauss of magnetic field applied normal to the sample surface. Note the 

step at approximately 144 K in the cooling direction and the structure from 

approximately 265 K to 144 K. The structure in the returning warming plot begins 

with a broad inflection point at 160K and ends near 265 K. Hysteresis is visible. 

 

In the prior four figures (Figures 6.17 – 6.20), the structure in the cooling data at 

approximately 180 K fills in and becomes part of the overall larger step in the final 1,113 

Gauss plot. It does not appear to move. The structure in the warming data at about 240 K 

also appears to remain stationary. These stationary features are a signature of pinning. The 

fact that they are large enough to be visible on the Nernst data is suggestive of there being 

a considerable number of flux bundles or stacks pinned with this energy. 
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Figure 6.21 is the aggregation of all the cooling direction plots shown individually 

in Figures 6.17 through 6.20 and highlights the evolution of the structure in the curves as 

the magnetic field is increased. 

 

Figure 6.21: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  curves in the range of 140 – 300 K for same sample as in 

figure 6.11. This is a collection of the cooling direction plots from Figures 6.17 

through 6.20. Note how the steps and features have tended to shift lower in 

temperature as the applied field is increased. 

 

Figure 6.22 below is the aggregation of all the warming direction plots shown 

individually in Figures 6.17 through 6.20. This aggregate plot highlights the evolution of 

the structure in the curves as the magnetic field is increased. 
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Figure 6.22: −𝑽𝑵𝒆𝒓𝒏𝒔𝒕 ∆𝑻⁄  curves in the range of 140 – 300 K for same sample as in 

Figure 6.11. This is a collection of the warming direction plots from Figures 6.17 

through 6.20. Note how the steps and features have tended to shift lower in 

temperature as the applied field is increased. Notice how the broad peak in the 290 

Gauss curve at 228 K has evolved as the applied field is stepped up. 

 

The consistency of the thermal gradient plots from run to run that are presented in 

aggregate in Figure 6.23 which eliminates any possibility that the observed Nernst signal 

in the data is the result of a thermally driven effect. 
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Figure 6.23: ∆𝑻 as a function of temperature both cooling and warming for the data 

presented in Figures 6.11 through 6.22. 

 

6.2. Discussion 

From the experiment, a response consistent with the presence of magnetic field flux 

vortices in phosphorous (electron donor) implanted HOPG and in phosphorous doped 

exfoliated multilayer graphene has been observed. The repeated nature of the observed 

steps in the R vs. T characteristics of the material is consistent with the melting of stacks 

of pancake vortices of differing lengths at different temperatures. The lack of zero 

resistance at low temperatures is also consistent with pancake vortex behavior in the flux-

flow regime. This allows the use of a single phenomenon, magnetic pancake vortices, to 

describe the features observed. The presence of magnetic vortices requires and is direct 
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evidence of, superconductivity. The small Meissner effect may simply mean that the 

volume fraction of material involved is quite small or that the penetration depth is 

significantly larger than the sample thickness. 

The extensive additional Nernst effect measurements have confirmed the presence 

of magnetic vortices, highlighted the magnetic vortex BKT transition and, in several 

instances, permitted the identification of pinning temperatures for stacks of these vortices 

well above the BKT transition. 

In addition, once again, the temperature of 260 – 265 K has shown, this time 

magnetically, that there is evidence that the sample still retains superconductivity as high 

as 260 – 265 K. 

The material that was subjected to post doping argon implantation (damage) 

showed a discontinuous step in resistance at a temperature of about 265 K. In [55], a 

summary of which is included in the background portion of this paper, that “the ultimate 

critical temperature in this system is in excess of 100 K and, may very likely be 

considerably higher if damage incurred during the doping can be further minimized”. This 

conclusion has not been voided and, based on the material with phosphine in the PECVD 

growth gas mixture, may well be valid for a transition at a temperature of greater than 300 

K. 

6.3. Conclusions 

As a result of high volume of our experimental work, we conclude that the lack of 

zero resistance at low temperature does not fundamentally exclude superconductivity as a 

mechanism for the material’s observed electrical and magnetic behavior. The high degree 

of anisotropy in graphite and graphene, in fact, predicts that if the material is a 
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superconductor there would be significant magnetic flux-flow losses to very low 

temperatures. 

The magnetic response of phosphorous doped HOPG and graphene is likewise as 

would be expected for superconductors of similar physical characteristics. That is  

1) that the superconducting region is thin in comparison to the London (magnetic) 

penetration depth; 

2) that the high level of anisotropy in the material is favorable for the formation of 

pancake vortices. Additionally, it has been experiment demonstrated that the resistance vs. 

temperature curve can be quenched by the application of a magnetic field. This is likewise 

what would be anticipated from a superconductor. 

The magnetization and susceptibility results for phosphorous-doped HOPG and 

graphene suggest  

1) a transition temperature above 260 K for the magnetization based upon the ZFC 

to FC Hysteresis loop; 

2) a transition temperature above 150 K based upon the AC susceptometer 

measurements. There is no trace of ferromagnetism in the results as both the magnetization 

and susceptibility are negative in the lower temperature region. 

Finally, the Hall effect measurement shows a sign change in the Hall voltage when 

cooling the sample from room temperature to a temperature of 80 K. This is observed in 

other, known and accepted, superconductors that are in the flux flow region of the mixed 

or vortex state. It is also seen in anomalous ferromagnetism. Since there are  

1) no ferromagnetic atoms;  
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2) no atoms with 𝑑 or 𝑓 electron shells in the sample it is highly unlikely that 

ferromagnetism is involved in these Hall measurements. The fact that the magnetization 

and magnetic susceptibility are both negative also tends to eliminate ferromagnetism as a 

candidate for this sign reversal in the Hall voltage. 

The repeated steps in the resistance versus temperature characteristics of 

phosphorous doped HOPG and graphene are independent on how the material is doped. 

Adding damage causes these steps to become nearly discontinuous steps at elevated 

temperatures. This is consistent with the results that are expected for thin superconducting 

films without and with damage. 

The fact that these steps in the Nernst voltage vs. temperature experiment are 

likewise observed in the differential Nernst experiment as tilted-peak vortex type peaks is 

confirmation that the steps represent the melting of pinned vortices at these temperatures. 

The simple Nernst experiment likewise has highlighted some of the same features as the 

differential measurement. There is a correlation for the observed temperatures, whether 

they are a resistive step, a differential Nernst peak or a Nernst step, peak or structure, 

throughout all the various measurements. 

The results presented both confirm the model of Pearl or pancake vortices on a 

string as well as answering the fundamental question underpinning the entire hypothesis; 

the material is a superconductor. This is strongly reinforced by the hysteresis in the Nernst 

signal in a thermal cycling experiment where the only remaining explanation for the 

disappearance of the Nernst signal in the warming data is that the greater portion of the 

magnetic flux has been expelled from the sample at low temperature. 
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This evidence of superconductivity in doped graphene/graphite with a de-pairing 

(critical) temperature in the region of 260 K is conclusive. This material is a 

superconductor. It screens magnetic fields. It exhibits drops in resistivity as vortices 

become pinned. The BKT transition for both charge carriers and magnetic vortices is 

present. Differential Nernst magnetic vortex peaks have demonstrated the depinning 

temperatures of vortices as well as the fundamental BKT transition of the vortex liquid to 

a vortex lattice. 

In conclusion, the evidence forces us to conclude that phosphorous doped Highly 

Oriented Pyrolytic Graphite (and phosphorous doped graphene) is a superconductor with a 

transition temperature above 260 K. In fact, some of our experimentally obtained data hints 

at a possibility that the transition temperature in the best samples may approach room 

temperature. More work can be done to confirm the limitations, observations and proposed 

mechanism of the observed effect; however, the effect is only consistent with the material 

being a mixed state superconductor. 

In addition, the fact that this data is qualitatively reproducible with many, now 

hundreds, of samples and over a time span of eight years is a compelling reason to conclude 

that this is not a fleeting “Unidentified Superconducting Object”. 

6.4. Future Work 

As a continuation of the research to investigate superconductivity and other 

phenomena of phosphorus-doped graphene and graphite as 2D and quasi-2D materials, 

some of the doped graphene samples will be etched in Hall-bar shape by a laser engraver 

as shown in Figure 6.24. 
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The purpose of etching the samples is to measure Current-Voltage (I-V) 

characteristic curve of the samples while a nanoampere direct current (DC) is applied 

longitudinally across the etched sample, a uniformed magnetic field is applied into or out 

of the plane, and longitudinal and Hall voltages are measured as shown in Figure 1.18 in 

chapter 1. Furthermore, a quantum Hall effect (QHE), unconventional quantum Hall effect 

(UQHE), or quantum anomalous Hall effect (QAHE) in phosphorus-doped graphene is 

expected to be seen in this future experiment. 

 

Figure 6.24: Specific sketch of etched phosphorus-doped graphene samples. 

Measurement unit is in millimeter. Image courtesy of Julian Gil Pinzon. 
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6.5. Tables of Symbols and Acronyms 

Table 6.1: Table of Symbols. 

Symbols Description Value 

𝐸𝑝 Implantation Energy. – 

𝑉𝑁𝑒𝑟𝑛𝑠𝑡 Nernst Voltage. – 

∆𝑇 Temperature Difference. – 

𝑑 A type of subshell (a subdivision of electron 

shells separated by electron orbitals). 
– 

𝑓 A type of subshell (a subdivision of electron 

shells separated by electron orbitals). 
– 

 

Table 6.2: Table of Acronyms. 

Acronym Description 

2D 2-dimensional 

AC Alternating Current 

BKT Berezinski-Kosterlitz-Thouless 

CVD Chemical Vapor Deposition 

DC Direct Current 

HOPG Highly Ordered Pyrolytic Graphite 

FC Field-Cooled 

I-V Current-Voltage  

Oe Oersted 

PECVD Plasma–Enhanced Chemical Vapor Deposition 

QAHE Quantum Anomalous Hall Effect  

QHE Quantum Hall Effect  

R vs. T Resistance versus Temperature 

SQUID Superconducting QUantum Interference Device 

S vs. T Susceptibility versus Temperature  
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UQHE Unconventional Quantum Hall Effect  

ZFC Zero-Field-Cooled  
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Appendix 1 - Photographs of The Nernst Fixture 

Image courtesy of Amber Woods. 
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Appendix 2 - LabVIEW 

NALAT’s Cooling and Warming LabVIEW Program.vi 

The program was developed by Nalat Sornkhampan. 

I. Front Panel 
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II. Block Diagram 
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Appendix 3 - List of Tested Samples 

Sample # Layer # Doping Process 

023 001 Ion implantation 

151 008 Chemical Vapor Deposition 

163 009 Chemical Vapor Deposition 

170 010 Chemical Vapor Deposition 

213 001 Ion implantation 

401 003 Non-doping 

402 005 Non-doping 
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Appendix 4 - Voltage versus Temperature Plots  

The data were collected by Nalat Sornkhampan. 

I. Sample # 023, layer # 001 
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II. Sample # 151, layer # 008 
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III. Sample # 163, layer # 009 
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IV. Sample # 170, layer # 010 
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V. Sample # 213, layer # 001 
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VI. Sample # 401, layer # 003 

 

  



249 

 

 

 



250 

 

 

 



251 

 

 

 



252 

 

 

 

  



253 

 

VII. Sample # 402, layer # 005 
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Appendix 5 - Permission to use the copyrighted materials 
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