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ABSTRACT

Context. The early-type binary MY Cam belongs to the young open cluster Alicante 1, embedded in Cam OB3.
Aims. MY Cam consists of two early-O type main-sequence stars and shows a photometric modulation suggesting an orbital period
slightly above one day. We intend to confirm this orbital period and derive orbital and stellar parameters.
Methods. Timing analysis of a very exhaustive (4607 points) light curve indicates a period of 1.1754514 ± 0.0000015 d. High-
resolution spectra and the cross-correlation technique implemented in the todcor program were used to derive radial velocities and
obtain the corresponding radial velocity curves for MY Cam. Modelling with the stellar atmosphere code fastwind was used to
obtain stellar parameters and create templates for cross-correlation. Stellar and orbital parameters were derived using the Wilson-
Devinney code, such that a complete solution to the binary system could be described.
Results. The determined masses of the primary and secondary stars in MY Cam are 37.7 ± 1.6 and 31.6 ± 1.4 M�, respectively. The
corresponding temperatures, derived from the model atmosphere fit, are 42 000 and 39 000 K, with the more massive component being
hotter. Both stars are overfilling their Roche lobes, sharing a common envelope.
Conclusions. MY Cam contains the most massive dwarf O-type stars found so far in an eclipsing binary. Both components are still
on the main sequence, and probably not far from the zero-age main sequence. The system is a likely merger progenitor, owing to its
very short period.
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1. Introduction

Numerous studies show the importance of massive stars for
the current properties of galaxies (e.g. Massey 2003). Among
O-type stars, relatively unevolved massive stars, there is a very
high fraction of binaries, where the initial orbital period de-
termines their evolution and final fate. Sana et al. (2012) note
that 60% of O-type binaries have a period shorter than ten days.
In close to 90% of O-type binaries, at least one of the compo-
nents will fill its Roche lobe during their lifetime. This leads to
interaction with its companion, where mass transfer, followed
by common envelope evolution, may lead to a merger. Some
estimates put 25% as the fraction of binaries that will merge
at some point (Langer 2012). In particular, when a binary sys-
tem has an initial orbital period, Porb, shorter than two days and

� Tables 1 and 3 are available in electronic form at
http://www.aanda.org
�� Photometric data (Table 2) are only available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A110
��� Now at Department of Physics, University of Malaya, 50603 Kuala
Lumpur, Malaysia.

mass ratio q lower than 0.6, evolutionary models predict that
both components will merge while on the main sequence. This
fate is expected for half of the binary systems that evolve ac-
cording to Case A, i.e. those in which mass transfer starts during
core hydrogen burning (Wellstein et al. 2001; Langer 2012). For
smaller Porb, systems with higher q will also come into contact
during H core burning (Wellstein et al. 2001).

Sybesma (1985) notes that short-period binary systems with
q > 0.8 form stable overcontact systems. These systems would
be classified as Case A interacting binaries with slow evolution
to contact (Eggleton 2000). Other theoretical studies have also
shown that these types of binaries tend to become overcontact
systems evolving through slow Case A (e.g. Qian et al. 2007).

Despite all these theoretical predictions, our observational
constraints are limited. There are only two known binary sys-
tems with two main-sequence O-star components presenting
Porb < 2 d whose orbits have been solved: V382 Cyg (Harries
et al. 1997) and TU Mus (Terrell et al. 2003). Moreover, be-
cause the merger phase is so short compared to stellar lifetimes,
only two systems have been proposed to have experienced an
observed merger event, and neither of them is a massive sys-
tem: V838 Mon could represent an intermediate-mass merger
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(Munari et al. 2002; Tylenda et al. 2011) and V1309 Sco may
have been a low-mass merger (Mason et al. 2010; Tylenda et al.
2011).

Mergers are the consequence of angular momentum loss in
tidally synchronised systems with short initial orbital periods
(Andronov et al. 2006). The physics of mergers is poorly un-
derstood, but it is believed that they follow a common envelope
phase. This phase, when both stars share the same envelope, is
extremely important in close binary evolution, but is still not
fully understood (Ivanova et al. 2013). The results of mergers
are expected to have unusual properties, such as very high rota-
tional velocities or unusual surface abundances (Langer 2012).

In recent years, the mergers of high-mass binaries have been
proposed as an effective mechanism to form very massive stars.
Using population synthesis models, de Mink et al. (2014) esti-
mate that 8+9

−4% of apparently single early-type stars are the prod-
ucts of a merger. A binary merger origin has been proposed as
an explanation for the extremely fast rotation (vrot > 500 km s−1)
of the O-type star VFTS 102 (Jiang et al. 2013), though its pecu-
liar radial velocity is strongly suggestive of other types of binary
interaction (Dufton et al. 2011). Dynamically induced mergers
of very massive binaries in the cores of dense clusters have been
proposed as an explanation for the formation of very massive
stars (M∗ > 150 M�) in the core of R136 (Banerjee et al. 2012).
Some of the energetic events known as supernova impostors
could also be due to the merger of a massive binary (Soker &
Kashi 2013). Somewhat less massive mergers have been pro-
posed as the progenitors of peculiar O-type stars with high mag-
netic fields (see references in Langer 2012) or very massive run-
away stars (Vanbeveren et al. 2009).

MY Cam (BD +56◦864 = GSC 3725-0498) is the bright-
est star in the open cluster Alicante 1, a sparsely populated,
very young open cluster embedded in the Cam OB3 associa-
tion (Negueruela & Marco 2008). This association has a dis-
tance estimate of ≈4 kpc, which places it in the Cygnus arm.
The Galactic coordinates of MY Cam are l = 146.◦27, b = +3.◦14.
MY Cam was classified as O6nn by Morgan et al. (1955). Higher
quality spectroscopic observations later showed that it was a
double-lined spectroscopic binary (Negueruela & Marco 2003).
The two components seemed to have similar spectral types, close
to O6 V, while the large separation in radial velocity suggested
a very short orbital period (Negueruela & Marco 2003). Using
data from the Northern Sky Variability Survey (Woźniak et al.
2004), Greaves & Wils (2004) noted a periodicity of ≈1.18 d
in the light curve and suggested it was due to elliptical varia-
tions. If this periodicity is the orbital period of the binary, then
MY Cam would represent an excellent candidate for a very mas-
sive merger progenitor. In this paper, we derive the properties of
the two components of MY Cam and find that it fulfils all cri-
teria to be considered as a very massive merger progenitor: it is
a high-mass binary system with two early-O type components
on the main sequence, a very short period, very high rotational
velocity due to synchronisation and components already filling
their Roche lobes.

2. Observations

Spectroscopic observations of MY Cam were obtained between
23 and 31 December 2004, using the Fibre Optics Cassegrain
Échelle Spectrograph (FOCES) mounted on the 2.2 m telescope
of the Calar Alto Observatory (Spain). The observations were
performed in service mode, and sky conditions were very vari-
able. The log of observations is displayed in Table 1, where we

have assigned a number to each spectrum, sorted by date in as-
cending order. Heliocentric corrections, calculated using the rv
program included in the Starlink suite, are also listed in Table 1.
A total of 63 spectra were obtained, with fixed exposure times
of 1800 s. The signal-to-noise ratio (S/N) varies strongly be-
tween spectra, from ∼20 to ∼50 per pixel. The spectrograph cov-
ers a wide spectral range between 3780 and 10 864 Å. The res-
olution is slightly variable with wavelength, but always ≈40 000
for a 2-pixel resolution element. Given the faintness of the
source and the spectral response, data for wavelengths shorter
than ∼4000 Å are not useful.

We reduced all spectra with two methods. Firstly, we used
the IDL standard pipeline provided by the observatory. The
extracted spectra showed a good blaze correction and order
merging, but very poor S/N. The spectra were therefore pro-
cessed (bias-subtracted, flat-fielded and wavelength-calibrated)
using standard iraf tools for the reduction of échelle spec-
troscopy. The 99 échelle orders were blaze-corrected, combined
and continuum-normalised to obtain a single spectrum using the
pipeline-reduced spectra as a guide.

In addition, on 22 November 2002, we obtained one
intermediate-resolution spectrum with the blue arm of the
Intermediate dispersion Spectrograph and Imaging System
(ISIS) double-beam spectrograph, mounted on the 4.2 m William
Herschel Telescope (WHT) in La Palma (Spain). The instrument
was fitted with the R1200B grating and the EEV12 CCD. This
configuration covers a spectral range from ∼4000 to 4700 Å in
the unvignetted section of the CCD with a nominal dispersion
of 0.25 Å/pixel. The CCD was unbinned in the spectral direction
and a 1.′′0 slit, was used. With this slit the resolution element is
expected to be smaller than four pixels. The resolving power of
our spectrum is thus R ≈ 5000.

Photometric data (Table 2 avalaible at the CDS) were ob-
tained with two 8-inch aperture telescopes, a Meade LX200 and
a Vixen VISAC, with focal-ratios of f /6.3 and f /9, respectively.
Observations were made through a Johnson R-filter with uni-
form 120 s exposures. We reduced the data with the standard
commercial software packages AIP4Win and Mira Pro. We fol-
lowed the standard procedures for bias and flat correction. A to-
tal of 4607 photometric points were registered, randomly dis-
tributed in nights between 4 March and 13 September 2008.
Photometric values were derived differentially with respect to
three reference stars with similar colours in the same frame:
TYC 3725-797-1, TYC 3725-00486-1, and TYC 3725-00437-1.
The latter is an B1.5 V star likely associated with the open cluster
Alicante 1, to which MY Cam belongs. The photometric light-
curve is displayed in Fig. 1. A photometric variability of approx-
imately 0.3 mag is apparent.

3. Spectroscopic analysis: radial velocity
determination

The spectrum of MY Cam shows strong He ii 4686Å absorption,
a characteristic of O-type main-sequence stars. The He ii 4542
and 5411 Å lines are also strongly in absorption. A very weak
N iii 4634-40-42 Å emission complex may be guessed in the
spectra with better S/N. According to the classical criteria for
O-type spectral classification by Walborn & Fitzpatrick (1990),
the ratio between the He ii 4542 Å and He i 4471 Å lines is larger
than unity for spectral types earlier than O7. Both stars show
this characteristic, with the ratio being larger for one of the stars
that we will from now on identify as the primary. Because of
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Fig. 1. Photometric light curve, showing the amplitude of the
modulation.

blending and the possibility of the Struve-Sahade effect being
present (cf. Linder et al. 2007), accurate spectral types cannot be
given. However, we can confidently claim that the primary is at
least as early as O5.5 V and the secondary is earlier than O7 V
(see Fig. 2).

With the purpose of applying the technique of cross-
correlation for the determination of radial velocities, we have
synthesised two templates using the fastwind model atmo-
sphere code (Puls et al. 2005; Santaloya-Rey et al. 1997). The
WHT spectrum, which has a much better S/N than any of
the FOCES spectra, was used to derive the best-fit parameters.
The separation between the two components is sufficient to al-
low for two synthetic spectra to be fitted. For O-type stars, the
effective temperature is determined from the ionisation balance
of He i and He ii. There is a small degree of degeneracy between
values of Teff and log g. We therefore used the grid of fast-
wind models of solar metallicity presented in Simón-Díaz &
Herrero (2011), and obtained fits by eye. The best-fit model and
two models that define the error bars are shown in Fig. 2. From
this, we conclude that the best fitting parameters are:

Teff1 = 42 000 ± 1500 K, log g1 = 3.90 ± 0.15

Teff2 = 39 000 ± 1500 K, log g2 = 4.10 ± 0.15,

where the error bars indicate the range of parameters that provide
acceptable fits (hereafter, we will use the subindex 1 for the pri-
mary star and the subindex 2 for the secondary star). These pa-
rameters are in good agreement with the derived spectral types.
The rotational velocities were estimated simultaneously with the
fitting, finding vrot1,2 sin i = 280 ± 20 km s−1.

On the observational scale of Martins et al. (2005), the tem-
peratures correspond to spectral types O4.5 V and O6 V. We
must note that the stars on the scale of Martins et al. (2005) are
assumed to have log g = 3.9. Our values of log g have not been
corrected for the effect of the centrifugal force, which, at the ro-
tational velocities observed, should be by about 0.05 dex in the
direction of higher gravities. The model fit is better when the
He abundance of the more massive component is increased from
the usual YHe = 0.10 to YHe = 0.15. In any case, we must stress
that fastwind assumes spherical symmetry, an approximation
that, as we will see below, is not well justified in such a close
binary.

To derive the radial velocities for both components of the bi-
nary system, we used the technique of cross-correlation in two

dimensions developed by Zucker & Mazeh (1994) and imple-
mented in the todcor program. We cross-correlated our ob-
servational spectra against the two previously synthesised tem-
plates. The spectral range of 4400–5585Å was chosen for the
analysis, since it includes the main He ii lines (4542, 4686
and 5411 Å) as well as Hβ. These are the only lines clearly
detectable in all the FOCES spectra, as all He i lines become
too shallow as soon as the system moves out of eclipse. We re-
binned all the spectra and the synthetic templates to 9000 bins.
The apodization factor used in the process was 0.3, meaning that
the spectra are smoothed with a cosine bell over the 15% of their
length closer to the edges. All radial velocities measured were
corrected to the heliocentric velocity system.

The determination of the uncertainties in the radial veloci-
ties is based on the width of the peak in the cross-correlation
function. In the case of MY Cam, because of the very large ro-
tational velocity, the lines are very wide, and therefore uncer-
tainties around 100 km s−1 are expected. Given the size of the
bin (around 8 km s−1), the uncertainties could be reduced using
a larger number of lines for the two-dimensional correlation al-
gorithm. Unfortunately, because of the poor S/N of many of the
spectra, we could not work with more lines. In many spectra, for
wavelengths shorter than 4300 Å, lines and continuum are prac-
tically indistinguishable. As mentioned previously, the He i lines
are only visible when both stars are found at the systemic ve-
locity and the lines of both components are super-imposed. The
only other line that is clearly seen is Hα, but we preferred not
to include it in the analysis because, even for stars on the main
sequence, it can be significantly affected by stellar wind effects.

In spite of the paucity of spectral features used for the anal-
ysis, the results are reliable. We used the period program in-
side the Starlink suite to perform a search for periodicities in
the radial velocities. The Lomb-Scargle algorithm (Lomb 1976;
Scargle 1982) gives a spectroscopic period of 1.17 ± 0.04 d,
which is in excellent agreement with the photometric period.
This value is confirmed with the clean algorithm (Roberts et al.
1987), which removes periods caused by the window function
(see Fig. 3).

4. Combined analysis: photometry
and spectroscopy

A combined analysis of the photometric data and the radial ve-
locities was made using the Wilson-Devinney code (Wilson &
Devinney 1971; Wilson & Biermann 1976; Wilson 1990) in
its 2010 version. Because of the low signal-to-noise ratio of
the spectra and the very high quality of the photometric data
(which cover the whole orbital period with excellent sampling),
we chose to analyse the radial velocity curve and light curve sep-
arately, following the method described in Ribas et al. (2005).
The radial velocity curve and light curve are analysed with an
iterative procedure until convergence is reached for all free pa-
rameters. The criterion for convergence adopted is that for three
consecutive iterations all adjustable parameters must be within
two standard deviations. Once convergence is reached, five so-
lutions are derived by varying the parameters within the stan-
dard deviation and fitting the observations again. We choose the
fit with the smallest dispersion as a final solution. The initial
parameters were derived from the spectroscopic analysis in the
previous section and the stellar parameters obtained from the at-
mospheric model. The first steps of the procedure rely on finding
the period and the zero time of ephemeris, using the photomet-
ric data. From the folded light curve, we classify MY Cam as
a contact binary with a short period (around a day), so we can
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Fig. 2. Some representative lines in the spectrum of MY Cam and some model line fits. Solid line: Teff1 = 42 000 K, log g1 = 3.9; Teff2 = 39 000 K,
log g2 = 4.1. Dashed line: Teff1 = 40 000 K, log g1 = 3.7; Teff2 = 38 000 K, log g2 = 3.9. Dashed-dotted line: Teff1 = 44 000 K, log g1 = 4.1;
Teff2 = 41 000 K, log g2 = 4.3.
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Fig. 3. Results of the Lomb-Scargle periodogram for the radial veloci-
ties. The inset shows the result of applying the clean algorithm.

assume that the system is circularised and synchronised. The ec-
centricity can then be assumed to be zero. The location in orbital
phase of the primary and secondary eclipses will be exactly 0.0
and 0.5, respectively. At phase 0.0, the primary component is
being eclipsed by the secondary component, while at phase 0.5,
the primary component eclipses the secondary component. This
is barely perceivable in the light curve (Fig. 4), where the min-
imum at phase 0.0 is very slightly deeper than the minimum at
phase 0.5. To quantify this difference, we average all photomet-
ric data points between φ = 0.99 and 0.01 (average R = 9.5743),
and all points between φ = 0.49 and 0.51 (average R = 9.5683).
The difference between the two minima is thus 0.0060 mag.

The implementation of the Wilson-Devinney code requires
some previous assumptions. Given the stellar parameters found
from the fastwind analysis and the extremely short orbital
period, we assume that MY Cam must be a contact system
and therefore share a common equipotential surface. The effec-
tive temperatures of both components were fixed to the value
found from the fastwind analysis for the hottest component,
Teff = 42 000 K. Every component is considered to be divided
in a 40 × 40 grid of surface elements. A reflection model is in-
cluded in the code (Wilson 1990) as well. A square root limb-
darkening law is applied, as it is more precise than the linear law
(van Hamme 1993) and is the most adequate approximation for
radiative stars (Diaz-Cordoves et al. 1995). Gravity darkening
and ellipsoidal effects are evaluated because the components
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Fig. 4. Light curve model fitted to the observational data. Residuals are
displayed in the top panel.

must be very close to each other. Finally, the bolometric albe-
dos are taken to be equal to unity, considering that the stel-
lar atmospheres are in radiative equilibrium (von Zeipel 1924).
Other contraints applied are described in mode 1 of the Wilson-
Devinney code.

The quadrature phases in a circular orbit happen at
phases 0.25 and 0.75. At these phases, the stars are not eclipsed,
and we receive the maximum flux from the binary system (see
Fig. 4). In the phenomenological classification, the light curve
of MY Cam corresponds to an eclipsing variable of the EW
type. The curve displayed in Fig. 4 shows a continuous vari-
ation of brightness, with minimal difference between the two
eclipse depths. The model curve fitted to the observational
data is also shown in Fig. 4. The standard deviation of the
fit is only 0.011 mag, and the residuals are always smaller
than 0.05 mag, demonstrating an excellent fit.

From the period and the zero time of ephemeris, we can
write the linear ephemeris equation, where the epoch of suc-
cessive times of primary-eclipse minima (phase zero), Tmin, is
calculated as:

Tmin = HJD (2 454 518.71500± 0.00021)

+ (1d.1754514 ± 0d.0000015)× E

where E is the integer value of the number of orbital cycles.
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Fig. 5. Radial velocity curves fitted to the observational data and dis-
played against orbital phase (black line: primary star; red line: sec-
ondary star) fitted to the observational data. The dashed line corre-
sponds to the systemic velocity. The residuals are displayed in the top
panel.

The radial velocity points are displayed in Fig. 5 together
with the final fitted velocity curves. The standard deviations are
42 km s−1 for the primary star (black curve) and 33 km s−1 for
the secondary star. The residuals, also shown in Fig. 5, reach a
maximum value of 100 km s−1, in agreement with the uncertain-
ties in the radial velocities. The radial velocities sorted by orbital
phase and their residuals are listed in Table 3. Residuals signif-
icantly larger than the standard deviation are found at phases
around 0.5, owing to the blending of the spectral lines at these
phases.

Some radial velocities for the primary star around the second
quadrature (φ ∼ 0.75) reach values clearly above the fitted curve.
These velocities correspond to the spectra numbered as 36, 37
(December 24) and 44, 45, and 47 (December 30; see Table 1).
We assume that these deviant velocities can be due to the effects
of the stellar wind, being more noticeable when the component
is not eclipsed by the companion star.

5. Results
The combined analysis of the radial velocity curve and photo-
metric light curve permits the determination of the stellar and
orbital parameters for the MY Cam binary system. All the pa-
rameters are listed in Table 4. It is worth mentioning that the
spectroscopic period is only 54 s shorter than the photomet-
ric period. The difference between the two periods is around
0.05%. This close agreement guarantees the quality of the re-
sults derived.

Close binaries suffer significant deformations in their shape,
which is noticeable in the radii shown in Table 4. The point ra-
dius is defined as the equatorial radius in the direction to the
centre of the other component. The solution provides a value for
the point radius, indicating a separation between the two stars
of 0.39 R�, but this small distance is compatible with zero within
the uncertainties derived (see Table 4). Therefore, the solution
is consistent with the assumption that both stars are overfilling
their Roche lobes. Thus, the solution found is compatible with
mass transfer already taking place, as suggested by the shape of
the light curve. A schematic drawing of MY Cam is displayed
in Fig. 6, showing the shape of both components at quadrature
phase.

Fig. 6. Representative drawing of MY Cam to scale at quadrature phase,
created with the PHOEBE 2.0-alpha code via the Python interface.

Table 4. Stellar parameters derived from the combined analysis of the
radial velocity and photometric light curve.

Primary star Secondary star

Orbital period (day) 1.1754514 ± 0.0000015
Zero point of ephemeris (HJD) 2 454 518.71500 ± 0.00021
Eccentricity 0 (assumed)
Inclination (◦) 62.59 ± 0.04
Longitude of periastron (◦) 90 270
Systemic velocity (km s−1) −47 ± 4
Semi-amplitude of velocity (km s−1) 335 ± 7 400 ± 8
Semimajor axis (R�) 19.24 ± 0.26
Surface normalised potential 3.4853 ± 0.0011
Mass (M�) 37.7 ± 1.6 31.6 ± 1.4
Mass ratio (M2/M1) 0.839 ± 0.027
Mean radius (R�) 7.60 ± 0.10 7.01 ± 0.09
Polar radius (R�) 7.13 ± 0.09 6.57 ± 0.09
Point radius (R�) 9.77 ± 0.20 9.08 ± 0.19
Side radius (R�) 7.50 ± 0.10 6.88 ± 0.09
Back radius (R�) 8.09 ± 0.11 7.49 ± 0.10
Projected rotational velocity (km s−1) 290 ± 4 268 ± 3
Surface effective gravity (log g) 4.251 ± 0.022 4.245 ± 0.022
Luminosity ratio (L2/L1) 0.8477 ± 0.0015

In addition, since the mass ratio is still significantly differ-
ent from unity, at q = 0.84, we can conclude that mass trans-
fer has only started recently. The surface gravities are difficult
to compare, because the fastwind model assumes spherical
symmetry, while the Wilson-Devinney code takes into account
that gravity is varying throughout the stellar surface. According
to the Wilson-Devinney model, the maximum value for grav-
ity is achieved in the pole of the star (log g = 4.25), with the
minimum value occurring at the point of maximum stellar ra-
dius (log g = 4.03). Interestingly, in spite of the very different
physics used in the atmosphere model and the binary solution,
the values obtained for the rotational velocities are essentially
the same, within their respective errors.

Examining the subclasses of Case A listed by Eggleton
(2000), MY Cam would be included in subclass AS (slow evolu-
tion to contact), because both components have already reached
contact well before leaving the main sequence. Unfortunately,
evolutionary models presented by Nelson & Eggleton (2001) do
not include binaries with massive components and very short pe-
riods, such as MY Cam.

The derived systemic velocity of −47 ± 4 km s−1 is fully
consistent with the heliocentric velocities of several mem-
bers of Cam OB3 measured by Rubin (1965), which cluster
around −40 km s−1. This is to be expected for such a massive
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system in a small-size cluster, where no other stars would have
a comparable mass necessary for dynamical interactions to pro-
vide it with a peculiar velocity. The next most massive star in
the cluster (and only other high-mass star) is LS I +57◦138, with
spectral type O7 V (Negueruela & Marco 2008).

6. Discussion and conclusions

The masses found for the two components of MY Cam are very
high, and, to the best of our knowledge, are the highest masses
ever derived for main-sequence O-type stars in an eclipsing bi-
nary. The literature offers a few examples that can be used as
comparison systems. For instance, Niemela et al. (2006) deter-
mined the mass of the primary star in V662 Car (Porb = 1.41 d)
to be around 30 M�. This star is spectroscopically catalogued
as O5.5 V, which is a cooler (later) star than the primary of
MY Cam, and thus less massive. The primary of V1182 Aql
(Porb = 1.62 d; Mayer et al. 2005) is very similar to the primary
in V662 Car, with a mass of 31 M� and of the same spectral type,
O5.5 V .

The secondary of MY Cam can be compared to the pri-
mary in V3903 Sgr (O7 V). This system has an orbital period
of 1.74 d, and the mass of the primary is 27 M� (Vaz et al. 1997).
Similarly, the O7 V primary in V382 Cyg (Porb = 1.89 d) has a
mass of 28 M� (Yaşarsoy & Yakut 2013). Again, the secondary
of MY Cam is hotter and heavier than both stars.

A system with more massive O-type components is DH Cep,
although its orbital period is longer (2.11 days). The masses de-
rived by Hilditch et al. (1996) are around 33 M� for the primary
and 30 M� for the secondary. Again, the secondary of MY Cam
is similar in mass to the primary in DH Cep, while the primary in
MY Cam is even earlier and more massive. We note that DH Cep
is not an eclipsing binary, and so the masses of its components
were determined using other methods of analysis (Hilditch et al.
1996).

All the systems listed as comparisons are detached eclipsing
binaries, while MY Cam is an early-type overcontact binary. In
fact, the mean radii of both components in MY Cam are smaller
than the radii derived for stars of similar (or even later) spec-
tral types in these other binary systems. This difference is very
likely due to proximity effects, such as ellipsoidal effects, high
rotational velocity and tidal effects (Zahn 1977).

Based on the high effective gravities derived for both com-
ponents, a second possible interpretation to the small radii of
the two components could be that the stars are very close to
the zero-age main sequence (ZAMS). The almost complete ab-
sence of N iii emission in their spectra could support this in-
terpretation, though the high rotational velocity also contributes
to making N iii emission undetectable. Moreover, the strength
of He ii 4686 Å, which is deeper than both He ii 4542 Å and
He i 4471 Å, implies that the two components of MY Cam
are O Vz stars. Objects thus classified are generally close to
the ZAMS, and they are believed to present weak stellar winds
(Walborn 2009; Sabín-Sanjulián et al. 2014). A near-ZAMS na-
ture for MY Cam would be in agreement with the models of
Wellstein et al. (2001), who find that stars with period <∼1.2 d
should be in contact at the ZAMS for mass ratios q >∼ 0.7.

The effective temperatures found for the components of
MY Cam through model atmosphere fitting are hotter than ex-
pected for the observed spectral type. Morgan et al. (1955) found
a combined spectral type of O6nn, while Negueruela & Marco
(2008) estimated that one of the components was slightly ear-
lier and the other slightly later than O6 V. The temperatures de-
rived would imply approximate spectral types O4 V and O6 V,

according to the calibration of Martins et al. (2005). Even though
the Struve-Sahade effect (the strengthening of the secondary
spectrum of the binary when it is approaching) may distort the
spectral types in massive binaries (Gies et al. 1997; Bagnuolo
et al. 1999), the high gravity of the stars may also contribute to
their higher temperatures. It is also possible that reflection ef-
fects contribute to increasing the surface temperatures of both
components.

Stars more massive than the primary of MY Cam have
been found in binary systems, but these objects appear as ei-
ther Of supergiants or WNha stars. The best known examples
are the eclipsing binaries NGC 3603 A1 (Porb = 3.7724 d,
M1 = 116 ± 31 M�, M2 = 89 ± 16 M�; Schnurr et al. 2008)
and W20a (Porb = 3.69 ± 0.01 d, M1 = 83 ± 5 M�, M2 =
82 ± 5 M�; Bonanos et al. 2004), where all the components are
WN6ha stars. When such massive objects start interacting, the
physics of mass transfer is likely to be very complex. Conversely,
MY Cam seems to simply be an extremely massive version of
slow Case A binary evolution. Even though models describing
the final fate of such a massive close binary do not exist, analogy
with lower-mass binaries suggest that common envelope evolu-
tion will result in a stellar merger before any of the components
finish H-core burning. Even if some material is lost from the sys-
tem during such a process, the product of this merger will be a
very massive star that will probably display unusual properties
(Ivanova et al. 2013, and references therein).
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Table 1. Log of spectroscopic observations sorted by date.

Number Date HJD Hel. corr.
(Day–time) (km s−1)

1 23–17:47:16 2 453 363.2393 −9.02
2 23–18:21:06 2 453 363.2628 −9.04
3 23–18:53:12 2 453 363.2851 −9.06
4 23–19:25:46 2 453 363.3077 −9.09
5 23–19:57:53 2 453 363.3300 −9.12
6 23–21:07:56 2 453 363.3787 −9.19
7 23–21:40:04 2 453 363.4010 −9.22
8 23–22:12:26 2 453 363.4234 −9.26
9 23–22:44:34 2 453 363.4458 −9.29
10 23–23:59:35 2 453 363.4978 −9.39
11 23–00:31:42 2 453 363.5201 −9.42
12 23–01:04:04 2 453 363.5426 −9.45
13 23–01:36:12 2 453 363.5649 −9.47
14 23–02:10:24 2 453 363.5887 −9.49
15 23–02:42:30 2 453 363.6110 −9.51
16 23–03:15:39 2 453 363.6340 −9.53
17 23–03:47:46 2 453 363.6563 −9.55
18 23–04:20:08 2 453 363.6788 −9.56
19 23–04:53:01 2 453 363.7016 −9.56
20 23–05:25:23 2 453 363.7241 −9.56
21 24–17:43:32 2 453 364.2366 −9.39
22 24–18:15:38 2 453 364.2589 −9.41
23 24–18:48:36 2 453 364.2818 −9.44
24 24–19:20:42 2 453 364.3041 −9.46
25 24–22:10:18 2 453 364.4219 −9.62
26 24–22:58:14 2 453 364.4552 −9.72
27 24–23:30:20 2 453 364.4774 −9.75
28 24–00:02:27 2 453 364.4997 −9.79
29 24–01:07:51 2 453 364.5452 −9.84
30 24–01:40:01 2 453 364.5675 −9.87
31 24–02:12:07 2 453 364.5898 −9.89
32 24–02:44:59 2 453 364.6126 −9.93
33 24–03:17:29 2 453 364.6352 −9.94
34 24–03:49:37 2 453 364.6575 −9.95
35 24–04:21:44 2 453 364.6798 −9.95
36 24–04:54:36 2 453 364.7026 −9.96
37 24–05:26:44 2 453 364.7249 −9.95
38 30–18:54:53 2 453 370.2857 −11.78
39 30–19:27:01 2 453 370.3080 −11.81
40 30–20:02:23 2 453 370.3325 −11.84
41 30–22:55:48 2 453 370.4529 −12.05
42 30–23:27:55 2 453 370.4752 −12.08
43 30–01:57:59 2 453 370.5794 −12.18
44 30–02:30:05 2 453 370.6017 −12.22
45 30–03:02:13 2 453 370.6240 −12.23
46 30–03:34:59 2 453 370.6468 −12.24
47 30–04:08:01 2 453 370.6697 −12.25
48 30–04:40:08 2 453 370.6920 −12.25
49 30–05:14:30 2 453 370.7159 −12.25
50 31–18:24:00 2 453 371.2641 −12.13
51 31–18:58:16 2 453 371.2879 −12.16
52 31–19:33:25 2 453 371.3123 −12.19
53 31–20:06:19 2 453 371.3352 −12.22
54 31–21:01:01 2 453 371.3732 −12.29
55 31–21:33:08 2 453 371.3955 −12.32
56 31–00:33:27 2 453 371.5207 −12.51
57 31–01:05:35 2 453 371.5430 −12.53
58 31–02:09:49 2 453 371.5876 −12.57
59 31–02:42:54 2 453 371.6105 −12.59
60 31–03:15:01 2 453 371.6329 −12.61
61 31–03:47:08 2 453 371.6552 −12.62
62 31–04:19:43 2 453 371.6778 −12.62
63 31–04:51:54 2 453 371.7001 −12.62

Table 3. Radial velocities and residuals for both components of
MY Cam, sorted by orbital phase.

Number Phase RV1 O–C1 RV2 O–C2

(km s−1) (km s−1) (km s−1) (km s−1)

50 0.3029 –363 –8 347 21
21 0.3211 –361 –20 293 –17
51 0.3231 –333 6 275 –33
22 0.3401 –367 –43 288 –2
52 0.3439 –317 2 245 –40
23 0.3596 –322 –20 241 –23
53 0.3634 –276 20 232 –27
24 0.3786 –243 33 247 11
54 0.3957 –228 20 117 –90
55 0.4147 –157 60 105 –69
38 0.4701 –39 69 40 –8
1 0.4722 –100 5 3 –38
25 0.4789 –68 22 2 –19
39 0.4890 –68 1 –7 2
2 0.4922 –76 –12 –2 19
26 0.5072 –37 –5 –103 –32
40 0.5099 –47 –21 –144 –64
3 0.5112 –29 –5 –117 –32
56 0.5213 –36 –34 –60 56
27 0.5261 –97 –105 –73 57
4 0.5305 –46 –63 –56 87
57 0.5403 –40 –77 –161 9
28 0.5451 37 –9 –111 72
5 0.5494 10 –44 –188 6
58 0.5782 109 –1 –219 36
29 0.5838 64 –57 –296 –30
6 0.5909 112 –21 –264 14
59 0.5977 189 43 –246 44
30 0.6028 159 6 –299 0
7 0.6099 157 –7 –306 4
41 0.6124 218 49 –288 26
60 0.6168 165 –10 –307 14
31 0.6218 172 –10 –348 –18
8 0.6289 187 –6 –357 –15
42 0.6314 117 –79 –355 –10
61 0.6358 216 14 –329 22
32 0.6412 231 22 –371 –11
9 0.6480 201 –15 –391 –21
43 0.6504 320 99 –460 –87
62 0.6550 243 18 –360 17
33 0.6604 200 –30 –370 14
63 0.6740 195 –48 –415 –14
34 0.6794 227 –21 –423 –17
10 0.6923 260 2 –418 –2
35 0.6984 303 41 –431 –11
11 0.7113 265 –2 –431 –4
36 0.7178 336 64 –446 –15
44 0.7201 346 74 –458 –26
12 0.7304 272 –2 –431 3
37 0.7368 365 88 –451 –15
45 0.7390 361 84 –473 –37
13 0.7494 284 5 –428 7
46 0.7580 309 31 –432 3
14 0.7696 275 –0 –416 16
47 0.7774 380 105 –442 –11
15 0.7886 268 –3 –416 7
48 0.7969 303 36 –375 43
16 0.8082 255 –6 –397 13
49 0.8159 270 13 –396 7
17 0.8272 231 –16 –384 9
18 0.8463 213 –16 –357 12
19 0.8657 159 –48 –325 16
20 0.8849 159 –23 –281 27
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