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ABSTRACT 
 

A family of conservative, truly nonlinear, oscillators with integer or non-integer order nonlinearity is 

considered. These oscillators have only one odd power-form elastic-term and exact expressions for 

their period and solution were found in terms of Gamma functions and a cosine-Ateb function, 

respectively. Only for a few values of the order of nonlinearity, is it possible to obtain the periodic 

solution in terms of more common functions. However, for this family of conservative truly 

nonlinear oscillators we show in this paper that it is possible to obtain the Fourier series expansion of 

the exact solution, even though this exact solution is unknown. The coefficients of the Fourier series 

expansion of the exact solution are obtained as an integral expression in which a regularized 

incomplete Beta function appears. These coefficients are a function of the order of nonlinearity only 

and are computed numerically. One application of this technique is to compare the amplitudes for the 

different harmonics of the solution obtained using approximate methods with the exact ones 

computed numerically as shown in this paper. As an example, the approximate amplitudes obtained 

via a modified Ritz method are compared with the exact ones computed numerically. 

 

Keywords: Dynamical systems; Nonlinear oscillators; Conservative systems; Truly nonlinear oscillators; 

Fourier series expansion; Approximate solutions; Symbolic computation. 
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1. Introduction 

Nonlinear oscillations in physics, engineering, mathematics and related fields have been the 

subject of intensive research for many years and several methods have been used to find 

approximate solutions to these dynamical systems [1,2]. In conservative nonlinear oscillators 

the restoring force is not dependent on time, the total energy is constant [2,3] and any 

oscillation is stationary. An important feature of the solutions for conservative oscillators is 

that they are periodic and range over a continuous interval of initial values [4]. Conservative 

truly nonlinear oscillatory systems are modelled by differential equations for which the 

restoring force has no linear approximation at x = 0 [4].  

In this paper we consider a class of conservative truly nonlinear oscillators with an odd 

power-form elastic-term, αxxxf )sgn()( = , where α ≥ 0. In recent years some examples of 

this class of truly nonlinear oscillators have been analyzed. Mickens [5] studied the 

oscillations in a x4/3 potential and Hu and Xiong [6] extended this study to a more general 

x(2m+1)/(2n+1) potential, where m and n are arbitrary non-negative integers. Several techniques 

have been used to obtain analytical approximate solutions, such as harmonic balance, 

parameter expansion, iteration or averaging methods [4-15]. Gottlieb [8] analyzed the 

frequencies of oscillators with fractional-power nonlinearities introducing the sign function 

which enables the sign of the restoring force to be changed. He also obtained an expression 

for the exact period of this type of oscillators. Pilipchuk [16] studied a more general class of 

these oscillators in which the exponent α of x continuously takes any non-negative real 

value, such as odd, even, rational or irrational. Pilipchuk obtained an approximate solution as 

a series expansion and found that this solution is more accurate when the exponent α 

increases. A new analytical method for solving the differential equations, which describe the 

motion of the oscillator with fraction order elastic force, was introduced by Cveticanin [14]. 

In this technique the Krylov-Bogolubov method was extended. By considering a variable 

frequency, Kovacic and Rakaric [17] developed a procedure to obtain higher-order 

approximations for oscillators with a fractional-order restoring force. They adjusted the Ritz 

method by introducing an approximate Lagrangian and using the exact value of the 

frequency of oscillations they obtained explicit expressions for the amplitudes of the second- 

and third-order approximations. Cveticanin [18] analyzed the vibrations of oscillators with 

non-integer order nonlinearity and time variable parameters. Cveticanin and Pogány [19] 

studied free and self-excited vibrations of oscillators with polynomial nonlinearity. Recently, 

Elías-Zúñiga and O. Martínez-Romero [20] obtained accurate solutions for a generalized 
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power-form elastic term oscillator using the enhanced cubication method developed by these 

authors. In an interesting paper, Muñoz and Fernández-Anaya [21] showed that this family 

of conservative truly nonlinear oscillators with an odd power-form elastic-term arose from 

particular solutions of Abel’s mechanical problem [22].  

For oscillators in which only one odd power-form elastic-term exists, the exact analytical 

period can be obtained in terms of Gamma functions using the energy integral [14] and the 

explicit solution can be expressed as a cosine-Ateb function [19,23], which represents the 

inversion of the incomplete Beta functions. However, only a few examples of this type of 

oscillators –such as linear, anti-symmetric constant force, pure-quadratic and pure-cubic 

oscillators– have closed-form solutions [4]. However, it will be shown in this paper that it is 

possible to obtain the Fourier series expansion of the exact solution for all of these 

conservative truly nonlinear oscillators, even though their exact solutions are unknown. The 

coefficients of the Fourier series expansion of the exact solution are obtained as a function of 

the order of nonlinearity (the exponent α) and are computed numerically. Since the nonlinear 

restoring force is an odd function of the displacement x, only the odd harmonics appear in 

the Fourier series expansion of the periodic solution. We compare the coefficients computed 

using this method with those obtained for the Fourier series expansion for the exact solution 

both for the anti-symmetric constant force oscillator and the pure-cubic oscillator. We 

present some examples to illustrate the usefulness of the technique for obtaining approximate 

solutions with a finite number of harmonics by truncating the Fourier series expansion. One 

of the possible applications of this method is to compare the amplitudes for the different 

harmonics of the solution obtained using approximate methods with the exact ones computed 

numerically as shown in this paper. As an example, we compare the approximate amplitudes 

obtained via a modified Ritz method [17] with the exact ones computed numerically. As may 

be seen, this allows us to determine the range of values for the order of nonlinearity for 

which the approximate Lagrangian used gives accurate results.    

  

2. Formulation and solution procedure 

We consider a class of conservative single-degree-of-freedom nonlinear oscillators modelled 

by the second-order autonomous differential equation 
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with initial conditions 

 Ax =)0( ,       0)0(
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d
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t
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where x and t are the non-dimensional displacement and time, respectively, and the order α 

of nonlinearity is any positive real number (α ≥ 0).  These oscillators are truly nonlinear 

oscillators [4] in which the nonlinear function αxxxf )sgn()( =  is odd, i.e.  f(–x) = –f(x) and 

satisfies 0)( >xxf   for ],[ AAx −∈ , x ≠ 0, where A is the oscillation amplitude. The system 

oscillates around the equilibrium position x = 0 and the period, T, and periodic solution, x, 

are dependent on α and A.  

Introducing a new reduced variable, u = x/A, we can rewrite Eqs. (1) and (2) as 

 0)sgn(
d
d 1

2

2

=+ − αα uuA
t
u  (3) 

 1)0( =u ,       0)0(
d
d

=
t
u  (4) 

We consider 0 ≤ t ≤ T/4, where T is the period of the oscillations. For these values of t we 

have 0 ≤ u ≤ 1. Integration of Eq. (3) gives the first integral 
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where the integration constant was evaluated using the initial conditions of Eq. (4). Solving 

for du/dt we obtain 
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which can be rewritten as 
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Direct integration of Eq. (7) yields the period T of this family of conservative oscillators as 

(Appendix I) 
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where Γ(z) is the Euler gamma function defined as [24] 
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From Eq. (7) we obtain t as a function of u for 0 ≤ t ≤ T/4 as 
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which can be written as (Appendix II) 
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In Eq. (10), I(z;a,b) is the regularized incomplete Beta function [24] defined as 
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where B(z;a,b) and B(a,b) are the incomplete and complete Beta functions, respectively, 

defined as follows [24] 
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Since the nonlinear function in Eq. (3) is an odd function of u, the periodic solution u can be 

expanded in a Fourier series as  
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where the coefficients a2n+1 are given by 
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taking into account that the periodic solution u does not depend on the oscillation amplitude 

A. Substituting Eqs. (8) and (11) into Eq. (16) gives 
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Let α+−= 11 uy , then Eq. (17) becomes  

 ( )
( )

( )∫ "#

$
%&

' +−

Γ

Γ
= +

+−

+

+
+

+

1

0 1
1

2
1

)1/()1(

1
1

22
3

12 ,;
2
)12(cos)1(2

)( dyyIn
y

ya n α

αα

α

α
α π

π
α  (18) 

This equation allows us to obtain the values of the coefficients a2n+1(α) of the Fourier series 

expansion of the periodic solution u(α,t) as a function of the order of nonlinearity α, even 

though the analytical expression of this solution is unknown. In general, the integral in Eq. 

(18) must be computed numerically and this was done with the help of symbolic 

computation software such as MATHEMATICA. 

The first four Fourier coefficients were computed as a function of the order of nonlinearity α 

using Eq. (18). In Figure 1 we plotted the normalized first Fourier coefficient, a1, as a 

function of the order of nonlinearity, α, for 0 ≤ α ≤ 12. From this figure it may be seen that 

a1 > 1 for 0 ≤ α < 1 (a1 ≈ 1.032 for α = 0, anti-symmetric constant force oscillator), a1 = 1 

for α = 1 (linear oscillator) and a1 < 1 for α > 1. This coefficient decreases when the order of 

nonlinearity increases. Figure 2 shows the normalized second Fourier coefficient, a3, as a 

function of the order of nonlinearity, α. In this case a3 < 0 for 0 ≤ α < 1 (a3 ≈ –0.038 for α = 

0, anti-symmetric constant force oscillator), a3 = 1 for α = 1 (linear oscillator) and a3 > 0 for 

α > 1, and this coefficient is seen to increase when the order of nonlinearity increases. In 

Figure 3 we plotted the third Fourier coefficient, a5, as a function of the order of 

nonlinearity, α, and we can see that a5 > 0 for 0 ≤ α < 1 and for α > 2.34, and a5 < 0 for 1 ≤ 

α < 2.34. The coefficient a5 decreases when α increases from 0 to 1.60 and for values of α 

higher than 1.60, a5 increases when α increases. It is important to point out that a5 is equal to 

zero not only for α = 1, but also for α ≈ 2.34. Finally, Figure 4 shows the behaviour of the 

fourth Fourier coefficient, a7. In this case, a7 < 0 for 0 ≤ α < 1 and a7 ≥ 0 for α ≥ 1. The 

coefficient a7 increases from α = 0 to α ≈ 1.55, decreases from α ≈ 1.55 to α ≈ 2.72, and 

increases again from α ≈ 2.72. 

 

3. Some nonlinear oscillators with analytical exact solutions  

In this section we consider two values of parameter α for which exact analytical solutions 

exist. Then it is possible to do the Fourier series expansions of these solutions in order to 
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obtain the values of the coefficients a2n+1 in Eq. (16) and these can be compared with those 

obtained using Eq. (18). 

 

Anti-symmetric, constant force oscillator (α  = 0): The nonlinear differential equation for 

the anti-symmetric, piecewise constant force oscillator is 
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For this nonlinear problem, the exact T and periodic solution u are [2,10] 
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A simple and direct calculation gives the following series representation for the exact 

solution in Eq. (21) 
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and the Fourier coefficients are given as follows [10] 
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For α = 0, Eq. (18) gives 
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As we can see, the Fourier coefficients obtained using Eq. (18) coincide with the coefficients 

in Eq. (23) obtained from the Fourier series expansion of the exact solution in Eq. (21). The 

first of these coefficients are 

03205.132)0( 31 ≈
π
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Pure-cubic oscillator (α  = 3): This oscillator is governed by the following differential 

equation  

 0
d
d 32
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=+ uA
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u  (26) 

For this oscillator, the exact T and periodic solution u are [2] 
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where K(m) is the complete elliptic integral of the first kind defined as follows [25] 
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and cn(z;m) is the Jacobi elliptic function which has the following expansion in Fourier 

series [26] 
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and mm −=" 1 . With these results, the Fourier series expansion of Eq. (28) becomes [2,11] 
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and the Fourier coefficients are given as follows 
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For α = 3, Eq. (18) gives 
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In Table 1 we present the values of the first five Fourier coefficients calculated using Eqs. 

(33) and (34) as well as the relative error of the coefficients computed using Eq. (33). As we 

can see, the agreement is excellent. 

 

4. Analytical approximate solutions  

In this section, we present some examples to illustrate the usefulness of the technique for 

obtaining the coefficients of Fourier expansion of the periodic solution. As the exact solution 

has an infinite number of harmonics (see Eq. (15)), we truncate the series expansion at Eq. 

(15) and we consider an analytical approximate solution of the form 
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where the coefficient of the first harmonic, )(
1
Na , is obtained by using the first of the initial 

conditions in Eq. (4)
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In Tables 2-7 we present the values of )(
1
Na  for different values of α and N, as well as the 

exact values of a1. Some common oscillators were considered and the approximate values of 
)(

1
Na  and their relative errors were calculated. In Figures 5-10 the approximate solution 

(dashed line and triangles) is compared with the numerical exact solution (continuous line 

and squares) for the oscillators considered in Tables 2-7 (α = 0, 1/3, 2, 3, 5 and 12). For 

small nonlinearities the Fourier coefficients decrease rapidly and, consequently, the use of 

just a few Fourier coefficients provides an accurate representation of the exact periodic 

solution [4]. However, for large values of the order of nonlinearity (exponent α), it is 

necessary to take into account more coefficients in the Fourier series expansion in order to 

obtain accurate results. 
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5. Comparison with the approximate solutions obtained using a modified 

Ritz method 

Kovacic and Rakaric [17] adjusted the Ritz method to obtain higher-order approximations 

for motion of the conservative oscillatory systems modelled by Eq. (1). In their modified 

Ritz method, the exact period is used and an approximation of the Lagrangian is introduced 

[17, page. 2653, Eqs. (10a,b) and (11)]. They expressed both the kinetic and the potential 

energy as series expansions and truncated these series considering only the first three terms 

in each of these expansions. Using this procedure, they obtained explicit equations for the 

amplitudes of the second and third approximations for motion, which may be written as 

follows 
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the amplitudes of which satisfy the initial conditions in Eq. (4) 

 
)(1)( 31 αα bb −=      and      )()(1)( 531 ααα ccc −−=   (39) 

Applying the modified Ritz method proposed by Kovacic and Rakaric, we obtained the 

expressions for these amplitudes, which are included the Appendix III. As can be seen, the 

amplitudes we have obtained are valid for α ≥ 0, whereas those obtained by Kovacic and 

Rakaric can be only used for α ≥ 1. The first four exact Fourier coefficients as well as those 

obtained using the second, third and fourth approximations for motion applying the modified 

Ritz method are plotted in Figures 11–14. These coefficients are plotted as a function of the 

order of nonlinearity, α. We also obtained the fourth approximation, which was not 

calculated in reference [17], but its expressions are not included in this paper. As can be seen 

in Figures 11 and 12, the amplitudes of the second approximation coincide with the exact 

values of the Fourier coefficients only up to α ≈ 3, and this implies that the second 

approximation can be used in this region. The third approximation is obviously better than 

the second one. The first and the second approximate Fourier coefficients are better than 

those obtained using the second approximation. As can be seen in Figures 11–13, this 

approximation gives accurate values for the Fourier coefficient only up to α ≈ 4. Finally, 

from Figures 11–14 we conclude that the results obtained using the fourth approximation are 
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not much better than those calculated using the third approximation, with accurate values for 

the Fourier coefficients up to α ≈ 4. This means that using higher approximations does not 

improve the results for α ≥ 4 and when the order of nonlinearity, α, increases, it is necessary 

to consider more than three terms in the potential energy series expansion [17, page. 2653, 

Eq. (10a, b)]. 

 

6. Conclusions 

The coefficients of the Fourier series expansion of the exact solution for a family of 

conservative, truly nonlinear, oscillators with integer or non-integer order nonlinearity were 

calculated. They were expressed as an integral in which a regularized incomplete Beta 

function appears and they depend on the order of nonlinearity. These integrals were 

computed numerically and their results plotted as a function of the order of nonlinearity. The 

Fourier series expansion of the exact solutions of the anti-symmetric constant force, and 

pure-cubic oscillators were compared with the Fourier series expansions obtained using the 

procedure proposed in this paper. By truncating the Fourier series expansion approximate 

solutions with a finite number of harmonics have been obtained and these solutions were 

compared with the exact ones. We also showed that finding the Fourier series expansions of 

the exact solution –even though this solution is not known– allows us to analyze the 

accuracy of analytical approximate methods. To do this, we compared the Fourier series 

expansions of the approximate solutions obtained using a modified Ritz method with the 

exact ones and found that this approximate method gives accurate solutions for values of an 

order of nonlinearity less than 3. Finally, this procedure can be applied to other types of 

conservative nonlinear oscillators –without analytical expressions for their exact solutions– 

and in each case it would be possible to determine the number of Fourier coefficients 

necessary to provide an accurate approximate representation of the exact periodic solution. 

 

Appendix I 

We consider 0 ≤ t ≤ T/4, where T is the period of the oscillations. For these values of t we 

have 0 ≤ u ≤ 1. Integration of Eq. (3) gives the first integral 
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where the constant of integration was evaluated using the initial boundary conditions in Eq. 

(4). Solving for du/dt gives 
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This equation can be rewritten as 
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The time it takes to go from point (A,0) to the point (u,du/dt) in the lower half-plane of the 

phase space is 
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The period of oscillation is four times the time taken by the oscillator to go from u = 0 to u = 

1, T = 4t(0). Therefore 

  
∫ −+− −+=
1

0

2/112/)1( )1()1(22 duuAT ααα  (A5) 

The substitution α+= 1uz  gives, after some simplifications 
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where B(a,b) is the Beta function. Finally, Eq. (A6) can be rewritten in terms of Gamma 

functions as follows 
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Appendix II 

Substituting α+= 1uz  in Eq. (A4) and following the method used by MacColl for the 

relativistic oscillator [27] and by Méndez et al to find approximate solutions for nonlinear 

Hamiltonian oscillators [28], we obtain, after some simplifications 
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whose value is 
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where B(z;a,b) is the incomplete Beta function. Eq. (A10) can be written in terms of the 

regularized incomplete Beta function, I(z;a,b), as follows 

  ( )
( )

( )[ ]211
11

22
3

2/)1(
1
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,;1
)1(2

)( α
α

α
α

α
α

α +
+

+
+

−
+ −

Γ+

Γπ
= uIAut  (A11) 

and taking into account that 

  ( ) ( )abzIbazI ,;11,; −−=  (A12) 

we can write Eq. (A11) as 

  ( )
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−
+ −
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= 1

1
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22
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2/)1(
1
1

,;1
)1(2

)( uIAut  (A13) 

Appendix III 

Expression for the amplitudes corresponding to the second-order approximation obtained 

using the modified Ritz method proposed by Kovacic and Rakaric [17] 

  
)(1)( 31 αα bb −=  (A14) 

( ) ( )
( ) ( ) ( ) ( )ααα

α
α

α
α

απαααα
αααα

α
22

32
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1
12

2

1
12

2
3 )1(361)9)(7)(7(4

1)9)(7)(5)(1(
)(

+
++

+

+

ΓΓ++Γ+Γ++−

Γ+Γ+++−
=b  (A15) 

and for the third-order approximation we obtain 

  )()(1)( 531 ααα ccc −−=  (A16) 
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ααα
α

sss
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+
=  (A18) 

where 

( ) ( )αααααα +Γ+Γ++−−= 1
12

21 1)9)(7)(1()(p   (A19) 

( ) ( )αααααα +Γ+Γ++= 1
12

2
2

2 2)217(96)(p   (A20) 
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FIGURE CAPTIONS 

 

Figure 1.- First Fourier coefficient, a1, as a function of the order of nonlinearity (exponent 

α) for 0 ≤ α ≤ 12. 

Figure 2.- Second Fourier coefficient, a3, as a function of the order of nonlinearity 

(exponent α) for 0 ≤ α ≤ 12. 

Figure 3.- Third Fourier coefficient, a5, as a function of the order of nonlinearity (exponent 

α) for 0 ≤ α ≤ 12. 

Figure 4.- Fourth Fourier coefficient, a7, as a function of the order of nonlinearity (exponent 

α) for 0 ≤ α ≤ 12. 

Figure 5. Comparison of the approximate solution (dashed line and triangles) with the 

numerical solution (continuous line and squares) for α = 0 and N = 2 (three harmonics). )2(
1a  

= 1.03205, a3 = −0.03822404 and a5 = 0.008256393. 

Figure 6. Comparison of the approximate solution (dashed line and triangles) with the 

numerical solution (continuous line and squares) for α = 1/3 and N = 2 (three harmonics). 
)2(

1a  = 1.01957, a3 = −0.023843 and a5 = 0.00427545. 

Figure 7. Comparison of the approximate solution (dashed line and triangles) with the 

numerical solution (continuous line and squares) for α = 2 and N = 1 (two harmonics). )1(
1a  = 

0.974276 and a3 = 0.0257238. 

Figure 8. Comparison of the approximate solution (dashed line and triangles) with the 

numerical solution (continuous line and squares) for α = 3 and N = 2 (three harmonics). )2(
1a  

= 0.95509, a3 = 0.0430495 and a5 = 0.00186049. 

Figure 9. Comparison of the approximate solution (dashed line and triangles) with the 

numerical solution (continuous line and squares) for α = 5 and N = 3 (four harmonics). )3(
1a  

= 0.926632, a3 = 0.0633949, a5 = 0.00877599 and a7 = 0.00119669. 
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Figure 10. Comparison of the approximate solution (dashed line and triangles) with the 

numerical solution (continuous line and squares) for α = 12 and N = 5 (six harmonics). )5(
1a  

= 0.879193, a3 = 0.0849494, a5 = 0.0233867, a7 = 0.00816089, a9 = 0.00309246 and a11 = 

0.00121723. 

Figure 11. First Fourier coefficient as a function of the order of nonlinearity (exponent α): 

Exact (black continuous line). Second- (blue dashed line, squares), third- (red dashed line, 

circles) and fourth- (green dashed line, triangles) approximations obtained applying the 

modified Ritz method [17]. 

Figure 12. Second Fourier coefficient as a function of the order of nonlinearity (exponent 

α): Exact (black continuous line). Second- (blue dashed line, squares), third- (red dashed 

line, circles) and fourth- (green dashed line, triangles) approximations obtained applying the 

modified Ritz method [17]. 

Figure 13. Third Fourier coefficient as a function of the order of nonlinearity (exponent α): 

Exact (black continuous line). Third- (red dashed line, circles) and fourth- (green dashed 

line, triangles) approximations obtained applying the modified Ritz method [17]. 

Figure 14. Fourth Fourier coefficient as a function of the order of nonlinearity (exponent α): 

Exact (black continuous line). Fourth-approximation (green dashed line) obtained applying 

the modified Ritz method [17]. 
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TABLES 

 

Table 1. The values of the first five Fourier coefficients for α = 3 calculated using Eqs. (33) 

and (34), as well as the relative error of the coefficients computed using Eq. (33).  

Table 2. Approximate first Fourier coefficient, )(
1
Na , for different values of N and relative 

errors for α = 0. The exact value is a1 = 1.03205. 

Table 3. Approximate first Fourier coefficient, )(
1
Na , for different values of N and relative 

errors for α = 1/3. The exact value is a1 = 1.02055.  

Table 4. Approximate first Fourier coefficient, )(
1
Na , for different values of N and relative 

errors for α = 2. The exact value is a1 = 0.974801.  

Table 5. Approximate first Fourier coefficient, )(
1
Na , for different values of N and relative 

errors for α = 3. The exact value is a1 = 0.955006.  

Table 6. Approximate first Fourier coefficient, )(
1
Na , for different values of N and relative 

errors for α = 5. The exact value is a1 = 0.926430. 

Table 7. Approximate first Fourier coefficient, )(
1
Na , for different values of N and relative 

errors for α = 12. The exact value is a1 = 0.878356.  

 



TABLE 1 

 

 

 

Fourier 
coefficient Eq. (33) Eq. (34) Relative 

error (%) 

a1 0.9550059869606213 0.9550059869606203 10-13 

a3 0.0430494955774923 0.0430494955774919 10-12 

a5 0.00186048723113327 0.00186048723113306 10-11 

a7 0.00008039895523055 0.00008039895523061 7 x 10-11 

a9 0.0000034743538810 0.0000034743538808 7 x 10-9 

 

 

 

Table 1



TABLE 2 

 

N     

  

a1
( N ) Relative 

error (%) 

1 1.03822 0.6 

2 1.03205 0.20 

3 1.03298 0.09 

4 1.03156 0.05 

5 1.03234 0.03 

10 1.03200 0.005 

 

 

 

Table 2



TABLE 3 

 

N     

  

a1
( N ) Relative 

error (%) 

1 1.02384 0.3 

2 1.01957 0.10 

3 1.02095 0.04 

4 1.02035 0.019 

5 1.02066 0.011 

10 1.02054 0.0015 

 

 

 

Table 3



TABLE 4 

 

N     

  

a1
( N ) Relative 

error (%) 

1 0.974276 0.05 

2 0.974915 0.011 

3 0.974770 0.003 

4 0.974811 0.0011 

5 0.974796 0.0005 

10 0.974801 0.00003 

 

 

 

 

Table 4



TABLE 5 

 

N     

  

a1
( N ) Relative 

error (%) 

1 0.956951 0.20 

2 0.955090 0.009 

3 0.955010 0.0004 

4 0.955006 0.000016 

5 0.955006 0.0000007 

10 0.955006 < 10-10 

 

 

 

 

Table 5



TABLE 6 

 

N     

  

a1
( N ) Relative 

error (%) 

1 0.936605 1.1 

2 0.927829 0.15 

3 0.926632 0.022 

4 0.926460 0.003 

5 0.926434 0.0005 

10 0.926430 < 10-7 

 

 

 

 

 

Table 6



TABLE 7 

 

N     

  

a1
( N ) Relative 

error (%) 

1 0.915051 4 

2 0.891664 1.5 

3 0.883503 0.6 

4 0.880411 0.23 

5 0.879193 0.10 

10 0.878367 0.0013 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 
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FIGURE 8 
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FIGURE 9 
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FIGURE 10 
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FIGURE 11 
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FIGURE 12 

 

 

 

 

 

 

-0.04 

-0.02 

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

0 1 2 3 4 5 6 7 8 9 10 

Se
co

nd
 F

ou
rie

r c
oe

ffi
ci

en
t 

a 

Figure 12
Click here to download Figure(s): FIGURE 12.docx

http://ees.elsevier.com/cnsns/download.aspx?id=270630&guid=bbd68226-43dd-4e94-918c-9521415e9688&scheme=1


FIGURE 13 

 

 

 

 

 

 

-0.01 

0 

0.01 

0.02 

0.03 

0.04 

0 1 2 3 4 5 6 7 8 9 10 

Th
ird

 F
ou

rie
r c

oe
ffi

ci
en

t 

a 

Figure 13
Click here to download Figure(s): FIGURE 13.docx

http://ees.elsevier.com/cnsns/download.aspx?id=270631&guid=cc1d011b-7973-4b93-bcb2-43cd3226601b&scheme=1


FIGURE 14 
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