Consequences of Kondo exchange on quantum spins
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Abstract

When individual quantum spins are placed in close proximity to conducting substrates, the localized spin is coupled to the nearl
itinerant conduction electrons via Kondo exchange. In the strong coupling limit this can result in the Kantle #he formation

of a correlated, many body singlet state - and a resulting renormalization of the density of states near the Fermi energy. Howev
even when Kondo screening does not occur, Kondo exchange can give rise to a wide variety of other phenomena. In addition
the well known renormalization of thggfactor and the finite spin decoherence and relaxation times, Kondo exchange has recently
been found to give rise to a newly discoverdiiet: the renormalization of the single ion magnetic anisotropy. Here we put these
apparently dierent phenomena on equal footing by treating tfieot of Kondo exchange perturbatively. In this formalism, the
central quantity i®J, the product of the density of states at the Fermi engragd the Kondo exchange constdniWe show that
perturbation theory correctly describes the experimentally observed exchange induced shifts of the single spin excitation energi
demonstrating that Kondo exchange can be used to tundféaiee magnetic anisotropy of a single spin.
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1. Introduction ion Hamiltonian as magnetic dopants in insulating hosts and

single-molecule magnets |14]. These systems have attracted

_ The development of electron paramagnetic resonance madgyhificant attention because they represent the ultimate limit of
it possible to study the spin transitions of a variety of spin sys-

) 2l magnetic objects where classical or quantum information can
tems, su<_:h as parfimagnetlc molecu_les [1] and transition metgl, ¢;oreq (15, 16].
dopants in insulating hosts![2]. This led to the development . , , , .
of a single spin Hamiltonian, where the influence of both the Manipulation and readout of the information requires inte-
Zeeman ffect and magnetic anisotropy determine the energration of these quantized spins (e.g. magnetic molecules, spin
spectrum and spin selection rules. Interestingly, the same tyga12iNs, Or magnetic atoms) into a device. In the case of quan-
of Hamiltonian was successfully used to describe the quarfM SPINs in contactwith a conducting electrode, found in many
tum spin tunneling phenomenor [3] discovered in magneti(PrOposed device geometries|[17], the question of how exchange
molecules with large spin. interaction with the conduction electrons changes the spin dy-
Thanks to the tremendous progress in nano-fabrication an@@mics of the quantized spin naturally arises. In the strong cou-
nano-manipulaiton, it is now possible to produce devices wherBiNd régime, the Kondofeect is known to quench the magnetic

an individual quantum spin can be probed. A single magneti€"oment of the quantum spin. This comes together with a strong
molecule can be placed in a nanoscale junciibhl[4, 8, 6, 7], ofenormalization of the states at the Fermi energy, which in STM

top of a carbon nanotubg! [8], or on a surfdde [9, 10]. A parneasurements is revealed as a Fano lineshape in the low bias
’ vetar [18,19].

ticularly suitable instrument for studying spin systems at thefonductance
atomic scale is a scanning tunneling microscope (STM) because More recently, the tunneling spectra of magnetic adatoms
it permits not only probing but also manipulation of the spin of[20, 121,14, 22| 23, 24, 25, 26,127] and molecules [28, 29]
individual magnetic atoms deposited on surfaces|[11, 12, 13have been found to display inelastic spin transitions, revealed as
which thereby takes us closer to the Feynman’s dream of emmagnetic field-dependent steps in th&eatential conductance
gineering matter at the atomic scale. Interestingly, magnetidl/dV (see Fig[1L). Fitting the energies of these steps to an ef-
adatoms can also be described with the same type of singfective spin Hamiltonian provides a quantitative understanding
of the magnetic anisotropy [21,114,30, 24} 27]. The steps in
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Quantity Symbol Equation Reference 2. Theoretical approach

g factor g 9(1- zzpJd)  This work 21 Hamilton del

Spin relaxation AT (0J)°S°A [30] -1. Hamiltonian mode

Spin decoherence hTil (pJ)2S%kgT [16] Our starting point is the Hamiltonian [30,/39, 40]

Indirect exchange  Jai .y (0J)? F(r) [36] 3

Exchange shift OA o« (pJd)?In % [37] H = Hs + Hsurt + Viondo 1)
Kondo Temperature kgTk We VeI [38] whereHs is a single spin Hamiltonian discussed below, and

Hsure describes the independent electrons of the surface

Table 1: Physical quantities associated with the Kondo &xgh coupling] +

between a magnetic impurity and conduction electrons spisof them are Hsurt = Z €k,0Cy . Ckors (2)
determined by the produpt], with p the substrate density of states at the Fermi Ko

level.

with ch (cko) the creation (annihilation) operator of an electron
in the surface with momentuky spino- and single particle en-
even in the absence of Kondffect, i.e. when no Kondo fea- ergye. Except in Sed.]3, we consider non-magnetic surfaces
ture is seen in the conductance spectrum. For instancegeca wheree ., = . Finally, Viondo describes the local exchange
of the Kondo exchange, the single-spin states acquire & finifinteraction between the surface electron density and thge ma
lifetime [31,[30]. In the case of magnetic adatoms, fast spimetic adatoms:
relaxation times, of the order of 200 fs, have been estimated 1
from the full width at half maximum of the?l /dV? peaks of Viondo = =
Fe atoms on a metal [32], while direct STM measurements of 2 KK oo
the relaxation times of Fe on top of a §Nisubstrate, possi-

ble using pump and probe techniques [33], has demonstratdyth 7 the vector of Pau!i matric_es (with1 eigenvalues) an_d
lifetimes up to 50 ns. Jue the s-d exchange interaction between the local $pin

and the transport electrons. For simplicity, we will assume
that these coupling constants are momentum independent and
we shall take the average value on the Fermi surface, i.e.,
e = J/LY, wherelL is a typical length of the macroscopic
electrode and its dimensionality (i.eL? can be either an area
fra volume). Notice thal has dimensions of energy time$.

In order to keep the ensuing discussion as general as possi-
ble, we consider a generic spin Hamiltonian in Hg. @A) =
> Enln)n| where|n) may describe both the electrorficand
IJguclearlﬁspin degree(s) of freedom. For specific calculations
we will use a Hamiltonian valid for many magnetic systems on
surfaces, including Mn, Co and Fe onBUCu [14,22], Fe-Pc
molecules[29] and Fe clusters [41]

‘]IZ,IZ’§ . ‘I_')(r’g—r CLCk/g—r, (3)

The Kondo exchange can actually arise from twfiedent
physical mechanisms. First, direct ferromagnetic exchdsag
possible between the itinerant electrons of the surfacettand
d or f levels of the atomic spin. This type of exchange is re-
sponsible, for instance, for the spin splitting of the cortén
stype band in diluted magnetic semiconductors [34]. Secon
if the surface electrons hybridize with the localizédr f or-
bitals, the so called kinetic exchangel[35] results in affemt
romagnetic Kondo coupling, in the limit where classicalrgjea
fluctuations of the atom are frozen. This second mechanism
almost ubiquitous and can coexist with the first, giving tsa
reduced total exchange due to their opposite signs.

In this work, we emphasize the central role of the Kondo
exchange coupling in a vast variety of available experimlent Hs = DSZ + E(S% - S7) + gausB- S, (4)
observations of magnetic adsorbates, and thus, we deratmstr i )
that it is possible to quantify itsfiects. Tabl€lL shows a sum- where the first and second.terms_ correspond to the axial and
mary of physical quantities associated to the spins of a fag-m {ransverse magnetocrystalline anisotropy respectivetyga
netic impurities that are modified by the exchange coupling t Stands for the adatom gyromagnetic factor. This Hamiltonia
the conduction electrons. Notice that all of them depends oMhich neglects the hyperfine coupling, is adequate for a sys-
the product of the electrode density of states at the Ferral,le €M with 3 nonequivalent magnetic symmetry axis [14]. On a
p, and the Kondo exchange couplidg The dfect can be clas- surfa_cg_theD$§ term will be most certainly present, but other
sified then according to the orderid. To first order it leads ~POSsibilities involvingSx andSy are also possible [27]. In the
to a modification of the féective g factor, anféect akin to the following we show the influence of the exchange interac®n (
Knight-shift in metals. To second order, it leads to finiteale  ©ON the dy_nam_|cs of the anisotropic spin governed by a generic
herence and lifetime$ [30,116,/32] 33] or the indirect exgean SPIn Hamiltoniaris.
due to the RKKY interaction [36]. In addition to these well _
known results, the Kondo exchange coupling also leads to ark-2- Calculation methodology
other second ordeffiect recently observed in magnetic atoms: In this article we concentrate on the weak coupling regime
the renormalization of the magnetic anisotropy [37]. Pdwde  where a perturbative treatment of the exchange intera@®pn
tion theory breaks down either whed is not a small parame- is valid. This means that the dimensionless constant that co
ter, in the case of ferromagneti¢cor below the Kondo temper- trols the strength of the exchange couplipnd as described be-
ature [38],kgTx = We/®)) in the case of antiferromagnetic low, with p the volumetric density of states of the conduction
J. electrons at the Fermi level, satisfie$ < 1.



We now review the perturbative theory that permits address-
ing the influence of the Kondo exchange on the spin dynamics 2 ¢
and the energy levels of the spin. The main idea is that we trea
the anisotropic spin as an open quantum system coupled, via
Kondo exchange, to an electron&servoir, given by the con-
duction electrons. In principle both the surface and tiptet:s
affect the atomic spin. Thedtect of the tip can be made negligi- 0 A0
ble by decreasing the tunnelling amplitude. Hence, we focus © A1 ’,"p
the dfect of the surface electrons, although the generalization £ '
to include the tip is straightforward [30]. %

pJ—0

dl/dV (norm.)

pd>0

3. First order perturbation theory
Alpd)  A(0) Alpd)  A©0)
To linear order in the Kondo exchange, the electron gas can

influence the spin of the magnetic adatom provided that time

reversal symmetry is broken, either spontaneously or bypan a

plied field. When that happens, the average magnetization dfgure 1. Main éects of the Kondo coupling on the electronic transport.

the electron gas is nonzero. uantizing the spin along thd he inelastic spin-flip transitions are revealed as thdynmbadened steps of
9 Q 9 P 9 El/dv and peaks (or dips for negative voltage)dfl/dV2. As the Kondo

a)SIS, which we callz, and replacmg:k(rck’ff’ by Its average coupling grows 4J increases, lower panels), the inelastic step shifts torlowe
(Cﬂwck/g/) = Okk 050 T (o), Wheref(e) is the Fermi Dirac dis-  energies and it broadens.
tribution, one gets that for a momentum independent cogplin

— 7/1d ;
constantle = J/L°, the Kondo coupling of EqL{3) reads as of the electron gas magnetization, which occur throughtee c

J ation of electron-hole pairs across the Fermi energy. Torsiéc
Viondo = SZZ Sra LT(aa) = flag)]- (3)  order inpJ, this coupling has three main consequences on the
k quantized spin:

Then, if we introduce the total number of electrons with spjn 1. The eigenstateg) of the quantized spin acquire a finite

N,-, we get lifetime T1(n).
N; — N, 2. If the quantized spin is prepared in a coherent superposi-
“Vkondo = JSZT- (6) tion of states1 andm, it decays in a time scalg(n, m).
) ] ] ] 3. The transition energ¥nm = En — En is renormalized due
Thus, at this rough level of approximation, the spin of thgma to the Kondo exchange .

netic adatom is coupled to the average spin density of the ele

tron gas. In the presence of an applied magnetic field, simpl¥/hereas the notions of spin relaxation and spin decoherence
linear response theory yields the well known Pauli paramag@'® well established theoretically and experimentally, laave
netism result [42] been worked out in the context of exchanged coupled quahtize

spins [30], the notion of a reservoir induced shift is lessieo
Ny — N, __ M _ _HBGe Bp 7 mon and it has been only very recently reported in the context
2Ld 1Be 2 of magnetic adatoms [37].

wherege is the gyromagnetic factor of the surface electrons. We

can now re-write the Zeeman term gig:;g BS, with the renor- 4.1. Bloch-Redfield quantum master equation . .
malized Landé-factor We now show that the second order perturbation theory is

able to account for these three physical phenomena. Fgormall
this is done using the so called system plus reservoir Bloch-

p ‘]) ®)  Redfield [44] approach, in which the dissipative contribntdf

. ] a reservoiron the otherwise coherent dynamic evolution of a

Thus, to linear order, thefiect of the Kondo exchange is t0 gystemis calculated up to second order in their coupling. In

renormalize the factor, an @ect that can only be measured in o, case, thesystemis the quantized spin while theservoir

the presence of an applied magnetic field and was first proposegg given by the conduction electrons and the coupling tates t
in the context of nuclear magnetic resonance shifts in metal 5rm of the Kondo exchangk [45,130].

£ _ _ 9
g —QA(l 20n

where it is known as Knight shift [43]. The Bloch-Redfield theory yields the dynamical equation for
the reduced density matrix [44]:
4. Second order perturbation theor dén (t . - -
P y 0—3—:() = —iwny an (t) + Z Rorv,mmt Tmm (1) 9)
mnt

To first order in the Kondo coupling, the quantized spin cou-
ples only to the average magnetization. To second order, iwith R.v mm the Bloch-Redfield tensor, which is a quadratic
contrast, the quantized spin couples to the quantum fliotwat functional of the system-reservoir coupling and is resjises

3



of the dissipative fects. Importantly, in a time scale much  We can give a closed analytical expression for the tramsitio
longer than the decoherence tiffig the dynamics of the diag- rates, in terms of the spin matrix elements, the Kondo exgban
onal termsp, = -, Which describe the occupations of fhg  and the density of states of the conduction electrons atdhaiF
eigenstates ofs, and df-diagonal termsgy, that describe energy if we assume a flat density of stgtes V—lv with an en-
coherences between levelandn’, are decoupled. The equa- ergy bandwidtiV, and we neglect the momentum dependence
tion for the occupations yields the standard master equatio  of Kondo exchangélfk,S = J/LY. With those assumptions, and

d(®) taking into account the distribution rglati(;ﬂ; = —ind(X) +P2
o - Z I'msnPm— Pn Z I'nom (10)  whereP stands for the Cauchy principal part, EGS][12-13) take
m m the form
where the transition rates from stateto n, denoted by 'mn, SS T 2 2
are related toRnnmm = —-I'mon for n # m and Ronpn = Thom = ﬁ(p‘]) Q(A“m)ZKnlSalm>| ’ (14)
- Zm:#n rer- :

The Bloch-Redfield equatiofil(9) couples coherencgsté ~ where

0w [44] only if the transition energy.m, is degenerate with A

Avmr. In the two specific cases considered here, there is no  G(A) = fdef(e) Q- f(e+A)= 1T it (15)

coupling between dierent degenerate coherences, so that their

equation of motion reads: andp™ = kgT. In the limit A > kgT we can approximate
déran (1) . A . _ A G(A) = A which implies that the spin relaxation rate fram
e —iwnn G (1) = 1 (wnr +iynn) an (). (11)  to mis proportional to the energy released in the transition.

i _ i In contrast, the same equation yields that uphill trans#tiare

Thus, in an isolated systerR{nym = 0), Eq. [11) describes ermally suppressed by a Boltzmann factor. In the elassie c

the evolution of the coherence between two lewedadn’ as an (A = 0), we haveg(0) = k,T. Thus, the spin relaxation rate

oscillating function with angular frequenayy = (En~Ew)/%. s governed by the dimensionless paramgterthe spin selec-

Th_e coupling to the reservpir has then twiGeets on the V0~ tion rules contained iy, [(NSam)? and the phase-space for
lution of the coherences, given by the real and imaginarispar scattering described ly(A).

of the Redfield tensoRymnm = —¥nm — i16wnm [44]. First, over
a time scalel,(nm) = 1/ynm it induces a decay of the ampli-

tude of the oscillation, known as decoherence. The decobere ] .
rate,ynm, has both an inelastic population scattering term, and The adiabatic decoherence rate for a coherence between two

the pure dephasing ratg?", which does not require population degenerate statesandm of a quantized spin exchange coupled
scattering[[44]. Second, it modifies the oscillation fregme O @ spin unpolarized electron gas, using the same apprexima
wnr, 1.€. it induces a shift of the transition energy. Therefore tions of momentum-independediaind flat density of states
decoherence and energy shift are the real and imaginargpart 'éads:
the same Bloch-Redfield tensor and are both consequences of 44
the dissipative coupling of a quantum system to a fluctuating Ynm
reservoir.

In the following we provide explicit expression for the scat
tering rates, decoherence rates and transition energy $bif

the case of a quantized spin exchanged coupled to an electrggherer? is thea-Pauli matrix. Notice that this adiabatic deco-

4.3. Decoherence rates

kS 2
ah (0J)“keT )

Z Z (T;aro_,<nlsa|n>_T;ar’(r<mlsa|m>) ’ (16)

oo’ |a=Xxy,z

X

gas. herence occurs via elastic scattering. The adiabatic cafes
N linearly with kg T because elastic scattering events require that
4.2. Transition rates the conduction electron system has an initial occupiee skat

We consider the simple case where the quantized spin is cogenerate with a final empty state. As in the case of the stajter
pled to a single electronic reservoir that is not spin patedi  rates, decoherence rated3 is also proportional togJ)>?.
The rates in the simpler case read:
1 4.4. Energy shifts
[Sm=5 D, KniSaim?Im [Z(Am)] (12)

o502 We now write down the expression for the shift of a transition

. _ energyAnm = Anm + (SEn — 6Em) between two non-degenerate
where theAnm = En — Em and Im[7] denotes the imaginary part ejgenstatess andm of the quantized spin Hamiltonian due to

of: their Kondo coupling to an electron gas:
95517 f(a) (1 - f(a)) NG
- Z 5E=§ (NISam)|” Re[ I (A 17
18)=2 o a—act+ A+ io* (13) " PY l b Z{Aor)] an

with f(e) the Fermi function. The cases of a spin polarizedwhere Rek] corresponds to the real part. Notice that the shift
reservoir and coupling to two reservoirs yield analogoyses-  of a leveln has contributions coming from spin-matrix elements
sions and have been discussed elsewhere [45, 30]. connecting to all states. At the same level of approximation



used to derive Eqs[(114) arld {16), we obtain an expression fod) b)

the shift of an energy level [37,144]

2
Re [7(A)] ~ (pJ) f def(F(e), (18)
where
272'|(BT 1 . e+A
T(G)Z—In(m)—Re‘P[z—|2ﬂTBT . (19)

with ¥(x) the digamma function. This expression is valid pro-
vided W > kgT [4€], which for metals stands even at room
temperature. In the regime we are interested in, where tte sp
tingsAnm are much smaller than the bandwidth, Eql (18) can b

approximated by its leading order termW (kg T):

Re[7(A)] ~ Re[£(0)] - % (p3)?In % (20)

S=3/2
==
oF ) B J—
—l- c) S=1 pd =0 pJ >0
A ‘Ao 10) e
— 0L
[+ 1) 4| = 1) e

‘+1)7|*1>_,,,, ,,,,,,,,,,,,,,,, -

%igure 2: a) Sketch of the renormalization of the energyltegfan anisotropic
spin system. b) Modification of the spin levels o§a= 3/2 spin system with
easy axis anisotropy( < 0). The finite exchange with the substrate electrons
induces a reduction of the excitation energy= Ez/>—Ej,2. For finitepJ, each
energy levelE, is shifted with a displacement proportional(fal)?, leading to

an excitation energg < Ap. ¢) Quenching of the zero field splitting ofSa= 1

where7 (0) is a shift common to all the energy levels, and there-spin system with the exchange couplidig

fore, not observable. Thus, if we consider the excitaticergy
of an anisotropic spin system, the renormalized energgrdli
enceAnm Will be given to leading order i/ (kg T) as

@I
4 7TkBT
w — [(miSalrY

Anm = Aym-—
X Z[
n.a

Thus, the renormalization of the transition energy, is the
difference in the shifts of the levetsand m, both described
with Eq. (IT), see Fid.]12a.

] .21

4.4.1. Second order correction of the g factor foeS/2

We first apply Eq. [(21) to the case of a sj8n= 1/2 inter-
acting with a magnetic field. Including the term lineardad
discussed above, we obtain:

Oe

__pJ_

Loy 2X ) 22)

A _ AO

This second-order correction to the Zeeman splitting was de

rived using the KadarfsBaym Green function method by Lan-
greth and Wilkins|[31].

4.4.2. Shifts for half-integer spins

4.4.3. Shifts for integer spins

We now apply apply the theory to study the renormalization
of the zero-field splitting\g due to the quantum tunnelling of
magnetization present in integer spins wher: 0. For sim-
plicity, we consider the example of a sfin= 1 with easy axis
anisotropy D < 0) (see figure 2(c)).. The eigenvalues of this
system ard&, = -D - E, Eg = -D + E andEg = 0. We assume
D <0 < E < |D| so thatE, < Eg < Eq. Using the general
expressions for the shifts, Eq.{21), one gets that

2W

(pJ)2 nksT

Aﬁ,af = A,B,a (24)
whereAg,, = 2E is the bare energy splitting and we have tak-
ing into account that the contribution coming from the matri
elements within ther, 8 doublet is twice the one coming from
their coupling to the O level, see Eq.121).
Hence, in the case of integer spins, the Kondo coupling is the

responsible for the renormalization of the quantum turimgpll

splitting, enabling in this way the decoherence between the
two quantum mechanical superposition states and being ulti
mately responsible of the emergence of the classical mizgnet
states|[4/7].

We now compute the shift of the spin transition for a sys-

tem with finite spin excitations at zero field, namelg & 3/2

spin system described with Hamiltoni&mn (4), whose energy le
This, for instance, describes a e have reviewed thefiect of the Kondo exchange on the

els are shown in figure 2(b)..

5. Discussion and conclusions

Cobalt adatom on GIN [22,[37] . In that case there is a single spin dynamics of a quantized spin in the weak coupling limit

transition at zero-field and, fgD| > E in Eq. [4), the only
excitation energy is given by [37]

A, 2W
A Eg/z - E1/2 ~ Ag (1 (pJ)Z In —) (23)

kT
whereAg = (Ez/2 — Eaj2) andA = 3. 1(1/21S43/2))? (see Fig.
[Zb). In particular, we have that to lowest orderbiiE, A ~
3/2(1+ E?/D?).

where perturbation theory works. We have discussed four dif
ferent dfects:

1. The renormalization of thgfactor, related to the so called
Knight shift in nuclear physics (Eq[J(8)). This might ac-
count for the observed anomalously laggfactor of single
Fe atoms adsorbed on a Ag(111)/[48].

2. The finite lifetime of excited spin states, which give®ris
to a relaxation rate of excited spin states (Eq. (14)). The



linear relation between the rate and the transition energirReferences

might account for the observations of for Fe on Ag(111)
[48] as well as for Fe on Cu(111) [32].

3. The decoherence of degenerate eigenstates of the spin
Hamiltonian [Eq. [(IB)]. In the case of semi-integer spins [y
with D < 0 this mechanism ensures that coherence be-[2]
tween the two ground states with opposge= +S dis- [3]
appears on a timescale of picoseconds [16], preventing thef4]
formation of Schrodinger-cat like states with null magne- (5
tization [47].

. The renormalization of the excitation enerfyn [EQ.
(27)] that accounts for the recent observation for Co atoms
on CypN/Cu(001) [37].

(6]

To this list of physical phenomena, controlled by, that in- 7
volve quantized spins exchanged coupled to an electron gagg]
one should of course add the Kondffeet and, when two or
more quantized spins are coupled to the same electron gas, tﬁg]
indirect exchange interactidRKKY.

In this work we have reviewed the case of a quantized spiftC!
couple to a single spin unpolarized electrode (except durin
the discussion of linear ordeffects). It is straightforward to [11)
extend the theory in two directions. First, one can include d12]
second electrode at affirent chemical potential to model in- [13]
elastic electron tunnel spectroscopy![39]. In this framewo
the inelastic current is proportional ggps J25, wherepr s are  [14]
the density of states at the Fermi energy of tip and surfade an
Jrs is the Kondo exchange coupling for processes in which th(ﬁg%
electron tunnels between tip and sample. [17]

The second extension is to consider a spin-polarized eled!8]
trode. This permits modelling [45] two additiondtects that 19]
have been reported in the literature of magnetic ada‘torns[ZLL;
32,149]. For a spin polarized STM tip, the linear conductancez0]
depends on the relative orientation of tip and magneticcadat

magnetizations. The spin contrast is linearly proportiadoa Eg
Jrs. In addition, spin-polarized currents can control the morie
tation of the magnetic adatom|23]. [23]

As a final remark, we have to note that whereas the theor
presented here looksftirent from other theory work address-
ing the same problem_[50, 132], the underlying physical phe{25]
nomena are the same.

Yoa
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