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Abstract

It is well known that the core of an exchange market with indivisible goods
is always non empty, although it may contain Pareto inefficient allocations.
The strict core solves this shortcoming when indifferences are not allowed,
but when agents’ preferences are weak orders the strict core may be empty.
On the other hand, when indifferences are allowed, the core or the strict core
may fail to be stable sets, in the von Neumann and Morgenstern sense.

We introduce a new solution concept that improves the behaviour of the
strict core, in the sense that it solves the emptiness problem of the strict core
when indifferences are allowed in the individuals’ preferences and whenever
the strict core is non-empty, our solution is included on it. We define our
proposal, the MS-set, by using a stability property (m-stability) that the
strict core fulfills. Finally, we provide a min-max interpretation for this new
solution.

Keywords: Indivisible goods, Exchange market, Strict core, Indifferences,
MS-set , m-stability
JEL classification: C71; C78; D71; D78.

1. Introduction.

We consider the exchange market model with indivisible goods, started by
the seminal paper of Shapley and Scarf (1974). There is a finite set of agents,
each one owns one indivisible good and wants to exchange it for another, more
preferred one. We assume the agents’ preferences to be weak orders (agents
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may be indifferent between some goods). In such a market, the core (the set
of undominated allocations) is always nonempty, but it may contain Pareto
inefficient allocations. The strict core (the set of weak-undominated allo-
cations, included in the core) solves this shortcoming, but whenever agents
have some indifferences, it may be empty (Roth and Postlewaite, 1977).

It is well known that, when indifferences are allowed, the core (or the
strict core) of exchange market model is not a stable set in the classical sense
(Von Neumann and Morgenstern, 1944). In a recent paper (Peris and Subiza,
2013) a new stability notion, m-stability, has been introduced so that the core
(and the strict core) is m-stable. We use this notion of stability in order to
define a new solution concept, that we call MS-set. We prove that this set
is always non-empty (even when indifferences in the agents’ preferences are
allowed) and is a selection of the strict core (whenever the strict core is
non-empty). The MS-set is defined in a two-step process. First we select m-
stable sets with minimal cardinality and, secondly, we select those elements
that are (directly or indirectly) better than as many allocations as possible.
A min-max process providing the MS-set is also obtained.

2. Preliminaries.

2.1. Binary relations.

Given a finite set of alternatives X, a binary relation P defined on X is
said to be a preference relation if it is irreflexive: not(xPx), for all x. The
pair (X,P) is often called a decision problem. From the preference relation
P , the transitive closure � on X is defined as usually:

x� y ⇔ ∃ x1, x2, ..., xk−1, xk ∈ X such that
x = x1Px2, ..., xiPxi+1, ..., xk−1Pxk = y.

2.2. A market with indivisible goods (Shapley and Scarf, 1974).

Let us consider an exchange market M with n agents N = {1, 2, . . . , n}.
Agent i owns an indivisible object wi, and has a preference relationRi defined
over the set of objects Ω = {w1, w2, . . . , wn}. Throughout the work we con-
sider that agents’ preferences Ri are weak orders1 (indifferences are allowed).
An allocation is any permutation of the initial endowment (w1, w2, . . . , wn).

1 A weak order is a complete, reflexive and transitive binary relation. We will denote
by Pi the strict preference (the asymmetric part of Ri): xPiy iff xRiy and not(yRix); Ii
will denote the indifference relation: xIiy iff xRiy and yRix.
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We will denote by X the set of allocations. The dominance relation
� on the set of allocations X is defined in the usual way: An allocation
x = (x1, x2, . . . , xn) dominates some other allocation y = (y1, y2, . . . , yn),
denoted by x � y, if there is some coalition S ⊆ N such that

1. {xi, i ∈ S} = {wi, i ∈ S}; and

2. xiPiyi ∀i ∈ S.

Shapley and Scarf (1974) proved that the core (the set of undominated allo-
cations),

co(M) = {x∗ ∈ X : ∀y ∈ X,not(y � x∗)},

is always non-empty in this context. Nevertheless, it may contain Pareto
inefficient allocations. The following example (Roth and Postlewaite, 1977)
shows this fact.

Example 1. Let M1 be the market with three agents whose preferences are
defined by the linear orders:

agent 1: w3P1w2P1w1; agent 2: w1P2w2P2w3; agent 3: w2P3w3P3w1

Then, co(M1) = {x ≡ (w3, w1, w2), y ≡ (w2, w1, w3)}. It is clear that the
allocation y is not Pareto efficient, since agents 1 and 3 are better off in the
allocation x, whereas agent 2 gets the same object (w1) in both allocations.

To avoid this circumstance, a weak dominance relation �w on X is
introduced. An allocation x = (x1, x2, . . . , xn) weak dominates some other
allocation y = (y1, y2, . . . , yn) if there is some coalition S ⊆ N such that

1. {xi, i ∈ S} = {wi, i ∈ S};
2. xiRiyi ∀i ∈ S; and

3. xkPkyk for some k ∈ S.

Following Quint and Wako (2004), we will name strict core, cos(M), the
weak undominated allocations,

cos(M) = {x∗ ∈ X : ∀y ∈ X,not(y �w x∗)}.

By definition, the strict core is included in the the core. In Example 1,
cos(M1) = {x ≡ (w3, w1, w2)}, which corresponds to the Pareto efficient
allocation. It is clear, by definition of the weak dominance relation, that the
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allocations in the strict core are always Pareto efficient. Roth and Postlewaite
(1977) proved that whenever the preferences of the agents are linear orders,
the strict core is always non empty and contains a unique allocation. But this
is not the case when indifferences in the individuals’ preferences are allowed.
In this situation, the strict core may be empty, or it may contain several
allocations.2 The following example (Quint and Wako, 2004) shows a case in
which the strict core is empty.

Example 2. Let M2 be the market with three agents whose preferences are
defined by the weak orders:

agent 1: w2P1w1P1w3; agent 2: w1I2w3P2w2; agent 3: w2P3w3P3w1

The strict core is empty, whereas the core is

co(M2) = {x ≡ (w1, w3, w2), y ≡ (w2, w1, w3)}.

3. Stability.

The notion of stability (Von Neumann and Morgenstern, 1944) is stated
as follows: given a decision problem (X,P), a non-empty subset V ⊆ X is
called a stable set if

a) for all x, y ∈ V , not(xPy); and

b) for all y ∈ X r V there is x ∈ V such that xPy.

Von Neumann and Morgenstern (1944) interpret this solution concept in
terms of accepted standards of behavior, based on an internal stability condi-
tion (“no inner contradictions”) and an external stability condition (“used to
discredit non-conforming procedures”). Nevertheless, it is well known that
the core (or the strict core) of an exchange market with indivisible goods
may not be a stable set. In Peris and Subiza (2013) a new notion of stability
is presented.

2 An interesting property (Wako (1991); see also Ma (1994)) is that, when the strict
core contains several allocations, all of them are indifferent for all individuals; i.e., if x
and y belong to the strict core, then xiIiyi for all i ∈ N. So, when the strict core contains
several allocations, it does not matter which one is selected.
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Definition 1. (Peris and Subiza, 2013) Given a decision problem (X,P), a
non-empty subset V ⊆ X is an m-stable set if

a) for all x, y ∈ V , whenever x� y then y � x; and

b) for all x, z ∈ X, x ∈ V, z ∈ X r V implies not(z � x).

It is proved that m-stable sets always exist in a finite context and that
this stability condition is compatible with the core in the Shapley and Scarf
model, in the sense that the core of an exchange market with indivisible goods
is always an m-stable set with respect to the dominance relation, P ≡�, and
the strict core, if non-empty, is an m-stable set with respect to the weak
dominance relation, P ≡�w .

4. An m-stable solution concept.

In order to chose a particular m-stable set we follow a two step process.
Given a decision problem (X,P), we define the set MS(X,P) by:

Step 1: choose the m-stable sets with minimal cardinality3 and let S be their
union; and

Step 2: choose the elements x ∈ S such that |{w ∈ X : x� w}| is maximum.

Note that this set, when the set of alternatives is finite, is always non-
empty. Now, we use the weak dominance relation P ≡�w in order to apply
this notion to the context of exchange markets with indivisible goods.

Definition 2. Given an exchange market with indivisible goods M

MS(M) = MS(X,�w)

where X is the set of allocations and �w is the weak dominance relation.

In order to illustrate this notion, we compute this set for the examples
we have used before:

Example 1: MS(M1) = cos(M1) = {(w3, w1, w2)} $ co(M1).

Example 2: MS(M2) = co(M2) = {(w1, w3, w2), (w2, w1, w3)}.

3 For any finite set A, let us denote the cardinality of A by |A|.
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The following result shows some properties of this set.

Theorem 1. Given an exchange market with indivisible goods M,

a) MS(M) 6= ∅.

b) MS(M) is m-stable.

c) cos(M) 6= ∅ ⇒MS(M) ⊆ cos(M).

Proof.
a) We know (see Peris and Subiza (2013)) that, in this context, m-stable

sets always exist. So, the process stated by steps 1 and 2 is always well
defined and produces a non empty set.

b) In order to prove this part, we consider the following equivalence rela-
tion defined on X :

x ≈ y ⇔ x = y or [x� y and y � x] .

We denote the quotient set by X, and [x] will denote the class in X containing
the element x ∈ X. We now define the following binary relation B on X :

[x],[y] ∈ X, [x]B[y]⇔ [x] 6= [y] and ∃ a ∈ [x], b ∈ [y] : a� b

(see, for instance, Peris and Subiza (1994) for additional details about this
relation and its properties). It is easy to observe that m-stable sets with
minimal cardinality correspond to maximal classes in (X,B) with minimal
cardinality, so step 1 selects some maximal classes. On the other hand, note
that if some allocation x is selected in step 2 then every allocation in its
class must be selected. So, MS(M) is union of m-stable sets and therefore
m-stable (see Peris and Subiza (2013)).

c) If cos(M) 6= ∅, then an allocation x∗ is in the strict core if, and only if,
[x∗] = {x∗} is a maximal class in the quotient set X. So [x∗] is an m-stable
set and the minimal cardinality of any m-stable set is 1. Therefore, step
1 selects all the allocations in the strict core. Then, step 2 selects some of
them.

In the following example we show that MS(M) may be strictly contained
in the strict core.
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Example 3. Let us consider an exchange marked with indivisible goods M,
with three people (six allocations), such that there are two weak undominated
allocations, x1 and x2, and the relationships between these two allocations
and the other ones is defined by:

x1 �w x3, x1 �w x4, x1 �w x5, x1 �w x6, x2 �w x3.

Then, MS(M) = {x1} ( cos(M) = {x1, x2}.

4.1. A min-max characterization.

Given a decision problem (X,P), we define the functions s, g : X → N,

s(x) = |{y ∈ X : y � x}|, g(x) = |{y ∈ X : x� y}|.

Theorem 2. Given a decision problem (X,P),

MS(X,P) = arg max{g(y), y ∈ arg min{s(x), x ∈ X}}.

Proof. The result is clear if we observe that if [x] is a maximal class, s(x)
is the cardinality of such a maximal class. On the other hand, if [z] is
not a maximal class then s(z) > s(x) for any maximal class [x]. Then, by
minimizing function s(x) we are selecting maximal classes (that is, m-stable
sets) with minimal cardinality (note that the value s(x) is the same for any
element in a class). Finally, we choose those classes which maximize function
g(x), that is MS(X,P).

Then, the set MS(M) selects those allocations which are, directly or indi-
rectly, weak dominated by as few elements as possible (minimal dominated)
and, from these ones, those which are, directly or indirectly, better than
as many allocations as possible (maximal dominant), following a min-max
process.

Whenever individuals’ preferences are linear orders (no indifferences are
allowed), the strict core consists in just one allocation, that may be obtained
throughout the Gale’s Top Trading Cycles (TTC) algorithm (Shapley and
Scarf, 1974). Our result in Theorem 2 provides an alternative way of finding
this allocation, selecting the unique allocation x∗ satisfying s(x∗) = 0.
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