
Montana Tech Library Montana Tech Library

Digital Commons @ Montana Tech Digital Commons @ Montana Tech

Graduate Theses & Non-Theses Student Scholarship

Spring 2020

LONG-TERM DYNAMIC SIMULATION OF POWER SYSTEMS USING LONG-TERM DYNAMIC SIMULATION OF POWER SYSTEMS USING

PYTHON, AGENT BASED MODELING, AND TIME-SEQUENCED PYTHON, AGENT BASED MODELING, AND TIME-SEQUENCED

POWER FLOWS POWER FLOWS

Thad Haines

Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch

 Part of the Electrical and Computer Engineering Commons

https://digitalcommons.mtech.edu/
https://digitalcommons.mtech.edu/grad_rsch
https://digitalcommons.mtech.edu/stdt_schr
https://digitalcommons.mtech.edu/grad_rsch?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages

LONG-TERM DYNAMIC SIMULATION OF POWER SYSTEMS

USING PYTHON, AGENT BASED MODELING,

AND TIME-SEQUENCED POWER FLOWS

by

Thad Haines

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering

Montana Technological University

2020

ii

Abstract

Automated controls facilitate reliable and efficient operation of modern power systems. Engi-

neers employ computer simulations to develop, analyze, and tune such controls. Short-term dy-

namic, or transient, power system simulation is a useful and standardized power industry tool.

Researchers have developed effective long-term dynamic (LTD) simulators, but there is not yet

an industry standard computational method or software package for LTD simulation.

This work introduces a novel LTD simulation tool and provides examples of various engineer-

ing applications. The newly created software tool, Power System Long-Term Dynamic Simula-

tor (PSLTDSim), uses a time-sequenced power flow (TSPF) technique to simulate LTD events.

The TSPF technique incorporates a number of modeling assumptions that simplify certain en-

gineering calculations. Despite such simplifications, PSLTDSim demonstrates an acceptable

amount of accuracy for ramp and small step type perturbations when compared to industry stan-

dard transient simulation software. Demonstrated PSLTDSim engineering applications include:

investigation of long-term governor deadband effects, automatic generation control tuning, and

switched shunt coordination during multi-hour events. Further demonstrated examples consist of

user modified turbine speed governor behavior and variable system damping and inertia.

This material is based upon work supported by the U.S. Department of Energy, Office of Science,

Basic Energy Sciences, under Award Number DE-SC0012671.

Keywords: Power system simulation, Long-term dynamics, Time-sequenced power flow, Au-

tomatic generation control, AGC, Agent based modeling, ABM, Advanced message queueing

protocol, AMQP, Python, IronPython

iii

Dedication

For you...

And others too.

iv

Acknowledgments

Acknowledgments must first be made to all teachers and fellow students who took part in my

educational career. It’s hard to know what you don’t know until someone tells you otherwise.

Further, without these relationships, academia would be a very strange and solitary place.

I’d like to thank Matt Donnelly for agreeing to be my graduate advisor and committee chair.

Matt provided much appreciated research direction and industry insight over the course of this

research project. It was nice to work with someone who was never afraid to disagree with me and

thus provide continuous opportunities for me to prove him wrong. His unassuming wisdom and

approach to problem solving would be very useful in any effort to burn the man.

Without the School of Mines and Engineering Dean, Dan Trudnowski, casually mentioning grad-

uate school to me during my undergrad, I probably never would’ve even considered it. His classes

and general approach to teaching were informative and entertaining. While he certainly could’ve

failed me just for fun, he didn’t - and that was real nice of him. True ‘power’ requires true re-

straint right? I’m glad he’s teaching classes again as I don’t think anyone else is going to kick

tables, draw on walls, or pretend to be confused quite like he does.

Committee member Josh Wold deserves recognition for teaching me various control techniques

that are implemented in this work. His simple questions and generous understanding of incom-

plete answers were encouraging throughout the course of my research. His early support of LATEX

documents in the electrical engineering department was also a big plus.

Many thanks are in order for Phillip Curtiss who, despite being in the computer science depart-

ment, agreed to be on a graduate committee full of electrical engineers (Sorry if we seem a little

pompous - it’s probably because we are). Themes from his data structures and discrete time sim-

ulation classes were employed heavily in the coding of this project. His coding knowledge, soft-

ware advice, and computational insights were vital during development of the presented working

software.

Curtis Link deserves recognition for ‘volunteering’ to be my freshman advisor and introducing

me to the most basic engineering and MATLAB concepts. He’s a good guy, and an unofficial

member of my committee. I wonder if he’ll ever retire or move to a place that has less snow…

I suppose only time will tell.

Technical concepts presented by Matthew “not-pronounced-stage-car” Stajcar in his master’s the-

sis provided a great starting point for this research. Without his previous work and presentation

of long-term simulation methods, this project would’ve been much more difficult.

It should be acknowledged that this material is based upon work supported by the U.S. Depart-

ment of Energy, Office of Science, Basic Energy Sciences, under Award Number DE-SC0012671.

v

The public GitHub repository (https://github.com/thadhaines/PSLTDSim) contains all
source and validation code. Many test cases and extra code used in the research project are also

collected there. A version of PSLTDSim has been uploaded to PyPI, but most recent versions will

probably be on GitHub.

A personal thanks to Sarah Wolfe for being interested in, and actually following through on of-

fers, to edit this document. Work on properly forming sentences where the thing does a thing to

other things is a useful thought, but you know, not all thoughts turn into actions.

As of this writing, the presence of COVID-19 is growing across the globe. Much like some or-

ganized religions, it’s responsible for death and destruction of cultural norms. However, also

like some organized religions, the pandemic allows for positive human characteristics to shine

through, be recognized, and hopefully, appreciated. The human species didn’t manage to inhabit

every part of this world by not being resilient. I’m optimistic we’ll collectively survive this event

to better deal with another one in the future. On a less heavy note, the closing of bars and a gov-

ernment issued shelter in place order are surprisingly conducive to finishing a thesis.

General acknowledgments for support, motivation, and inspiration go to family, friends, lovers,

acquaintances, employers, clients, haters, burners, bartenders, musicians, drunks, addicts, street

people, creatives, imagined entities, strangers, and anyone I didn’t mention existing in this plane

or otherwise. Specific words to describe what you mean to me are varied and numerous.

Musical acknowledgments are in order, as without music, there’s really no telling how my life

would be. Material from: Claude Debussy, Chet Baker, Miles Davis, Brian Eno, Aphex Twin,

Radiohead, Shlohmo, Four Tet, Mount Kimbie, STRFKR, toyGuitar, Jaguwar, Thee Oh Sees, The

Clash, Television, Neu!, Sonic Youth, Talking Heads, Portishead, Spoon, Max Richter, Shigeto,

BadBadNotGood, Melt-Banana, Yo La Tango, Squarepusher, and Thievery Corporation (to name

a few), provided an ever changing background score during the course of this work.

Finally, to incite a sense of curiosity, the quoted ‘nap enthusiast’ once reflected:

To create,

is to align yourself with creation.

vi

Table of Contents

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

TABLE OF CONTENTS . vi

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF EQUATIONS . xxi

GLOSSARY OF TERMS . xxiii

1. Introduction . 1

2. Electrical Engineering Background . 3

2.1. Power System Basics . 3

2.2. Power Flow . 8

2.3. The Swing Equation . 10

2.4. Turbine Speed Governors . 11

2.5. Automatic Generation Control . 12

2.6. Reactive Power and Voltage Control . 13

3. Software Background . 14

3.1. Classical Transient Stability Simulation . 14

3.2. Python . 14

3.2.1. Python Packages . 14

3.2.2. Varieties of Python . 15

3.2.3. Python Specific Data Types . 15

3.3. Advanced Message Queueing Protocol . 16

3.4. Agent Based Modeling . 16

4. Software Tool . 18

4.1. Time-Sequenced Power Flows . 18

4.2. Simulation Assumptions and Simplifications . 20

4.2.1. General Assumptions and Simplifications . 20

4.2.2. Time Step Assumptions and Simplifications . 20

vii

4.2.3. Combined System Frequency . 21

4.2.4. Distribution of Accelerating Power . 22

4.2.5. Governor models . 23

4.2.5.1. Casting Process for genericGov . 24

4.3. General Software Explanation . 26

4.3.1. Interprocess Communication . 27

4.3.2. Simulation Inputs . 27

4.3.2.1. PSLF Compatible Input . 28

4.3.2.2. Simulation Parameter Input (.py) . 28

4.3.2.3. Long-Term Dynamic Input (.ltd.py) . 29

4.3.2.3.1. Perturbance List . 29

4.3.2.3.2. Noise Agent Attribute . 31

4.3.2.3.3. Balancing Authority Dictionary . 32

4.3.2.3.4. Load Control Dictionary . 32

4.3.2.3.5. Generation Control Dictionary . 34

4.3.2.3.6. Governor Input Delay and Filtering Dictionary 35

4.3.2.3.7. Governor Deadband Dictionary . 36

4.3.2.3.8. Definite Time Controller Dictionary . 37

4.3.3. Simulation Initialization . 39

4.3.3.1. Process Creation . 39

4.3.3.2. Mirror Initialization . 39

4.3.3.3. Dynamic Initialization Pre-Simulation Loop . 41

4.3.4. Simulation Loop . 42

4.3.5. Simulation Outputs . 44

4.4. Software Validation . 45

4.4.1. Validation Plots Explained . 45

4.4.1.1. Comparison Plot . 45

4.4.1.2. Difference Plot . 46

4.4.1.3. Percent Difference Plot . 47

4.4.1.4. Weighted Frequency Plot . 48

4.4.2. Six Machine System . 49

4.4.2.1. Simulated Scenario Descriptions . 49

4.4.2.2. Frequency Results . 50

4.4.2.3. Generator Mechanical Power Results . 51

4.4.2.4. Generator Real Power Results . 52

4.4.2.5. Voltage Magnitude Results . 53

viii

4.4.2.6. Voltage Angle Results . 54

4.4.2.7. Generator Reactive Power Results . 55

4.4.2.8. Branch Current Results . 56

4.4.2.9. Branch Real Power Flow Results . 57

4.4.2.10. Branch Reactive Power Flow Results . 59

4.4.2.11. Six Machine Result Summary . 60

4.4.3. Mini WECC System . 61

4.4.3.1. Simulated Scenario Descriptions . 61

4.4.3.2. Frequency Results . 63

4.4.3.3. Generator Mechanical Power Results . 64

4.4.3.4. Generator Real Power Results . 65

4.4.3.5. Voltage Magnitude Results . 66

4.4.3.6. Voltage Angle Results . 67

4.4.3.7. Generator Reactive Power Results . 68

4.4.3.8. Branch Current Results . 69

4.4.3.9. Branch Real Power Flow Results . 70

4.4.3.10. Branch Reactive Power Flow Results . 71

4.4.3.11. Mini WECC Result Summary . 72

4.4.4. Mini WECC with PSS System . 74

4.4.4.1. Simulated Scenario Descriptions . 74

4.4.4.2. Frequency Results . 74

4.4.4.3. Generator Mechanical Power Results . 75

4.4.4.4. Generator Real Power Results . 76

4.4.4.5. Voltage Magnitude Results . 77

4.4.4.6. Voltage Angle Results . 78

4.4.4.7. Generator Reactive Power Results . 79

4.4.4.8. Branch Current Results . 80

4.4.4.9. Branch Real Power Flow Results . 81

4.4.4.10. Branch Reactive Power Flow Results . 83

4.4.4.11. Mini WECC with PSS Result Summary . 84

4.4.5. Full WECC System . 85

4.4.5.1. Load Step . 86

4.4.6. Validation Summary . 88

5. Engineering Applications . 89

5.1. Simulated Events of Interest . 89

5.2. Relevant NERC Standards . 90

ix

5.2.1. BAL-001-2 . 90

5.2.2. BAL-002-3 . 91

5.2.3. BAL-003-1.1 . 92

5.2.4. NERC Standard Summary . 92

5.3. Simulated Balancing Authority Controls . 93

5.3.1. Governor Deadbands . 94

5.3.2. Area Wide Governor Droops . 95

5.3.3. Automatic Generation Control . 95

5.3.3.1. Frequency Bias . 95

5.3.3.2. Integral of Area Control Error . 96

5.3.3.3. Conditional Area Control Error Summing . 96

5.3.3.4. Area Control Error Filtering . 97

5.3.3.5. Controlled Generators and Participation Factors . 98

5.4. Governor Deadband Effect on Valve Travel . 99

5.4.1. Governor Deadband Simulation Configuration . 99

5.4.2. Governor Deadband Simulation Results . 100

5.5. Automatic Generation Control Tuning . 102

5.5.1. AGC Simulation Configuration . 102

5.5.2. AGC Simulation Results . 103

5.5.2.1. Base Case Results . 103

5.5.2.2. AGC Tuning Results . 104

5.5.2.3. Noise and Deadband Simulation Results . 106

5.5.2.4. Conditional ACE Results . 107

5.5.2.5. BAAL Results . 110

5.5.3. AGC Result Summary . 111

5.6. Long-Term Simulation with Shunt Control . 112

5.6.1. Morning Peak Forecast Demand Simulation . 112

5.6.1.1. Morning Peak Forecast Demand Results . 113

5.6.2. Morning Peak Forecast Demand Result Summary . 118

5.6.3. Virtual Wind Ramp Simulation . 119

5.6.3.1. Virtual Wind Ramp Results . 119

5.6.4. Long-Term Simulation with Shunt Control Result Summary 125

5.7. Feed-Forward Governor Action . 126

5.7.1. Feed-Forward Governor Simulation Configuration . 126

5.7.2. Feed-Forward Governor Simulation Results . 129

5.8. Variable System Damping and Inertia . 130

x

5.8.1. Damping and Inertia Simulation Configuration . 130

5.8.2. Damping and Inertia Simulation Results . 131

6. Conclusion . 134

7. Future Work . 135

8. Bibliography . 136

9. Numerical Methods . 142

9.1. Integration Methods . 142

9.1.1. Euler Method . 142

9.1.2. Runge-Kutta Method . 143

9.1.3. Adams-Bashforth Method . 143

9.1.4. Trapezoidal Integration . 144

9.2. Python Functions . 144

9.2.1. scipy.integrate.solve_ivp . 144

9.2.2. scipy.signal.lsim . 145

9.3. Method Comparisons via Python Code Examples . 145

9.3.1. General Approximation Comparisons . 146

9.3.1.1. Sinusoidal Example and Results . 153

9.3.1.2. Exponential Example and Results . 154

9.3.1.3. Logarithmic Example and Results . 156

9.3.1.4. General Approximation Result Summary . 157

9.3.2. Python Function Comparisons . 158

9.3.2.1. Integrator Example and Results . 164

9.3.2.2. Low Pass Example and Results . 166

9.3.2.3. Third Order System Example and Results . 167

9.3.2.4. Python Approximation Result Summary . 170

9.4. Dynamic Agent Numerical Utilizations . 171

9.4.1. Window Integrator . 171

9.4.2. Combined Swing Equation . 173

9.4.3. Governor and Filter Agent Considerations . 174

9.4.3.1. Integrator Wind Up . 174

9.4.3.2. Combined System Comparisons . 175

9.4.4. Numerical Utilization Summary . 177

10. Six Machine System Details . 178

11. Code Examples . 181

12. Large Tables . 189

xi

13. Detailed Valve Travel Results . 191

14. Additional AGC Results . 196

15. Additional BAAL Results . 203

xii

List of Tables

Table I: Generic governor model casting between LTD and PSDS. 24

Table II: Generic governor model parameters. 25

Table III: Perturbance agent identification options. 30

Table IV: Perturbance agent action options. 30

Table V: WECC machine model count and capacity. 85

Table VI: WECC governor models used in PSDS. 86

Table VII: WECC governor models used in PSLTDSim. 86

Table VIII: Tie-line bias AGC type ACE calculations. 97

Table IX: Total valve travel for various deadband scenarios. 101

Table X: Trapezoidal integration results of a sinusoidal function using an x step of 0.25. . . 154

Table XI: Trapezoidal integration results of an exponential function using an x step of 1. . . 155

Table XII: Trapezoidal integration results of a logarithmic function. 157

Table XIII: Trapezoidal integration results of an integral function. 166

Table XIV: Trapezoidal integration results a of low pass filter using a t step of 0.5. 167

Table XV: Trapezoidal integration results of a third order function using a t step of 0.5. . . . 170

Table XVI: Six machine bus table. 178

Table XVII: Six machine line table. 178

Table XVIII: Six machine transformer table. 179

Table XIX: Six machine generator table. 179

Table XX: Six machine load table. 179

Table XXI: Six machine shunt table. 179

Table XXII: Balancing authority dictionary input information. 189

Table XXIII: Simulation parameters dictionary input information. 190

xiii

List of Figures

Figure 1: General form of a modern power system. 3

Figure 2: Location and size of US electric generation. 4

Figure 3: US Interconnections. 5

Figure 4: Frequency relation to electric supply and demand. 6

Figure 5: Classic frequency and automatic control response. 7

Figure 6: Two buses with power flow between them. 8

Figure 7: Ideal governor droop action. 11

Figure 8: Time-sequenced power flows visualized. 18

Figure 9: CTS and TSPF data output comparison. 19

Figure 10: Block diagram of modified tgov1 model. 23

Figure 11: Block diagram of genericGov model. 23

Figure 12: High level software flow chart. 26

Figure 13: Diagram of AMQP communication. 27

Figure 14: An example of a simParams dictionary. 28

Figure 15: Perturbance agent examples. 31

Figure 16: Noise agent creation example. 31

Figure 17: Load control agent dictionary definition example. 33

Figure 18: Generation control agent dictionary definition example. 34

Figure 19: Block diagram of delay block. 35

Figure 20: Governor delay dictionary definition example. 36

Figure 21: Governor deadband dictionary definition example. 37

Figure 22: Definite time controller dictionary definition example. 38

Figure 23: Simulation time step flowchart. 43

Figure 24: Validation plot examples. 45

Figure 25: Comparison plot examples. 46

Figure 26: Difference plot example. 46

Figure 27: Percent difference plot examples. 47

Figure 28: Frequency comparison plot example. 48

Figure 29: Six machine system. 49

Figure 30: Six machine load step system frequency comparison. 50

Figure 31: Six machine load ramp system frequency comparison. 50

Figure 32: Six machine generator trip system frequency comparison. 51

Figure 33: Six machine load step mechanical power comparison. 51

Figure 34: Six machine load ramp mechanical power comparison. 52

Figure 35: Six machine generator trip mechanical power comparison. 52

xiv

Figure 36: Six machine load step real power comparison. 53

Figure 37: Six machine load ramp real power comparison. 53

Figure 38: Six machine generator trip real power comparison. 53

Figure 39: Six machine load step voltage comparison. 54

Figure 40: Six machine load ramp voltage comparison. 54

Figure 41: Six machine generator trip voltage comparison. 54

Figure 42: Six machine load step voltage angle comparison. 55

Figure 43: Six machine load ramp voltage angle comparison. 55

Figure 44: Six machine generator trip voltage angle comparison. 55

Figure 45: Six machine load step reactive power comparison. 56

Figure 46: Six machine load ramp reactive power comparison. 56

Figure 47: Six machine generator trip reactive power comparison. 56

Figure 48: Six machine load step branch current flow comparison. 57

Figure 49: Six machine load ramp branch current flow comparison. 57

Figure 50: Six machine generator trip branch current flow comparison. 57

Figure 51: Six machine load step branch real power flow comparison. 58

Figure 52: Six machine load ramp branch real power flow comparison. 58

Figure 53: Six machine generator trip branch real power flow comparison. 58

Figure 54: Six machine load step branch reactive power flow comparison. 59

Figure 55: Six machine load ramp branch reactive power flow comparison. 59

Figure 56: Six machine generator trip branch reactive power flow comparison. 60

Figure 57: Mini WECC system. 62

Figure 58: Mini WECC load step system frequency comparison. 63

Figure 59: Mini WECC load ramp system frequency comparison. 63

Figure 60: Mini WECC generator trip system frequency comparison. 64

Figure 61: Mini WECC load step mechanical power comparison. 64

Figure 62: Mini WECC load ramp mechanical power comparison. 64

Figure 63: Mini WECC generator trip mechanical power comparison. 65

Figure 64: Mini WECC load step real power comparison. 65

Figure 65: Mini WECC load ramp real power comparison. 65

Figure 66: Mini WECC generator trip real power comparison. 66

Figure 67: Mini WECC load step voltage comparison. 66

Figure 68: Mini WECC load ramp voltage comparison. 66

Figure 69: Mini WECC generator trip voltage comparison. 67

Figure 70: Mini WECC load step voltage angle comparison. 67

Figure 71: Mini WECC load ramp voltage angle comparison. 67

xv

Figure 72: Mini WECC generator trip voltage angle comparison. 68

Figure 73: Mini WECC load step reactive power comparison. 68

Figure 74: Mini WECC load ramp reactive power comparison. 68

Figure 75: Mini WECC generator trip reactive power comparison. 69

Figure 76: Mini WECC load step branch current flow comparison. 69

Figure 77: Mini WECC load ramp branch current flow comparison. 69

Figure 78: Mini WECC generator trip branch current flow comparison. 70

Figure 79: Mini WECC load step branch real power flow comparison. 70

Figure 80: Mini WECC load ramp branch real power flow comparison. 71

Figure 81: Mini WECC generator trip branch real power flow comparison. 71

Figure 82: Mini WECC load step branch reactive power flow comparison. 72

Figure 83: Mini WECC load ramp branch reactive power flow comparison. 72

Figure 84: Mini WECC generator trip branch reactive power flow comparison. 72

Figure 85: Mini WECC with PSS load step system frequency comparison. 75

Figure 86: Mini WECC with PSS load ramp system frequency comparison. 75

Figure 87: Mini WECC with PSS generator trip system frequency comparison. 75

Figure 88: Mini WECC with PSS load step mechanical power comparison. 76

Figure 89: Mini WECC with PSS load ramp mechanical power comparison. 76

Figure 90: Mini WECC with PSS generator trip mechanical power comparison. 76

Figure 91: Mini WECC with PSS load step real power comparison. 77

Figure 92: Mini WECC with PSS load ramp real power comparison. 77

Figure 93: Mini WECC with PSS generator trip real power comparison. 77

Figure 94: Mini WECC with PSS load step voltage comparison. 78

Figure 95: Mini WECC with PSS load ramp voltage comparison. 78

Figure 96: Mini WECC with PSS generator trip voltage comparison. 78

Figure 97: Mini WECC with PSS load step voltage angle comparison. 79

Figure 98: Mini WECC with PSS load ramp voltage angle comparison. 79

Figure 99: Mini WECC with PSS generator trip voltage angle comparison. 79

Figure 100: Mini WECC with PSS load step reactive power comparison. 80

Figure 101: Mini WECC with PSS load ramp reactive power comparison. 80

Figure 102: Mini WECC with PSS generator trip reactive power comparison. 80

Figure 103: Mini WECC with PSS load step branch current flow comparison. 81

Figure 104: Mini WECC with PSS load ramp branch current flow comparison. 81

Figure 105: Mini WECC with PSS generator trip branch current flow comparison. 81

Figure 106: Mini WECC with PSS load step branch real power flow comparison. 82

Figure 107: Mini WECC with PSS load ramp branch real power flow comparison. 82

xvi

Figure 108: Mini WECC with PSS generator trip branch real power flow comparison. . . . 82

Figure 109: Mini WECC with PSS load step branch reactive power flow comparison. 83

Figure 110: Mini WECC with PSS load ramp branch reactive power flow comparison. . . . 83

Figure 111: Mini WECC with PSS generator trip branch reactive power flow comparison. . 83

Figure 112: Full WECC frequency comparison. 87

Figure 113: Full WECC absolute frequency difference. 87

Figure 114: Balancing authority ACE limit for different values of B. 91

Figure 115: Single sysBA dictionary definition. 93

Figure 116: Examples of available deadband action. 94

Figure 117: Block diagram of ACE calculation and manipulation. 95

Figure 118: Block diagrams of optional ACE filters. 97

Figure 119: Cumulative system change in load for governor deadband simulation. 99

Figure 120: System frequency comparison of different deadband scenarios. 100

Figure 121: Detail comparison of initial valve movement. 100

Figure 122: Area valve travel for homogeneous and non-homogeneous scenarios. 101

Figure 123: Random noise added to AGC simulations. 102

Figure 124: Frequency response to generation loss event in area 1. 103

Figure 125: Calculated BA values during generation loss event in area 1. 103

Figure 126: Calculated values during generation loss event in area 2. 104

Figure 127: AGC Frequency response to area 1 base case scenario. 104

Figure 128: Calculated BA values during area 1 AGC tuning. 105

Figure 129: Area 1 controlled generation response during AGC tuning. 105

Figure 130: Area 2 controlled generation response during AGC tuning. 105

Figure 131: AGC frequency response with noise and deadbands. 106

Figure 132: Calculated BA values with noise and deadbands. 106

Figure 133: Area 1 controlled generation response to noise and deadbands. 107

Figure 134: Area 2 controlled generation response to noise and deadbands. 107

Figure 135: Frequency response to event using TLB 0. 107

Figure 136: Calculated BA values during an event using TLB 0. 108

Figure 137: Area 1 controlled generation response to internal area event using TLB 0. . . . 108

Figure 138: Area 2 controlled generation response to external area event using TLB 0. . . . 108

Figure 139: Frequency response to event using TLB 4. 109

Figure 140: Calculated BA values during an event using TLB 4. 109

Figure 141: Area 1 controlled generation response to internal area event using TLB 4. . . . 110

Figure 142: Area 1 controlled generation response to external area event using TLB 4. . . . 110

Figure 143: Area 1 BAAL during internal area event using TLB 0. 111

xvii

Figure 144: Area 2 BAAL during external area event using TLB 0. 111

Figure 145: Normalized forecast and demand of parsed EIA data. 112

Figure 146: Changes in load caused by noise agent action during morning peak. 113

Figure 147: Morning peak area Pe and Load. 113

Figure 148: Morning peak area Pe and Load with noise and governor deadbands. 113

Figure 149: Morning peak system Frequency. 114

Figure 150: Morning peak system frequency with noise and governor deadbands. 114

Figure 151: Detail morning peak system frequency with noise and governor deadbands. . . 114

Figure 152: Morning peak calculated BA values. 115

Figure 153: Morning peak calculated BA values with noise and governor deadbands. 115

Figure 154: Detail morning peak calculated BA values with noise and governor deadbands. 115

Figure 155: BAAL of area 1 during morning peak. 116

Figure 156: BAAL of area 2 during morning with noise and governor deadbands. 116

Figure 157: Morning peak system shunt bus voltage. 117

Figure 158: Morning peak system shunt bus voltage with noise and governor deadbands. . . 117

Figure 159: Morning peak system shunt bus MVAR. 118

Figure 160: Morning peak system shunt bus MVAR with noise and governor deadbands. . . 118

Figure 161: Changes in load caused by noise agent action during virtual wind ramp. 119

Figure 162: Virtual wind ramp Pe distribution under ideal conditions. 120

Figure 163: Virtual wind ramp Pe distribution with noise and governor deadbands. 120

Figure 164: Virtual wind ramp system frequency under ideal conditions. 120

Figure 165: Virtual wind ramp system frequency with noise and governor deadbands. 121

Figure 166: Virtual wind ramp calculated BA values under ideal conditions. 121

Figure 167: Virtual wind ramp calculated BA values with noise and governor deadbands. . . 121

Figure 168: Virtual wind ramp area Pe and Pload under ideal conditions. 122

Figure 169: Virtual wind ramp area Pe and Pload with noise and governor deadbands. 122

Figure 170: Virtual wind ramp BAAL under ideal conditions. 122

Figure 171: Virtual wind ramp BAAL with noise and governor deadbands. 123

Figure 172: Virtual wind ramp shunt bus voltage under ideal conditions. 123

Figure 173: Virtual wind ramp shunt bus voltage with noise and governor deadbands. 123

Figure 174: Virtual wind ramp shunt bus MVAR under ideal conditions. 124

Figure 175: Virtual wind ramp shunt bus MVAR with noise and governor deadbands. 124

Figure 176: Provided information of undesired governor response. 126

Figure 178: Block diagram of tgov1 model with DTC. 127

Figure 177: Long-term dynamic settings for feed-forward governor simulation. 128

Figure 179: Feed-forward governor frequency comparison. 129

xviii

Figure 180: Feed-forward governor electric power comparison. 129

Figure 181: Long-term dynamic settings for variable system inertia simulation. 130

Figure 182: Frequency effects of system damping. 131

Figure 183: Frequency effects of system inertia. 131

Figure 184: Governor response to varied system inertia. 132

Figure 185: Varied system inertia during simulation. 132

Figure 186: System frequency response to varying system inertia. 132

Figure 187: Generic call to solve_ivp. 144

Figure 188: Generic call to lsim. 145

Figure 189: Approximation comparison package imports. 146

Figure 190: Approximation comparison function definitions. 147

Figure 191: Approximation comparison case definitions. 149

Figure 192: Approximation comparison variable initialization. 149

Figure 193: Approximation comparison solution calculations. 151

Figure 194: Approximation comparison plotting. 152

Figure 195: Approximation comparison trapezoidal integration and display. 152

Figure 196: Approximation comparison of a sinusoidal function using a step of 0.5. 153

Figure 197: Approximation comparison of a sinusoidal function using a step of 0.25. 154

Figure 198: Approximation comparison of an exponential function. 155

Figure 199: Approximation comparison of a logarithmic function. 156

Figure 200: Python function comparison imports and definitions. 159

Figure 201: Python function comparison case definitions. 161

Figure 202: Python function comparison variable initializations. 162

Figure 203: Python function comparison solution calculations. 163

Figure 204: Python function comparison plotting and integration code. 164

Figure 205: Integrator block. 164

Figure 206: Approximation comparison of an integrator block. 165

Figure 207: Low pass filter block. 166

Figure 208: Approximation comparison of a low pass filter block. 167

Figure 209: Third order system block diagram. 168

Figure 210: Modified third order system block diagram. 168

Figure 211: Third order approximation comparison using half second time step. 169

Figure 212: Third order approximation comparison using one second time step. 170

Figure 213: Window integrator definition. 172

Figure 214: Combined swing function definition. 174

Figure 215: Effect of integrator wind up. 175

xix

Figure 216: Third order system as two stages. 175

Figure 217: Third order system as single stage. 176

Figure 218: Effect of dynamic staging using one second time step. 176

Figure 219: Effect of dynamic staging using half second time step. 176

Figure 220: Dyd file used in six machine validations. 180

Figure 221: An example of a full .py simulation file. 182

Figure 222: Required .py file for external AGC event with conditional ACE. 183

Figure 223: Required .ltd file for external AGC event with conditional ACE. 184

Figure 224: Required .ltd file for forecast demand scenario with noise and deadbands. . . . 188

Figure 225: Area 1 valve travel using no deadband. 191

Figure 226: Area 2 valve travel using no deadband. 191

Figure 227: Area 3 valve travel using no deadband. 191

Figure 228: Area 1 valve travel using a step deadband. 192

Figure 229: Area 2 valve travel using a step deadband. 192

Figure 230: Area 3 valve travel using a step deadband. 192

Figure 231: Area 1 valve travel using a no-step deadband. 193

Figure 232: Area 2 valve travel using a no-step deadband. 193

Figure 233: Area 3 valve travel using a no-step deadband. 193

Figure 234: Area 1 valve travel using a non-linear droop deadband. 194

Figure 235: Area 2 valve travel using a non-linear droop deadband. 194

Figure 236: Area 3 valve travel using a non-linear droop deadband. 194

Figure 237: Area 1 valve travel in a non-homogeneous deadband system. 195

Figure 238: Area 2 valve travel in a non-homogeneous deadband system. 195

Figure 239: Area 3 valve travel in a non-homogeneous deadband system. 195

Figure 240: Frequency response to generation loss event in area 2. 196

Figure 241: Area 1 controlled generation response to generation loss event in area 2. 196

Figure 242: Area 2 controlled generation response to generation loss event in area 2 196

Figure 243: AGC frequency response to area 2 base case scenario. 197

Figure 244: Calculated BA values during area 2 AGC tuning. 197

Figure 245: Area 1 controlled generation response during area 2 AGC tuning. 197

Figure 246: Area 2 controlled generation response during area 2 AGC tuning. 198

Figure 247: AGC frequency response with noise and deadbands. 198

Figure 248: Calculated BA values with noise and deadbands. 198

Figure 249: Area 1 controlled generation response to noise and deadbands. 199

Figure 250: Area 2 controlled generation response to noise and deadbands. 199

Figure 251: Frequency response to event using TLB 0. 199

xx

Figure 252: Calculated BA values during an even using TLB 0. 200

Figure 253: Area 1 controlled generation response to external area event using TLB 0. . . . 200

Figure 254: Area 2 controlled generation response to internal area event using TLB 0. . . . 200

Figure 255: Frequency response to event using TLB 4. 201

Figure 256: Calculated BA values during an event using TLB 4. 201

Figure 257: Area 1 controlled generation response to external area event using TLB 4. . . . 201

Figure 258: Area 2 controlled generation response to internal area event using TLB 4. . . . 202

Figure 259: Morning peak minute average frequency. 203

Figure 260: Morning peak minute average frequency with deadbands and noise. 203

Figure 261: BAAL of area 2 during morning peak. 203

Figure 262: BAAL of area 2 during morning with noise and governor deadbands. 204

Figure 263: Virtual wind ramp minute average frequency. 204

Figure 264: Virtual wind ramp minute average frequency with deadbands and noise. 204

Figure 265: Area 2 virtual wind ramp BAAL under ideal conditions. 205

Figure 266: Area 2 virtual wind ramp BAAL with noise and governor deadbands. 205

xxi

List of Equations

Equation (1) Branch Current Flow . 9

Equation (2) Branch Real Power Flow . 9

Equation (3) Branch Reactive Power Flow . 9

Equation (4) Per-Unit Swing Equation . 10

Equation (5) Per-Unit Speed Deviation . 10

Equation (6) Area Control Error . 12

Equation (7) Area Frequency Response Characteristic . 12

Equation (8) Total System Inertia . 21

Equation (9) SystemAccelerating Power . 21

Equation (10) Combined Swing Equation . 21

Equation (11) System Frequency Integration . 22

Equation (12) Distribution of Accelerating Power . 22

Equation (13) Random Noise Injection . 31

Equation (14) Data for Difference Plot . 47

Equation (15) Absolute Average . 47

Equation (16) Percent Difference . 47

Equation (17) Weighted Frequency . 48

Equation (18) Balancing Authority ACE Limit . 90

Equation (19) Frequency Trigger Limit . 91

Equation (20) BAAL Exceeded . 91

Equation (21) Variable Frequency Bias . 96

Equation (22) Total System Inertia . 126

Equation (23) Euler Method . 142

Equation (24) Fourth Order Four-Stage Runge-Kutta . 143

Equation (25) Two-Step Adams-Bashforth . 143

Equation (26) Trapezoidal Integration . 144

Equation (27) Sinusoidal Example . 153

Equation (28) Sinusoidal Example Integration . 153

Equation (29) Exponential Example . 154

Equation (30) Exponential Example Integration . 155

Equation (31) Logarithmic Example . 156

Equation (32) Logarithmic Example Integration . 156

Equation (33) Integrator Transform Example . 165

Equation (34) Integrator Integration Example . 165

Equation (35) Low Pass Transform Example . 166

xxii

Equation (36) Low Pass Integration Example . 166

Equation (37) Third Order Transform Example . 168

Equation (38) Third Order Example Integration . 169

xxiii

Glossary of Terms

Term Definition

ABM Agent Based Modeling

ABS Agent Based Simulation

AC Alternating Current

ACE Area Control Error

AGC Automatic Generation Control

AMQP Advanced Message Queue Protocol

API Application Programming Interface

BA Balancing Authority

BES Bulk Electrical System

CLR Common Language Runtime

CTS Classical Transient Stability

DACE Distributed ACE

DTC Definite Time Controller

EIA United States Energy Information Administration

ERCOT Electric Reliability Council of Texas

FERC Federal Energy Regulatory Commission

FTL Frequency Trigger Limit

GE General Electric

Hz Hertz, cycles per second

IACE Integral of ACE

IC Interchange

IPC Interprocess Communication

IPY IronPython

ISO Independent Service Operator

J Joule, Neton meters, Watt seconds

LFC Load Frequency Control

LTD Long-Term Dynamic

NERC North American Electric Reliability Corporation

xxiv

Term Definition

ODE Ordinary Differential Equation

P Real Power

PI Proportional and Integral

PMIO PSLF Model Information Object

PSDS PSLF Dynamic Subsystem

PSLF Positive Sequence Load Flow

PSLTDSim Power System Long-Term Dynamic Simulator

PSS Power System Stabilizer

PST Power System Toolbox

PU Per-Unit

PY3 Python version 3.x

PyPI Python Package Index

Q Reactive power

RACE Reported ACE

RTO Regional Transmission Organization

SACE Smoothed ACE

SI International System of Units

TLB Tie-Line Bias

TSPF Time-Sequenced Power Flow

US United States of America

VAR Volt Amps Reactive

W Watt, Joules per second

WECC Western Electricity Coordinating Council

1

1. Introduction

Over the past 140 years, an increasing demand for electricity has forced power systems

to evolve. This evolution has caused power systems to continuously grow larger and more com-

plicated. The earliest power systems were often single generating stations designed to meet only

local needs. Modern power systems involve many remote generating units connected together to

serve a wide area of distributed customers. As most things do, these changes came about quite

naturally. Additional generation stations were built and connected together to meet the ever in-

creasing electric demand. As populations became more dispersed, areas of demand also became

more dispersed and the use of high voltage transmission lines were used to link nearby power

systems together.

The gradual connection of many remote power systems not only allowed for a pooling of

resources, but with appropriate control, also offered increased system stability and reliability. Un-

fortunately, independent systems developed non-uniformly and created a complex network that

requires intricate control and near constant attention. To further muddle matters, the aging North

American electric power system is often pushed to its operating limits. This is due in part to, per-

mitting or financial obstacles that may arise when attempting to add or update infrastructure to

relieve system stress. Approved additions must be properly planned to handle a variety of envi-

ronmental, economic, and social concerns. Well planned system modifications contribute long-

term operational benefits while adhering to federal mandates. As such, to simply avoid costly and

complicated new construction, various control schemes have been employed to better manage ex-

isting power system assets. However, advanced control requires advanced planning and testing.

Fortunately, we live in the future and can use computers to monitor, control, design, and

simulate power systems in ways not previously possible. Networked system monitoring has en-

abled digital controls to act on remote data and provided a way to create time-stamped histories

of events as they unfold. Computer software can help analyze system characteristics and predict

issues arising from common contingencies. Dynamic computer simulations can further the study

of various events. Typical dynamic simulation focus is on system reactions tens of seconds after

2

an event; while realistic recovery may require multiple minutes.

The engineering goal of this work is to simulate various frequency and voltage condi-

tions that represent ‘long-term’ engineering problems, such as system recovery, daily load pat-

terns, or wind ramp response, and provide customizable controls that can be used to simulate user

control systems or simply explore possible system responses. A long-term dynamic simulation

framework based on a time-sequenced power flow technique is believed to be capable of accom-

plishing such a task. Furthermore, the resulting open-source software may be expanded upon by

future research for other related applications.

A simulation tool to accomplish the desired engineering goal does not yet exist. There-

fore, a time-sequenced power flow simulation software program must be created and validated.

Certain elements such as system model format and power-flow solver can be reused from previ-

ously existing software solutions, but features like automatic generation control, programmable

logic controllers, and dynamic governor models must be created. Due to time limitations and en-

gineering intuition, several modeling simplifications are employed.

Specific requirements have been identified to facilitate software development and ensure

the end product can accomplish stated goals. General code structure must allow for modular ex-

pansion, custom procedure insertion, and large system scaling. The software must also be able to

run full base case scenarios involving thousands of buses and generators. The finished code solu-

tion must be able to output data that can be validated against industry standard software. Output

data should provide enough detail so that analysis of system control validity and efficiency can

be performed.

This thesis provides a brief explanation of some basic concepts involved with the electri-

cal engineering aspects of this work, as well as the computer science, or software aspects. The

created software is explained and validated before engineering applications are introduced. Simu-

lation results related to engineering applications are then presented and analyzed. Finally, conclu-

sions are stated and future work suggested.

3

2. Electrical Engineering Background

2.1. Power System Basics

Before covering the physical structure of power systems, it is worth providing a general

introduction to the regulatory and operational structure of the North American bulk electric sys-

tem (BES). The BES, more commonly known as ‘the grid’, is regulated by multiple tiers of orga-

nizations. At the top of the United States (US) bureaucratic pyramid is the federally empowered

Federal Energy Regulatory Commission (FERC), which regulates natural gas and hydroelec-

tric power projects as well as the interstate transmission of natural gas, oil, and electricity [21].

With authority granted by FERC, the North American Electric Reliability Corporation (NERC),

aims to assure the effective and efficient reduction of risks to the reliability and security of the

BES [47]. NERC also develops and enforces reliability standards and provides training to indus-

try personnel. Under FERC and NERC, exist a collection of regional transmission organizations

(RTOs), independent service operators (ISOs), balancing authorities (BAs) and utilities. All en-

tities have a specific purpose and area of operation. This research focuses on BA action. In gen-

eral, BAs are responsible for balancing supply and demand in defined areas of a power system

while adhering to federal standards [11].

In the most basic physical sense, a power system includes a source of electric generation

connected to some kind of electric consumption, or load. Modern alternating current (AC) power

systems often resemble Figure 1.

Figure 1: General form of a modern power system [33].

Power system loads are generally located wherever people feel the need to use electricity.

4

Generation is often placed in areas that have convenient natural resources nearby. This typically

means that generation is built many miles away from large cities. Transformers and high-voltage

transmission lines are used for efficient transfer of electric power over long distances. Figure 2

shows the location and relative size of electric generation in the US as of July 2019.

Figure 2: Location and size of US electric generation [12].

As expected, the northwest has large amounts of hydroelectric generation along major

rivers. Solar generation is primarily located in southern states such as California and North Car-

olina. Wind generation can be found in and north of Texas towards the Great Lakes. Natural gas

and coal are widely available in the eastern US. For interested Montanans, the four coal burning,

steam generating, units at Colstrip are the large grey dot in the southeast corner of the state repre-

senting a nameplate capacity of 2,094 MW [16].

To help maintain stability, the North American grid is separated into interconnections,

5

which can be thought of as relative frequency zones. This means that the system frequency and

phase can be different between two interconnections, but must be synchronous inside the inter-

connection. Figure 3 depicts the Western, Eastern, and Electric Reliability Counsel of Texas (ER-

COT) interconnections that make up the US grid.

Figure 3: US Interconnections modified from [48].

The three main US interconnections are separated and distinguished by AC-DC-AC ties.

The AC-DC-AC ties allow for a separation of frequency between interconnections. This is ac-

complished through a rectification and inverting process. Frequency content is removed when an

AC signal is rectified into a DC signal. A newAC signal with any frequency and phase may be

created though the inverting process. This rectification and inversion process allows power to be

transported between the interconnections with acceptable losses.

The western interconnect, which includes most of Montana, has reliability standards that

are created, monitored, and enforced by the Western Electricity Coordinating Council (WECC).

A computer model of western interconnect, often referred to as the WECC, has been in use for

over 20 years. As with any digital document that has been around for such a period of time, the

model has become very large and some might say ‘cluttered’. The WECC model contains various

unused, or outdated, information which makes use of the model difficult. Further details on the

WECC model are presented in Section 4.4.5.

6

In any operational power system, electric demand is always met. However, demand is

always changing. To this end, automatic controls have been developed to better manage certain

aspects of the grid. Electrical frequency, synonymous with generator speed, is often used as an

input to such automatic controls. There is a direct correlation between frequency and the balance

of supply and demand. As Figure 4 so artfully depicts, if supply and demand are balanced, fre-

quency remains static. If there is more demand than supply, frequency decreases. If the opposite

is true, more supply than demand, frequency increases. Figure 4 illustrates that generated power

must equal not only load, but also account for losses and any inter-regional interchange that may

occur.

Figure 4: Frequency relation to electric supply and demand [54].

Most automatic control types within this thesis are distinguished by the time frame in

which they operate. Figure 5 provides a classic frequency response to a loss of generation event

with time scale classifications of automatic control responses.

The first automatic control, referred to as primary control, responds immediately after an

event or perturbance and operates for tens of seconds. Primary control consists of turbine speed

governors that act on deviations in system frequency from the nominal operating condition to

stop frequency decline. Primary control occurs mostly during the arresting and rebound periods

shown in Figure 5. Secondary control acts over tens of minutes during the recovery period. Sec-

ondary control is referred to as automatic generation control (AGC) or load frequency control

7

Figure 5: Classic frequency and automatic control response [8].

(LFC). AGC and LFC are often used interchangeably throughout the literature. This thesis uses

AGC to refer to secondary control. AGC is a configured by a BA to manage its area control error

(ACE) which is a combination of interchange and frequency error. More information on AGC is

presented in Sections 2.5 and 5.3.3. Additional operator defined automatic controls, such as re-

laying, tap changing, and plant level control, may be classified into either time category based on

defined settings.

System stability and reliability are of utmost importance in the electric power game. Most

Americans rely on electricity for daily activities of widely varying consequence. In the simple

economic view, if an electric system does not work, customers can not buy electricity, and there

is absolutely no chance to make a profit. Power outages, or other system mis-operations, can be

quite costly not only in a monetary sense, but can also result in the loss of life [29], [39]–[41],

[67]. As such, simulation of a power system is required for planning additions or alterations.

Simulations can be used to test and fine tune operational procedures like AGC settings or shunt

switching schemes to ensure safe, economic, reliable, and correct operation. Power system simu-

lation can also be used to explore events that may not be fully understood or occur rarely, but still

require planned control measures.

8

2.2. Power Flow

The International System of Units (SI) measure for electric power is the watt (W) which

has units of Joules/Second (J/s). Watts can be thought of as the rate at which electrical work is

performed, or the instantaneous rate of energy transfer. Utility companies often charge for elec-

tric power by the amount of kW used over the course of an hour, or kilowatt hour kW h (3.6×106

J). For example, operating a 650W computer power supply for one hour would require 0.65 kW

h (2.34× 103 J).

Most electric customers are only responsible for real, or active, power usage and are un-

aware of reactive power entirely. To simply state the difference between real power and reactive

power: real power can be thought of as energy that does actual work, such as moving a conveyor

belt, crushing rocks, or heating an element; reactive power can be thought of as exchange of en-

ergy to create and maintain electric and/or magnetic fields. In large power systems, supply and

demand is often reported in terms of megawatts MW for real power P, and MVAR for reactive

power Q.

In an AC system, the quantity of power flowing on a line (also referred to as a branch),

between two buses can be found by first calculating the line current. Equation 1 shows that the

line impedance R+jX, voltage magnitude Vx, and voltage angle δx of two connected buses are

required to calculate line current I. For example, if a system has any two buses that can be related

to Figure 6, the equations to calculate current, real power, and reactive power flow between them

is shown in Equations 1-3 respectively.

R jX
VS 6 δS VR 6 δR

P,Q, I

Figure 6: Two buses with power flow between them.

9

I =
VSe

jδS − VRe
jδR

√
3(R + jX)

(1)

P =
√
3VS|I| cos(δS − ∠I) (2)

Q =
√
3VS|I| sin(δS − ∠I) (3)

It should be noted that the above equations are per-unit (PU). In practice, and thus simulation, all

calculated values may prove useful. Megawatts on a line is a common way to describe real power

flow, transmission lines and other equipment may be rated in current, and MVAR flow can be

useful in shunt switching schemes to control bus voltage.

In reality, power flow is determined by physics of a system and measured with physical

devices. In simulation, system characteristics are modeled and certain bus values are calculated

using a power-flow computer program. The results from such a program, referred to as a power-

flow solution, provide a steady state system operating condition based on certain known values.

There are many methods to solve a power flow as [28] and [38] show, but detailed explanation is

beyond the scope of this thesis. Suffice it to say that the power-flow problem involves system of

non-linear equations that compute the voltage magnitude and phase angle at each bus in a power

system under balanced three-phase steady state conditions [28]. Solutions often involve iteration

until a set of tolerances, or ‘mis-match’, from an expected value is reached. Once a power-flow

solution is achieved, Equations 1-3 can be used to find equipment loadings and line power flow

anywhere in a system.

10

2.3. The Swing Equation

The swing equation is the basis of generator speed dynamics and is derived using New-

ton’s second law. The equation got its name because it describes the swing in rotor angle during a

disturbance [38]. Generator speed can be described by changes in rotor angle from a known ref-

erence. In the case of electric generators, frequency is directly related to turbine speed and either

word is often used interchangeably in the time frame associated with long-term dynamics.

The PU swing equation, Equation 4, shows how acceleration of generator frequency ω̇

is directly related to the balance between mechanical power Pmech supplied by a generator, and

electrical power Pelec required by a load.

ω̇ =
1

2H

(
Pmech − Pelec

ω
−D∆ω

)
(4)

It can be seen that a large machine inertia H will reduce the magnitude of ω̇. The D term

may be used to represent damping forces any time a generator deviates from synchronous speed

[28] however, it is often assumed to be zero. Per-unit speed deviation,

∆ω = ωrated − ω, (5)

is a simple calculation used to scale the damping term and used in other to-be-described applica-

tions. The nature of PU equations dictate that rated speed be equal to one. Historically, the cur-

rent frequency ω was often ignored, or assumed to be equal to one. This decision was to make

calculations easier since speed deviation in PU is often very small. Modern usage of the swing

equation typically accounts for frequency effects.

In a steady state operating condition, Pmech is equal to Pelec and angular acceleration ω̇

is equal to zero. If there is an increase in required Pelec, then ω̇ is negative and rotor angle (gen-

erator frequency) declines. If Pmech is larger than Pelec, ω̇ is positive and frequency increases.

Detailed derivations and discussions on the swing equation can be found in [2], [28], [38] or most

any decent book related to power system dynamics.

11

2.4. Turbine Speed Governors

Turbine speed governors, often just governors, act to arrest frequency change by adjusting

a generator’s power reference setting. Governors are classified as primary control because of

their typically fast response. While many detailed models of governors exist, almost all include a

permanent droop or regulation constant R. The droop constant is a ratio of change in frequency

to change in power. R is often written in percent or a decimal representing a percent and assumed

to be negative. Figure 7 shows how R, the slope of the diagonal line, affects the resulting ∆ω

caused by change in power ∆P .

Figure 7: Ideal governor droop action [38].

Droop is a PU value so if a generator has a droop of 0.05, or 5%, then a 5% change in fre-

quency would cause a 100% change in mechanical power output. Governor settings are dictated

by FERC while NERC offers interconnection suggestions. The most common R is 5% for nearly

all types of generators [55].

The input to a turbine speed governor is system frequency measured in Hertz (Hz) and

reference power set point in MW. The output can be thought of as supplied mechanical power in

MW. To prevent unnecessary control action, inputs to governors often have deadbands and may

be delayed or filtered. Additional information on governor control is presented in Section 5.3.

12

2.5. Automatic Generation Control

Automatic generation control (AGC) is a form of secondary control that works to correct

system frequency and area interchange error. AGC does this by calculating an area control error

(ACE) that is then distributed to generation units under AGC control. The received AGC sig-

nals are used to adjust the generators mechanical power reference point. HowAGC is distributed

varies according to operator discretion so that operating or economic requirements are met.

NERC standards related to the management of ACE and requires ACE to be reported in a

specific way [53]. As shown in Equation 6, reporting ACE (RACE) is composed of a variety of

terms that may be relevant to electric operators.

RACE = (NIA −NIS)− 10B(FA − FS)− IME + IATEC (6)

The difference between scheduled net interchange NIS and actual net interchange NIA

is measured in MW. IME and IATEC , representing interchange meter error and area time error

correction respectively, are also measured in MW. The difference between actual frequency FA

and scheduled frequency FS is scaled by a frequency bias term 10B so that the result is also in

MW. The 10 is required because B has units of MW/0.1Hz. By convention, positive RACE

indicates a general over-generation condition and negative RACE is representative of an under-

generation situation. Section 5.3.3 provides more details on AGC action.

For clarification, frequency bias B is not the same as area frequency response β [54]. B

is an approximation of β used in ACE calculations and AGC action, while β is used to predict an

area’s response to perturbances. Equation 7 shows how β for an area may be calculated with N

generators under droop control, where Ri is the droop of the ith generator [28].

β =
N∑
i

1

Ri

(7)

13

2.6. Reactive Power and Voltage Control

While AGC handles frequency and area interchange control, system voltage and reactive

power must also be controlled. Various objectives must be met to maintain an efficient and reli-

able power system [38]. Bus voltage must be held near a known scheduled value so that system

components operate in a predictable and safe way. Reactive power flow should be minimized to

reduce reactive losses. Depending on loading conditions and generator VAR output, bus voltages

and reactive power flow vary. A lack of available reactive power in a system can lead to lower

bus voltages. Unchecked, declining voltages may lead to voltage collapse which can then lead to

chain reactions of automatic tripping.

Voltage, unlike system frequency, is a local issue and must be resolved using local power

system devices. Low voltage situations may be resolved by the addition of capacitive VARs and

high voltage situations call for the removal of capacitive VARs. Alternatively, Inductive VARs

may be used in the opposite manner. Generators whose primary purpose is to produce reactive

power are called synchronous condensers. Due to the nature of some renewable energies, areas

with large amounts of renewable generation may not be able to produce adequate VARs for volt-

age control. Thus, to meet operational objectives, synchronous generator and switchable shunt

control becomes an important consideration in modern automatic control configurations.

14

3. Software Background

3.1. Classical Transient Stability Simulation

Classical transient stability (CTS) simulation is a simulation approach commonly used to

test a power system’s ability to remain stable after a large step perturbance such as a generator

trip. The time frame CTS focuses on is milliseconds to tens of seconds, and as such, requires

time steps of milliseconds. While this is an appropriate approach for relatively short periods of

time, complicated modeling issues may lead to questionable results over the course of longer

simulations.

General Electric’s (GE’s) Positive Sequence Load Flow (PSLF) is an industry standard

power-flow solver and CTS simulation program. The continued development of PSLF has pro-

duced a large library of dynamic models and components for use in CTS simulation. PSLFs dy-

namic library has enabled a wide variety of system models to be created. For example, multiple

full WECC base cases have been modeled in PSLF over the past 20 years and are continuously

being updated. Certain versions of PSLF offer a Python 3 application programming interface

(API) and a .NETAPI. Despite each API being at various levels of development and functional-

ity, both offer a modern way to communicate with PSLF.

3.2. Python

Python is an interpreted high-level general purpose programming language that utilizes

object oriented techniques and emphasizes code readability [37]. Guido Van Rossum first im-

plemented a version of Python in December of 1989 [62]. Python is freely available and dis-

tributable for multiple computing platforms [59].

3.2.1. Python Packages

Software modules that expand the functionality of Python are referred to as packages and

are freely available from the Python Package Index (PyPI). This work utilizes multiple packages

to varying degrees, though SciPy and Pika are among the most heavily used. SciPy is a collec-

tion of packages that include NumPy for numerical computing and Matplotlib for MATLAB

15

style plotting [66]. Additionally, scipy.signal.lsim was used to solve state-space equations that are

common in electrical engineering dynamics. To avoid rewriting well known integration routines,

scipy.integrate.solve_ivp was used to perform Runge-Kutta integration of the swing equation to

find system frequency. The Python implementation of the advanced message queuing protocol

(AMQP) used for this project was Pika [22].

3.2.2. Varieties of Python

Python has gone through numerous versions over the course of development and has been

ported and adapted according to need. IronPython (IPY) is an open-source .NET compatible ver-

sion of Python written in C# [1] and is able to use the common language runtime (CLR) package

required for properly interacting with the GE PSLF .NET library. As such IPY, more specifically

32-bit IPY, is used to interface with the PSLF .NET library. However, the most current stable IPY

release is based off of Python 2.x and can only use Python packages compatible with 2.x. Python

3 (PY3) is ‘the future of Python’ and has many more maintained and useful community created

packages. Some packages area available for both Python version 2 and 3, but many are not. As

of this writing, the current version of Python is 3.8. Amajority of project code was written using

Python 3.7, but should continue to be compatible with future versions of PY3.

3.2.3. Python Specific Data Types

Python has various common data types found in other programing languages such as inte-

ger, string, list, and float. Python also has some unique data types. One unique data type is called

a dictionary which is a collection of key value pairs. Dictionary keys are strings, and the value

can be any other data type, including a dictionary. A benefit of using a dictionary is that it doesn’t

matter ‘where’ in an object a certain data point is located, only that is exists somewhere in the ob-

ject. The key value pair eliminates the need to focus on indexing lists or arrays as other program-

ming languages may require. Additionally, native python methods allow for simple searching and

iteration of dictionaries.

Another somewhat unique python data type is a tuple. Tuples are essentially the same as

16

lists, except defined using parenthesis instead of brackets and the data inside can not be changed

in any way. While this may seem like a hindrance, it creates peace of mind when using tuples for

important data references.

A powerful characteristic of Python is that everything is an object, and variables act as

references, or pointers, to data. These Pythonic points were relied upon heavily during software

development to make large collections of objects and references.

3.3. Advanced Message Queueing Protocol

Advanced message queueing protocol (AMQP) is a software messaging protocol that can

be used for interprocess communication (IPC). The specific application of AMQP in this case

was to enable a PY3 process to communicate with an IPY process on a Windows based machine.

The idea behind AMQP is that of a virtual ’broker’ which receives messages from various pro-

cesses and places them into specific named queues. The named queues are accessed by other pro-

cesses that check for, and receive, any queued messages.

It should be noted that Erlang was required to allow use of RabbitMQ, and the PY3 and

IPY Pika packages were required so that Python could use AMQP. While detailed descriptions

of these softwares is beyond the scope of this research: Erlang is an open source programming

language and runtime environment, RabbitMQ is an open source AMQP broker software, and

Pika is a Python package that works with RabbitMQ. The correct installation of these software

packages is necessary for the created research software to function.

3.4. Agent Based Modeling

Agent Based Modeling (ABM), or Agent Based Simulation (ABS), is oriented around

the idea that any situation can be described by agents in an environment, and a definition of

agent-to-agent and agent-to-environment interactions [60]. The ABM coding style lends itself

towards modular coding and natural expandability as each agent class may have inherited meth-

ods and variable characteristics. As an example, [3] used an ABM approach to test the efficiency

of differing airplane boarding methods. Passengers were treated as agents interacting with each

17

other and the airplane environment. Each passenger agent may have had different characteris-

tics, but performed a similar actions each simulation time step. ABM is applied to the coding of

this project in that a power system acts as the environment, and all power system objects, such as

buses, loads, and generators, are treated as agents.

Each time step, agents may perform their step method that executes code unique to the

specific agent, but generally the same among agent types. For example, a timer agent step method

may include checking a specified value and incrementing an accumulator according to a logic op-

eration. If the accumulator becomes larger than a set threshold value, the timer may raise an acti-

vation flag. Agent action is meant to be direct and generic so that agents can be reused and nested

inside other agents. Continuing the example, the timer agent may be nested inside another agent

that checks the timers activation flags each step and takes action depending on the returned sta-

tus. Actions can be arranged into a sequence of agent steps in a discrete time simulation, and then

repeated ad infinitum. The idea of sequencing agent steps can be applied to systems of nearly any

size and composition as long as agents have a step function and can reference other agents inside

the environment.

18

4. Software Tool

The newly created software tool for this research was named PSLTDSim (Power Sys-

tem Long-Term Dynamic Simulator). Python was the code language of choice, and both PY3

and IPY processes are created during simulation. PSLF and AMQP also play integral roles in

PSLTDSim. The basic idea behind PSLTDSim is to use time-sequenced power flows and exter-

nal dynamic calculations to simulate long-term dynamic (LTD) power system behavior. Various

engineering simplifications and assumptions are employed by PSLTDSim.

This chapter describes what time-sequenced power flows are, what PSLTDSim assumes

or simplifies, and what PSLTDSim actually does. Software validations using PSLF simulation

output as a reference are presented and discussed at the end of this chapter.

4.1. Time-Sequenced Power Flows

The left side of Figure 8 is a visual representation of a single power-flow solution. The

power-flow solution can be thought of as a snapshot of steady state system operation. A period

of steady state system operation could be imagined by repeating this single power-flow solution

in a time sequence. Dynamic system behavior could be realized if small changes are made to

the power-flow problem inputs and the ensuing power-flow solution converges. The right side

of Figure 8 illustrates the idea of time-sequenced power flow (TSPF) as a collection of slightly

changing power-flow solutions. The TSPF method for dynamic simulation involves performing

dynamic modeling calculations outside of, or inbetween, each power-flow solution.

−→

Figure 8: Time-sequenced power flows visualized.

Differences between TSPF and CTS simulation techniques stem from the time frame of

19

simulation focus and differing dynamic calculations. TSPF is focused on long-term events that

take place over the course of minutes to hours. CTS simulation focuses on events that are tens of

seconds in duration. This difference in focus leads to each method utilizing a different appropri-

ate time step. A TSPF time step may be 0.5 to 1 seconds while CTS uses sub-cycle time-steps in

the millisecond range.

Calculations of CTS simulation include generator dynamics, exciter dynamics, governor

and turbine dynamics, and load dynamics that are either simplified, aggregated, or not included in

the current TSPF method used by PSLTDSim. Each simulation method starts with a power-flow

solution, but CTS simulation performs back calculations to set initial states of various dynamic

models. Future CTS states, and resulting system behaviors, are dictated by dynamic model in-

teractions. TSPF also uses dynamic models, but updated values are sent to a power-flow solver;

and the power-flow solution provides new steady state system. These differences create output

data that is of different resolutions and captures slightly different system characteristics. Figure 9

shows a comparison of CTS and TSPF data.

Time [sec]

2 4 6 8 10 12 14 16 18 20

G
e

n
e

ra
to

r
A

n
g

le
 [

d
e

g
re

e
s
]

11

11.5

12

12.5

13

13.5

Select Comparison of Generator Voltage Angle

Case: SixMachineStep1

CTS

TSPF

Figure 9: CTS and TSPF data output comparison.

The two data sets are not the same during oscillatory behavior, but match at steady state condi-

tions. In general, TSPF data does not reflect the inter-electromechanicl dynamics of the system

response, but does seem to follow the center of oscillation from the CTS simulation. This ‘oscil-

lation averaging’ behavior was found to be common in TSPF results.

20

4.2. Simulation Assumptions and Simplifications

Numerous assumptions and simplifications were made due to fundamental differences

between TSPF and CTS simulation. This section details such assumptions and simplifications

and provides key TSPF equations.

4.2.1. General Assumptions and Simplifications

The focus of PSLTDSim is on the long-term operation of power systems. Since a power-

flow solution is a stable steady state operating condition, it is assumed that the system of study is

stable in the transient stability sense, and remains stable, for the entirety of the simulation. Other

software packages should be used if transient stability is in question.

In general, system responses to large step type contingencies are not the focus of PSLTD-

Sim. Instead, a more suitable event type is in the form of ramps, or repeated small step pertur-

bances. Because of the more ‘gentle’ system scenarios involved with ramps, power system stabi-

lizers (PSS) were not modeled. Further, it is assumed that PSS time constants are too small to be

adequately represented given the time step associated with TSPF.

Further assumptions include ideal generator exciters that can always maintain a given

generator reference voltage. Modern exciters are assumed to be fast enough to hold reference

voltages to small perturbances in the long-term. Despite the ideal reference voltage assumption,

machine VAR limits are enforced according to model parameters. Should the need arise, future

work can be done to incorporate any additional, or alternative modeling.

4.2.2. Time Step Assumptions and Simplifications

Multiple assumptions can be made concerning power system behavior when a time step

of one second is used. The order of magnitude time step difference between CTS and TSPF al-

lows models created for CTS simulations to be simplified for use with TSPF. Intermachine oscil-

lations were ignored since subsynchronous resonances are sub-second and the time resolution of

TSPF is not great enough to capture these phenomena. Additionally, in the long-term, these ef-

fects are minor when the system is stable. Without the need for subsynchronous characteristics,

21

generator modeling was greatly simplified. The only details required for a machine model are

MW cap, machine MVA base, and machine inertia.

To further simplify generator modeling, all machines share a single system frequency

that is calculated by a combined swing equation. The following two Sections explain how the

combined swing equation is used in PSLTDSim. Governor models were also simplified. Section

4.2.5 explains the how PSLTDSim models governors.

4.2.3. Combined System Frequency

Instead of a frequency being calculated for each generator or bus, a single combined

swing equation is used to model only one combined system frequency. This technique requires

a known total system inertia Hsys and the total system acceleration power Pacc,sys. In a system

with N generators, Hsys is calculated from each individual machine’s inertia as

Hsys =
N∑
i=1

HPU,iMbase,i. (8)

In a system with N generators, total system accelerating power is calculated as

Pacc,sys =
N∑
i=1

Pm,i −
N∑
i=1

Pe,i −
∑

∆Ppert, (9)

where Pm,i is mechanical power and Pe,i is electrical power of the ith generator and any system

power injections, or perturbances, are accounted for in the
∑

∆Ppert term.

The combined swing equation, shown in Equation 10, uses Pacc,sys and Hsys to calculate

ω̇sys. For completeness, a damping term Dsys∆ω is included in Equation 10, but as Equation 4,

Dsys is often set to zero while ∆ωsys is calculated using Equation 5 with ωsys replacing ω. Equa-

tion 11 shows that after integrating with time step ts, ω̇sys leads to system frequency ωsys.

ω̇sys =
1

2Hsys

(
Pacc,sys

ωsys

−Dsys∆ωsys

)
(10)

ωsys =

∫ t+ts

t

ω̇sys dt (11)

22

The Scipy solve_ivp function was chosen as the default numerical solver for the com-

bined swing equation. This choice allows other integration methods to be applied that may pro-

duce more desirable results. Additionally, the solve_ivp function produces more approximations

between defined time steps. It is theoretically possible to use this more detailed output for dy-

namic agent input. As of this writing, the ability to use this additional output is not included in

the code. It may prove beneficial to explore this possibility in the future work if dynamic calcula-

tion results are shown to be unsatisfactory.

4.2.4. Distribution of Accelerating Power

While system frequency can be calculated using total system accelerating power, to prop-

erly ‘seed’ the next power flow, each generator participating in the system inertial response must

account for a portion of accelerating power absorption. The specific amount each generator is

expected to absorb is based on machine inertia. Equation 12 shows how the next electric power

estimate Pe,EST,i is created for generator i according to its inertia.

Pe,EST,i = Pe,i − Pacc,sys

(
Hi

Hsys

)
(12)

Once all accelerating power is distributed to inertial responding generators, the new Pe,EST

value for each generator is used to seed a power flow. If the MW difference between resulting

power supplied by the slack generator and estimated power output is larger than the set slack tol-

erance, the difference is redistributed as Pacc,sys according to Equation 12 until slack tolerance is

met, or a maximum number of iterations take place. Once the slack tolerance is met, the power-

flow solution is accepted as the current state of the system under study.

This method of reallocation ensures the validity of a generation dispatch because in a

power-flow solver such as PSLF, any difference between the dispatched MW of generation, and

the aggregate MW consumption of all loads and losses is allocated to the designated slack gen-

erator. Therefore, if the slack generator responds as predicted, it is assumed all other generators

have also responded as predicted.

23

4.2.5. Governor models

Long-term dynamic models do not require the detail of a full transient simulation model.

For software validation purposes, a tgov1 governor model was created as it appears in the PSLF

documentation. This particular governor model was selected due to simplicity, and was later ex-

panded upon to include an optional deadband and filtered input delay. The block diagram for the

modified tgov1 governor is shown in Figure 10. Blocks with a * next to them indicate they are

optional, and only inserted into the model if user defined.

ωrefPU

Σ KA
e−$DA

1 + $TA

*
∆ωPU

*
MBase

R

MBaseDt

Σ

KB
e−$DB

1 + $TB

*

Vmax ×MWcap

Vmin ×MWcap

1

1 + $T1

1 + $T2

1 + $T3
Σ

PM

ωPU

Pref

+
− +

+

−

Figure 10: Block diagram of modified tgov1 model.

A slightly more generic governor was created based off the governor model used in Power

System Toolbox (PST). This generic model, referred to as genericGov, is shown in Figure 11.

The genericGov follows the time constant naming convention of the PST governor and includes

the same optional blocks added to the modified tgov1 model.

ωrefPU

Σ KA
e−$D1

1 + $T1

*
∆ωPU

*
MBase

R

MBaseDt

Σ

KB
e−$D2

1 + $T2

*

Vmax ×MWcap

Vmin ×MWcap

1

1 + $Ts

1 + $T3

1 + $Tc

1 + $T4

1 + $T5
Σ

PM

ωPU

Pref

+
− +

+

−

Figure 11: Block diagram of genericGov model.

To allow for a simpler numerical approach, the Scipy lsim function was chosen as the nu-

merical solver for governor dynamics. Unlike solve_ivp, which requires a differential equation in

24

the form of a function as input, lsim accepts input consisting of transfer functions or state space

systems which are more common electrical engineering representations of dynamic systems. As

of this writing, the above models are processed as a sequence of stages that represent a single

Laplace block, or transfer function. After a full time step solution of one block, the output is then

sent to the next block in the order depicted in the above diagrams. The mathematical implications

of such an approach are addressed in Section 9.4.3.2.

4.2.5.1. Casting Process for genericGov

Modeling all PSDS governors would be a rather large task. Un-modeled governors en-

countered in the PSDS dynamic parameters file, referred to as a dyd file, were cast to a generic-

Gov model based on assumed governor type. Table I shows the relation of PSDS model types to

assumed governor setting type.

Table I: Generic governor model casting between LTD and PSDS.

genericGov Steam Hydro Gas

PSDS ccbt1 g2wscc ggov1

gast hyg3 ggov3

w2301 hygov4 gpwscc

ieeeg3 hygov

ieeeg1 hygovr

pidgov

Universal governor settings, such as permanent droop and MW cap values are collected

from the dyd file and used as R andMWcap respectively. The particular time constants for each

model were selected according to typical settings associated with prime mover type that a PSDS

model is assumed to represent. Table II lists the time constants used for each genericGov model

type.

25

Table II: Generic governor model parameters.

Parameter Steam Hydro Gas

Ts 0.04 0.40 0.50
Tc 0.20 45.00 10.00
T3 0.00 5.00 4.00
T4 1.50 −1.00 0.00
T5 5.00 0.50 1.00

26

4.3. General Software Explanation

This section provides an explanation of the Power System Long-Term Dynamic Simu-

lator (PSLTDSim). A flow chart showing a general overview of simulation action is shown in

Figure 12. A simulation begins with user input of simulation specifications to PSLTDSim. The

user input is then used to initialize the required simulation environment by PSLTDSim. The gen-

eral simulation loop includes performing dynamic calculations and executing any perturbances

which are then transferred to PSLF. A power-flow solution is then calculated by PSLF and rele-

vant data sent back to PSLTDSim for logging. Various simulation variables are then checked to

verify if the simulation loop is to continue or end. Once the simulation is complete, data is output

and plots may be generated for the user to analyze.

Input simulation specifications

User

Python and IronPython
Initialize simulation environment

PSLTDSim

Perform dynamic calculations
Execute contingencies, perturbances, etc.

Handle PSLF communication

Log data
Increment simulation time

Simulation Over?

Output data
Generate plots

Solve power flow

PSLF

Analyze results

Yes

No

Figure 12: High level software flow chart.

27

4.3.1. Interprocess Communication

A process is another name for an instance of a running computer program. It is common

for a computer program to run as a single process, however this is not always the case and not

how PSLTDSim operates. Since processes are independent from each other, they do not share

a memory space [24]. This effectively means that for two processes to share data, some kind of

interprocess communication (IPC) must be utilized.

Due to the current state of the GE Python 3 API, Ironpython (IPY) was required for func-

tional PSLF software communication. Unfortunately, IPY is based on Python 2 and does not have

packages necessary for numerical computation that Python 3 (PY3) possesses. The solution to

these issues was to create a software that has an IPY process and PY3 process that communicate

to each other via AMQP. The employed method is shown in Figure 13. The IPY process, which

Performs dynamic calculations.
Generates system estimate.

——————–
Receives solution.

Logs data.

Python 3
Has PSLF API.

Acts as middle man.——————–
Checks validity of dispatch.

Creates new estimate if necessary.

IronPython

Recieves system estimate.
Solves power flow.
——————–
Sends solution.

PSLF

AMQP power-flow estimate AMQP power-flow solution PSLF API communication

Figure 13: Diagram of AMQP communication.

has a functional PSLF API, acts as a ‘middle man’ between PY3 and PSLF. Newly calculated

power-flow estimate from PY3 must be sent to PSLF via IPY, and after each new power-flow

solution, PSLF values must be sent to PY3. This cycle continues as along as simulation is re-

quired. While the described AMQP solution has been shown to work, it is worth noting that mes-

sage handling typically accounts for about one half of all simulation time, and sometimes more in

larger cases.

4.3.2. Simulation Inputs

As with any simulation software, PSLTDSim requires specific inputs to operate correctly.

Some required input is the same as that used by PSLF, while other input is Python based. Both

types of inputs are described in this subsection.

28

4.3.2.1. PSLF Compatible Input

The power system model input used by PSLTDSim is the same binary file used by, and

generated from, PSLF. The system model file, referred to as a sav file, contains topological and

parametric data required to execute a power-flow solution. The use of this input file is due to the

reliance of PSLTDSim on the power-flow solver included with PSLF. Python system dynamics

are created based on the .dyd text files also used by PSLF. Information on creating .sav or .dyd

files is beyond the scope of this text, but may be found in [26].

4.3.2.2. Simulation Parameter Input (.py)

Simulation parameter input is entered in a standard python .py file. Most simulation

parameter input is collected in a Python dictionary named simParams. An example of the sim-

Params dictionary defined inside the .py file is shown in Figure 14.

1 simParams = {
2 'timeStep': 1.0, # seconds
3 'endTime': 60.0*8, # seconds
4 'slackTol': 1, # MW
5 'PY3msgGroup' : 3, # number of Agent msgs per AMQP msg
6 'IPYmsgGroup' : 60, # number of Agent msgs per AMQP msg
7 'Hinput' : 0.0, # MW*sec of entire system, if !> 0.0, will be calculated in code
8 'Dsys' : 0.0, # Damping
9 'fBase' : 60.0, # System F base in Hertz
10 'freqEffects' : True, # w in swing equation will not be assumed 1 if true
11 'assumedV' : 'Vsched', # assummed voltage - either Vsched or Vinit
12 # Mathematical Options
13 'integrationMethod' : 'rk45',
14 # Data Export Parameters
15 'fileDirectory' : "\\delme\\200109-delayScenario1\\", # relative path from cwd
16 'fileName' : 'SixMachineDelayStep1', # Case name in plots
17 'exportFinalMirror': 1, # Export mirror with all data
18 'exportMat': 1, # if IPY: requies exportDict == 1 to work
19 'exportDict' : 0, # when using python 3 no need to export dicts.
20 'logBranch' : True,
21 }

Figure 14: An example of a simParams dictionary.

29

The simParams dictionary contains information required for the simulation to operate,

such as time step, end time, base frequency, and slack tolerance. There are also parameters that

alter how the simulation operates, such as integration method, inclusion of frequency effects, and

how system inertia is calculated. Information related to data collection or export is also included

in the simParams dictionary such as whether to log branch information or where the resultant

data will be placed and what it will be named. Examples of valid dictionary keys, types of data,

units of input, and a brief explanation are shown in Table XXIII located in Appendix 12.

In addition to the simParams dictionary, simulation notes, absolute file paths to the de-

sired .sav and .ltd.py file are also defined in this .py file. Dynamic input in the form of .dyd files

are defined in a list to allow for using more than one .dyd file. The dynamic model overwriting

that this feature was meant to incorporate has not been fully implemented as of this writing. An

example of a valid simulation parameter input .py is shown in Appendix 11 as Figure 221.

4.3.2.3. Long-Term Dynamic Input (.ltd.py)

The required .ltd.py file contains user defined objects related specifically to simulated

events and control action. Further, this file is the ideal place for adding additional user input if

the need should arise in future software development. Code in the .ltd.py file is standard Python

and involves initializing objects attached to a mirror object. The mirror object is what PSLTD-

Sim calls the total power system model. A description of the various objects that can be attached

to the mirror is presented in the following sections. Most topics introduced are described com-

pletely, however, some options are more complex and described in later sections.

4.3.2.3.1. Perturbance List

The only list defined in the .ltd.py file is for entering simulation perturbances (often also

referred to as contingencies or events). The list of single quoted strings describing system per-

turbances is defined as mirror.sysPerturbances. Common perturbances are changes in operating

state and power, however, any value in the target agents current value dictionary may be changed.

The format of the string is specific to agent type and perturbance, but strings follow the general

format of ’Agent Identification : Perturbance Description’. Table III shows the format for the

30

agent identification part of the perturbance string. Optional parameters are shown in brackets. If

no ID is specified the first agent found with matching bus values will be chosen.

Table III: Perturbance agent identification options.

Agent Type Identification Parameters

load Bus Number [ID]

shunt Bus Number [ID]

gen Bus Number [ID]

branch From Bus Number To Bus Number [Circuit ID]

Table IV describes the various parameters used to specify the action of the perturbance

agent in the ’Pertrubance Description’. The three valid options for the ‘Step Type’ and ‘Ramp

Type’ field are abs, rel, and per. To make an absolute change to the new value, the abs type

should be selected. To alter the target parameter by a relative value, the rel option should be

used. If a percent change is desired, the per type should be used.

Table IV: Perturbance agent action options.

Type Settings

step Target Parameter Action Time New Value Step Type

ramp Target Parameter Start Time Ramp Duration New Value Ramp Type

Figure 15 shows various examples of valid perturbance agent definitions. Double quoted

strings may be used to clarify perturbance descriptions. It should be noted that the target param-

eter is case sensitive. Additionally, if stepping a governed generator, both the mechanical power

and power reference variables should be changed as shown in line 8 and 9 of Figure 15.

31

1 # Perturbance Examples
2 mirror.sysPerturbances = [
3 'gen 27 : step St 2 0', # Set gen 27 status to 0 at t=2
4 'branch 7 8 2 : step St 10 0 abs', # Trip branch between bus 7 and 8 with ckID=2
5 'load 26 : ramp P 2 40 400 rel', # ramp load 26 P up 400MW over t=2-42 seconds
6 'load 9 : "Type" ramp "Target" P "startTime" 2 "RAtime" 40 "RAval" -5 "RAtype" per',
7 'shunt 9 4 : step St 32 1', # Step shunt id 4 on bus 9 on at t=32
8 'gen 62 : step Pm 2 -1500 rel', # Step gen Pm down 1500 MW at t=2
9 'gen 62 : step Pref 2 -1500 rel', # Step gen Pref down 1500 MW at t=2
10]

Figure 15: Perturbance agent examples.

4.3.2.3.2. Noise Agent Attribute

A random noise agent was created to add random noise to all system loads. The noise

agent may be useful for Monte Carlo studies, or for studies involving nonlinearities such as dead-

bands. The noise agent is created in the .ltd.py file by defining the mirror.NoiseAgent attribute

with the associated agent. Figure 16 shows an example of a noise agent being attached to a sys-

tem mirror. The input arguments are: system mirror reference, percent noise to be added, a boolean

value dictating random walk behavior, delay before noise is added, and the random number gen-

erator seed value.

1 # Noise Agent Creation
2 mirror.NoiseAgent = ltd.perturbance.LoadNoiseAgent(mirror, 0.05, walk=True, delay=0,

damping=0, seed=11)↪→

Figure 16: Noise agent creation example.

If a noise agent is defined, noise is injected at every time step into each load PL,i in the

system according to

PL,i(t) = PL,i(t− 1)[1±NZRandi +Dnz∆ω] (13)

32

where NZ represents the maximum amount of random noise to inject as a percent, Randi is a

randomly generated number between 0 and 1 inclusive, Dnz is the user input damping value, and

∆ω is calculated according to Equation 5. The decision to add or subtract noise is chosen by a

unique randomly generated number. As described in [70], Equation 13 creates random walk be-

havior in load that is representative of real power systems. If random walk behavior is not de-

sired, the walk input argument may be set to False and the scheduled load value is always used

as PL,i(t − 1). Only mirror reference and percent of desired noise is required for noise agent cre-

ation. If no additional arguments are provided, default values for walk, delay, damping and seed

are set to False, 0, 0, and 42 respectively.

4.3.2.3.3. Balancing Authority Dictionary

The mirror.sysBA dictionary is defined in the .ltd.py file and is used to configure BA

agents. Individual BA dictionaries are nested inside the mirror.sysBA dictionary. The informa-

tion entered in each nested dictionary describes how that particular BA acts on the specified area.

Additional information on BAAGC options and action is presented in Section 5.3.3. Examples

of BA parameterization are shown in Figures 223 and 224 of Appendix 11. A description of each

possible field is described in Table XXII located in Appendix 12.

4.3.2.3.4. Load Control Dictionary

To simplify changing all area loads according to a known demand schedule, a load con-

trol agent may be defined in the .ltd.py file. Similar to the balancing authority dictionary, each

agent is defined as a named dictionary inside a the mirror.sysLoadControl dictionary. The load

control agent requires area number, start time, time scale, and a list of tuples for demand informa-

tion. Specific BA demand data can easily be acquired via the United States Energy Information

Administration (EIA) website and saved as a .csv file. A script was written to parse and display

demand changes over time as a relative percent change so that real load patterns could be applied

to test systems of differing scale. An example of a single area load control agent is shown in Fig-

ure 17.

33

1 mirror.sysLoadControl = {
2 'testSystem' : {
3 'Area': 2,
4 'startTime' : 2,
5 'timeScale' : 10,
6 'rampType' : 'per', # relative percent change
7 # Data from: 12/11/2019 PACE
8 'demand' : [
9 #(time , Precent change from previous value)
10 (0, 0.000),
11 (1, 3.675),
12 (2, 6.474),
13 (3, 3.770),
14] , # end of demand tuple list
15 },# end of testSystem definition
16 }# end of sysLoadControl dictionary

Figure 17: Load control agent dictionary definition example.

The list of tuples named ‘demand’ defines the desired load change over time. The first

value in each tuple is assumed to be a time value and the second number is a percent change

value. The entered time value is scaled by the ‘timeScale’ value. It is assumed that both values

in the first entry are always zero since there can be no relative change from negative time.

Relative percent ramps are used to alter load value between each entry. For example, if

the load control agent shown in Figure 17 was used in a simulation, ramps would be created for

each load in area 2 that increases load by 3.675% between time 2 and 10, 6.474% between time

10 and 20, and 3.770% between time 20 and 30. In total, a 100 MW load would be 114.548 MW

after all ramps executed. The relative percent is based off the value of each load at start of each

ramp. This method of relative percent changing allows for other perturbances, such as noise, to

be applied to the same load without control conflicts. Alternative ramp types may be employed

by changing the ’rampType’ parameter, but are not created as of this writing. It should be noted

that the first ramp starts at ‘startTime’, but all other ramps begin according to the calculated

scaled time schedule. Additionally, loads that are off at system initialization (status 0 at time 0)

34

are ignored.

4.3.2.3.5. Generation Control Dictionary

To manipulate generation in the same way a load control agent manipulates load, a gener-

ation control agent may be defined in the .ltd.py file. The definition of a generation control agent

is very similar to the definition of a load control agent by design, however, differences do ex-

ist. Generation control agents are defined in the dictionary named mirror.sysGenerationControl,

have a list of strings detailing control generators, and have a time value tuple list named ‘forcast’.

While the forecast misspelling was unintentional, and can be changed, time has proven it to be a

minor detail. Other parameters inside the generation control agent definition (such as area, start

time, time scale, and ramp type) function exactly the same as the load control agent. Forecast

data is again collected from the EIAwebsite and parsed in the same manner as demand data. Fig-

ure 18 shows an example of a generation control agent definition.

1 mirror.sysGenerationControl = {
2 'testSystem' : {
3 'Area': 2,
4 'startTime' : 2,
5 'timeScale' : 10,
6 'rampType' : 'per', # relative percent change
7 'CtrlGens': [
8 "gen 3 : 0.25",
9 "gen 4 : 0.75",
10],
11 # Data from: 12/11/2019 PACE
12 'forcast' : [
13 #(time , Precent change from previous value)
14 (0, 0.000),
15 (1, 5.137),
16 (2, 6.098),
17 (3, 4.471),
18],# end of forcast tuple list
19 }, #end of testSystem def
20 }# end of sysLoadControl dictionary

Figure 18: Generation control agent dictionary definition example.

35

The main difference between load and generation control agents is the addition of the

‘CtrlGens’ list of strings. While the load control agent distributes any changes to all loads equally,

a generation control agent dispatches a specific portion of MW change to specific generators.

The ‘CtrlGens’ list dictates which generators receive how much of a dispatch. Each string in-

side the ‘CtrlGens’ list is of the form: ”gen BusNumber ID : Participation Factor” where ID is

optional. If ID is not defined, as shown in Figure 18, the first generator on the given bus will be

controlled. The participation factor is used to distribute the total requested MW change.

For example, if an area is generating 100 MW at time 0, the total requested area gener-

ation change by time 10 would be 5.137 MW. The generator on bus 3 would increase 1.28 MW

while the generator on bus 4 would increase 3.85 MW. If a controlled generator has a governor,

governor reference will be adjusted instead of mechanical power. The participation factor for all

listed generators should always sum to 1.0 or improper distribution will occur. It should be noted

that not all generation must be controlled for proper percent change of total area output power,

however, if a controlled machine hits a generation limit, excess changes are ignored.

Relative percent ramps are used to control generators in the same way as load so that a

BA can also act on generators under generation control, however, this functionality is untested as

of this writing.

4.3.2.3.6. Governor Input Delay and Filtering Dictionary

The inputs to modeled governors may be delayed, filtered, and gained using the Laplace

domain block shown in Figure 19. If delay is not divisible by the simulation time step, rounding

will occur.

K1
e−$D1

1 + $T1

Figure 19: Block diagram of delay block.

To modify a governor model with a delay block, parameters may be entered in the gov-

ernor delay dictionary mirror.govDelay. Like previously described dictionaries, this is located in

36

the .ltd.py file. Figure 20 shows an example of a valid delay dictionary that affects the governor

of the generator on bus 3. Note that while genId is optional, if not specified, the first generator

found on the specified bus is used.

1 mirror.govDelay ={
2 'delaygen3' : {
3 'genBus' : 3,
4 'genId' : None, # optional
5 # (delay parameter, filter time constant, optional gain)
6 'wDelay' : (40,30),
7 'PrefDelay' : (10, 0),
8 }, # end of 'delaygen3' definition
9 }# end of govDelay dictionary

Figure 20: Governor delay dictionary definition example.

Tuples are used to enter delay block parameters. Using Figure 10 as reference, the ‘wDe-

lay’ tuple contains settings for DA, TA, and KA respectively. Likewise, the ‘PrefDelay’ tuple con-

tains DB, TB, and KB. If the tuple contains three entries, the third is assigned to the optional gain

associated with each block, otherwise Kx is one.

4.3.2.3.7. Governor Deadband Dictionary

ABA agent may be used to set area wide deadbands, but it is also possible to specify

a single deadband for any governed generator. Individual governor deadband dictionaries are

defined inside the mirror.govDeadBand dictionary in the .ltd.py file. Settings in each governor

deadband dictionary will override any deadband settings specified by the BA dictionary. Figure

21 shows three examples of valid governor deadband definitions.

37

1 mirror.govDeadBand ={
2 'gen3DB' : {
3 'genBus' : 3,
4 'genId' : None, # optional
5 'GovDeadbandType' : 'ramp', # step, ramp, nldroop
6 'GovDeadband' : 0.036, # Hz
7 },
8 'gen1DB' : {
9 'genBus' : 1,
10 'genId' : None, # optional
11 'GovDeadbandType' : 'nldroop', # step, ramp, nldroop
12 'GovAlpha' : 0.016, # Hz, used for nldroop
13 'GovBeta' : 0.036, # Hz, used for nldroop
14 },
15 'gen4DB' : {
16 'genBus' : 4,
17 'genId' : None, # optional
18 'GovDeadbandType' : 'step', # step, ramp, nldroop
19 'GovDeadband' : 0.036, # Hz
20 'GovAlpha' : 0.016, # Hz, used for nldroop
21 'GovBeta' : 0.036, # Hz, used for nldroop
22 },
23 }# end of govDelay dictionary

Figure 21: Governor deadband dictionary definition example.

Entering ‘step’ or ‘ramp’ as a value for the ‘GovDeadbandType’ will create a step or ramp

deadband at the given ‘GovDeadband’. A non-linear droop governor deadband may be config-

ured by setting the ‘GovDeadbandType’ to ‘NLDroop’ and entering desired ‘GovAlpha’ and

‘GovBeta’ values. Deadband types are fully explained in Section 5.3.1.

4.3.2.3.8. Definite Time Controller Dictionary

During long simulations, system loading may change from initial values by more than

±20%. Such changes can cause voltage issues that require the setting or un-setting of compo-

nents contributing to available system reactive power. This can be accomplished by defining a

definite time controller (DTC) agent in the mirror.DTCdict dictionary. Other general programmable

logic operations may also be accomplished using a DTC agent. Figure 22 shows an example of a

38

valid DTC definition where a shunt is actuated by changes in bus voltage or branch MVAR flow.

It should be noted that instead of using a specific ‘tarX’ in a timers ‘act’ field, operations on any

off or on target can be accomplished by using ‘anyOFFtar’ or ‘anyONtar’ respectively.

1 mirror.DTCdict = {
2 'ExampleDTC' : {
3 'RefAgents' : {
4 'ra1' : 'bus 8 : Vm',
5 'ra2' : 'branch 8 9 1 : Qbr', # branches defined from, to, ckID
6 },# end Reference Agents
7 'TarAgents' : {
8 'tar1' : 'shunt 8 2 : St',
9 'tar2' : 'shunt 8 3 : St',
10 }, # end Target Agents
11 'Timers' : {
12 'set' :{
13 'logic' : "(ra1 < 1.0) or (ra2 < -15)",
14 'actTime' : 30, # seconds of true logic before act
15 'act' : "tar1 = 1",
16 },# end set
17 'reset' :{
18 'logic' : "(ra1 > 1.04) or (ra2 > 15)",
19 'actTime' : 30, # seconds of true logic before act
20 'act' : "tar1 = 0",
21 },# end reset
22 'hold' : 60, # minimum time between actions
23 }, # end timers
24 },# end ExampleDTC definition
25 }# end DTCdict

Figure 22: Definite time controller dictionary definition example.

Each DTC employs a set and a reset timer and may have a hold timer if hold time is set

larger than zero. Multiple references and targets can be associated with a DTC, however, as of

this writing only one action can be associated with each timer. Any logic string entered in a timer

uses the given key names for each reference or target and is evaluated using standard Python

logic conventions.

39

4.3.3. Simulation Initialization

To clarify the explanation of simulation initialization, the entire process can be broken

into three parts: process creation, mirror initialization, and dynamic initialization pre-simulation

loop. The first part (process creation) involves creating and configuring various software pro-

cesses that enable the simulation to run. The majority of part two (mirror initialization) revolves

around collecting data from PSLF to create a Python duplicate, or mirror, of the power system

model. The last part of simulation initialization (dynamic initialization pre-simulation loop) han-

dles user input and creates PY3 dynamics before entering the simulation loop.

4.3.3.1. Process Creation

System initialization begins in PY3 with package imports and creation of truly global

variables before user input from the .py file is handled. The .py file includes debug flags, simu-

lation notes, simulation parameters, and file locations of the .sav, .dyd, and .ltd.py files. If all file

locations are valid, PY3 initializes AMQP queues, sends appropriate initialization information to

the IPY queue, starts the IPY_PSLTDSim process, and then waits for an IPY response message.

The IPY process begins by also importing required packages and setting references to cer-

tain imported packages as truly global variables. An IPYAMQP agent is created and linked to the

AMQP host generated by the PY3 process. This allows the IPY process to receive initialization

information from the PY3 AMQPmessage sent before the IPY process was evoked. IPY uses

the received initialization information to load the GE Python API which is then used to load the

.sav and .dyd into PSLF. Upon successful file loading in PSLF, a global reference to the object is

created.

4.3.3.2. Mirror Initialization

Once the PSLF specific files are loaded into the GE software, initialization of the Python

environment, or system model, may begin. The system model, referred to as the system mirror,

or just mirror, is a single object that almost all other Python objects are created inside. The mirror

is a single system object with a recursive data structure that allows any object the ability to ref-

40

erence any other object as long as they both share a reference to the mirror, and are themselves

referenced by the mirror. While the previous sentence may seem overly complicated, the use of

such a linking technique eliminated the need for global variables outside of imported packages

and also allowed for a single file containing all simulation data to be easily exported at the end of

a simulation.

The system mirror begins its initialization by creating placeholder variables for simulation

parameters, counters, and future agent collections. Specific case parameters, such as the number

of buses or generators, are collected from PSLF to be used later in model verification processes.

Before any specific power system object data is collected, an initial power flow is per-

formed to ensure that the loaded .sav is solvable, and to establish a steady state system operating

point. System agents, representing power system objects like buses and loads, are then added to

the mirror. The adding process queries PSLF for any buses in a specific area, checks each found

bus for any connected system components, and creates Python agents for relevant objects. The

querying and adding process continues until all system buses are accounted for. Each type of

found object is added to a running tally so that it can be compared with the expected values col-

lected earlier. Once all system buses have been found or accounted for, any created agents that

are intended to log data are collected into a list for simpler group stepping.

Each area tally of found agents is checked for coherency with expected values. Any in-

consistencies between the amount of found and expected objects will trigger warnings, but the

simulation will not stop if this occurs. This choice is due to differences between what is counted

in PSLF as a valid area object and PSLTDSim, which has the option to ignore islanded objects.

Dynamic model information from the specified .dyd file is then parsed. Collected ma-

chine or governor parameters are used to create PSLF model information objects (PMIOs) inside

the mirror. These PMIOs collect inertia H and MW cap for each machine as well as turbine type,

governor MW cap, and permanent droop R from governors. Other information, such as MVA

base, is also collected for both types of model. This process is required as the .dyd values for cer-

tain parameters overwrite pre-existing values that may be saved inside the .sav file.

41

Once the .dyd file is parsed and all PMIOs are created, the combined system inertia is

calculated. For each found generator PMIO, the associated mirror agent is located and updated

so that H and Mbase values match those found in the .dyd. The total system inertia is calculated

according to Equation 8 and user input settings are interpreted so that any requested changes,

such as scaling or alternative system inertia inputs, are handled correctly.

Mirror search dictionaries are then created to simplify and speed up agent searches and

the global slack generator is identified. The global slack generator is important to locate as its

variance from an expected value dictates accelerating power re-distribution and power-flow solu-

tion iterations during the simulation loop. Once search dictionaries are created, the IPY model is

fully initialized. The mirror is then saved to disk and an AMQPmessage is sent to PY3 with the

mirror location.

4.3.3.3. Dynamic Initialization Pre-Simulation Loop

After the handoff AMQPmessage is sent to PY3, IPY initializes values required for simu-

lation and awaits an AMQPmessage from PY3 before entering its simulation loop.

PY3 uses the information received from IPY to load the newly created system mirror so

that PY3 can perform further initializations such as creating any dynamic agents (e.g. governors),

calculating area frequency characteristics and maximum capacities, executing any .ltd code, and

creating the associated agents from the .ltd input.

PY3 dynamics are initialized to ensure R is on the correct PU base and any MW caps

from dyd parsing are applied. Additionally, any limiting values for governor output are accounted

for, and any deadbands or delays are created. Before entering the PY3 simulation loop, agents

that are designed to log values initialize blank lists for expected values.

42

4.3.4. Simulation Loop

Once simulation initialization is complete, and the system mirror is initialized, the sim-

ulation loop is executed. Figure 23 shows the major actions that are processed each time step,

but does not include details concerning AMQP communication. AMQP messages are sent and

received during the ‘Update’ blocks and the system mirrors are checked for coherency at these

times as well.

The simulation loop can be viewed as starting with the increment of simulation time

followed by the stepping of any dynamic agents. At the time of this writing, this process in-

cludes: integrating the combined swing equation to calculate a new system frequency, stepping

BA agents and any agents nested in a BA agent, stepping any definite time controllers, and finally

stepping all dynamic governor agents. As mentioned in Section 4.2.3, the method used for inte-

grating a new system frequency (solve_ivp) returns numerous values between the set integration

window, but only the last result is stored and used for further calculations. All dynamic agents

that use a staged dynamic calculation approach (such as governors) perform a full time step of

integration before passing output from one stage to the input of the next dynamic stage. Detailed

explanations of the numerical methods employed to accomplish these tasks is presented in Ap-

pendix 9. After all dynamic agents have been stepped, generator electrical power is set equal to

generator mechanical power. This step is the beginning of forming the next power-flow solution

initial conditions.

Perturbance agents are then stepped. This means that any steps, ramps, or noise type

events are performed, agents in both system mirrors are updated, and any related system value

is changed accordingly. For example, the tripping of a generator requires the system inertia to

change as well as the amount of power in the system. The variable ∆Ppert is used to keep track

of system power changes. Additionally, BA action takes place at this time.

After all perturbance related actions are executed, accelerating power is calculated and

distributed to the system according to generator inertia. The PSLF system is updated with any re-

quired values and a power-flow solution is attempted. If the solution diverges the simulation ends

43

Run Simulation Initialize
PSLTDSim

t = t + tstep

Step Dynamic Agents

Pe,i(t) = Pm,i(t)

Step Perturbance Agents

Σ∆Ppert(t), ΣPm(t)

Pacc,sys = ΣPm(t)−ΣPe(t−1)−Σ∆Ppert(t)

Distribrute Pacc,sys in PSLTDSim

Update PSLF

Run Power-Flow

Convergence?End Simulation

Slack Error?
Distribute Slack Error
Pacc,sys = PSlackError

Update PSLTDSim

ΣPe,i(t)

Step Logging Agents

t < tend ?

Output Data

Ensure PSLF has newest
Pe,EST,i and Vi

Use most recent power-flow
solutions of: Pe,i Vi δi Qi

Agents responsible
for updating any
altered parameter

Apply nuermical
methods to ODEs

Begin next Pe,i(t) estimate

Agents responsible
for keeping track
of history values.

Pe,EST,i = Pe,i + Pacc,sys
Hi

Hsys

No

Yes

Unacceptable

Acceptable

True (Continue Simulation)

False (End Simulation)

Figure 23: Simulation time step flowchart.

and any collected data is output. If the solution does not diverge, the magnitude of any slack error

is checked against the slack error tolerance. If the slack error is larger than the slack tolerance,

the error is redistributed to the system until the resulting error is within tolerance or the solution

diverges. If the power-flow solution diverges during accelerating power redistribution, the simu-

44

lation ends and any collected data is output.

Once the system has converged to a point where the slack error is less than the slack tol-

erance, PSLF values for generator real and reactive power and bus voltage and angle are used to

update the PY3 mirror. The electric power output of the system is summed for use in calculating

system accelerating power in the next time step. Any logging agents are then stepped and data for

that particular simulation time step are recorded. Finally, system time is checked and if the sim-

ulation is complete, any collected data is output. If the simulation is not complete, the simulation

time is incremented by the time step and the cycle repeats itself again.

4.3.5. Simulation Outputs

Pre-defined data is collected by any agent with logging ability. Current agents with this

ability are machines, loads, shunts, branches, transformers, areas, balancing authorities, and the

system mirror itself. When a simulation is complete, the final system mirror is exported via the

Python package shelve and options exist to export some data as a MATLAB .mat file. The .mat

output is accomplished by combining various agent log dictionaries into a single dictionary. As

such, only data deemed useful for validating the software is included.

It should be noted that numerous plot functions were created to easier visualize and vali-

date python mirror data. Python plot functions are located in the PSLTDSim package plot folder,

while the MATLAB validation plots are located in the GitHub repository only.

45

4.4. Software Validation

PSLTDSim was validated by comparing results from identical simulation scenarios per-

formed in PSDS and PSLTDSim. For clarification, data from PSLTDSim, or simulations per-

formed in PSLTDSim, are described as LTD data or simulations, respectively. Compared val-

ues of interest include: system frequency, generator mechanical power, generator real power,

bus voltage magnitude, bus voltage angle, generator reactive power, branch current, branch real

power flow, and branch reactive power flow. The following sections describe the plots used for

validation, present results from various scenarios, and provide a validation summary.

4.4.1. Validation Plots Explained

Plots were used to present simulation validation data. Due to the volume of information,

various types of plots were created. Figure 24 shows the three types of plots used for the valida-

tion process. Because of the different time steps used in PSDS and LTD, when computing differ-

ence data between the two simulations, the same LTD value was held for multiple comparisons.

For example, any PSDS(t = 2.x) data was compared to the corresponding LTD(t = 2) data point.

Time [sec]

0 5 10

M
e

c
h

a
n

ic
a

l
P

o
w

e
r

[M
W

]

×104

1.104

1.106

1.108

1.11

1.112

1.114
Comparison Plot

PSDS

LTD

Time [sec]

0 5 10

P
o

w
e

r
D

if
fe

re
n

c
e

 [
M

W
]

-10

-5

0

5

10
Difference Plot

Time [sec]

0 5 10

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

0

0.02

0.04

0.06

0.08

0.1
Percent Difference Plot

Figure 24: Validation plot examples.

4.4.1.1. Comparison Plot

The most basic comparison plot simply graphs data from one simulation environment on

top of another. Two examples of a comparison plot are shown in Figure 25. As there can be many

comparisons in larger systems, a select comparison plot was used to show specific comparisons.

While comparison plots are useful for quick validation, they do not provide substantive quantita-

46

0 10 20 30 40 50 60

Time [sec]

50

100

150

200

250

300

P
o
w

e
r

[M
W

]

Comparison of Mechanical Power Output

Case: SixMachineStep1

PSDS 1:1

PSDS 2:2

PSDS 2:2

PSDS 3:3

PSDS 4:4

LTD A1.S1

LTD A1.G2.1

LTD A1.G2.2

LTD A2.G3.1

LTD A2.G4.1

LTD A2.G5.1

0 10 20 30 40 50 60

Time [sec]

260

270

280

290

300

P
o
w

e
r

[M
W

]

Select Comparison of Mechanical Power

Case: SixMachineStep1

PSLTDSim A1.S1

PSLTDSim A2.G4.1

PSDS 1:1

PSDS 4:4

Figure 25: Comparison plot examples.

tive data. Additionally, as alluded to earlier, when comparing many values plots become difficult

to interpret. As a result, comparison plots are only used for showing frequency and select values

of mechanical power, real power, voltage magnitude and angle, and reactive power.

4.4.1.2. Difference Plot

To allow for more easily compared values and provide quantitative data, a difference plot

was created. Figure 26 provides an example of a difference plot. Since individual comparisons

seemed less important, all data comparisons were plotted in grey with an absolute average plotted

in black.

0 20 40 60 80 100 120

Time [sec]

-0.04

-0.02

0

0.02

0.04

A
n

g
le

 [
d

e
g

re
e

s
]

Generator Voltage Angle Difference

Case: SixMachineRamp1

6 Comparisons

Average Absolute Difference

Figure 26: Difference plot example.

Equation 14 describes the difference calculation between PSDS and LTD variables.

Differencedata = PSDSdata − LTDdata (14)

47

The absolute average was calculated using Equation 15 where datai represents a time series of

difference data for a particular value of interest and n is the total number of comparisons made.

Averageabs =

∑n
i |datai|
n

(15)

While difference plots are more quantitative than comparison plots, there is no sense of scale

when comparing two values. As power systems can greatly vary in size, a subjectively insignifi-

cant difference in one system may be very significant in another system.

4.4.1.3. Percent Difference Plot

To account for the wide variety of data magnitudes being compared, a percent difference

plot was created. Figure 27 shows two examples of a percent difference plot.

0 10 20 30 40 50 60 70 80 90

Time [sec]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

105

Generator Voltage Angle Percent Difference

Case: miniWECCstep

34 Comparisons

Average Absolute Percent Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

-100

-50

0

50

100

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Generator Voltage Angle Percent Difference

Case: miniWECCstep

34 Comparisons

Average Absolute Percent Difference

Max = 22607%, Min = -285759%

Figure 27: Percent difference plot examples.

Similar to the difference plot, individual comparisons were not deemed as important a cumula-

tive comparison, so the same plotting scheme is repeated. The percent difference was calculated

according to Equation 16.

%diff =
|PSDSdata − LTDdata|

PSDSdata+LTDdata

2

× 100% (16)

When using percent difference, it should be noted that if one value is positive, and the other neg-

ative, results may be misleading. More specifically, as the average of the two numbers being

compared approaches zero, so does the denominator of Equation 16. Such a situation may lead to

a divide by zero error or, more likely, a very large percent difference. To alleviate such data ob-

48

fuscation, the y-axis was scaled if the average absolute percent difference was over 150% and the

maximum and minimum percent differences are listed in the legend. This is shown in the right

hand plot of Figure 27.

4.4.1.4. Weighted Frequency Plot

Frequency comparisons were used to validate the single system frequency assumption

calculated by PSLTDSim. Comparison of frequency data from PSDS to LTD was simplified by

calculating a single weighted PSDS frequency fw based on generator inertia. In a system with N

generators

fw =
N∑
i=1

fi
HPU,iMbase,i

Hsys

(17)

where fi is a full time series of machine i’s frequency, and Hsys is calculated according to Equa-

tion 8.

Figure 28 shows all bus frequencies plotted in grey, the calculated weighted frequency in

black, and the single system frequency calculated by PSLTDSim in magenta. It is worth pointing

out that non-generator bus frequencies are ignored in the weighted system frequency because a

they lack inertia.

0 20 40 60 80 100 120 140 160 180

Time [sec]

59.97

59.975

59.98

59.985

59.99

59.995

60

F
re

q
u
e
n
c
y
 [
H

z
]

System Frequency

Case: miniWECCgenTrip027

120 PSDS

Weighted PSDS

PSLTDSim

Figure 28: Frequency comparison plot example.

49

4.4.2. Six Machine System

A two area six machine system used for validation is shown in Figure 29. The system is

based off the Kundur four machine system presented in [38] with a some modifications.

Area 2Area 1

452

1 36 7 8 9 10 11
G1 G3

G4G5G2 ‘1’ G2 ‘2’

Figure 29: Six machine system.

The most noticeable difference is the addition of two generators and switchable shunts on bus 8

and 9. The generators were added to test power plant style AGC dispatching and multiple gener-

ators per bus. While placing multiple generators per bus is not a standard or recommended mod-

eling technique, it is present in the full WECC PSLF model and as such, should be validated in

PSLTDSim. Detailed six machine system model specifications are presented in Appendix 10.

4.4.2.1. Simulated Scenario Descriptions

A load step, a load ramp, and a generator trip were simulated using the six machine model.

The simplest validation test, a stepping of load, occurred at t = 2 when the load on bus 9 was in-

creased by 75 MW. To test longer perturbances, a 40 second 75 MW load ramp of the load on bus

9 was simulated. Due to the LTD one second time step, the ramp is equivalent to forty 1.875 MW

steps taking place every second from t = 2 to t = 42. Finally, to test the handling of inertia and

a slightly larger step perturbance, generator 5, which was initially generating 90 MW, was tripped

at t = 2.

50

4.4.2.2. Frequency Results

System frequency comparison results are presented for each simulated scenario in Figures

30, 31, and 32. The load step results show a maximum 18 mHz difference that is reduced below

2.5 mHz by t = 25. The system frequency difference during the ramp test never exceeds more

than 1.4 mHz with peaks at the start and end of the ramp event. Similar to the load step result, the

generator trip event had a maximum difference of 30 mHz that was reduced below 2.5 mHz by

t = 25 and essentially matched the PSDS frequency. The larger frequency peak difference is due

to the generator trip perturbance being 15 MW larger than the load step perturbance.

0 10 20 30 40 50 60

Time [sec]

59.8

59.85

59.9

59.95

60

60.05

F
re

q
u

e
n

c
y
 [

H
z
]

System Frequency

Case: SixMachineStep1

11 PSDS

Weighted PSDS

PSLTDSim

0 10 20 30 40 50 60

Time [sec]

0

0.005

0.01

0.015

0.02

F
re

q
u

e
n

c
y
 [

H
z
]

Absolute Frequency Difference

Case: SixMachineStep1

Figure 30: Six machine load step system frequency comparison.

0 20 40 60 80 100 120

Time [sec]

59.92

59.94

59.96

59.98

60

60.02

F
re

q
u

e
n

c
y
 [

H
z
]

System Frequency

Case: SixMachineRamp1

11 PSDS

Weighted PSDS

PSLTDSim

0 20 40 60 80 100 120

Time [sec]

0

0.2

0.4

0.6

0.8

1

1.2

F
re

q
u
e
n
c
y
 [
H

z
]

10-3

Absolute Frequency Difference

Case: SixMachineRamp1

Figure 31: Six machine load ramp system frequency comparison.

51

0 10 20 30 40 50 60

Time [sec]

59.8

59.85

59.9

59.95

60

60.05

F
re

q
u

e
n

c
y
 [

H
z
]

System Frequency

Case: SixMachineTrip0

11 PSDS

Weighted PSDS

PSLTDSim

0 10 20 30 40 50 60

Time [sec]

0

0.005

0.01

0.015

0.02

0.025

0.03

F
re

q
u

e
n

c
y
 [

H
z
]

Absolute Frequency Difference

Case: SixMachineTrip0

Figure 32: Six machine generator trip system frequency comparison.

4.4.2.3. Generator Mechanical Power Results

Generator mechanical power comparison results are presented for each simulated scenario

in Figures 33, 34, and 35. It should be noted that only generators equipped with governors are

compared in this section as machines without governors are not modeled to have any changes

in mechanical power. Select comparison plots give the impression that PSLTDSim results fol-

low PSDS results well, but provide not quantitative information. Similar to frequency results, the

ramp event had the smallest difference from PSDS never exceeding 0.5 MW, or 0.2% difference.

Unlike the frequency results, most ramp mechanical power differences happen during the ramp

with no large peaks at the beginning or end of the event. Further, there is a small steady state er-

ror present after the ramp is complete. Both step type events have an immediate peak difference

of 5 to 7 MW (2.5 to 3.5 percent difference) that is reduced to roughly zero after 20 seconds.

0 10 20 30 40 50 60

Time [sec]

260

270

280

290

300

P
o
w

e
r

[M
W

]

Select Comparison of Mechanical Power

Case: SixMachineStep1

PSLTDSim A1.S1

PSLTDSim A2.G3.1

PSDS 1:1

PSDS 3:3

0 10 20 30 40 50 60

Time [sec]

-4

-2

0

2

4

6

P
o
w

e
r

[M
W

]

Mechanical Power Difference

Case: SixMachineStep1

5 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

0

0.5

1

1.5

2

2.5

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Mechanical Power Percent Difference

Case: SixMachineStep1

5 Comparisons

Average Absolute Percent Difference

Figure 33: Six machine load step mechanical power comparison.

52

0 20 40 60 80 100 120

Time [sec]

260

270

280

290

300

P
o
w

e
r

[M
W

]
Select Comparison of Mechanical Power

Case: SixMachineRamp1

PSLTDSim A1.S1

PSLTDSim A2.G3.1

PSDS 1:1

PSDS 3:3

0 20 40 60 80 100 120

Time [sec]

-0.2

0

0.2

0.4

0.6

P
o
w

e
r

[M
W

]

Mechanical Power Difference

Case: SixMachineRamp1

5 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

0

0.05

0.1

0.15

0.2

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Mechanical Power Percent Difference

Case: SixMachineRamp1

5 Comparisons

Average Absolute Percent Difference

Figure 34: Six machine load ramp mechanical power comparison.

0 10 20 30 40 50 60

Time [sec]

260

270

280

290

300

310

P
o
w

e
r

[M
W

]

Select Comparison of Mechanical Power

Case: SixMachineTrip0

PSLTDSim A1.S1

PSLTDSim A2.G3.1

PSDS 1:1

PSDS 3:3

0 10 20 30 40 50 60

Time [sec]

-5

0

5

10
P

o
w

e
r

[M
W

]

Mechanical Power Difference

Case: SixMachineTrip0

5 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

0

1

2

3

4

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Mechanical Power Percent Difference

Case: SixMachineTrip0

5 Comparisons

Average Absolute Percent Difference

Figure 35: Six machine generator trip mechanical power comparison.

4.4.2.4. Generator Real Power Results

Generator real power comparison results are presented for each simulated scenario in Fig-

ures 36, 37, and 38. All six generators are compared in this section as real power is calculated

via the power-flow solution and can change every step. Averaged results are very similar to the

mechanical power results though slightly more transient. In the step type events, individual dif-

ference peaks are nearly double the mechanical power peak differences. In all cases, the differ-

ence approaches zero approximately 20 seconds after each perturbance is complete. The PSDS

simulation shows a strange peak of activity during the ramp case near t = 110 which is over 40

seconds after the event. Select comparisons show that PSDS results caputre more oscilatory char-

acteristics than PSLTDSim results. However, PSLTDSim output values tend to follow the center

of oscillation from PSDS simulation data.

53

0 10 20 30 40 50 60

Time [sec]

260

270

280

290

300

P
o
w

e
r

[M
W

]
Select Comparison of Real Power

Case: SixMachineStep1

PSLTDSim A1.S1

PSLTDSim A2.G3.1

PSDS 1:1

PSDS 3:3

0 10 20 30 40 50 60

Time [sec]

-10

-5

0

5

10

P
o

w
e
r

[M
W

]

Real Power Difference

Case: SixMachineStep1

6 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

0

2

4

6

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Real Power Percent Difference

Case: SixMachineStep1

6 Comparisons

Average Absolute Percent Difference

Figure 36: Six machine load step real power comparison.

0 20 40 60 80 100 120

Time [sec]

260

270

280

290

300

P
o
w

e
r

[M
W

]

Select Comparison of Real Power

Case: SixMachineRamp1

PSLTDSim A1.S1

PSLTDSim A2.G3.1

PSDS 1:1

PSDS 3:3

0 20 40 60 80 100 120

Time [sec]

-0.4

-0.2

0

0.2

0.4

P
o
w

e
r

[M
W

]
Real Power Difference

Case: SixMachineRamp1

6 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

0

0.1

0.2

0.3

0.4

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Real Power Percent Difference

Case: SixMachineRamp1

6 Comparisons

Average Absolute Percent Difference

Figure 37: Six machine load ramp real power comparison.

0 10 20 30 40 50 60

Time [sec]

260

270

280

290

300

310

P
o
w

e
r

[M
W

]

Select Comparison of Real Power

Case: SixMachineTrip0

PSLTDSim A1.S1

PSLTDSim A2.G3.1

PSDS 1:1

PSDS 3:3

0 10 20 30 40 50 60

Time [sec]

-10

-5

0

5

10

P
o
w

e
r

[M
W

]

Real Power Difference

Case: SixMachineTrip0

6 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

0

1

2

3

4

5
P

e
rc

e
n

t
D

if
fe

re
n

c
e

 [
%

]

Real Power Percent Difference

Case: SixMachineTrip0

6 Comparisons

Average Absolute Percent Difference

Figure 38: Six machine generator trip real power comparison.

4.4.2.5. Voltage Magnitude Results

Bus voltage magnitude comparison results are presented for each simulated scenario in

Figures 39, 40, and 41. Again, select comparison results plots tend to match well, with the excep-

tion of transient dynamics. Since voltage is presented in PU, percent difference plots appear as

a scaled absolute version of the difference plots. The largest bus voltage difference, of approxi-

mately 1.5%, occurred during the generator trip test. As with the load step test, simulation results

converge after t = 20. Voltages gradually drift during the ramp event, but stop once the event

is over. The gradual voltage change is believed to be due to the difference in exciter modeling

between PSDS and PSLTDSim.

54

0 20 40 60

Time [sec]

0.94

0.945

0.95

0.955

V
o
lt
a
g
e
 [
p
u
]

Select Comparison of Bus Voltage

Case: SixMachineStep1

PSLTDSim A1.x7

PSLTDSim A2.x11

PSDS 7:7

PSDS 11:11

0 10 20 30 40 50 60

Time [sec]

-6

-4

-2

0

2

4

V
o
lt
a
g
e
 [
p
u
]

10-3

Bus Voltage Difference

Case: SixMachineStep1

11 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

0

0.2

0.4

0.6

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Bus Voltage Percent Difference

Case: SixMachineStep1

11 Comparisons

Average Absolute Percent Difference

Figure 39: Six machine load step voltage comparison.

0 20 40 60 80 100 120

Time [sec]

0.94

0.945

0.95

0.955

V
o
lt
a
g
e
 [
p
u
]

Select Comparison of Bus Voltage

Case: SixMachineRamp1

PSLTDSim A1.x7

PSLTDSim A2.x11

PSDS 7:7

PSDS 11:11

0 20 40 60 80 100 120

Time [sec]

-1

-0.5

0

0.5

1

V
o
lt
a
g
e
 [
p
u
]

10-3

Bus Voltage Difference

Case: SixMachineRamp1

11 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

0

0.02

0.04

0.06

0.08

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Bus Voltage Percent Difference

Case: SixMachineRamp1

11 Comparisons

Average Absolute Percent Difference

Figure 40: Six machine load ramp voltage comparison.

0 10 20 30 40 50 60

Time [sec]

0.92

0.94

0.96

V
o
lt
a
g
e
 [
p
u
]

Select Comparison of Bus Voltage

Case: SixMachineTrip0

PSLTDSim A1.x7

PSLTDSim A2.x11

PSDS 7:7

PSDS 11:11

0 10 20 30 40 50 60

Time [sec]

-0.02

-0.01

0

0.01

0.02

V
o
lt
a
g
e
 [
p
u
]

Bus Voltage Difference

Case: SixMachineTrip0

11 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

0

0.5

1

1.5
P

e
rc

e
n

t
D

if
fe

re
n

c
e

 [
%

]

Bus Voltage Percent Difference

Case: SixMachineTrip0

11 Comparisons

Average Absolute Percent Difference

Figure 41: Six machine generator trip voltage comparison.

4.4.2.6. Voltage Angle Results

Bus voltage angle comparison results are presented for each simulated scenario in Fig-

ures 42, 43, and 44. The step type perturbances caused larger oscillatory differences than the load

ramp event, but steady state angle differences converge near zero. Maximum perecent difference

during the generator trip reached nearly 20% while the load step and ramp had maximums of ap-

proximately 7.0% and 0.6% respectively.

55

0 10 20 30 40 50 60

Time [sec]

-20

-10

0

10

20

G
e
n
e
ra

to
r

A
n

g
le

 [
d

e
g
re

e
s
]

Select Comparison of Voltage Angle

Case: SixMachineStep1

PSLTDSim A1.G2

PSLTDSim A2.G5

PSDS 2:2

PSDS 5:5

0 10 20 30 40 50 60

Time [sec]

-1

-0.5

0

0.5

1

A
n
g
le

 [
d
e
g
re

e
s
]

Generator Voltage Angle Difference

Case: SixMachineStep1

6 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

-5

0

5

10

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Generator Voltage Angle Percent Difference

Case: SixMachineStep1

6 Comparisons

Average Absolute Percent Difference

Figure 42: Six machine load step voltage angle comparison.

0 20 40 60 80 100 120

Time [sec]

-20

-10

0

10

20

G
e

n
e

ra
to

r
A

n
g

le
 [

d
e

g
re

e
s
]

Select Comparison of Voltage Angle

Case: SixMachineRamp1

PSLTDSim A1.G2

PSLTDSim A2.G5

PSDS 2:2

PSDS 5:5

0 20 40 60 80 100 120

Time [sec]

-0.04

-0.02

0

0.02

0.04
A

n
g
le

 [
d
e
g
re

e
s
]

Generator Voltage Angle Difference

Case: SixMachineRamp1

6 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

-0.4

-0.2

0

0.2

0.4

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Generator Voltage Angle Percent Difference

Case: SixMachineRamp1

6 Comparisons

Average Absolute Percent Difference

Figure 43: Six machine load ramp voltage angle comparison.

0 10 20 30 40 50 60

Time [sec]

-20

-10

0

10

20

G
e

n
e

ra
to

r
A

n
g
le

 [
d
e

g
re

e
s
]

Select Comparison of Voltage Angle

Case: SixMachineTrip0

PSLTDSim A1.G2

PSLTDSim A2.G5

PSDS 2:2

PSDS 5:5

0 10 20 30 40 50 60

Time [sec]

-2

-1

0

1

2

A
n
g
le

 [
d
e
g
re

e
s
]

Generator Voltage Angle Difference

Case: SixMachineTrip0

6 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

-10

0

10

20
P

e
rc

e
n

t
D

if
fe

re
n

c
e

 [
%

]

Generator Voltage Angle Percent Difference

Case: SixMachineTrip0

6 Comparisons

Average Absolute Percent Difference

Figure 44: Six machine generator trip voltage angle comparison.

4.4.2.7. Generator Reactive Power Results

Generator reactive power comparison results are presented for each simulated scenario in

Figures 45, 46, and 47. Maximum reactive power percent differences for the generator trip, load

step, and ramp events were 8.0%, 5.0%, and 0.8% respectively. As in previous comparisons, the

step events had large oscillatory differences immediately following the event, but have very low

steady state error by t = 20. The ramp event had less than 1.0% differences during the event

and less than 0.2% difference in the steady state. Again, select comparison plots show that output

values are generally the same.

56

0 10 20 30 40 50 60

Time [sec]

80

85

90

95

100

105

R
e
a
c
ti
v
e
 P

o
w

e
r

[M
V

A
R

]
Select Comparison of Reactive Power

Case: SixMachineStep1

PSLTDSim A1.S1

PSLTDSim A2.G3.1

PSDS 1:1

PSDS 3:3

0 10 20 30 40 50 60

Time [sec]

-4

-2

0

2

4

6

P
o
w

e
r

[M
V

A
R

]

Reactive Power Difference

Case: SixMachineStep1

6 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

0

1

2

3

4

5

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Reactive Power Percent Difference

Case: SixMachineStep1

6 Comparisons

Average Absolute Percent Difference

Figure 45: Six machine load step reactive power comparison.

0 20 40 60 80 100 120

Time [sec]

80

85

90

95

100

105

R
e
a
c
ti
v
e
 P

o
w

e
r

[M
V

A
R

]

Select Comparison of Reactive Power

Case: SixMachineRamp1

PSLTDSim A1.S1

PSLTDSim A2.G3.1

PSDS 1:1

PSDS 3:3

0 20 40 60 80 100 120

Time [sec]

-0.2

0

0.2

0.4

0.6

P
o
w

e
r

[M
V

A
R

]
Reactive Power Difference

Case: SixMachineRamp1

6 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

0

0.2

0.4

0.6

0.8

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Reactive Power Percent Difference

Case: SixMachineRamp1

6 Comparisons

Average Absolute Percent Difference

Figure 46: Six machine load ramp reactive power comparison.

0 10 20 30 40 50 60

Time [sec]

80

90

100

110

120

130

R
e
a
c
ti
v
e
 P

o
w

e
r

[M
V

A
R

]

Select Comparison of Reactive Power

Case: SixMachineTrip0

PSLTDSim A1.S1

PSLTDSim A2.G3.1

PSDS 1:1

PSDS 3:3

0 10 20 30 40 50 60

Time [sec]

-5

0

5

10

P
o
w

e
r

[M
V

A
R

]

Reactive Power Difference

Case: SixMachineTrip0

6 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

0

2

4

6

8
P

e
rc

e
n

t
D

if
fe

re
n

c
e

 [
%

]

Reactive Power Percent Difference

Case: SixMachineTrip0

6 Comparisons

Average Absolute Percent Difference

Figure 47: Six machine generator trip reactive power comparison.

4.4.2.8. Branch Current Results

Branch current comparison results are presented for each simulated scenario in Figures

48, 49, and 50. Select comparisons are not presented for branch flow results. Maximum branch

current percent differences for the generator trip, load step, and ramp events were 8.5%, 7.0%,

and 1.2% respectively. Again, largest differences occur immediately following the event while

steady state differences are near zero.

57

0 10 20 30 40 50 60

Time [sec]

-40

-20

0

20

40

60

C
u
rr

e
n
t
[A

]
Branch Current Flow Difference

Case: SixMachineStep1

5 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

0

1

2

3

4

5

6

7

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Branch Current Flow Percent Difference

Case: SixMachineStep1

5 Comparisons

Average Absolute Percent Difference

Figure 48: Six machine load step branch current flow comparison.

0 20 40 60 80 100 120

Time [sec]

-2

0

2

4

6

8

C
u
rr

e
n
t
[A

]

Branch Current Flow Difference

Case: SixMachineRamp1

5 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

0

0.2

0.4

0.6

0.8

1

1.2
P

e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Current Flow Percent Difference

Case: SixMachineRamp1

5 Comparisons

Average Absolute Percent Difference

Figure 49: Six machine load ramp branch current flow comparison.

0 10 20 30 40 50 60

Time [sec]

-40

-20

0

20

40

60

80

100

C
u

rr
e

n
t

[A
]

Branch Current Flow Difference

Case: SixMachineTrip0

5 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

0

2

4

6

8

10

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Current Flow Percent Difference

Case: SixMachineTrip0

5 Comparisons

Average Absolute Percent Difference

Figure 50: Six machine generator trip branch current flow comparison.

4.4.2.9. Branch Real Power Flow Results

Branch real power flow comparison results are presented for each simulated scenario in

Figures 51, 52, and 53. With results very similar to branch current flow, branch real power flow

58

percent difference maximums for the generator trip, load step, and ramp events were 8.5%, 7.0%,

and 1.2% respectively. Differences in the steady state are near zero.

0 10 20 30 40 50 60

Time [sec]

-10

-5

0

5

10

P
o
w

e
r

[M
W

]

Branch Real Power Flow Difference

Case: SixMachineStep1

5 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

0

1

2

3

4

5

6

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Branch Real Power Flow Percent Difference

Case: SixMachineStep1

5 Comparisons

Average Absolute Percent Difference

Figure 51: Six machine load step branch real power flow comparison.

0 20 40 60 80 100 120

Time [sec]

-0.5

0

0.5

1

1.5

P
o
w

e
r

[M
W

]

Branch Real Power Flow Difference

Case: SixMachineRamp1

5 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

0

0.2

0.4

0.6

0.8

1

1.2

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Real Power Flow Percent Difference

Case: SixMachineRamp1

5 Comparisons

Average Absolute Percent Difference

Figure 52: Six machine load ramp branch real power flow comparison.

0 10 20 30 40 50 60

Time [sec]

-15

-10

-5

0

5

10

15

P
o
w

e
r

[M
W

]

Branch Real Power Flow Difference

Case: SixMachineTrip0

5 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

0

1

2

3

4

5

6

7

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Branch Real Power Flow Percent Difference

Case: SixMachineTrip0

5 Comparisons

Average Absolute Percent Difference

Figure 53: Six machine generator trip branch real power flow comparison.

59

4.4.2.10. Branch Reactive Power Flow Results

Branch reactive power flow comparison results are presented for each simulated scenario

in Figures 54, 55, and 56. While the timing of value differences in branch reactive power flow

is similar to current and real power flow, the magnitude of difference is not. Maximum branch

reactive power flow percent differences for the generator trip, load step, and ramp events were

45.0%, 45.0%, and 5.0% respectively. These large differences may be due to the size of the sys-

tem and actual MVAR flow on lines being low. Despite the large peak differences, steady state

values from step events approaches zero while the ramp event had steady state differences of

nearly ±2.0%.

0 10 20 30 40 50 60

Time [sec]

-4

-2

0

2

4

6

P
o
w

e
r

[M
V

A
R

]

Branch Reactive Power Flow Difference

Case: SixMachineStep1

5 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

-20

-10

0

10

20

30

40

50
P

e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Reactive Power Flow Percent Difference

Case: SixMachineStep1

5 Comparisons

Average Absolute Percent Difference

Figure 54: Six machine load step branch reactive power flow comparison.

0 20 40 60 80 100 120

Time [sec]

-0.4

-0.2

0

0.2

0.4

0.6

P
o
w

e
r

[M
V

A
R

]

Branch Reactive Power Flow Difference

Case: SixMachineRamp1

5 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

-4

-2

0

2

4

6

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Reactive Power Flow Percent Difference

Case: SixMachineRamp1

5 Comparisons

Average Absolute Percent Difference

Figure 55: Six machine load ramp branch reactive power flow comparison.

60

0 10 20 30 40 50 60

Time [sec]

-10

-5

0

5

10

P
o

w
e
r

[M
V

A
R

]
Branch Reactive Power Flow Difference

Case: SixMachineTrip0

5 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60

Time [sec]

-60

-40

-20

0

20

40

P
e
rc

e
n
t
D

if
fe

re
n

c
e
 [
%

]

Branch Reactive Power Flow Percent Difference

Case: SixMachineTrip0

5 Comparisons

Average Absolute Percent Difference

Figure 56: Six machine generator trip branch reactive power flow comparison.

4.4.2.11. Six Machine Result Summary

Nearly all percent differences were less than 10.0% and approached zero in the long-term.

Calculated system frequency never exceeded a ±3.0 mHz difference from the PSDS weighted

frequency. Smaller perturbances, such as the ramp event, match PSDS results better than the

large step event of a generator trip. Reactive power flow differences for step type events had the

largest peak differences from PSDS simulation. Minor variations in voltage magnitude and an-

gle caused by ideal exciter assumptions are believed to be the main contributor to reactive power

flow difference.

61

4.4.3. Mini WECC System

A larger system model was used to test the scaling ability of PSLTDSim . The ‘mini

WECC’, shown in Figure 57, is a 120 bus 34 generator system model created in PSLF. Total gen-

eration of 102,050 MW supplies 100,685 MW of load over 104 branch sections. All governors

in the miniWECC were modeled with the tgov1. Further details about the creation and use of the

miniWECC may be found in [64], [73], and [31].

The mini WECC was modified from the original configuration to include three areas. The

importance of these area definitions becomes more clear in Section 5.4.1. Additionaly, since the

mini WECC was designed to test heavy loading and transient type events, all loads were reduced

by 5%. To keep the voltage profile similar to the original design, reactive shunts were also re-

duced by 5%.

4.4.3.1. Simulated Scenario Descriptions

Similar to the six machine tests, a load step, load ramp, and generator trip were simulated.

At t = 2 the loads on buses 16, 21, and 26 were each increased by 400 MW. The ramp pertur-

bance acts on these same loads a total of 400 MW, but over 40 seconds. The ramp is equivalent

to forty 30 MW steps taking place every second from t = 2 to t = 42. Initially generating ≈200

MW, generator 27 was tripped at t = 2. Unlike the six machine scenario, in which the genera-

tor trip was ‘larger’ than the load step; the mini WECC load step is double the magnitude of the

simulated generator trip.

62

Figure 57: Mini WECC system adapted from [31].

63

4.4.3.2. Frequency Results

System frequency comparison results are presented for each simulated scenario in Figures

58, 59, and 60. The simulated step events caused the PSDS frequencies to oscillate. The genera-

tor trip oscillations appear damped while the load step oscillations do not. The weighted system

frequency of PSDS appears to follow the center of individual frequency oscillation. Similar to six

machine results, the ramp event most closely tracks PSDS behavior. For all cases, absolute fre-

quency difference maximums never exceed 10.0 mHz and are less than 1.0 mHz in the long-term.

0 10 20 30 40 50 60 70 80 90

Time [sec]

59.8

59.85

59.9

59.95

60

60.05

F
re

q
u

e
n

c
y
 [

H
z
]

System Frequency

Case: miniWECCstep

120 PSDS

Weighted PSDS

PSLTDSim

0 10 20 30 40 50 60 70 80 90

Time [sec]

0

0.002

0.004

0.006

0.008

0.01

F
re

q
u

e
n

c
y
 [

H
z
]

Absolute Frequency Difference

Case: miniWECCstep

Figure 58: Mini WECC load step system frequency comparison.

0 20 40 60 80 100 120

Time [sec]

59.94

59.95

59.96

59.97

59.98

59.99

60

F
re

q
u

e
n

c
y
 [

H
z
]

System Frequency

Case: miniWECCramp

120 PSDS

Weighted PSDS

PSLTDSim

0 20 40 60 80 100 120

Time [sec]

0

0.2

0.4

0.6

0.8

1

1.2

F
re

q
u
e
n
c
y
 [
H

z
]

10-3

Absolute Frequency Difference

Case: miniWECCramp

Figure 59: Mini WECC load ramp system frequency comparison.

64

0 10 20 30 40 50 60 70 80 90

Time [sec]

59.97

59.975

59.98

59.985

59.99

59.995

60

F
re

q
u

e
n

c
y
 [

H
z
]

System Frequency

Case: miniWECCgenTrip027

120 PSDS

Weighted PSDS

PSLTDSim

0 10 20 30 40 50 60 70 80 90

Time [sec]

0

0.5

1

1.5

2

F
re

q
u

e
n

c
y
 [

H
z
]

10-3

Absolute Frequency Difference

Case: miniWECCgenTrip027

Figure 60: Mini WECC generator trip system frequency comparison.

4.4.3.3. Generator Mechanical Power Results

Generator mechanical power comparison results are presented for each simulated scenario

in Figures 61, 62, and 63. The ramp and generator trip events both had MW differences of less

than 10 MW (1.0% difference), with averages approaching zero in the long-term. The larger load

step caused a MW difference of approximately 70 MW (5.0% difference). In both the step type

events, the system starts to swing and doesn’t completely come to rest by the end of simulated

time. However, as the select comparison plots show, PSLTDSim results tend to follow the oscil-

lating values well.

0 20 40 60 80

Time [sec]

300

350

400

450

500

P
o
w

e
r

[M
W

]

Select Comparison of Mechanical Power

Case: miniWECCstep

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80

Time [sec]

-50

0

50

100

P
o
w

e
r

[M
W

]

Mechanical Power Difference

Case: miniWECCstep

21 Comparisons

Average Absolute Difference

0 20 40 60 80

Time [sec]

0

1

2

3

4

5

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Mechanical Power Percent Difference

Case: miniWECCstep

21 Comparisons

Average Absolute Percent Difference

Figure 61: Mini WECC load step mechanical power comparison.

0 20 40 60 80 100 120

Time [sec]

350

400

450

500

P
o
w

e
r

[M
W

]

Select Comparison of Mechanical Power

Case: miniWECCramp

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80 100 120

Time [sec]

-5

0

5

10

P
o
w

e
r

[M
W

]

Mechanical Power Difference

Case: miniWECCramp

21 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

0

0.5

1

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Mechanical Power Percent Difference

Case: miniWECCramp

21 Comparisons

Average Absolute Percent Difference

Figure 62: Mini WECC load ramp mechanical power comparison.

65

0 20 40 60 80

Time [sec]

340

360

380

400

420

440

P
o
w

e
r

[M
W

]
Select Comparison of Mechanical Power

Case: miniWECCgenTrip027

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80

Time [sec]

-10

-5

0

5

10

P
o

w
e

r
[M

W
]

Mechanical Power Difference

Case: miniWECCgenTrip027

21 Comparisons

Average Absolute Difference

0 20 40 60 80

Time [sec]

0

0.5

1

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Mechanical Power Percent Difference

Case: miniWECCgenTrip027

21 Comparisons

Average Absolute Percent Difference

Figure 63: Mini WECC generator trip mechanical power comparison.

4.4.3.4. Generator Real Power Results

Generator real power comparison results are presented for each simulated scenario in Fig-

ures 64, 65, and 66. The swinging system causes large differences in real power for both step

type events, however both absolute average percent differences is less than 5.0%. The ramp

event, which differs less than 1.2%, matches PSDS data well. In all scenarios, long-term behavior

averages approach zero, or accounting for system swing, approach the center of oscillation. The

select comparison plot from the load step show large oscillations in PSDS data that is not fully

represented in PSLTDSim data although LTD results could be interpreted as following the center

of oscillation.

0 20 40 60 80

Time [sec]

200

300

400

500

600

P
o

w
e

r
[M

W
]

Select Comparison of Real Power

Case: miniWECCstep

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80

Time [sec]

-200

-100

0

100

200

P
o
w

e
r

[M
W

]

Real Power Difference

Case: miniWECCstep

34 Comparisons

Average Absolute Difference

0 20 40 60 80

Time [sec]

0

20

40

60

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Real Power Percent Difference

Case: miniWECCstep

34 Comparisons

Average Absolute Percent Difference

Figure 64: Mini WECC load step real power comparison.

0 20 40 60 80 100 120

Time [sec]

350

400

450

500

P
o
w

e
r

[M
W

]

Select Comparison of Real Power

Case: miniWECCramp

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80 100 120

Time [sec]

-5

0

5

10

P
o
w

e
r

[M
W

]

Real Power Difference

Case: miniWECCramp

34 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

0

0.5

1

1.5

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Real Power Percent Difference

Case: miniWECCramp

34 Comparisons

Average Absolute Percent Difference

Figure 65: Mini WECC load ramp real power comparison.

66

0 20 40 60 80

Time [sec]

300

350

400

450

P
o

w
e

r
[M

W
]

Select Comparison of Real Power

Case: miniWECCgenTrip027

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80

Time [sec]

-50

0

50

100

P
o
w

e
r

[M
W

]

Real Power Difference

Case: miniWECCgenTrip027

34 Comparisons

Average Absolute Difference

0 20 40 60 80

Time [sec]

0

5

10

15

20

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Real Power Percent Difference

Case: miniWECCgenTrip027

34 Comparisons

Average Absolute Percent Difference

Figure 66: Mini WECC generator trip real power comparison.

4.4.3.5. Voltage Magnitude Results

Bus voltage magnitude comparison results are presented for each simulated scenario in

Figures 67, 68, and 69. In the load step case, voltage magnitude oscillations appear to be getting

larger as simulated time increases despite select comparisons of bus voltage appearing to con-

verge to the PSLTDSim results. This indicates that the system is unstable. The generator trip case

has damped voltage oscillation behavior while the ramp results appear to be fairly stable through-

out the simulation. Despite observed oscillations, maximum voltage percent difference for either

step type event is less than 2.0%. The ramp event has an absolute average percent difference of

less than 0.05% for the entire simulation.

0 20 40 60 80

Time [sec]

1.02

1.025

1.03

V
o

lt
a

g
e

 [
p

u
]

Select Comparison of Bus Voltage

Case: miniWECCstep

PSLTDSim A2.L69

PSLTDSim A3.x57

PSDS 57:LASVEGAS:500:0:

PSDS 69:SLC

Figure 67: Mini WECC load step voltage comparison.

0 20 40 60 80 100 120

Time [sec]

1.0245

1.025

1.0255

1.026

1.0265

V
o
lt
a
g
e
 [
p
u
]

Select Comparison of Bus Voltage

Case: miniWECCramp

PSLTDSim A2.L69

PSLTDSim A3.x57

PSDS 57:LASVEGAS:500:0:

PSDS 69:SLC

Figure 68: Mini WECC load ramp voltage comparison.

67

0 20 40 60 80

Time [sec]

1.024

1.026

1.028

1.03

V
o

lt
a

g
e

 [
p

u
]

Select Comparison of Bus Voltage

Case: miniWECCgenTrip027
PSLTDSim A2.L69

PSLTDSim A3.x57

PSDS 57:LASVEGAS:500:0:

PSDS 69:SLC

Figure 69: Mini WECC generator trip voltage comparison.

4.4.3.6. Voltage Angle Results

Bus voltage angle comparison results are presented for each simulated scenario in Figures

70, 71, and 72. Select comparisons from all cases show that angle results from the two simula-

tion methods tend to agree. Actual angle differences of less than 10 degrees result in very large

percent differences in the load step case. Angle oscillations appear to be damped in the generator

trip case and slowly growing in the load step case. The load ramp angle difference magnitude is

below 0.3 degrees for the entire simulation. Generally, it can be seen that when the system swing

behavior is damped, long-term values from both simulation methods appear to converge.

0 20 40 60 80

Time [sec]

-60

-40

-20

0

20

40

G
e
n
e
ra

to
r

A
n
g
le

 [
d
e
g
re

e
s
]

Select Comparison of Voltage Angle

Case: miniWECCstep

PSLTDSim A1.G1

PSLTDSim A3.G53

PSDS 1:BCH-G1

PSDS 53:SDG-GEN

Figure 70: Mini WECC load step voltage angle comparison.

0 20 40 60 80 100 120

Time [sec]

-60

-40

-20

0

20

40

G
e

n
e

ra
to

r
A

n
g

le
 [

d
e

g
re

e
s
]

Select Comparison of Voltage Angle

Case: miniWECCramp

PSLTDSim A1.G1

PSLTDSim A3.G53

PSDS 1:BCH-G1

PSDS 53:SDG-GEN

Figure 71: Mini WECC load ramp voltage angle comparison.

68

0 20 40 60 80

Time [sec]

-60

-40

-20

0

20

40

G
e
n
e
ra

to
r

A
n
g
le

 [
d
e
g
re

e
s
]

Select Comparison of Voltage Angle

Case: miniWECCgenTrip027

PSLTDSim A1.G1

PSLTDSim A3.G53

PSDS 1:BCH-G1

PSDS 53:SDG-GEN

Figure 72: Mini WECC generator trip voltage angle comparison.

4.4.3.7. Generator Reactive Power Results

Generator reactive power comparison results are presented for each simulated scenario

in Figures 73, 74, and 75. Percent difference plots for both step perturbances oscillate and had

multiple large peaks. The ramp case had relatively small MVAR differences and large percent

difference spikes at the start and end of the event. Select comparisons showed a good match in

the ramp and trip scenario, but failed to capture any oscillatory characteristics during the load

step case.

0 20 40 60 80

Time [sec]

-300

-200

-100

0

100

R
e

a
c
ti
v
e

 P
o

w
e

r
[M

V
A

R
]

Select Comparison of Reactive Power

Case: miniWECCstep

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80

Time [sec]

-100

-50

0

50

100

150

P
o
w

e
r

[M
V

A
R

]

Reactive Power Difference

Case: miniWECCstep

34 Comparisons

Average Absolute Difference

0 20 40 60 80

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]
Reactive Power Percent Difference

Case: miniWECCstep

34 Comparisons

Average Absolute Percent Difference

Max = 132829%, Min = -4884916%

Figure 73: Mini WECC load step reactive power comparison.

0 20 40 60 80 100 120

Time [sec]

-150

-100

-50

0

50

100

R
e
a
c
ti
v
e
 P

o
w

e
r

[M
V

A
R

]

Select Comparison of Reactive Power

Case: miniWECCramp

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80 100 120

Time [sec]

-4

-2

0

2

4

6

P
o
w

e
r

[M
V

A
R

]

Reactive Power Difference

Case: miniWECCramp

34 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Reactive Power Percent Difference

Case: miniWECCramp

34 Comparisons

Average Absolute Percent Difference

Max = 15472%, Min = -101169%

Figure 74: Mini WECC load ramp reactive power comparison.

69

0 20 40 60 80

Time [sec]

-150

-100

-50

0

50

100

R
e

a
c
ti
v
e

 P
o

w
e

r
[M

V
A

R
]

Select Comparison of Reactive Power

Case: miniWECCgenTrip027

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80

Time [sec]

-20

-10

0

10

20

30

P
o

w
e

r
[M

V
A

R
]

Reactive Power Difference

Case: miniWECCgenTrip027

34 Comparisons

Average Absolute Difference

0 20 40 60 80

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Reactive Power Percent Difference

Case: miniWECCgenTrip027

34 Comparisons

Average Absolute Percent Difference

Max = 73483%, Min = -252937%

Figure 75: Mini WECC generator trip reactive power comparison.

4.4.3.8. Branch Current Results

Branch current comparison results are presented for each simulated scenario in Figures

76, 77, and 78. The ramp scenario has the smallest absolute average percent difference of less

than 1.0%. Both step events have relatively low average differences, but fast oscillations are not

captured in LTD simulation. Simulations from the generator trip case, which had damped oscilla-

tions, appeared to converge in the long-term.

0 10 20 30 40 50 60 70 80 90

Time [sec]

-300

-200

-100

0

100

200

300

C
u
rr

e
n
t
[A

]

Branch Current Flow Difference

Case: miniWECCstep

87 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

0

50

100

150

200

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Branch Current Flow Percent Difference

Case: miniWECCstep

87 Comparisons

Average Absolute Percent Difference

Figure 76: Mini WECC load step branch current flow comparison.

0 20 40 60 80 100 120

Time [sec]

-10

-5

0

5

10

C
u

rr
e

n
t

[A
]

Branch Current Flow Difference

Case: miniWECCramp

87 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

0

1

2

3

4

5

6

7

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Current Flow Percent Difference

Case: miniWECCramp

87 Comparisons

Average Absolute Percent Difference

Figure 77: Mini WECC load ramp branch current flow comparison.

70

0 10 20 30 40 50 60 70 80 90

Time [sec]

-60

-40

-20

0

20

40

60

C
u
rr

e
n
t
[A

]
Branch Current Flow Difference

Case: miniWECCgenTrip027

87 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

0

5

10

15

20

25

30

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Current Flow Percent Difference

Case: miniWECCgenTrip027

87 Comparisons

Average Absolute Percent Difference

Figure 78: Mini WECC generator trip branch current flow comparison.

4.4.3.9. Branch Real Power Flow Results

Branch real power flow comparison results are presented for each simulated scenario in

Figures 79, 80, and 81. The load step case results show large peak differences of nearly ±100

MW that may be too large for useful simulation analysis. Despite long-term behavior, repeated

oscillations present in the generator trip case of over 60% difference may also be too large to be

considered acceptable. Ramp results are much more similar to PSDS output with average abso-

lute difference of less than 2 MW.

0 10 20 30 40 50 60 70 80 90

Time [sec]

-300

-200

-100

0

100

200

P
o
w

e
r

[M
W

]

Branch Real Power Flow Difference

Case: miniWECCstep

87 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Real Power Flow Percent Difference

Case: miniWECCstep

87 Comparisons

Average Absolute Percent Difference

Max = 45834%, Min = -56627%

Figure 79: Mini WECC load step branch real power flow comparison.

71

0 20 40 60 80 100 120

Time [sec]

-8

-6

-4

-2

0

2

4

6

P
o
w

e
r

[M
W

]
Branch Real Power Flow Difference

Case: miniWECCramp

87 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Real Power Flow Percent Difference

Case: miniWECCramp

87 Comparisons

Average Absolute Percent Difference

Max = 463%, Min = -15262%

Figure 80: Mini WECC load ramp branch real power flow comparison.

0 10 20 30 40 50 60 70 80 90

Time [sec]

-50

0

50

P
o
w

e
r

[M
W

]

Branch Real Power Flow Difference

Case: miniWECCgenTrip027

87 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

-60

-40

-20

0

20

40

60

80

P
e

rc
e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Real Power Flow Percent Difference

Case: miniWECCgenTrip027

87 Comparisons

Average Absolute Percent Difference

Figure 81: Mini WECC generator trip branch real power flow comparison.

4.4.3.10. Branch Reactive Power Flow Results

Branch reactive power flow comparison results are presented for each simulated scenario

in Figures 82, 83, and 84. Reactive power flow results all show large percent difference peaks.

The load step scenario has growing oscillatory behavior while the generator trip exhibits damped

characteristics. Load ramp results differ by only ±4 MVAR but have a large percent difference.

72

0 10 20 30 40 50 60 70 80 90

Time [sec]

-100

-50

0

50

100

P
o
w

e
r

[M
V

A
R

]
Branch Reactive Power Flow Difference

Case: miniWECCstep

87 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Reactive Power Flow Percent Difference

Case: miniWECCstep

87 Comparisons

Average Absolute Percent Difference

Max = 52558%, Min = -2281544%

Figure 82: Mini WECC load step branch reactive power flow comparison.

0 20 40 60 80 100 120

Time [sec]

-4

-2

0

2

4

P
o
w

e
r

[M
V

A
R

]

Branch Reactive Power Flow Difference

Case: miniWECCramp

87 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Reactive Power Flow Percent Difference

Case: miniWECCramp

87 Comparisons

Average Absolute Percent Difference

Max = 42932%, Min = -8502%

Figure 83: Mini WECC load ramp branch reactive power flow comparison.

0 10 20 30 40 50 60 70 80 90

Time [sec]

-10

-5

0

5

10

P
o
w

e
r

[M
V

A
R

]

Branch Reactive Power Flow Difference

Case: miniWECCgenTrip027

87 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Reactive Power Flow Percent Difference

Case: miniWECCgenTrip027

87 Comparisons

Average Absolute Percent Difference

Max = 12862%, Min = -66593%

Figure 84: Mini WECC generator trip branch reactive power flow comparison.

4.4.3.11. Mini WECC Result Summary

While PSLTDSim assumes a stable system, and a ‘swinging’ system could be thought of

as stable, simulation results show large differences between PSDS and PSLTDSim results in such

73

cases. Power system oscillations are a manifestation of inter-generator energy exchange repre-

sented in CTS simulation as a set of coupled swing equations. PSLTDSim ignores these electro-

mechanical oscillations as individual machine speed dynamics are represented in an aggregated

swing equation and governor specifics dynamics are computed ‘in isolation’. The mini WECC

was designed to represent a marginally stable operating point, and therefore electro-mechanical

dynamics dominate the response to abrupt changes in accelerating power as demonstrated in load

step case and, to a lesser extent, in the generator trip case. As such, transient simulations may be

a good tool to help decide if a particular scenario is suitable for PSLTDSim.

For the mini WECC system, the most suitable event appears to be the load ramp. Un-

damped voltage oscillations seen in the load step test may indicate that the perturbance was too

large for adequate LTD simulation. This hypothesis is further backed up by large differences seen

in other results from that particular scenario. Many percent difference plots have very large max-

imum and minimum peak values. The nature of the percent difference calculation is believed to

cause these misleading values during data oscillation, or when compared values are small.

74

4.4.4. Mini WECC with PSS System

The mini WECC, previously shown in Figure 57, was originally created with power sys-

tem stabilizers (PSS) enabled. To limit the amount of initial modeling differences, and thus as-

sumptions made by PSLTDSim, PSS was removed for initial validation testing. However, step

type event results may have been too oscillatory for suitable LTD simulation. Since PSS acts

to damp power system oscillations [38], PSS was enabled in PSDS for the following validation

tests.

4.4.4.1. Simulated Scenario Descriptions

The same mini WECC simulations from the previous section were conducted to observe

PSS behavior and resulting LTD differences. The PSDS PSS model ‘pss2a’ were enabled for gen-

erators on bus 1, 30, 32, 41, and 118. For completeness, perturbances are described again. At

t = 2 the loads on buses 16, 21, and 26 were each increased by 400 MW. The ramp perturbance

acts on these same loads a total of 400 MW, but over 40 seconds. The ramp is equivalent to forty

30 MW steps taking place every second from t = 2 to t = 42. Generator 27 was tripped at t = 2

and was initially generating ≈200 MW.

4.4.4.2. Frequency Results

System frequency comparison results are presented for each simulated scenario in Figures

85, 86, and 87. The use of PSS creates a non-steady state operating condition at t = 0. This is

indicated by the frequency changes that start immediately in all PSDS simulations. Unlike the

previous mini WECC load step case, frequency oscillations are damped. General frequency dif-

ferences are similar to the non-PSS scenario, but ≈1.0 mHz larger in each case.

75

0 10 20 30 40 50 60 70 80 90

Time [sec]

59.8

59.85

59.9

59.95

60

60.05

F
re

q
u

e
n

c
y
 [

H
z
]

System Frequency

Case: miniWECCstepPSS

120 PSDS

Weighted PSDS

PSLTDSim

0 10 20 30 40 50 60 70 80 90

Time [sec]

0

0.002

0.004

0.006

0.008

0.01

0.012

F
re

q
u

e
n

c
y
 [

H
z
]

Absolute Frequency Difference

Case: miniWECCstepPSS

Figure 85: Mini WECC with PSS load step system frequency comparison.

0 20 40 60 80 100 120

Time [sec]

59.94

59.96

59.98

60

60.02

F
re

q
u

e
n

c
y
 [

H
z
]

System Frequency

Case: miniWECCrampPSS

120 PSDS

Weighted PSDS

PSLTDSim

0 20 40 60 80 100 120

Time [sec]

0

0.5

1

1.5

F
re

q
u
e
n
c
y
 [
H

z
]

10-3

Absolute Frequency Difference

Case: miniWECCrampPSS

Figure 86: Mini WECC with PSS load ramp system frequency comparison.

0 10 20 30 40 50 60 70 80 90

Time [sec]

59.97

59.98

59.99

60

60.01

60.02

F
re

q
u

e
n

c
y
 [

H
z
]

System Frequency

Case: miniWECCgenTrip027PSS

120 PSDS

Weighted PSDS

PSLTDSim

0 10 20 30 40 50 60 70 80 90

Time [sec]

0

0.5

1

1.5

2

2.5

3

F
re

q
u

e
n

c
y
 [

H
z
]

10-3

Absolute Frequency Difference

Case: miniWECCgenTrip027PSS

Figure 87: Mini WECC with PSS generator trip system frequency comparison.

4.4.4.3. Generator Mechanical Power Results

Generator mechanical power comparison results are presented for each simulated sce-

nario in Figures 88, 89, and 90. Results from the PSS and non-PSS case were mostly the same,

76

but slightly different. The ramp event had smaller oscillatory differences, but larger steady state

differences. The generator trip case also had slightly larger oscillating steady state differences.

0 20 40 60 80

Time [sec]

300

350

400

450

500

P
o
w

e
r

[M
W

]

Select Comparison of Mechanical Power

Case: miniWECCstepPSS

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80

Time [sec]

-100

-50

0

50

100

P
o
w

e
r

[M
W

]

Mechanical Power Difference

Case: miniWECCstepPSS

21 Comparisons

Average Absolute Difference

0 20 40 60 80

Time [sec]

0

1

2

3

4

5

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Mechanical Power Percent Difference

Case: miniWECCstepPSS

21 Comparisons

Average Absolute Percent Difference

Figure 88: Mini WECC with PSS load step mechanical power comparison.

0 20 40 60 80 100 120

Time [sec]

350

400

450

500

P
o
w

e
r

[M
W

]

Select Comparison of Mechanical Power

Case: miniWECCrampPSS

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80 100 120

Time [sec]

-10

-5

0

5

10

P
o

w
e

r
[M

W
]

Mechanical Power Difference

Case: miniWECCrampPSS

21 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

0

0.2

0.4

0.6

0.8

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Mechanical Power Percent Difference

Case: miniWECCrampPSS

21 Comparisons

Average Absolute Percent Difference

Figure 89: Mini WECC with PSS load ramp mechanical power comparison.

0 20 40 60 80

Time [sec]

340

360

380

400

420

440

P
o
w

e
r

[M
W

]

Select Comparison of Mechanical Power

Case: miniWECCgenTrip027PSS

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80

Time [sec]

-15

-10

-5

0

5

10

P
o

w
e

r
[M

W
]

Mechanical Power Difference

Case: miniWECCgenTrip027PSS

21 Comparisons

Average Absolute Difference

0 20 40 60 80

Time [sec]

0

0.5

1

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Mechanical Power Percent Difference

Case: miniWECCgenTrip027PSS

21 Comparisons

Average Absolute Percent Difference

Figure 90: Mini WECC with PSS generator trip mechanical power comparison.

4.4.4.4. Generator Real Power Results

Generator real power comparison results are presented for each simulated scenario in Fig-

ures 91, 92, and 93. PSS action reduces system oscillation in both step perturbance cases. Peak

percent differences are slightly increased from non-PSS results. The ramp validation results ap-

pear slightly worse when using PSS because of relatively large initial differences caused by a

non-steady state starting condition. This is most notably seen in the select comparison plot from

the ramp case.

77

0 20 40 60 80

Time [sec]

200

300

400

500

600

P
o

w
e

r
[M

W
]

Select Comparison of Real Power

Case: miniWECCstepPSS

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80

Time [sec]

-200

-100

0

100

200

P
o
w

e
r

[M
W

]

Real Power Difference

Case: miniWECCstepPSS

34 Comparisons

Average Absolute Difference

0 20 40 60 80

Time [sec]

0

20

40

60

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Real Power Percent Difference

Case: miniWECCstepPSS

34 Comparisons

Average Absolute Percent Difference

Figure 91: Mini WECC with PSS load step real power comparison.

0 20 40 60 80 100 120

Time [sec]

300

350

400

450

500

P
o
w

e
r

[M
W

]

Select Comparison of Real Power

Case: miniWECCrampPSS

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80 100 120

Time [sec]

-50

0

50

100

P
o
w

e
r

[M
W

]
Real Power Difference

Case: miniWECCrampPSS

34 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

0

2

4

6

8

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Real Power Percent Difference

Case: miniWECCrampPSS

34 Comparisons

Average Absolute Percent Difference

Figure 92: Mini WECC with PSS load ramp real power comparison.

0 20 40 60 80

Time [sec]

300

350

400

450

P
o

w
e

r
[M

W
]

Select Comparison of Real Power

Case: miniWECCgenTrip027PSS

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80

Time [sec]

-100

-50

0

50

100

P
o
w

e
r

[M
W

]

Real Power Difference

Case: miniWECCgenTrip027PSS

34 Comparisons

Average Absolute Difference

0 20 40 60 80

Time [sec]

0

5

10

15

20
P

e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Real Power Percent Difference

Case: miniWECCgenTrip027PSS

34 Comparisons

Average Absolute Percent Difference

Figure 93: Mini WECC with PSS generator trip real power comparison.

4.4.4.5. Voltage Magnitude Results

Bus voltage magnitude comparison results are presented for each simulated scenario in

Figures 94, 95, and 96. Long-term voltage magnitudes do not match between simulations. This is

most likely due to PSS action which is shown most clearly in the select comparison plot from the

ramp case. Generally, percent differences peak slightly below 4.0% and do not converge towards

zero for all cases. Absolute average percent difference for all cases was slightly below 1.0% for

all simulated time.

78

0 20 40 60 80

Time [sec]

1.02

1.025

1.03

V
o

lt
a

g
e

 [
p

u
]

Select Comparison of Bus Voltage

Case: miniWECCstepPSS

PSLTDSim A2.L69

PSLTDSim A3.x57

PSDS 57:LASVEGAS:500:0:

PSDS 69:SLC

Figure 94: Mini WECC with PSS load step voltage comparison.

0 20 40 60 80 100 120

Time [sec]

1.025

1.026

1.027

V
o
lt
a
g
e
 [
p
u
]

Select Comparison of Bus Voltage

Case: miniWECCrampPSS

PSLTDSim A2.L69

PSLTDSim A3.x57

PSDS 57:LASVEGAS:500:0:

PSDS 69:SLC

Figure 95: Mini WECC with PSS load ramp voltage comparison.

0 20 40 60 80

Time [sec]

1.025

1.026

1.027

V
o

lt
a

g
e

 [
p

u
]

Select Comparison of Bus Voltage

Case: miniWECCgenTrip027PSS

PSLTDSim A2.L69

PSLTDSim A3.x57

PSDS 57:LASVEGAS:500:0:

PSDS 69:SLC

Figure 96: Mini WECC with PSS generator trip voltage comparison.

4.4.4.6. Voltage Angle Results

Bus voltage angle comparison results are presented for each simulated scenario in Fig-

ures 97, 98, and 99. Step type perturbances with PSS are very similar to non-PSS results. Ramp

results show slightly larger angle difference when PSS is used in PSDS.

79

0 20 40 60 80

Time [sec]

-60

-40

-20

0

20

40

G
e
n
e
ra

to
r

A
n
g
le

 [
d
e
g
re

e
s
]

Select Comparison of Voltage Angle

Case: miniWECCstepPSS

PSLTDSim A1.G1

PSLTDSim A3.G53

PSDS 1:BCH-G1

PSDS 53:SDG-GEN

Figure 97: Mini WECC with PSS load step voltage angle comparison.

0 20 40 60 80 100 120

Time [sec]

-60

-40

-20

0

20

40

G
e

n
e

ra
to

r
A

n
g

le
 [

d
e

g
re

e
s
]

Select Comparison of Voltage Angle

Case: miniWECCrampPSS

PSLTDSim A1.G1

PSLTDSim A3.G53

PSDS 1:BCH-G1

PSDS 53:SDG-GEN

Figure 98: Mini WECC with PSS load ramp voltage angle comparison.

0 20 40 60 80

Time [sec]

-60

-40

-20

0

20

40

G
e
n
e
ra

to
r

A
n
g
le

 [
d
e
g
re

e
s
]

Select Comparison of Voltage Angle

Case: miniWECCgenTrip027PSS

PSLTDSim A1.G1

PSLTDSim A3.G53

PSDS 1:BCH-G1

PSDS 53:SDG-GEN

Figure 99: Mini WECC with PSS generator trip voltage angle comparison.

4.4.4.7. Generator Reactive Power Results

Generator reactive power comparison results are presented for each simulated scenario

in Figures 100, 101, and 102. Using PSS creates large modeling differences in reactive power

output. All test cases have an average absolute difference of 50.0% or larger. More reasonably in-

terpreted results can be seen in all select comparison plots. Generator 17, despite not have a PSS

model, produces more negative MVARs when the system has PSS equipped generators. Genera-

tor 53, located further away from any generator with a PSS, has essentially the same response as

the non-PSS case. This highlights the localized nature of voltage and VAR system effects.

80

0 20 40 60 80

Time [sec]

-400

-300

-200

-100

0

100

R
e

a
c
ti
v
e

 P
o

w
e

r
[M

V
A

R
]

Select Comparison of Reactive Power

Case: miniWECCstepPSS

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80

Time [sec]

-1000

-500

0

500

1000

P
o
w

e
r

[M
V

A
R

]

Reactive Power Difference

Case: miniWECCstepPSS

34 Comparisons

Average Absolute Difference

0 20 40 60 80

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Reactive Power Percent Difference

Case: miniWECCstepPSS

34 Comparisons

Average Absolute Percent Difference

Max = 192812%, Min = -44601%

Figure 100: Mini WECC with PSS load step reactive power comparison.

0 20 40 60 80 100 120

Time [sec]

-400

-300

-200

-100

0

100

R
e
a
c
ti
v
e
 P

o
w

e
r

[M
V

A
R

]

Select Comparison of Reactive Power

Case: miniWECCrampPSS

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80 100 120

Time [sec]

-1000

-500

0

500

1000
P

o
w

e
r

[M
V

A
R

]
Reactive Power Difference

Case: miniWECCrampPSS

34 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Reactive Power Percent Difference

Case: miniWECCrampPSS

34 Comparisons

Average Absolute Percent Difference

Max = 15368678%, Min = -5941111%

Figure 101: Mini WECC with PSS load ramp reactive power comparison.

0 20 40 60 80

Time [sec]

-300

-200

-100

0

100

R
e

a
c
ti
v
e

 P
o

w
e

r
[M

V
A

R
]

Select Comparison of Reactive Power

Case: miniWECCgenTrip027PSS

PSLTDSim A1.S17

PSLTDSim A3.G53.1

PSDS 17:WA-GEN

PSDS 53:SDG-GEN

0 20 40 60 80

Time [sec]

-1000

-500

0

500

1000

P
o
w

e
r

[M
V

A
R

]

Reactive Power Difference

Case: miniWECCgenTrip027PSS

34 Comparisons

Average Absolute Difference

0 20 40 60 80

Time [sec]

-100

-50

0

50

100
P

e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Reactive Power Percent Difference

Case: miniWECCgenTrip027PSS

34 Comparisons

Average Absolute Percent Difference

Max = 93394%, Min = -6961%

Figure 102: Mini WECC with PSS generator trip reactive power comparison.

4.4.4.8. Branch Current Results

Branch current comparison results are presented for each simulated scenario in Figures

103, 104, and 105. Load step results have a damped behavior when PSS is enabled and slightly

smaller peak differences compared to the non-PSS mini WECC results. Absolute percent differ-

ences appear similar for all cases. When using PSS, branch current variances during the ramp

event increase peak percent differences by nearly five times compared to the non-PSS results.

81

0 10 20 30 40 50 60 70 80 90

Time [sec]

-300

-200

-100

0

100

200

300

C
u
rr

e
n
t
[A

]
Branch Current Flow Difference

Case: miniWECCstepPSS

87 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

0

20

40

60

80

100

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Branch Current Flow Percent Difference

Case: miniWECCstepPSS

87 Comparisons

Average Absolute Percent Difference

Figure 103: Mini WECC with PSS load step branch current flow comparison.

0 20 40 60 80 100 120

Time [sec]

-150

-100

-50

0

50

C
u
rr

e
n
t
[A

]

Branch Current Flow Difference

Case: miniWECCrampPSS

87 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

0

10

20

30

40

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Branch Current Flow Percent Difference

Case: miniWECCrampPSS

87 Comparisons

Average Absolute Percent Difference

Figure 104: Mini WECC with PSS load ramp branch current flow comparison.

0 10 20 30 40 50 60 70 80 90

Time [sec]

-150

-100

-50

0

50

100

C
u
rr

e
n
t
[A

]

Branch Current Flow Difference

Case: miniWECCgenTrip027PSS

87 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

0

10

20

30

40

50

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Current Flow Percent Difference

Case: miniWECCgenTrip027PSS

87 Comparisons

Average Absolute Percent Difference

Figure 105: Mini WECC with PSS generator trip branch current flow comparison.

4.4.4.9. Branch Real Power Flow Results

Branch real power flow comparison results are presented for each simulated scenario in

Figures 106, 107, and 108. With the exception of damped load step behavior, similar results are

82

produced in the step events when PSS is not used. Ramp results appear to have more differences

near the beginning of the simulation, but differing scales make further comparisons difficult.

0 10 20 30 40 50 60 70 80 90

Time [sec]

-300

-200

-100

0

100

200

P
o
w

e
r

[M
W

]

Branch Real Power Flow Difference

Case: miniWECCstepPSS

87 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Real Power Flow Percent Difference

Case: miniWECCstepPSS

87 Comparisons

Average Absolute Percent Difference

Max = 13247%, Min = -785046%

Figure 106: Mini WECC with PSS load step branch real power flow comparison.

0 20 40 60 80 100 120

Time [sec]

-50

0

50

P
o

w
e

r
[M

W
]

Branch Real Power Flow Difference

Case: miniWECCrampPSS

87 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

-15

-10

-5

0

5

10

15

P
e

rc
e

n
t

D
if
fe

re
n

c
e

 [
%

]

Branch Real Power Flow Percent Difference

Case: miniWECCrampPSS

87 Comparisons

Average Absolute Percent Difference

Max = 685%, Min = -898%

Figure 107: Mini WECC with PSS load ramp branch real power flow comparison.

0 10 20 30 40 50 60 70 80 90

Time [sec]

-60

-40

-20

0

20

40

60

P
o
w

e
r

[M
W

]

Branch Real Power Flow Difference

Case: miniWECCgenTrip027PSS

87 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

-100

-50

0

50

100

150

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Real Power Flow Percent Difference

Case: miniWECCgenTrip027PSS

87 Comparisons

Average Absolute Percent Difference

Figure 108: Mini WECC with PSS generator trip branch real power flow comparison.

83

4.4.4.10. Branch Reactive Power Flow Results

Branch reactive power flow comparison results are presented for each simulated scenario

in Figures 109, 110, and 111. As should be assumed from the previously noted reactive power

differences, reactive power flows also differ by over 50.0% from non-PSS results.

0 10 20 30 40 50 60 70 80 90

Time [sec]

-200

-100

0

100

200

P
o
w

e
r

[M
V

A
R

]

Branch Reactive Power Flow Difference

Case: miniWECCstepPSS

87 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Reactive Power Flow Percent Difference

Case: miniWECCstepPSS

87 Comparisons

Average Absolute Percent Difference

Max = 64383%, Min = -640548%

Figure 109: Mini WECC with PSS load step branch reactive power flow comparison.

0 20 40 60 80 100 120

Time [sec]

-150

-100

-50

0

50

100

150

P
o
w

e
r

[M
V

A
R

]

Branch Reactive Power Flow Difference

Case: miniWECCrampPSS

87 Comparisons

Average Absolute Difference

0 20 40 60 80 100 120

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Reactive Power Flow Percent Difference

Case: miniWECCrampPSS

87 Comparisons

Average Absolute Percent Difference

Max = 25886%, Min = -68570%

Figure 110: Mini WECC with PSS load ramp branch reactive power flow comparison.

0 10 20 30 40 50 60 70 80 90

Time [sec]

-150

-100

-50

0

50

100

150

P
o
w

e
r

[M
V

A
R

]

Branch Reactive Power Flow Difference

Case: miniWECCgenTrip027PSS

87 Comparisons

Average Absolute Difference

0 10 20 30 40 50 60 70 80 90

Time [sec]

-100

-50

0

50

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e
 [
%

]

Branch Reactive Power Flow Percent Difference

Case: miniWECCgenTrip027PSS

87 Comparisons

Average Absolute Percent Difference

Max = 2175426%, Min = -18238263%

Figure 111: Mini WECC with PSS generator trip branch reactive power flow comparison.

84

4.4.4.11. Mini WECC with PSS Result Summary

The addition of PSS accomplishes the desired goal of stabilizing a power system. How-

ever, the additional modeling differences between PSDS and PSLTDSim create more differences

in output data. Larger transient differences are seen in most cases as PSS acts to stabilize the sys-

tem. The pss2a model output is a generator voltage in PSDS which in turn affects steady state

voltage magnitudes and branch flow results. Further, initial conditions for all simulations are not

the same between PSDS and PSLTDSim as PSS begins to act immediately. Select comparison

plots of reactive power output show the how voltage and VAR related issues have a localized ef-

fect.

85

4.4.5. Full WECC System

To test the scalability of PSLTDSim, a full WECC system model was simulated. The full

WECC model used is representative of the western United States interconnect during a heavy

spring of 2018. The main island consists of 22 areas with a total 21,528 buses and has 3,330

generators operating near an average of 59.3% capacity to supply 140,189 MW of real power to

11,018 loads. A count of modeled generators is shown in Table V. As a reminder, only MW cap,

machine base, and machine inertia H are collected from the PSDS model for use in PSLTDSim.

Table V: WECC machine model count and capacity.

Model Count Capacity [MW]

gentpj 1,541 96,559.72

genrou 1,277 128,990.75

gentpf 476 17,707.11

motor1 34 717.89

genwri 2 191.00

Total 3,330 244,166.46

The generic governor is used almost exclusively for long-term simulation due to the sys-

tem model using a wide variety of governor models that are not presently available in PSLTD-

Sim. Table VI shows the total number of PSDS governor models and their respective capacity

while Table VII shows the resulting generic model casting performed for long-term simulation

in PSLTDSim. It should be noted that about 0.89% of governor models (representing ≈0.56% of

governed capacity) have the same governor model and time constants as those in PSLTDSim and

PSDS due to the generic casting process.

86

Table VI: WECC governor models used in PSDS.

Model Count Capacity [MW]

ggov1 1,006 74,804.11

hyg3 315 28,755.47

hygov 196 8,883.36

ieeeg1 191 49,022.45

hygov4 167 8,044.68

ieeeg3 133 9,174.48

gpwscc 56 3,028.33

pidgov 56 8,034.54

gast 29 1,162.56

ggov3 28 5,010.32

hygovr 25 6,249.37

tgov1 20 1,140.45

g2wscc 18 818.95

ccbt1 3 32.53

Total 2,243 204,161.59

Table VII: WECC governor models used in PSLTDSim.

Model Count Capacity [MW]

gas 1,090 82,842.76

hydro 777 60,786.37

steam 356 59,392.02

tgov1 20 1,140.45

Total 2,243 204,161.59

4.4.5.1. Load Step

For the WECC system model, only frequency response to a load step is presented as the

number of assumptions and sheer volume of data make other comparisons difficult with mostly

inconclusive results. The perturbance is a step of three loads up 100 MW at t = 2. Figure 112

shows frequency of all PSDS generator bus frequencies in grey, an average PSDS generator fre-

quency in black, and the LTD system frequency in magenta.

87

0 10 20 30 40 50 60

Time [sec]

59.96

59.97

59.98

59.99

60

60.01

60.02

F
re

q
u

e
n

c
y
 [

H
z
]

Generator Frequency Comparison

Case: wecc18HSPStep

3396 PSDS

Average PSDS

LTD

Figure 112: Full WECC frequency comparison.

It can be seen that the average PSDS frequency varied from LTD frequency during the

initial dynamic response to the perturbance. This was due to the large number of governor time

constants that are cast as generic time constants in PSLTDSim. LTD system frequency over esti-

mated the frequency nadir but matched the steady state response within 2 mHz. Near the end of

the simulation, PSDS frequency began to oscillate again. This likely indicates that the model is

going unstable.

Figure 113 shows the absolute frequency difference between PSDS and LTD simula-

tions. Despite governor dynamics being greatly estimated, absolute frequency difference never

exceeded 10 mHz. It should be noted that with a perturbance this size, 10 mHz is actually rather

large since steady state frequency is about 59.99 Hz.

0 10 20 30 40 50 60

Time [sec]

0

0.002

0.004

0.006

0.008

0.01

F
re

q
u

e
n

c
y
 [

H
z
]

Absolute Frequency Difference

Case: wecc18HSPStep

Figure 113: Full WECC absolute frequency difference.

88

4.4.6. Validation Summary

The purpose of PSLTDSim is long-term dynamic simulation. True validation must be

against measured system response. In the absence of measured data, validating against industry

standard transient stability software was chosen.

Smaller systems, such as the six machine system, required less modeling assumptions

had generally small differences from PSDS in output data. However, exciter assumptions and the

combination of voltage magnitude and angle caused calculated reactive power flow to largely

differ from PSDS values during step type events. Oscillations, such as those in found voltage

angle, are not well represented in TSPF due to time step resolution.

Larger systems, such as the two WECC models, employ more simplifications in PSLTDSim,

and thus have more differences. Large differences are shown in bus voltages and the resulting

power flow calculations. Ramp events are typically simulated more accurately than step type

perturbances. When PSS is used, more generator voltage behavior is ignored and larger differ-

ences are seen in steady-state data. Generic governor casting employed in the full WECC case

produced similar steady state behavior, but fairly different dynamic response. System damping,

described in Section 5.8, could be used to more accurately match the frequency behavior seen in

PSDS.

Overall, PSLTDSim can simulate small or gradual perturbances with acceptable dynamic

accuracy when compared to PSDS. System frequency response and real power flow results are

typically better than voltage and reactive power data. This is due to the various model simplifica-

tions and assumptions in PSLTDSim. Despite transient differences, simulated long-term system

behavior in PSLTDSim tends to converge to PSDS values. As such, PSLTDSim simulation was

deemed to be validated for the purpose of long-term simulation.

89

5. Engineering Applications

PSLTDSim may be used to study numerous engineering issues related to power system

planning and operation. Due to time and data availability constraints, specific software appli-

cations to engineering problems are presented, but specific solutions are not. This chapter con-

tains descriptions of various events of engineering interest that PSLTDSim can simulate, relevant

NERC standards for long-term simulation, simulated control options not previously expanded

upon, and engineering application studies and results.

5.1. Simulated Events of Interest

The initial focus of PSLTDSim was to study governor and AGC interaction. Reasoning

behind this decision was that observed primary response has declined [18], or become slower,

while technological advances have enabled AGC action to become faster. The gradual shifting,

and resulting overlap, of operation time involved with automatic controls seemed like a good

application for LTD simulation. To refine the focus of study, a goal of minimizing system effort

while maximizing system stability was developed.

Historically, the number of control pulse signals was used to judge the efficiency of an

AGC scheme [9]. Modern control can not be accurately assessed in such a general way. To more

reasonably gauge system effort, a metric of governor valve travel was suggested. Valve travel can

be greatly affected by various settings such as deadbands and delays. Examples of cumulative

valve travel in response to random noise were simulated in PSLTDSim to investigate the effect of

certain parameters.

In practice, AGC actions can vary greatly. PSLTDSim offers a BA agent that includes

some common AGC control techniques. To configure, or tune, an AGC routine requires long-

term simulation as gradual system recovery is beyond the transient stability time frame. AGC ac-

tion in one area affects all connected areas and conflicting control schemes may increase system

recovery time. An example of AGC tuning is presented and conditional AGC action examined.

To show the ability of PSLTDSim to handle long-term events, a four hour morning peak

90

scenario and a two hour virtual wind ramp were simulated. Generation and load controller agents

in PSLTDSim were used to program long duration ramps of system generation and load that use

real forecast demand data. During initial simulations, it became apparent that voltage manage-

ment must be accounted for. Realistically, capacitor switching or other schemes are used to man-

aged voltage and reactive power. In PSLTDSim, a DTC agent was programmed to act as a capac-

itor bank controller.

Finally, the customizability and open-source nature of PSLTDSim allows for other power

system phenomena to be studied. An example of governor action modification using a DTC

agent to reproduce an undesired response is presented. Frequency response effects due to system

damping and system inertia modification are also demonstrated.

5.2. Relevant NERC Standards

As alluded to earlier, the BES is not operated in any old higgledy-piggledy fashion. NERC

has various mandatory standards subject to enforcement in the US that are continuously modified

and updated. Standards starting with BAL are related to resource and demand balancing. BAL

standards that are applicable to LTD simulation are described in this section. As time clicks for-

ward, and NERC standards change, presented information is predicted to become out of date.

The most up-to-date mandatory standards can be viewed on the NERC website [47].

5.2.1. BAL-001-2

NERC standard BAL-001-2 has two requirements. The first requirement deals with a

monthly calculation that is out of the scope of PSLTDSim. The second requirement specifies

RACE should not exceed its clock-minute balancing authority ACE limit (BAAL) for more than

30 consecutive clock minutes [46]. This requirement is important as PSLTDSim can simulate

longer than 30 minutes. NERC has provided the following equations describing how to calculate

BAAL.

BAAL = −10B(FTL− Fs)
FTL− FS

FA − FS

(18)

91

Where the frequency trigger limit (FTL) is defined as

FTL = FS ± 3ε. (19)

If actual system frequency FA is above the scheduled frequency FS , then the ± in equa-

tion 19 is a +. If the opposite is true (FA < FS), then the ± is a −. NERC provides fixed val-

ues for each interconnection to use for ε. In the WECC, NERC defines ε as 0.0228 Hz. Note that

minute average frequency is used for FA in Equation 18. Figure 114 visualizes the NERC equa-

tions for various settings of B. When frequency is at its nominal value, ACE is unlimited. Larger

values of B equate to larger values of BAAL. The logical statement shown in Equation 20 will be

true if BAAL has been exceeded.

59.96 59.97 59.98 59.99 60.00 60.01 60.02 60.03 60.04
Frequency [Hz]

600

400

200

0

200

400

600

BA
AL

 [M
W

]

Balancing Authority ACE Limit
B = -50
B = -100
B = -150
B = -200

Figure 114: Balancing authority ACE limit for different values of B.

BAALexceeded =

(BAAL > 0)AND (RACE > BAAL)

(BAAL < 0)AND (RACE < BAAL)

(20)

5.2.2. BAL-002-3

NERC standard BAL-002-3 requires a BA to return reporting ACE to zero if pre-contingency

ACE was positive or zero, or the pre-contingency value if ACE was negative within the contin-

92

gency event recovery period. The NERC definition for contingency event recovery period is 15

minutes after the start of a contingency [49].

5.2.3. BAL-003-1.1

NERC standard BAL-003-1.1 deals with the frequency bias setting used by a BA. While

realistic frequency bias B is calculated based on real system values and recored responses, this

doesn’t apply to theoretical models. For simplicity, a setting of 0.9% maximum generation capac-

ity will be used for the minimum fixed value of B. This setting is in line with recommendations

made in [45].

5.2.4. NERC Standard Summary

To follow NERC recommendations, a minimum frequency bias B of 0.9% maximum gen-

eration capacity will be used for all BAs RACE calculation. RACE must return to zero or the

pre-contingency level within 15 minutes of a contingency. Since simulated systems start from a

steady state, this could be interpreted as frequency crossing zero at least once every 15 minutes.

Finally, any control that allows for more than 30 consecutive minutes of RACE exceeding the

BAAL will not be acceptable.

93

5.3. Simulated Balancing Authority Controls

Simulated balancing authority controls affect governor response and AGC operation.

These controls are defined in the sysBA dictionary in the .ltd.py file. Figure 115 shows an ex-

ample of a BA parameter dictionary as it would appear in a .ltd.py file. A complete list of BA

agent options is shown in Table XXII in Appendix 12. The following sections detail most sysBA

dictionary keys.

1 # Balancing Authority Definition
2 mirror.sysBA = {
3 'BA1':{
4 'Area': 1,
5 'B': "0.9 : permax", # MW/0.1 Hz
6 'AGCActionTime': 30.00, # seconds
7 'ACEgain' : 1.0,
8 'AGCType':'TLB : 4', # Tie-Line Bias
9 'UseAreaDroop' : False,
10 'AreaDroop' : 0.05,
11 'IncludeIACE' : True,
12 'IACEconditional': True,
13 'IACEwindow' : 30, # seconds - size of window - 0 for non window
14 'IACEscale' : 1/5,
15 'IACEdeadband' : 0, # Hz
16 'ACEFiltering': 'PI : 0.04 0.0001',
17 'AGCDeadband' : None, # MW? -> not implemented
18 'GovDeadbandType' : 'nldroop', # step, None, ramp, nldroop
19 'GovDeadband' : .036, # Hz
20 'GovAlpha' : 0.016, # Hz - for nldroop
21 'GovBeta' : 0.036, # Hz - for nldroop
22 'CtrlGens': ['gen 1 : 0.5 : rampA',
23 'gen 2 1 : 0.5 : rampA',
24]
25 }
26 }

Figure 115: Single sysBA dictionary definition.

94

5.3.1. Governor Deadbands

Modeling governor deadbands has become increasingly important to dynamic simulation

[36], [51], [52]. The maximum recommended deadband is 36 mHz[20]. However, the execu-

tion of a governor deadband is not explicitly detailed and left to generator operators to configure.

PSLTDSim offers a deadband agent that can apply various deadbands to the ∆ω input of gover-

nors. Figure 116 graphically depicts how the various available deadband options differ.

59.94 59.96 59.98 60.00 60.02 60.04 60.06
Frequency [Hz]

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

PU
 M

W
 C

ha
ng

e
[M

Ba
se

]

db1

Comparison of Deadband Options
No Deadband
Step Deadband (db1)
No Step Deadband (db1)
Non-Linear Droop Deadband (,)

Figure 116: Examples of available deadband action.

A step deadband simply nullifies any ∆ω whose absolute value is less than the prescribed

deadband. A no-step, or ramp, deadband removes the step characteristic by essentially pushing

the original droop curve out to deadband thresholds. While the no-step deadband has no abrupt

changes, the actual governor response will always be below the ideal droop response. To elimi-

nate this oversight, a non-linear droop option was created that ramps from a set Hz deadband to

the ideal droop curve.

Configuring a deadband is done via the sysBA parameter dictionary or the governor dead-

band dictionary in a .ltd.py file. The dictionary keys are the same in the sysBA dictionary as the

govDeadBand dictionary. Details about creating deadbands using a governor deadband dictionary

is presented in Section 4.3.2.3.7.

95

5.3.2. Area Wide Governor Droops

The typically recommended FERC droop is 5%[20]. Area wide governor droops can be

specified in the sysBA dictionary that overwrite any droop setting previously read from a .dyd.

All active governors in an area will use the specified ‘AreaDroop’ value if ‘UseAreaDroop’ is

True. This setting allows for fast and easy configuration of simulations aimed at exploring droop

settings.

5.3.3. Automatic Generation Control

A block diagram of the AGC model employed by PSLTDSim is shown in Figure 117.

Simulation settings related to frequency bias, ACE integrating and filtering, conditional sum-

ming, and generation participation are explained in the following sections.

ωrefPU

ωPU

Σ
∆ωPU

ICsched

IC

Σ
ACETL

−10BfBase
ACEFB Conditional

Summing
Optional
Filter

SACE

IACEscale
∫ t

t−x

IACE

ACEgain

-ACE
to

Distribute+
−

−

+

RACE

Figure 117: Block diagram of ACE calculation and manipulation.

5.3.3.1. Frequency Bias

Choosing a desired frequency bias B can be accomplished in a number of different ways.

All methods are configured by the string entered as the ’B’ value in the sysBA dictionary. The

format of the ‘B’ string is ”Float Value : B type”. The available B types are scalebeta, perload,

permax, and abs.

The scalebeta type will scale the automatically calculated area frequency response charac-

teristic β by the given float value. The perload type will set B equal to the current area load times

the given float value. The permax type will set B equal to the maximum area capacity times the

given float value. The abs type will set B equal to the given float value. Note that the units on B

are MW/0.1 Hz and, despite B being a negative number, is entered as a positive value.

96

A variable frequency bias may be used in distributed ACE signals. If the ‘BVgain’ dictio-

nary entry is a non-zero value, a variable frequency bias BV is calculated as

BV = BF

(
1 +KB|∆ω|

)
(21)

where BF is the fixed bias value, and KB is the user entered value for ‘BVgain’. It should be

noted that ∆ω is calculated according to Equation 5 and is a PU value. This leads to seemingly

large required values of ‘BVgain’ before effects are noticeable. To clarify, BV is only used in

ACE calculations that are meant to be distributed to the generation fleet, RACE is always calcu-

lated using BF .

5.3.3.2. Integral of Area Control Error

As previously shown in Figure 117, ACE may be integrated and fed back into the con-

ditional summing block. The default signal sent to the integrator is RACE as AGC is meant to

drive RACE to zero. Settings related to this process are configured in the sysBA dictionary.

Integral of ACE (IACE) parameters are ‘IACEwindow’, ‘IACEscale’, and ‘IACEdeadband’.

IACEwindow defines the length in seconds of the moving window integrator. If IACEwindow

is set to zero, integration will be continuous (i.e. for all time). IACEscale acts as a gain of the

output integral value. IACEdeadband specifies the frequency deviation in Hz between which in-

tegration values will stop being added into the conditional summing block. IACEdeadband func-

tionality was meant to alleviate frequency hunting.

5.3.3.3. Conditional Area Control Error Summing

Depending on the type of AGC agent chosen, ACE is calculated in different ways. The

Tie-Line Bias (TLB) agent has multiple types of conditional ACE calculations. All conditionals

involve comparing the sign of a value to the sign of frequency deviation. The main idea behind

this conditional summing is to ensure that only events occurring inside an area will receive an

AGC response. Options are available to allow for continued frequency response as well. Table

VIII shows the conditional summations and associated TLB type.

97

Table VIII: Tie-line bias AGC type ACE calculations.

TLB Type ACE Calculation

0 ACEFB + ACETL

1 ACEFB + ACETL ∗ [sgn(∆ω) == sgn(ACETL)]

2 ACEFB + ACETL ∗ [sgn(∆ω) == sgn(ACEFB + ACETL)]

3 ACEFB ∗ [sgn(∆ω) == sgn(ACEFB)] + ACETL ∗ [sgn(∆ω) == sgn(ACETL)]

4 [ACEFB + ACETL] ∗ [sgn(∆ω) == sgn(ACEFB + ACETL)]

5.3.3.4. Area Control Error Filtering

The calculated ACE can be put through a filter, or smoothed, to become smoothed ACE

(SACE). The three basic filters created were low pass, integral, and proportional and integral

(PI). Block diagrams of these filters are shown in Figure 118. It should be noted that these fil-

ters do not account for any integrator wind up. If wind up is predicted to be an issue, additional

code must be added to the specific agent that check the output value and adjusts filter running

states and output accordingly. Details about integrator wind up is presented in Section 9.4.3.1.

1

1 + $T1

Ki

$
Kp

$ + a

$

Figure 118: Block diagrams of optional ACE filters.

The selection and configuration of a filter is done in the BA parameter dictionary via the

‘ACEFiltering’ key value. The format of the string input to the ‘ACEFiltering’ key is ”type : val1

val2”. Valid filter types are lowpass, integrator, and pi. The low pass and integrator take only one

value while the PI filter takes two. In the case of the low pass filter, the passed in value is set as

the low pass time constant. The value passed in with an integrator filter is simply a gain. The first

PI value is used as a proportional gain value Kp and the second value describes the ratio between

integral and proportional gain a.

98

5.3.3.5. Controlled Generators and Participation Factors

Each BA is configured with a list of controlled generators that receive AGC signals. These

generators, or power plants, are given a participation factor between 1.0 and zero. The participa-

tion factor dictates the percent of ACE signal each agent receives. A check is done to ensure each

BA has a total participation factor of one, however, if the sum of participation factors is not one,

only a warming is issued. It is up to the user to enter reasonable values. Additionally, each list

value of the ‘CtrlGens’ key describes if the signal should be applied as a step or a ramp. Ramps

are best when single units are receiving ACE, while steps are useful for power plants that are in-

tended to handle distribution of ACE independently.

99

5.4. Governor Deadband Effect on Valve Travel

Initial research goals included maximizing system stability while minimizing machine

effort. The decided upon metric for machine effort was valve travel. As governor deadbands di-

rectly affect valve travel, a study into deadbands was conducted using PSLTDSim.

5.4.1. Governor Deadband Simulation Configuration

To assess long-term impacts of governor deadbands, thirty minutes of random load noise

was applied to the mini WECC. All governors had identical deadband settings and PSLTDSim

was used to set all governor droops to 5%. Some governors were removed from the system so

that only ≈20% of generation capacity in each area had governor control. Each type of deadband

shown in Figure 116 was simulated. No-step and non-linear droop deadbands had a threshold of

16 mHz while the step deadband used a 36 mHz deadband. Noise agent NZ was set to 0.03 for

all simulations with random walk behavior enabled. As a reminder, explicit noise agent behav-

ior is explained in Section 4.3.2.3.2. The change in system loading caused by the noise agent is

shown in Figure 119.

0 5 10 15 20 25 30
Time [minutes]

0

100

200

300

M
W

Change in System Loading
System Total
Area 1
Area 2
Area 3

Figure 119: Cumulative system change in load for governor deadband simulation.

Another experiment was conducted to explore a non-homogeneous deadband scenario

where all deadbands were of the no-step type, but some had different mHz deadbands. Although

PSLTDSim can model AGC, it was not enabled for these deadband simulations.

100

5.4.2. Governor Deadband Simulation Results

Figure 120 shows the resulting system frequency for each type of deadband. The step

deadband holds frequency almost exactly on the set deadband except when system loading de-

creases during minutes 7-11. The other deadband options maintain system frequency near their

respective mHz setting until loading increases beyond a point near minute 17.

0 5 10 15 20 25 30
Time [minutes]

59.96

59.98

60.00

60.02

60.04

Hz

System Frequency
Deadband: None
Deadband: Step
Deadband: No-Step
Deadband: Non-Linear

Figure 120: System frequency comparison of different deadband scenarios.

The first three minutes of a single generator’s valve travel are shown in Figure 121 to

compare how different deadbands affect valve movement. The step type deadband results in

pulse train-esq control signals being sent when system frequency is oscillating near the deadband.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [minutes]

0.590

0.595

0.600

Va
lv

e
Po

sit
io

n
[P

U]

Generator on Bus 32 Valve Travel
Deadband: None
Deadband: Step
Deadband: No-Step
Deadband: Non-Linear

Figure 121: Detail comparison of initial valve movement.

With all governors using a no-step type deadband, two of the three areas mHz deadband

was set to 16.6 mHz, while the third was set to 36 mHz. The left plot of figure 122 shows aver-

age valve travel over time in a homogeneous deadband system while the right plot shows non-

homogeneous valve travel results. In the homogeneous case, all areas have equal valve travel. In

101

the non-homogeneous case, the larger deadband used in area 3 prevents governor response until

minute 18.

0 5 10 15 20 25 30
Time [minutes]

0.0

0.1

PU

Average Valve Travel Over Time
Area 1
Area 2
Area 3

0 5 10 15 20 25 30
Time [minutes]

0.0

0.1

0.2

PU

Average Valve Travel Over Time
Area 1
Area 2
Area 3

Figure 122: Area valve travel for homogeneous and non-homogeneous scenarios.

Complete valve travel result plots are presented in Appendix 13. A tabular summary of

valve travel is shown in Table IX. Repeated control pulses associated with a step type deadband

greatly increase valve travel over the more linear deadband options. Simulation results rein-

force NERC recommendations that step deadbands not be used [20]. When a variety of deadband

thresholds are employed, total valve travel may decrease while certain individual movement in-

creases.

Table IX: Total valve travel for various deadband scenarios.

Valve Travel [PU]

Generator No DB Step No-Step
N-L
Droop

No-Step
Non-H

17 0.16 7.48 0.15 0.23 0.19

23 0.16 7.48 0.15 0.23 0.19

30 0.16 7.48 0.15 0.23 0.19

32 0.16 7.54 0.15 0.23 0.19

107 0.16 7.54 0.15 0.23 0.19

41 0.15 6.44 0.14 0.23 0.06

45 0.15 6.44 0.14 0.23 0.06

53 0.16 7.54 0.15 0.23 0.06

59 0.15 6.44 0.14 0.23 0.06

Total: 1.41 64.38 1.32 2.07 1.19

102

5.5. Automatic Generation Control Tuning

After a contingency, AGC acts to restore nominal operating conditions. Long-term simu-

lation is required to simulate AGC action as gentle system recovery takes multiple minutes. Ac-

cording to [34], AGC should respond only to internal events or to correct frequency. PLSTDSim

simulations using conditional AGC provide results that show conflicting AGC action extends re-

covery time and increases machine effort.

5.5.1. AGC Simulation Configuration

Using the two area six machine system, a 150 MW loss of generation event in each area

was used to tune AGC response to a large contingency. AGC settings were manipulated until an

individual BA could restore system frequency in less than 10 minutes. The effect of noise and

non-linear governor deadbands was also simulated. Random noise added to each simulation is

shown in Figure 123. Conditional ACE was used to show conflicting control effort when a BA

responds to out-of-area events.

0 2 4 6 8 10
Time [minutes]

10

5

0

5

10

M
W

Change in System Loading

System Total
Area 1
Area 2

Figure 123: Random noise added to AGC simulations.

Full code for simulating an external area event with tuned conditional AGC is shown in

Figures 222 and 223 in Appendix 11.

103

5.5.2. AGC Simulation Results

5.5.2.1. Base Case Results

Using the two area six machine system, a -150 MW step in generator power was simu-

lated. Figure 124 shows the system frequency response with primary control only.

0.0 0.2 0.4 0.6 0.8 1.0
Time [minutes]

59.7

59.8

59.9

60.0

Hz

System Frequency
 Case: smAGCbase1

Frequency

Figure 124: Frequency response to generation loss event in area 1.

Calculated BA values such as, reporting ACE (RACE) and interconnection (IC) error, will

be different depending on where the system loss occurs. Specifically, which area the event occurs

in dictates BA values. Figures 125 and 126 show BA values for the -150 MW generation step

event in area 1 and area 2 respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Time [minutes]

100

50

0

50

M
W

Balancing Authority ACE and Interchange Error
 Case: smAGCbase1

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 125: Calculated BA values during generation loss event in area 1.

104

0.0 0.2 0.4 0.6 0.8 1.0
Time [minutes]

100

0

M
W

Balancing Authority ACE and Interchange Error
 Case: smAGCbase2

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 126: Calculated values during generation loss event in area 2.

In a two area system, IC error is symmetric and the scaling of RACE by frequency bias

can be clearly seen. The initial negative RACE for BA2 shown in Figure 125 is not fully under-

stood. It may be due to the multiple generators assigned on the bus where the loss of generation

occurs. When a step in Pm occurs to a single bus generator, as Figure 126 shows, the odd RACE

behavior is not replicated. To observe system response without any AGC action, AGC gain was

set to zero for both areas causing distributed ACE (DACE) to also be zero.

5.5.2.2. AGC Tuning Results

The AGC tuning process and results from both areas were similar. Area 1 results and dis-

cussion are presented in this section and area 2 results are included in Appendix 14. The BA con-

trolling area 1 was equipped with an AGC routine that included a scaled window integrator, PI

smoothed ACE, and an action time of 30 seconds. Resulting frequency response is shown in Fig-

ure 127. Calculated RACE, IC error, and DACE are shown in Figure 125.

0 2 4 6 8 10
Time [minutes]

59.7

59.8

59.9

60.0

Hz

System Frequency
 Case: smAGCtune1

Frequency

Figure 127: AGC Frequency response to area 1 base case scenario.

105

0 2 4 6 8 10
Time [minutes]

100

0

M
W

Balancing Authority ACE and Interchange Error
 Case: smAGCtune1

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 128: Calculated BA values during area 1 AGC tuning.

Figures 129 and 130 show governor power output and power reference set point responses

for each area. During AGC tuning, ACE gain was set to zero for the BA routine not being tuned.

As such, area 2 has no Pref changes while area 1 adjusts its controlled governors to return RACE

to zero. The effect of AGC on Pref for generator 1 1 and generator 2 1 is identical.

0 2 4 6 8 10
Time [minutes]

1.0

1.1

1.2

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 1 (BA1) Controlled Machines Pm and Pref
 Case: smAGCtune1

Pm 1 1 Norm: 353
Pref 1 1
Pm 2 1 Norm: 350
Pref 2 1

Figure 129: Area 1 controlled generation response during AGC tuning.

0 2 4 6 8 10
Time [minutes]

1.00

1.05

1.10

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 2 (BA2) Controlled Machines Pm and Pref
 Case: smAGCtune1

Pm 3 1 Norm: 325
Pref 3 1

Figure 130: Area 2 controlled generation response during AGC tuning.

106

5.5.2.3. Noise and Deadband Simulation Results

To add slightly more realism to the event, noise and governor deadbands were added to

the simulation. Noise was set to 0.05% with random walk enabled. All AGC controlled gover-

nors were of the non-linear droop variety with an α of 16 mHz and a β of 36 mHz. Resulting

frequency is shown in Figure 131. System frequency oscillations between governor deadbands

occurs from roughly minute 6 onwards.

0 2 4 6 8 10
Time [minutes]

59.8

60.0

Hz

System Frequency
 Case: smAGCdbnz1

Frequency
0.016 Hz Governor Deadband

Figure 131: AGC frequency response with noise and deadbands.

Figures 132, 133, and 134 show calculated BA values and individual area controlled ma-

chine responses respectively. Despite the addition of noise and governor deadbands, system re-

covery is similar to ideal simulation conditions.

0 2 4 6 8 10
Time [minutes]

100

0

M
W

Balancing Authority ACE and Interchange Error
 Case: smAGCdbnz1

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 132: Calculated BA values with noise and deadbands.

107

0 2 4 6 8 10
Time [minutes]

1.0

1.1

1.2

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 1 (BA1) Controlled Machines Pm and Pref
 Case: smAGCdbnz1

Pm 1 1 Norm: 353
Pref 1 1
Pm 2 1 Norm: 350
Pref 2 1

Figure 133: Area 1 controlled generation response to noise and deadbands.

0 2 4 6 8 10
Time [minutes]

1.00

1.05

1.10

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 2 (BA2) Controlled Machines Pm and Pref
 Case: smAGCdbnz1

Pm 3 1 Norm: 325
Pref 3 1

Figure 134: Area 2 controlled generation response to noise and deadbands.

5.5.2.4. Conditional ACE Results

After tuning for both BAAGC routines was complete, conditional ACE could be tested.

Comparing TLB type 0, which is non-conditional, and conditional TLB type 4 involved enabling

AGC action for both areas and simulating an in-area, and out-of-area event. Figure 135 shows

that system frequency does not return to the nominal operating point in 10 minutes when TLB 0

is used. Figure 136 shows that BA2 DACE acts opposite BA1 DACE.

0 2 4 6 8 10
Time [minutes]

59.8

60.0

Hz

System Frequency
 Case: smAGCt0In1

Frequency
0.016 Hz Governor Deadband

Figure 135: Frequency response to event using TLB 0.

108

0 2 4 6 8 10
Time [minutes]

100

0

M
W

Balancing Authority ACE and Interchange Error
 Case: smAGCt0In1

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 136: Calculated BA values during an event using TLB 0.

To more clearly show conflicting control action, Figures 137 and 138 provide individual

area control responses. While BA1 acts to restore frequency by increasing generator output, BA2

acts to restore area interchange by reducing generator output. These control actions are opposite

and thus prolong system recovery.

0 2 4 6 8 10
Time [minutes]

1.0

1.1

1.2

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 1 (BA1) Controlled Machines Pm and Pref
 Case: smAGCt0In1

Pm 1 1 Norm: 353
Pref 1 1
Pm 2 1 Norm: 350
Pref 2 1

Figure 137: Area 1 controlled generation response to internal area event using TLB 0.

0 2 4 6 8 10
Time [minutes]

0.9

1.0

1.1

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 2 (BA2) Controlled Machines Pm and Pref
 Case: smAGCt0In1

Pm 3 1 Norm: 325
Pref 3 1

Figure 138: Area 2 controlled generation response to external area event using TLB 0.

Figure 139 shows system frequency response when each BA is set to send conditional

109

ACE according to TLB type 4 rules. Similar behavior to the noise and deadband only scenario is

reproduced. Calculated BA values in Figure 140 show that BA2 DACE is zero for the event. As

the event is external to area 2, it does not require a response from BA2.

0 2 4 6 8 10
Time [minutes]

59.8

60.0

Hz

System Frequency
 Case: smAGCt4In1

Frequency
0.016 Hz Governor Deadband

Figure 139: Frequency response to event using TLB 4.

0 2 4 6 8 10
Time [minutes]

100

0

M
W

Balancing Authority ACE and Interchange Error
 Case: smAGCt4In1

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 140: Calculated BA values during an event using TLB 4.

Figures 141 and 142 show that controlled machine response is similar to tuned conditions

when using TLB type 4. The Pref AGC response in area 2 near minute 7 is believed to be due

to a combination of random load changes affecting area interchange and frequency oscillations

caused by governor deadbands.

110

0 2 4 6 8 10
Time [minutes]

1.0

1.1

1.2

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 1 (BA1) Controlled Machines Pm and Pref
 Case: smAGCt4In1

Pm 1 1 Norm: 353
Pref 1 1
Pm 2 1 Norm: 350
Pref 2 1

Figure 141: Area 1 controlled generation response to internal area event using TLB 4.

0 2 4 6 8 10
Time [minutes]

1.00

1.05

1.10

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 2 (BA2) Controlled Machines Pm and Pref
 Case: smAGCt4In1

Pm 3 1 Norm: 325
Pref 3 1

Figure 142: Area 1 controlled generation response to external area event using TLB 4.

While an internal event to area 1 is external to area 2, and vice versa, to throughly test

conditional AGC behavior, an event was simulated in area 2 using both TLB 0 and TLB 4. Re-

sults were similar to previously conducted conditional AGC tests. For completeness, plotted re-

sults are presented in Appendix 14.

5.5.2.5. BAAL Results

Even though this scenario is not longer than 30 minutes, an introduction to the plots used

to check for control adherence to BAL-001-2 is worthwhile. As a reminder, BAL-001-2 deals

with BAAL, which is calculated using Equation 18 and a minute averaged frequency.

The slowest AGC recovery case, which used non-conditional ACG, was chosen for study

into BAAL. Figure 143 shows RACE exceeded the BAAL for nearly 4 minutes in area 1 during

the simulated event. Area 2 BAAL, shown in Figure 144, was exceeded immediately following

the perturbance again and briefly near minute 3. In both areas, AGC action reduced RACE to

111

acceptable levels before any NERC violations occurred.

0 2 4 6 8 10
Time [minutes]

150

100

50

0

AC
E

[M
W

]

Area 1 (BA1) BAAL
 Case: smAGCt0In1

RACE
BAAL
BAAL Exceeded

Figure 143: Area 1 BAAL during internal area event using TLB 0.

0 2 4 6 8 10
Time [minutes]

50

0

50

AC
E

[M
W

]

Area 2 (BA2) BAAL
 Case: smAGCt0In1

RACE
BAAL
BAAL Exceeded

Figure 144: Area 2 BAAL during external area event using TLB 0.

5.5.3. AGC Result Summary

In general, simulations show governor deadbands may lead to frequency oscillation be-

tween response thresholds and conditional AGC can be used to avoid unnecessary and contradic-

tory recovery action between areas. While BAAL was exceeded, AGC action resolved any excess

before a violation occurred.

112

5.6. Long-Term Simulation with Shunt Control

Long-term simulations of interest required shunt control to manage voltage. Without volt-

age control, load changes eventually caused the power-flow solution to diverge. Scenarios chosen

for simulation were a four hour morning peak and a two hour virtual wind ramp.

5.6.1. Morning Peak Forecast Demand Simulation

The same six machine two area system and tuned AGC controllers from the previous sec-

tion were used for long-term simulations. Definite time controllers (DTCs) were used to switch

shunts according to bus voltage. Publicly available EIA data was parsed and used to parameter-

ize hourly forecast and demand agents. Data was selected from the morning peak on December

11, 2019 staring at 5:00 AM as reported by the Bonneville Power Administration and California

ISO BAs. Normalized reported BA area power changes are shown in Figure 145. Simulated BA1

followed Bonneville data while BA2 adhered to California data. The selected forecast scenario

was simulated under ideal conditions and then with the inclusion governor deadbands and load

noise. Figure 146 shows the random noise added to area 2 caused load value to decrease much

more than area 1. The .ltd.py file used for the forecast demand scenario with noise and deadbands

is shown in Appendix 11 as Figure 224.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [Hours]

5

0

5

10

15

20

25

30

Pe
rc

en
t C

ha
ng

e
[%

]

Load Forecast and Demand from BPAT
Start Time = 5:00 12/11/2019

Demand
Forcast

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [Hours]

0

10

20

30

40

Pe
rc

en
t C

ha
ng

e
[%

]

Load Forecast and Demand from CISO
Start Time = 5:00 12/11/2019

Demand
Forcast

Figure 145: Normalized forecast and demand of parsed EIA data.

113

0 50 100 150 200
Time [minutes]

100

50

0

M
W

Change in System Loading

System Total
Area 1
Area 2

Figure 146: Changes in load caused by noise agent action during morning peak.

5.6.1.1. Morning Peak Forecast Demand Results

Figures 147 and 148 show the gradual increase of area real power load P, and generated

electrical power Pe. Near constant differences between generation and load is maintained by

AGC action throughout the entire simulation. The decreased load due to random noise in area

2 is somewhat apparent in Figure 148.

0 50 100 150 200
Time [minutes]

750

1000

1250

1500

M
W

Area Generation and Demand
 Case: smLTfd

Pe Area 1
Pload Area 1
Pe Area 2
Pload Area 2

Figure 147: Morning peak area Pe and Load.

0 50 100 150 200
Time [minutes]

750

1000

1250

1500

M
W

Area Generation and Demand
 Case: smLTfdDBnz

Pe Area 1
Pload Area 1
Pe Area 2
Pload Area 2

Figure 148: Morning peak area Pe and Load with noise and governor deadbands.

114

AGC action maintained system frequency near the nominal values. Figure 149 shows that

system frequency response without the addition of deadbands or noise varied less than 1.5 mHz.

Figure 150 shows that when deadbands and noise are included, frequency tended to oscillate be-

tween governor deadbands. A detail view of system frequency, shown in Figure 151, revealed the

oscillation to have a rate of approximately 4 mHz.

0 50 100 150 200
Time [minutes]

0.0000

0.0005

0.0010

Hz

+5.9999e1
System Frequency

 Case: smLTfd

Frequency

Figure 149: Morning peak system Frequency.

0 50 100 150 200
Time [minutes]

59.98

60.00

60.02

Hz

System Frequency
 Case: smLTfdDBnz

Frequency
0.016 Hz Governor Deadband

Figure 150: Morning peak system frequency with noise and governor deadbands.

100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 120.0
Time [minutes]

59.98

60.00

60.02

Hz

System Frequency
 Case: smLTfdDBnz

Frequency
0.016 Hz Governor Deadband

Figure 151: Detail morning peak system frequency with noise and governor deadbands.

115

Figure 152 shows calculated BA values during an ideal scenario never exceeded a mag-

nitude of 1 MW. Calculated values when noise is included became more busy, but generally os-

cillated between ± 10 MW. Figure 154 shows a clearer correlation between RACE and system

frequency.

0 50 100 150 200
Time [minutes]

0.5

0.0

0.5

M
W

Balancing Authority ACE and Interchange Error
 Case: smLTfd

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 152: Morning peak calculated BA values.

0 50 100 150 200
Time [minutes]

10

0

10

M
W

Balancing Authority ACE and Interchange Error
 Case: smLTfdDBnz

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 153: Morning peak calculated BA values with noise and governor deadbands.

100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 120.0
Time [minutes]

10

0

10

M
W

Balancing Authority ACE and Interchange Error
 Case: smLTfdDBnz

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 154: Detail morning peak calculated BA values with noise and governor deadbands.

116

Figures 155 and 156 show the BAAL from each scenario was never exceeded. Results

from the BA in area 2 were similar and are presented in Appendix 15. As BAAL gets very large

when frequency is near its nominal value, plot y-axes were scaled to 1.25 minimum and maxi-

mum RACE values.

0 50 100 150 200
Time [minutes]

0.5

0.0

0.5

AC
E

[M
W

]

Area 1 (BA1) BAAL
 Case: smLTfd

RACE
BAAL
BAAL Exceeded

Figure 155: BAAL of area 1 during morning peak.

0 50 100 150 200
Time [minutes]

10

0

10

AC
E

[M
W

]

Area 1 (BA1) BAAL
 Case: smLTfdDBnz

RACE
BAAL
BAAL Exceeded

Figure 156: BAAL of area 2 during morning with noise and governor deadbands.

117

While AGC handles the balancing of generation to load, and thus frequency, voltage must

be handled via DTC action. Figures 157 and 158 show shunt bus voltage under ideal conditions

and with load noise and governor deadbands, respectively. As load increased, bus voltage de-

clined. The steps in voltage were caused by capacitive shunts being switched into the system ac-

cording to programmed DTC parameters. The random noise added generally reduced load, so

shunt switching is slightly delayed when noise is applied compared to the ideal scenario.

0 50 100 150 200
Time [minutes]

0.96

0.98

1.00

V
[P

U]

Shunt Bus Voltage
 Case: smLTfd

Bus 8
Bus 9

Figure 157: Morning peak system shunt bus voltage.

0 50 100 150 200
Time [minutes]

0.98

1.00

V
[P

U]

Shunt Bus Voltage
 Case: smLTfdDBnz

Bus 8
Bus 9

Figure 158: Morning peak system shunt bus voltage with noise and governor deadbands.

118

Figures 159 and 160 show the active capacitive load on system bus 8 and 9. DTC action

switches capacitors on as voltage drops according to user input logic. Bus 8 has faster acting

shunts and thus switches all available caps on before any on bus 9 can respond. Again, the ran-

dom noise causes a delay in voltage drop and shunt switching as the random noise acts to gener-

ally reduce load.

0 50 100 150 200
Time [minutes]

375

400

425

450

M
VA

R

Shunt Bus Active B
 Case: smLTfd

Bus 8 Total
Bus 9 Total

Figure 159: Morning peak system shunt bus MVAR.

0 50 100 150 200
Time [minutes]

375

400

425

450

M
VA

R

Shunt Bus Active B
 Case: smLTfdDBnz

Bus 8 Total
Bus 9 Total

Figure 160: Morning peak system shunt bus MVAR with noise and governor deadbands.

5.6.2. Morning Peak Forecast Demand Result Summary

The tuned AGC routines adequately manage frequency and interchange during the event.

DTC action functioned to manage bus voltage as desired. Declining voltages at the end of the

simulation was due to the system not having any more shunts to switch on. Therefore, if this

event were real, the addition of more switchable capacitive shunts might be suggested.

119

5.6.3. Virtual Wind Ramp Simulation

A virtual wind ramp similar to the one created in [32] was simulated using PSLTDSim.

Unlike [32], conventional generator models were used instead of explicit wind turbine models.

Two ungoverned generators were ramped up, held, and then ramped down. More specifically, us-

ing the six machine system, generator 2 2 in area 1 was altered 150 MW while generator 5 1 in

area 2 was changed 300 MW. The generation ramps were 45 minute in duration. The first ramp

began at t = 300, or 5 minutes into the simulation. A pause of 20 minutes is included between

the end of the ramp up and beginning of ramp down. The wind ramp is finished by minute 115,

but the simulation continued for another 20 minutes so system recovery could be observed. AGC

settings for area 2 were modified from the forecast demand case to include generator 4 1 receiv-

ing 30.0% of AGC signals. This was required as AGC would force generator 3 1 to supply 0 MW

otherwise. Random noise injections into the system loads shown in Figure 161 acted to generally

reduce load in area 2.

0 20 40 60 80 100 120
Time [minutes]

60

40

20

0

M
W

Change in System Loading

System Total
Area 1
Area 2

Figure 161: Changes in load caused by noise agent action during virtual wind ramp.

5.6.3.1. Virtual Wind Ramp Results

Figures 162 and 163 show the ramping up behavior of generators 2 2 and 5 1 as well as

the AGC effect on controlled generators. General behavior observed with added load noise and

governor deadbands was similar to the ideal case.

120

0 20 40 60 80 100 120
Time [minutes]

200

400

600

M
W

Generator Power Distriubtion
 Case: smLTwr

Pe Gen 1 1
Pe Gen 2 1
Pe Gen 2 2
Pe Gen 3 1
Pe Gen 4 1
Pe Gen 5 1

Figure 162: Virtual wind ramp Pe distribution under ideal conditions.

0 20 40 60 80 100 120
Time [minutes]

200

400

600

M
W

Generator Power Distriubtion
 Case: smLTwrDBnz

Pe Gen 1 1
Pe Gen 2 1
Pe Gen 2 2
Pe Gen 3 1
Pe Gen 4 1
Pe Gen 5 1

Figure 163: Virtual wind ramp Pe distribution with noise and governor deadbands.

Figures 164 and 165 show system frequency response to the wind ramp under ideal con-

ditions and with governor deadbands and load noise included respectively. In both cases, AGC

was not able to achieve nominal system frequency during ramp events. Because the ramps are 45

minutes, this maintained frequency deviation is in violation of interpreted NERC mandate BAL-

002-3. When noise and deadbands were included, and no ramp event was taking place, system

frequency oscillated between deadband thresholds.

0 20 40 60 80 100 120
Time [minutes]

59.98

60.00

60.02

Hz

System Frequency
 Case: smLTwr

Frequency

Figure 164: Virtual wind ramp system frequency under ideal conditions.

121

0 20 40 60 80 100 120
Time [minutes]

59.96

59.98

60.00

60.02

Hz
System Frequency
 Case: smLTwrDBnz

Frequency
0.016 Hz Governor Deadband

Figure 165: Virtual wind ramp system frequency with noise and governor deadbands.

Figure 166 shows calculated BA values during the virtual wind ramp under ideal condi-

tions. It can be seen that DACE did not match RACE values during ramp events and that IC error

was symmetric. Figure 167 shows that calculated BA values when noise and deadbands are in-

cluded was slightly larger in magnitude than the ideal case. In both either case, maximum RACE

does not exceed ± 15 MW.

0 20 40 60 80 100 120
Time [minutes]

5

0

5

M
W

Balancing Authority ACE and Interchange Error
 Case: smLTwr

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 166: Virtual wind ramp calculated BA values under ideal conditions.

0 20 40 60 80 100 120
Time [minutes]

10

0

10

M
W

Balancing Authority ACE and Interchange Error
 Case: smLTwrDBnz

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 167: Virtual wind ramp calculated BA values with noise and governor deadbands.

122

Figure 168 shows that AGC did a good job of maintaining near constant generator output

Pe and that load does not change during the ideal scenario. Figure 169 shows similar AGC action

despite added noise decreasing area 2 loading.

0 20 40 60 80 100 120
Time [minutes]

800

1000

1200

M
W

Area Generation and Demand
 Case: smLTwr

Pe Area 1
Pload Area 1
Pe Area 2
Pload Area 2

Figure 168: Virtual wind ramp area Pe and Pload under ideal conditions.

0 20 40 60 80 100 120
Time [minutes]

800

1000

1200

M
W

Area Generation and Demand
 Case: smLTwrDBnz

Pe Area 1
Pload Area 1
Pe Area 2
Pload Area 2

Figure 169: Virtual wind ramp area Pe and Pload with noise and governor deadbands.

Figures 170 and 170 show the BAAL from each scenario was never exceeded. Results

from the BA in area 2 were to area 1 and are presented in Appendix 15. Plot y-axes were again

scaled to 1.25 minimum and maximum RACE values.

0 20 40 60 80 100 120
Time [minutes]

5

0

5

AC
E

[M
W

]

Area 1 (BA1) BAAL
 Case: smLTwr

RACE
BAAL
BAAL Exceeded

Figure 170: Virtual wind ramp BAAL under ideal conditions.

123

0 20 40 60 80 100 120
Time [minutes]

10

0

10

AC
E

[M
W

]
Area 1 (BA1) BAAL
 Case: smLTwrDBnz

RACE
BAAL
BAAL Exceeded

Figure 171: Virtual wind ramp BAALwith noise and governor deadbands.

Figures 172 and 173 show that bus voltage between the two scenarios was fairly similar.

As the ‘wind’ ramped up, bus voltage dropped and switched shunts stepped on to increase volt-

age. When the wind ramped down, bus voltage increased and controlled shunts were switched

off. The decreased load caused by random noise triggers an additional capacitor to be switched

off near minute 115.

0 20 40 60 80 100 120
Time [minutes]

1.00

1.02

1.04

V
[P

U]

Shunt Bus Voltage
 Case: smLTwr

Bus 8
Bus 9

Figure 172: Virtual wind ramp shunt bus voltage under ideal conditions.

0 20 40 60 80 100 120
Time [minutes]

1.00

1.02

1.04

V
[P

U]

Shunt Bus Voltage
 Case: smLTwrDBnz

Bus 8
Bus 9

Figure 173: Virtual wind ramp shunt bus voltage with noise and governor deadbands.

124

Figure 174 shows the MVAR injections caused by switched shunts under ideal conditions.

As bus 8 has a ‘faster’ DTC routine, all available capacitors are turned on before bus 9 shunts

activated during the ramp up event. The same is true when the wind ramped down; which left

bus 9 shunts on. Figure 175 shows that added noise created a lower voltage on bus 9 and enabled

a bus 9 shunt to switch on before all bus 8 capacitors were deployed. The additional bus 8 cap

removal near time 115 was caused by random noise, but is obscured by the plot legend.

0 20 40 60 80 100 120
Time [minutes]

375

400

425

450

M
VA

R

Shunt Bus Active B
 Case: smLTwr

Bus 8 Total
Bus 9 Total

Figure 174: Virtual wind ramp shunt bus MVAR under ideal conditions.

0 20 40 60 80 100 120
Time [minutes]

350

400

450

M
VA

R

Shunt Bus Active B
 Case: smLTwrDBnz

Bus 8 Total
Bus 9 Total

Figure 175: Virtual wind ramp shunt bus MVAR with noise and governor deadbands.

125

5.6.4. Long-Term Simulation with Shunt Control Result Summary

In general, configured AGC handled area interchange and BAAL well, but may require

further tuning or additional control options to adequately automatically handle frequency dur-

ing long ramps. Simulated governor deadbands introduced system frequency oscillation between

deadband thresholds. Bus voltage reference signals were used to effectively manage switched

shunt operation. Addition of random noise caused very slight differences that had noticeable ef-

fects on automatic system response.

126

5.7. Feed-Forward Governor Action

Interested parties expressed a concern with an undesirable governor response believed to

be caused by feed-forward governor characteristics. The provided model of governors in question

was described as a single block with no further information. Figure 176 is a plot of simulated

and recorded generator power output that was provided as an example of undesirable behavior. A

similar governor response was created using a DTC and governor input manipulation.

Figure 176: Provided information of undesired governor response.

5.7.1. Feed-Forward Governor Simulation Configuration

Using the six machine system with 0.5 second time step, a method of stepping governor

Pref while also gaining input ∆ωPU produced a similar undesirable response. Code used to de-

fine system generation step, governor delay, and DTC action is shown in Figure 177. In practice,

this code would be user defined in the simulation .ltd.py file.

A block diagram showing what the DTC does is shown in Figure 178. The logic control-

ling SW1, which uses a modulo operator to act every 24 seconds, is

SW1 =
(
(t%24) == 0

)
. (22)

It should be noted that this logic, and the resulting setting of Pref , occurs first during dynamic

computation.

127

ωrefPU

Σ 0.5
∆ωPU

*

MBase

2R
Σ

Pref

Pref

MBase

R

MBaseDt

Σ

1

Vmax ×MWcap

Vmin ×MWcap

1

1 + $T1

1 + $T2

1 + $T3
Σ

PM

ωPU

Pref

+
− +

+

−

0

SW1

Figure 178: Block diagram of tgov1 model with DTC.

The perturbance list in Figure 177 specifies an ungoverned generator on bus 5 with a

mechanical power step down of 100 MW at t=20. This was meant to simulate the tripping of

a generator in an aggregated generator model. The governor delay dictionary was used to gain

the ∆ω input by 0.5. This was required so that steady state frequency did not over account for

differences of ∆ω. The DTC action was defined to occur every 24 seconds and sets Pref =

Pref0 +
∆ω

R
Mbase ∗ 0.5. While not truly a feed-forward control response, the stepping of Pref

was predicted to produce a similar result. Action time of 24 seconds was chosen so the first DTC

response is near the simulated frequency nadir.

128

1 # Perturbances
2 mirror.sysPerturbances = [
3 'gen 5 : step Pm 20 -100 rel', # Step no-gov generator down
4]
5

6 # Delay block used as delta_w gain
7 mirror.govDelay ={
8 'delaygen2' : {
9 'genBus' : 2,
10 'genId' : '1', # optional
11 'wDelay' : (0, 0, .5), # gain of input w
12 'PrefDelay' : (0, 0)
13 },
14 #end of defined governor delays
15 }
16

17 # Definite Time Controller Definitions
18 mirror.DTCdict = {
19 'ffGovTest' : {
20 'RefAgents' : {
21 'ra1' : 'mirror : f',
22 'ra2' : 'gen 2 1 : R',
23 'ra3' : 'gen 2 1 : Pref0',
24 'ra4' : 'gen 2 1 : Mbase',
25 },# end Referenc Agents
26 'TarAgents' : {
27 'tar1' : 'gen 2 1 : Pref',
28 }, # end Target Agents
29 'Timers' : {
30 'set' :{ # set Pref
31 'logic' : "(ra1 > 0)", # should always eval as true
32 'actTime' : 24, # seconds of true logic before act
33 'act' : "tar1 = ra3 + (1-ra1)/(ra2) * ra4 * 0.5 ", # step Pref
34 },# end set
35 'reset' :{ # not used in example
36 'logic' : "0",
37 'actTime' : 0, # seconds of true logic before act
38 'act' : "0", # set any target On target = 0
39 },# end reset
40 'hold' : 0, # minimum time between actions (not used in example)
41 }, # end timers
42 },# end ffGovTest
43 }# end DTCdict

Figure 177: Long-term dynamic settings for feed-forward governor simulation.

129

5.7.2. Feed-Forward Governor Simulation Results

Simulation results for frequency, and generator electrical power are shown in Figures 179

and 180 respectively. The undesired response can be seen when power output is stepped beyond

the steady state value.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [minutes]

59.8

59.9

60.0

Hz

System Frequency
sixMachineGovNoDTC
sixMachineGovDTC

Figure 179: Feed-forward governor frequency comparison.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [minutes]

340

350

360

370

380

Po
we

r [
M

W
]

Generator Electric Power Output
sixMachineGovNoDTC Pe
sixMachineGovDTC Pe

Figure 180: Feed-forward governor electric power comparison.

While the produced behavior does resemble observed behavior, it is not an exact match.

Scaling and actual response time differences are believed to be caused by differences in model

size, governor time constants, and actual feed-forward action. A new governor model with more

defined feed-forward capabilities could be created if simulated results on actual system-under-

study are unsatisfactory.

130

5.8. Variable System Damping and Inertia

PSLTDSim can be used to estimate system behavior. To adjust frequency response, sys-

tem damping and inertia may be manipulated. The trend of increased inverter-based generation

can lead to situations where total system inertia may not match what is expected. The single com-

bined system inertia in PSLTDSim can be modified during simulations to enable study into vari-

able inertia system responses.

5.8.1. Damping and Inertia Simulation Configuration

Damping effects were explored by modifying the ”Dsys” value in the simParams dictio-

nary of a simulation .py file. Modifcations of this value change the Dsys variable in Equation

10. System inertia effects were studied by altering the ”Hinput” in simParams dictionary and by

perturbance agent action which affect the Hsys value in Equation 10. A pulse train of load steps

was created to present the ability to vary system inertia during a simulation. System inertia was

altered before each positive load step. Code used to define perturbance steps is shown in Figure

181. In practice, this code would be user defined in the simulation .ltd.py file.

1 mirror.sysPerturbances = [
2 # Initial system response
3 'load 8 : step P 2 100 rel',
4 'load 8 : step P 22 -100 rel',
5 # decrease of H
6 'mirror : step Hsys 40 -30 per',
7 'load 8 : step P 42 100 rel',
8 'load 8 : step P 62 -100 rel',
9 # decrease of H
10 'mirror : step Hsys 80 -50 per',
11 'load 8 : step P 82 100 rel',
12 'load 8 : step P 102 -100 rel',
13 # Increase of H
14 'mirror : step Hsys 120 30080 abs',
15 'load 8 : step P 122 100 rel',
16 'load 8 : step P 142 -100 rel',
17]

Figure 181: Long-term dynamic settings for variable system inertia simulation.

131

The code in Figure 181 steps the load on bus 8 up and down 100 MW every 20 seconds

starting at t=2. System inertia is reduced by 30% at t=40, 50% at t=80, and then set to 30,080

MW s at t=120.

5.8.2. Damping and Inertia Simulation Results

System damping effects to a -100 MW generator step are shown in Figure 182. A positive

damping value increased system oscillation while a negative damping value decreased oscilla-

tions. Altering system damping affected steady state frequency response.

0.0 0.2 0.4 0.6 0.8 1.0
Time [minutes]

59.7

59.8

59.9

60.0

Hz

System Frequency

smD0
smDpos
smDneg

Figure 182: Frequency effects of system damping.

Frequency response to scalings of system inertia are shown in Figure 183. The smH100

case was an un-modified system inertia, while the 90, 80 and 70 case appendings reflected a

90.0%, 80.0%, and 70.0% inertia scaling respectively. A scaling of 60.0% resulted with a power-

flow problem that did not converge. As system inertia was decreased, frequency response became

faster and frequency nadir increased.

0.0 0.1 0.2 0.3 0.4 0.5
Time [minutes]

59.75

59.80

59.85

59.90

59.95

60.00

Hz

System Frequency

smH100
smH90
smH80
smH70

Figure 183: Frequency effects of system inertia.

132

A single machine’s valve response to inertia scalings are shown in Figure 184. Results

resemble a reflected frequency response where lower inertia cases have larger and faster valve

travel.

0 5 10 15 20 25 30
Time [seconds]

0.44

0.46

0.48

0.50

0.52

Va
lv

e
Po

sit
io

n
[P

U]

Generator on Bus 1 Valve Travel
smH100
smH90
smH80
smH70

Figure 184: Governor response to varied system inertia.

Figure 185 shows the changes in system inertia caused by perturbance actions shown in

Figure 181. Figure 186 shows system frequency response to a pulse train of load steps. Again,

lower system inertia leads to faster frequency changes and larger frequency nadirs.

0.0 0.5 1.0 1.5 2.0 2.5
Time [minutes]

10000

20000

30000

In
er

tia
 [M

W
 s]

System Inertia
 Case: sixMachineHpert

Figure 185: Varied system inertia during simulation.

0.0 0.5 1.0 1.5 2.0 2.5
Time [minutes]

59.8

60.0

60.2

Hz

System Frequency
 Case: sixMachineHpert

Figure 186: System frequency response to varying system inertia.

133

Damping altered system frequency dynamic response and affected steady state frequency

values. System inertia may be changed before or during a simulation. Noticeable effects of vary-

ing inertia were seen during step type contingencies. PSLTDSim is not particularly well suited

for large steps, however, results showed that changes in system inertia during simulation were

accounted for.

134

6. Conclusion

This work accomplished all software and engineering simulation goals. Using the ABM

approach enabled modular expansion and facilitated large system scaling. Custom procedures

may be inserted via the .ltd.py file and PSLTDSim models can be modified or created accord-

ing to need. Multiple complete power system models of vastly different sizes were shown to be

compatible with PSLTDSim.

Generated output data was validated against industry standard transient software. Sim-

ulation results of ramps or relatively small step perturbances were shown to be reproduced well

in PSLTDSim. While differences between PSLTDSim and PSDS were found, many differences

were expected and deemed within reason for long-term analysis of control validity and efficiency.

Software capabilities to model AGC, programmable logic controllers as DTCs, and dy-

namic governor models with optional deadbands, filters, and delays were created. Simulations

were conducted of system conditions representing long-term engineering events-of-interest such

as: AGC system recovery, daily load pattern recreation, and a virtual wind ramp. Through these

scenarios it was shown that PSLTDSim could be used for AGC tuning, switched shunt coordina-

tion, and long-term event recreation. Available software capabilities also allowed for experimen-

tation into system responses with random noise, modified system damping, and variable inertia

situations.

The conducted engineering studies recreated various known phenomena. As NERC sug-

gests, the use of step governor deadbands should be avoided as they increase valve travel. Sys-

tem frequency was shown to oscillate near or between governor deadbands. Conditional AGC

should be employed to avoid conflicting area AGC action that prolongs recovery.

PSLTDSim is open source, available on PyPI, and may be expanded upon by future re-

search. Various courses of action are suggested to allow PSLTDSim to become more useful. The

main GitHub repository contains many example scenarios as well as all created source and vali-

dation code.

135

7. Future Work

As with any software project, future work revolves around expansion and refinement. The

number of dynamic agents, or governor models, could be expanded without bound. Alternatively,

a more refined way of casting un-modeled governors could be devised. A process involving au-

tomated one machine infinite bus scenarios, step analysis, and 2nd order approximation has been

suggested.

Exponential load models and under-load transformer tap changers are things that should

be accounted for. Power plant agents that act as plant controllers have been conceptually mod-

eled, but not implemented to their full extent. To better capture voltage changes, and thus reac-

tive power, some form of exciter modeling may be desired, although with the simplification of

machine models, this task may prove difficult. Voltage scheduling of generator buses via pertur-

bance agents should be possible, but is untested as of this writing.

PSLTDSim is open-source code that relies on proprietary software for essential functions.

To move away from this reliance, a method for creating system models and solving power flows

should be created. Any changes would have to be incorporated into the way PSLTDSim creates

a system mirror, solves a power flow, and updates the mirror. A semi-clear point to break from

PSLF would be when AMQPmessages are sent. If PSLTDSim did not rely on PSLF, there would

also be no need for AMQPmessages to be sent as all code would be PY3. This would not only

enable fully open-source simulation, but speed up simulation time and create a more straight for-

ward code flow.

To accommodate for transient, or oscillatory events, PSLTDSim could be coupled with

the ideas presented in [69]. This would involve a variable time step and some way to automati-

cally switch between TSPF and CTS simulation.

136

8. Bibliography

[1] .NET Foundation. (2018). Ironpython overview, [Online]. Available: https://ironpython.
net/.

[2] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Second Edition.

Wiley-Interscience, 2003.

[3] J. Audenaert, K. Verbeeck, and G. V. Berghe. (2009). Mulit-agent based simulation for

boarding, CODeS Research Group, [Online]. Available: https://www.semanticscholar.
org / paper / Multi - Agent - Based - Simulation - for - Boarding - Audenaert -
Verbeeck/24ba2c3190de5b7162c37e81581b062cda3e4d54.

[4] A. Aziz, A. Mto, and A. Stojsevski, “Automatic generation control of multigeneration

power system,” Journal of Power and Energy Engineering, 2014.

[5] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value

Problems, 10th ed. Wiley Custom Learning Solutions, 2014.

[6] W. Briggs, L. Chochran, and B. Gillett, Calculus Early Transcendentals. Pearson Educa-

tion, Inc., 2011.

[7] J. Carpentier, “’To be or not to be modern’ that is the question for automatic generation

control (point of view of a utility engineer),” International Journal of Electrical Power &

Energy Systems, 1985.

[8] R. W. Cummings, W. Herbsleb, and S. Niemeyer. (2010). Generator governor and informa-

tion settings webinar, North American Electric Reliability Corporation, [Online]. Available:

https://www.nerc.com/files/gen-governor-info-093010.pdf.

[9] F. P. deMello and R. Mills, “Automatic generation control part II - digital control tech-

niques,” IEEE PES Summer Meeting, 1972.

[10] DEQ. (2004). Montana electric transmission grid: Operation, congestion, and issues, DEQ,

[Online]. Available: https://leg.mt.gov/content/publications/Environmental/
2004deq_energy_report/transmission.pdf.

[11] EIA. (2016). U.s. electric system is made up of interconnections and balancing authorities,

[Online]. Available: https://www.eia.gov/todayinenergy/detail.php?id=27152.

[12] EIA. (2019). July2019map.png, U.S. Energy Information Administration, [Online]. Avail-

able: https://www.eia.gov/electricity/data/eia860m/.

[13] EIA. (2019). U.s. electric system operating data, U.S. Energy Information Administration,

[Online]. Available: https://www.eia.gov/realtime_grid/.

https://ironpython.net/
https://ironpython.net/
https://www.semanticscholar.org/paper/Multi-Agent-Based-Simulation-for-Boarding-Audenaert-Verbeeck/24ba2c3190de5b7162c37e81581b062cda3e4d54
https://www.semanticscholar.org/paper/Multi-Agent-Based-Simulation-for-Boarding-Audenaert-Verbeeck/24ba2c3190de5b7162c37e81581b062cda3e4d54
https://www.semanticscholar.org/paper/Multi-Agent-Based-Simulation-for-Boarding-Audenaert-Verbeeck/24ba2c3190de5b7162c37e81581b062cda3e4d54
https://www.nerc.com/files/gen-governor-info-093010.pdf
https://leg.mt.gov/content/publications/Environmental/2004deq_energy_report/transmission.pdf
https://leg.mt.gov/content/publications/Environmental/2004deq_energy_report/transmission.pdf
https://www.eia.gov/todayinenergy/detail.php?id=27152
https://www.eia.gov/electricity/data/eia860m/
https://www.eia.gov/realtime_grid/

137

[14] EIA. (2019). U.s. energy mapping system, U.S. Energy Information Administration, [On-

line]. Available: https://www.eia.gov/state/maps.php?v=Electricity.

[15] E. Ela and J. Kemper, “Wind plant ramping behavior,” National Renewable Energy Labo-

ratory, 2009.

[16] M. D. of Environmental Quality. (2020). Colstrip statistics, DEQ, [Online]. Available:

http://deq.mt.gov/DEQAdmin/mfs/AllColstrip/DEQAdmin/mfs.

[17] ERCOT. (2017). Ercot-internconnection_branded.jpg, ERCOT, [Online]. Available: http:
//www.ercot.com/news/mediakit/maps.

[18] J. H. Eto, J. Undrill, C. Roberts, P. Mackin, and J. Ellis, “Frequency control requirements

for reliable interconnection frequency response,” Energy Analysis and environmental Im-

pacts Division Lawrence Berkeley National Laboratory, 2018.

[19] D. Fabozzi and T. Van Cutsem, “Simplified time-domain simulation of detailed long-term

dynamic models,” IEEE Xplore, 2009.

[20] FERC, “Essential reliability services and the evolving bulk-power system–primary fre-

quency response,” Federal Energy Regulatory Commission, Docket No. RM16-6-000 Or-

der No. 842, Feb. 2018.

[21] FERC. (2019). About ferc, [Online]. Available: https://www.ferc.gov/about/about.
asp.

[22] T. Garnock-Jones and G. M. Roy. (2017). Introduction to pika, [Online]. Available: https:
//pika.readthedocs.io/en/stable/.

[23] GE Energy,Mechanics of running pslf dynamics, 2015.

[24] GeeksforGeeks. (2017). Thread in operating system, GeeksforGeeks, [Online]. Available:

https://www.geeksforgeeks.org/thread-in-operating-system/.

[25] General Electric. (2020). Ge pslf main page, [Online]. Available: https://www.geenergyconsulting.
com/practice-area/software-products/pslf.

[26] General Electric International, Inc, PSLF User’s Manual, 2016.

[27] W. B. Gish, “Automatic generation control algorithm - general concepts and application to

the watertown energy control center,” Bureau of Reclamation Engineering and Research

Center, 1980.

[28] J. D. Glover, M. S. Sarma, and T. J. Overbye, Power System Analysis & Design, 5e. Cen-

gage Learning, 2012.

https://www.eia.gov/state/maps.php?v=Electricity
http://deq.mt.gov/DEQAdmin/mfs/AllColstrip/DEQAdmin/mfs
http://www.ercot.com/news/mediakit/maps
http://www.ercot.com/news/mediakit/maps
https://www.ferc.gov/about/about.asp
https://www.ferc.gov/about/about.asp
https://pika.readthedocs.io/en/stable/
https://pika.readthedocs.io/en/stable/
https://www.geeksforgeeks.org/thread-in-operating-system/
https://www.geenergyconsulting.com/practice-area/software-products/pslf
https://www.geenergyconsulting.com/practice-area/software-products/pslf

138

[29] R. Gonzales. (2019). Pg&e transmission lines caused california’s deadliest wildfire, state

officials say, NPR, [Online]. Available: https : / / www . npr . org / 2019 / 05 / 15 /
723753237 / pg - e - transmission - lines - caused - californias - deadliest -
wildfire-state-officials-sa.

[30] M. Goossens, F. Mittelbach, and A. Samarin, The LATEX Companion. Addison-Wesley,

1993.

[31] R. Hallett, “Improving a transient stability control scheme with wide-area synchrophasors

and the microwecc, a reduced-order model of the western interconnect,” Master’s thesis,

Montana Tech, 2018.

[32] E. Heredia, D. Kosterev, and M. Donnelly, “Wind hub reactive resource coordination and

voltage control study by sequence power flow,” IEEE, 2013.

[33] J. JMesserly. (2008). Electricity_grid_simple-_north_america.svg, United States Depart-

ment of Energy, [Online]. Available: https://commons.wikimedia.org/wiki/File:
Electricity_grid_simple-_North_America.svg.

[34] T. Kennedy, S. M. Hoyt, and C. F. Abell, “Variable, non-linear tie-line frequency bias for

interconnected systems control,” IEEE Transactions on Power Systems, 1988.

[35] Y. G. Kim, H. Song, and B. Lee, “Governor-response power flow (grpf) based long-term

voltage stability simulation,” IEEE T&DAsia, 2009.

[36] G. Kou, P. Markham, S. Hadley, T. King, and Y. Liu, “Impact of governor deadband on

frequency response of u.s. eastern interconnection,” IEEE Transactions on Smart Grid,

2016.

[37] D. Kuhlman, A Python Book: Beginning Python, Advanced Python, and Python Exercises.

2009.

[38] P. Kundur, Power System Stability and Control. McGraw-Hill, 1994.

[39] K. H. LaCommare and J. H. Eto, “Understanding the cost of power interruptions to u.s.

electricity consumers,” Ernest Orlando Lawrence Berkeley National Laboratory, 2004.

[40] M. Liedtke. (2020). Court approves pg&e’s $23b bankruptcy financing package, AP News,

[Online]. Available: https://apnews.com/b70582ee8d4bb7f781553215612da993.

[41] P. Maloney. (2018). What is the value of electric reliability for your operation? [Online].

Available: https://microgridknowledge.com/power-outage-costs-electric-
reliability/.

https://www.npr.org/2019/05/15/723753237/pg-e-transmission-lines-caused-californias-deadliest-wildfire-state-officials-sa
https://www.npr.org/2019/05/15/723753237/pg-e-transmission-lines-caused-californias-deadliest-wildfire-state-officials-sa
https://www.npr.org/2019/05/15/723753237/pg-e-transmission-lines-caused-californias-deadliest-wildfire-state-officials-sa
https://commons.wikimedia.org/wiki/File:Electricity_grid_simple-_North_America.svg
https://commons.wikimedia.org/wiki/File:Electricity_grid_simple-_North_America.svg
https://apnews.com/b70582ee8d4bb7f781553215612da993
https://microgridknowledge.com/power-outage-costs-electric-reliability/
https://microgridknowledge.com/power-outage-costs-electric-reliability/

139

[42] Y. Mobarak, “Effects of the droop speed governor and automatic generation control agc on

generator load sharing of power system,” International Journal of Applied Power Engineer-

ing, 2015.

[43] NERC, “Frequency response initiative report,” North American Electric Reliability Corpo-

ration, 2012.

[44] NERC, “Procedure for ero support of frequency response and frequency bias setting stan-

dard,” North American Electric Reliability Corporation, 2012.

[45] NERC, “Standard bal-003-1.1 — frequency response and frequency bias setting,” North

American Electric Reliability Corporation, 2015.

[46] NERC, “Standard bal-001-2 – real power balancing control performance,” North Ameri-

can Electric Reliability Corporation, 2016.

[47] NERC. (2017). About nerc, [Online]. Available: https://www.nerc.com/AboutNERC/
Pages/default.aspx.

[48] NERC. (2017). Nerc interconnections map, [Online]. Available: https://www.nerc.
com/AboutNERC/keyplayers/PublishingImages/NERC%20Interconnections.pdf.

[49] NERC, “Bal-002-3 – disturbance control standard – contingency reserve for recovery from

a balancing contingency event,” North American Electric Reliability Corporation, 2018.

[50] NERC, “Frequency response annual analysis,” North American Electric Reliability Corpo-

ration, 2018.

[51] NERC, “Reliability guideline application guide for modeling turbine-governor and active

power-frequency controls in interconnection-wide stability studies,” 2019.

[52] NERC, “Reliability guideline primary frequency control,” 2019.

[53] NERC. (2020). Glossary of terms used in nerc reliability standards, NERC, [Online].

Available: https://www.nerc.com/files/glossary_of_terms.pdf.

[54] NERC Resources Subcommittee, “Balancing and frequency control,” North American

Electric Reliability Corporation, 2011.

[55] NERC Resources Subcommittee, “Bal-001-tre-1 — primary frequency response in the

ercot region,” North American Electric Reliability Corporation, 2016.

[56] J. W. Nilsson and S. A. Riedel, Electric Circuits, Ninth. Pearson Education, Inc., 2011.

[57] P. W. Parfomak, “Physical security of the u.s. power grid: High-voltage transformer sub-

stations,” Congressional Research Service, 2014.

https://www.nerc.com/AboutNERC/Pages/default.aspx
https://www.nerc.com/AboutNERC/Pages/default.aspx
https://www.nerc.com/AboutNERC/keyplayers/PublishingImages/NERC%20Interconnections.pdf
https://www.nerc.com/AboutNERC/keyplayers/PublishingImages/NERC%20Interconnections.pdf
https://www.nerc.com/files/glossary_of_terms.pdf

140

[58] PowerWorld Corporation. (2020). Powerworld main page, [Online]. Available: https:
//www.powerworld.com/.

[59] Python Software Foundataion. (2019). About python, [Online]. Available: https://www.
python.org/about/.

[60] B. Rand. (2018). Agent-based modeling: What is agent-based modeling? Youtube, [On-

line]. Available: https://www.youtube.com/watch?v=FVmQbfsOkGc.

[61] C. W. Ross, “Error adaptive control computer for interconnected power systems,” IEEE

Transactions on Power Apparatus and Systems, 1966.

[62] G. van Rossum. (2009). A brief timeline of python, [Online]. Available: https://python-
history.blogspot.com/2009/01/brief-timeline-of-python.html.

[63] RTDS Technologies. (2020). Rscad main page, [Online]. Available: https://legacy.
rtds.com/the-simulator/our-software/about-rscad/.

[64] J. Sanchez-Gasca, M. Donnelly, R. Concepcion, A. Ellis, and R. Elliott, “Dynamic simu-

lation over long time periods with 100% solar generation,” Sandia National Laboratories,

SAND2015-11084R, 2015.

[65] P. W. Sauer, M. A. Pai, and J. H. Chow, Power System Dynamics and Stability With Syn-

chrophasor Measurement and Power System Toolbox, Second Edition. John Wiley & Sons

Ltd, 2018.

[66] SciPy developers. (2019). About scipy, [Online]. Available: https://www.scipy.org/
about.html.

[67] K. Siegel. (2012). The true cost of power outages, Yale Environment Review, [Online].

Available: https://environment-review.yale.edu/true-cost-power-outages-0.

[68] Siemens AG. (2018). Siemens main page, [Online]. Available: https://pss-store.
siemens.com/store/sipti/en_US/home.

[69] M. Stajcar, “Power system simulation using an adaptive modeling framework,” Master’s

thesis, Montana Tech, 2016.

[70] C. W. Taylor and R. L. Cresap, “Real-time power system simulation for automatic genera-

tion control,” IEEE Transactions on Power Apparatus and Systems, 1976.

[71] The SciPy community. (2019). Scipy scipy.integrate.solve_ivp page, [Online]. Available:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.
solve_ivp.html.

https://www.powerworld.com/
https://www.powerworld.com/
https://www.python.org/about/
https://www.python.org/about/
https://www.youtube.com/watch?v=FVmQbfsOkGc
https://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
https://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
https://legacy.rtds.com/the-simulator/our-software/about-rscad/
https://legacy.rtds.com/the-simulator/our-software/about-rscad/
https://www.scipy.org/about.html
https://www.scipy.org/about.html
https://environment-review.yale.edu/true-cost-power-outages-0
https://pss-store.siemens.com/store/sipti/en_US/home
https://pss-store.siemens.com/store/sipti/en_US/home
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

141

[72] The SciPy community. (2019). Scipy scipy.signal.lsim page, [Online]. Available: https:
//docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.
lsim.html.

[73] D. Trudnowski, “Properties of the dominant inter-area modes in the wecc interconnect,”

Montana Tech, 2012.

[74] T. Van Cutsem and C. Vournas, Voltage Stability of Electric Power Systems, 1st ed. Springer

US, 1998.

[75] WECC. (2015). About wecc, [Online]. Available: https://www.wecc.org/Pages/
AboutWECC.aspx.

https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.lsim.html
https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.lsim.html
https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.lsim.html
https://www.wecc.org/Pages/AboutWECC.aspx
https://www.wecc.org/Pages/AboutWECC.aspx

142

9. Numerical Methods

PSLTDSim utilizes a variety of numerical methods to perform integration. Some of the

methods are coded ‘by hand’, while others are included in Python packages. This appendix is

meant to introduce some numerical integration techniques, provide basic information about two

Python functions used to perform numerical integration, compare results of numerical methods to

exact solutions via examples, and briefly explain how some dynamic agents utilize the explained

techniques.

9.1. Integration Methods

The options included in PSLTDSim to solve the combined swing equation for a new sys-

tem frequency are Euler, Adams-Bashforth, and Runge-Kutta. Each of these methods are numer-

ical approximations that provide an approximation to the solution of an initial value problem.

Method equations presented below were adapted from [5].

9.1.1. Euler Method

Of the integration methods available, the Euler method is the simplest. In general terms,

the next y value associated with a given differential function f(t, y) is

yn+1 = yn + f(tn, yn)ts (23)

where ts is desired time step. The yn+1 solution is simply a projection along a line tangent to

f(tn, yn). It should be noted that the accuracy of this approximation method, and others de-

scribed, is often related to the time step size, or the distance between approximations.

143

9.1.2. Runge-Kutta Method

Improving on the Euler method, the Runge-Kutta method combines numerous projections

through a weighted average to approximate the next y value. The fourth order four-stage Runge-

Kutta method is defined as Equation Block 24.

k1 = f(tn, yn)

k2 = f(tn + ts/2, yn + tsk1/2)

k3 = f(tn + ts/2, yn + tsk2/2)

k4 = f(tn + ts, yn + tsk3)

yn+1 = yn + ts(k1 + 2k2 + 2k3 + k4)/6

(24)

It can be seen that k1 and k4 are solutions on either side of the interval of approximation defined

by the time step ts, and that k2 and k3 represent midpoint estimations.

9.1.3. Adams-Bashforth Method

Unlike previously introduced methods, the Adams-Bashforth method requires data from

previous solution steps. Methods of this nature are sometimes referred to as multistep methods.

A two-step Adams-Bashforth method is described in Equation 25, however, larger step methods

do exist.

yn+1 = yn + ts
(
1.5f(tn, yn)− 0.5f(tn−1, yn−1)

)
(25)

Regardless of the number of steps, Adams-Bashforth methods utilize a weighted combination of

values similar to the Runge-Kutta method, but using only previously known values instead of

projected future values.

144

9.1.4. Trapezoidal Integration

To integrate known values generated each time step, PSLTDSim uses a trapezoidal inte-

gration method. Given some value y(t), the trapezoidal method states that

∫ t

t−ts

y(t) dt ≈ ts
(
y(t) + y(t− ts)

)
/2, (26)

where ts is the time step used between calculated values of y. Visually, this method can be thought

of connecting the two y values with a straight line, and then calculating the area of the trapezoid

formed between them. As with previously described methods, the accuracy of this method de-

pends on step size.

9.2. Python Functions

To allow for more robust solution methods, two Python functions were incorporated into

PSLTDSim. The two functions are from the Scipy package for scientific computing. General

information about these two functions is presented in this section.

9.2.1. scipy.integrate.solve_ivp

The Scipy solve_ipv function is capable of numerically integrating ordinary differential

equations with initial values using a variety of techniques. A generic call to the function is shown

in Figure 187. Required inputs include a multi-variable function of x and y (i.e. some f(x, y)),

a tuple describing the range of integration, and an initial value list. The output is an object with

various collections of time points, solution points, and other information about the returned solu-

tion.

soln = scipy.integrate.solve_ivp(fp, (t0, t1), [initVal])

Figure 187: Generic call to solve_ivp.

The default integration method used by solve_ivp is an explicit Runge-Kutta of order

5(4). This method is similar to the previously discussed 4th order Runge-Kutta, but with an ad-

145

ditional estimation factor. The four in parenthesis describes an approximation generated by a 4th

order method which is used to calculate an error term between the 5th order solution and adjust

the approximation time step accordingly. The exact execution of this process may be studied in

the source code of the function itself. Other possible integration methods and function usage sug-

gestions are described in [71].

9.2.2. scipy.signal.lsim

The Scipy function that simulates the output from a continuous-time linear system is

called lsim. A general call to lsim is shown in Figure 188. The inputs include an ‘lti’ system, an

input vector, a time vector, and an initial state vector.

tout, y, x = scipy.signal.lsim(system, [U,U], [t0,t1], initialStates)

Figure 188: Generic call to lsim.

Accepted lti systems passed into lsim may be transfer functions or state space systems

created by the Scipy signal package. Function output includes a simulated time vector, system

output, and state history. The computations performed by lsim utilize a state space solution cen-

tered around a matrix exponential that solves a system of first order differential equations. More

complete information about the usage of lsim may be found in its source code or in [72].

9.3. Method Comparisons via Python Code Examples

Approximations from each method or function described above were compared to an ex-

act solution by way of a Python script. This section includes full code from each test case, equa-

tions required to solve integrals exactly, and simulation results. Due to the lack of an accepted

code listing format for this document, code is presented in figures that may span page breaks.

Despite the breaks in code presentation, code line numbers are continuous where applicable.

146

9.3.1. General Approximation Comparisons

The code used to compare the Euler, Adams-Bashforth, and Runge-Kutta method to an

exact solution is presented below. As most code does, the created script begins with package im-

ports. Numpy was imported for its math capabilities, such as the exponential function, and Mat-

plotlib was imported for its plotting functions.

1 """
2 File meant to show numerical integration methods applied via python
3 Structured in a way that is related to the simulation method in PSLTDSim
4

5 NOTE: lambda is the python equivalent to matlab anonymous functions
6 """
7 # Package Imports
8 import numpy as np
9 import matplotlib.pyplot as plt

Figure 189: Approximation comparison package imports.

Each approximation method described in Equation 23-26 was coded as a Python function.

It should be noted that trapezoidal integration was intended to be performed after the simulation

is run and full data is collected. This choice was made because of the various time steps involved

with solution results.

10 # Function Definitions
11 def euler(fp, x0, y0, ts):
12 """
13 fp = Some derivative function of x and y
14 x0 = Current x value
15 y0 = Current y value
16 ts = time step
17 Returns y1 using Euler or tangent line method
18 """
19 return y0 + fp(x0,y0)*ts
20

21 def adams2(fp, x0, y0, xN, yN, ts):
22 """

147

23 fp = Some derivative function of x and y
24 x0 = Current x value
25 y0 = Current y value
26 xN = Previous x value
27 yN = Previous y value
28 ts = time step
29 Returns y1 using Adams-Bashforth two step method
30 """
31 return y0 + (1.5*fp(x0,y0) - 0.5*fp(xN,yN))*ts
32

33 def rk45(fp, x0, y0, ts):
34 """
35 fp = Some derivative function of x and y
36 x0 = Current x value
37 y0 = Current y value
38 ts = time step
39 Returns y1 using Runge-Kutta method
40 """
41 k1 = fp(x0, y0)
42 k2 = fp(x0 +ts/2, y0+ts/2*k1)
43 k3 = fp(x0 +ts/2, y0+ts/2*k2)
44 k4 = fp(x0 +ts, y0+ts*k3)
45 return y0 + ts/6*(k1+2*k2+2*k3+k4)
46

47 def trapezoidalPost(x,y):
48 """
49 x = list of x values
50 y = list of y values
51 Returns integral of y over x.
52 Assumes full lists / ran post simulation
53 """
54 integral = 0
55 for ndx in range(1,len(x)):
56 integral+= (y[ndx]+y[ndx-1])/2 * (x[ndx]-x[ndx-1])
57 return integral

Figure 190: Approximation comparison function definitions.

To enable one file to execute all desired tests, a for loop that cycles through a case num-

ber variable was created. Each case if statement contains definitions for case name, simulation

start and stop times, number of points to plot, the initial value problem, the exact solution, and

148

the exact integral solution. Equations from each case are further described in future sections. The

Python lambda command was used to create temporary functions that are passed to other func-

tions.

58 # Case Selection
59 for caseN in range(0,3):
60 blkFlag = False # for holding plots open
61 if caseN == 0:
62 # Trig example
63 caseName = 'Sinusoidal Example'
64 tStart =0
65 tEnd = 3
66 numPoints = 6*2
67

68 ic = [0,0] # initial condition x,y
69 fp = lambda x, y: -2*np.pi*np.cos(2*np.pi*x)
70 f = lambda x,c: -np.sin(2*np.pi*x)+c
71 findC = lambda x,y: y+np.sin(2*np.pi*x)
72 c = findC(ic[0],ic[1])
73 calcInt = (1/(2*np.pi)*np.cos(2*np.pi*tEnd)+c*tEnd -
74 1/(2*np.pi)*np.cos(2*np.pi*ic[0])-c*ic[0])
75

76 elif caseN == 1:
77 # Exp example
78 caseName = 'Exponential Example'
79 tStart =0
80 tEnd = 3
81 numPoints = 3
82

83 ic = [0,0] # initial condition x,y
84 fp = lambda x, y: np.exp(x)
85 f = lambda x,c: np.exp(x)+c
86 findC = lambda x, y: y-np.exp(x)
87 c= findC(ic[0],ic[1])
88 calcInt = np.exp(tEnd)+c*tEnd-np.exp(ic[0])+c*ic[0]
89

90 elif caseN == 2:
91 # Log example
92 caseName = 'Logarithmic Example'
93 tStart =1
94 tEnd = 4
95 numPoints = 3
96 blkFlag = True # for holding plots open

149

97

98 ic = [1,1] # initial condition x,y
99 fp = lambda x, y: 1/x
100 f = lambda x,c: np.log(x)+c
101 findC = lambda x, y: y-np.log(x)
102 c= findC(ic[0],ic[1])
103 calcInt = (tEnd*np.log(tEnd)- tEnd +c*tEnd -
104 ic[0]*np.log(ic[0])+ ic[0] -c*ic[0])

Figure 191: Approximation comparison case definitions.

After case selection, a current value dictionary cv was initialized to mimic how PSLTD-

Sim stores current values. Unlike PSLTDSim, the lists used to store history values were not ini-

tialized to the full length they were expected to be. This required logged values to be appended

to the list after each solution. The reasoning behind this choice was again due to the various time

steps involved with solution results.

105 # Initialize current value dictionary
106 # Shown to mimic PSLTDSim record keeping
107 cv={
108 't' :ic[0],
109 'yE': ic[1],
110 'yRK': ic[1],
111 'yAB': ic[1],
112 }
113

114 # Initialize running value lists
115 t=[]
116 yE=[]
117 yRK =[]
118 yAB = []
119

120 t.append(cv['t'])
121 yE.append(cv['yE'])
122 yRK.append(cv['yRK'])
123 yAB.append(cv['yAB'])

Figure 192: Approximation comparison variable initialization.

150

An exact solution was computed using a hand-derived exact function. The code then en-

tered a while loop that solved the selected differential equation for the next y value using the Eu-

ler, Runge-Kutta, and Adams-Bashforth methods. It should be noted that Python enables negative

indexing of lists. Intuitively, negative indexes step backwards through an iterable object. An if

statement was required to handle the first step of the Adams-Bashforth method as a -2 index does

not exist in a list of length 1. After each approximation method was executed, and the solution

stored in the current value dictionary, all values were logged and simulation time increased.

124 # Find C from integrated equation for exact soln
125 c = findC(ic[0], ic[1])
126

127 # Calculate time step
128 ts = (tEnd-tStart)/numPoints
129

130 # Calculate exact solution
131 tExact = np.linspace(tStart,tEnd, 10000)
132 yExact = f(tExact, c)
133

134 # Start Simulation
135 while cv['t']< tEnd:
136

137 # Calculate Euler result
138 cv['yE'] = euler(fp, cv['t'], cv['yE'], ts)
139

140 # Calculate Runge-Kutta result
141 cv['yRK'] = rk45(fp, cv['t'], cv['yRK'], ts)
142

143 # Calculate Adams-Bashforth result
144 if len(t)>=2:
145 cv['yAB'] = adams2(fp, cv['t'], cv['yAB'], t[-2], yAB[-2], ts)
146 else:
147 # Required to handle first step when a -2 index doesn't exist
148 cv['yAB'] = adams2(fp, cv['t'], cv['yAB'], t[-1], yAB[-1], ts)
149

150 # Log calculated results
151 yE.append(cv['yE'])
152 yRK.append(cv['yRK'])
153 yAB.append(cv['yAB'])
154

155 # Increment and log time

151

156 cv['t'] += ts
157 t.append(cv['t'])

Figure 193: Approximation comparison solution calculations.

Matplotlib functions were used to generate result plots after simulated time accumulated

to a point that the while loop exited. Each line color, legend label, and various other superficial

options were defined before global plot output options were configured and the plot displayed.

158 # Generate Plot
159 fig, ax = plt.subplots()
160 ax.set_title('Approximation Comparison\n' + caseName)
161

162 #Plot all lines
163 ax.plot(tExact,yExact,
164 c=[0,0,0],
165 linewidth=2,
166 label="Exact")
167 ax.plot(t,yE,
168 marker='o',
169 fillstyle='none',
170 linestyle=':',
171 c=[0.7,0.7,0.7],
172 label="Euler")
173 ax.plot(t,yRK,
174 marker='*',
175 markersize=10,
176 fillstyle='none',
177 linestyle=':',
178 c=[1,0,1],
179 label="RK4")
180 ax.plot(t,yAB,
181 marker='s',
182 fillstyle='none',
183 linestyle=':',
184 c =[0,1,0],
185 label="AB2")
186

187 # Format Plot
188 fig.set_dpi(150)
189 fig.set_size_inches(9, 2.5)

152

190 ax.set_xlim(min(t), max(t))
191 ax.grid(True, alpha=0.25)
192 ax.legend(loc='best', ncol=2)
193 ax.set_ylabel('y Value')
194 ax.set_xlabel('x Value')
195 fig.tight_layout()
196 plt.show(block = blkFlag)
197 plt.pause(0.00001)

Figure 194: Approximation comparison plotting.

After plotting, trapezoidal integration was performed on all results and compared to the

calculated integral. It should be noted that the ‘exact’ result uses trapezoidal integration on 10,000

points while the calculated integral calcInt was computed via calculus. After code line 211 ex-

ecutes, the for loop that started on line 59 is restarted until all case numbers in the selected range

are applied.

198 # Trapezoidal Integration
199 exactI = trapezoidalPost(tExact,yExact)
200 Eint = trapezoidalPost(t,yE)
201 RKint = trapezoidalPost(t,yRK)
202 ABint = trapezoidalPost(t,yAB)
203

204 print("\n%s" % caseName)
205 print("time step: %.2f" % ts)
206 print("Method: Trapezoidal Int\t Absolute Error from calculated")
207 print("Calc: \t%.9f\t%.9f" % (calcInt ,abs(calcInt-calcInt)))
208 print("Exact: \t%.9f\t%.9f" % (exactI ,abs(calcInt-exactI)))
209 print("RK4: \t%.9f\t%.9f" % (RKint,abs(calcInt-RKint)))
210 print("AB2: \t%.9f\t%.9f" % (ABint,abs(calcInt-ABint)))
211 print("Euler: \t%.9f\t%.9f" % (Eint,abs(calcInt-Eint)))

Figure 195: Approximation comparison trapezoidal integration and display.

153

9.3.1.1. Sinusoidal Example and Results

The first initial value example is presented as Equation Block 27.

Given: y(0) = 0

y′(x) = 2π cos(2πx)
(27)

Two integrations of Equation 27 were performed to calculate the exact integral and plot the exact

solution. This is shown in Equation Block 28.

∫
y′(x) dx = y(x) = − sin(2πx) + C1

C1 = y0 + sin(2πx0)∫ τ

0

y(x) dx =
1

2π
cos(2πx) + C1x

∣∣∣∣τ
0

(28)

Figure 196 shows that when using a 0.5 step size, the approximations of all methods do

not accurately reflect the exact function. This example and step size were contrived to show such

behavior. The explanation for such a result lies in the derivatives calculated at the points used to

generate each approximation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x Value

2

0

2

y
Va

lu
e

Approximation Comparison
Sinusoidal Example

Exact
Euler

RK4
AB2

Figure 196: Approximation comparison of a sinusoidal function using a step of 0.5.

Using a smaller step size of 0.25, as shown in Figure 197, results with more accurate

approximations. For all calculated points, the Runge-Kutta method matches the exact solution

while the other two methods do not.

154

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x Value

1

0

1

y
Va

lu
e

Approximation Comparison
Sinusoidal Example

Exact
Euler

RK4
AB2

Figure 197: Approximation comparison of a sinusoidal function using a step of 0.25.

Table X shows the calculated integrals of the 0.25 step size example. It should be noted

that because the integral is zero, any function may numerically match the calculated result if it is

symmetrical about zero. The Runge-Kutta method meets this criteria despite representing more

of a triangle wave instead of a sine wave. The Euler method has the largest error from exact inte-

gral as there are no approximated points above zero.

Table X: Trapezoidal integration results of a sinusoidal function using an x step of 0.25.

Method Result Absolute Error

Calculated 0.000000000 0.000000000

Exact 0.000000000 0.000000000

RK4 -0.000000000 0.000000000

AB2 -0.098174770 0.098174770

Euler -2.356194490 2.356194490

9.3.1.2. Exponential Example and Results

The second initial value example is presented as Equation Block 29.

Given: y(0) = 0

y′(x) = ex
(29)

155

The required integrations of Equation 29 are shown in Equation Block 30.

∫
y′(x) dx = y(x) = ex + C1

C1 = y0 − ex∫ τ

0

y(x) dx = ex + C1x|τ0

(30)

Figure 198 shows the resulting comparison plot using a step size of 1. The Runge-Kutta

method matches the exact solution well while the other two approximation methods under-approximate.

This is due to the lack of the Euler and Adams-Bashforth methods to accurately represent a con-

stantly changing derivative.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x Value

0

10

20

y
Va

lu
e

Approximation Comparison
Exponential Example

Exact
Euler

RK4
AB2

Figure 198: Approximation comparison of an exponential function.

Table XI shows the trapezoidal integration of the exact function does not match the cal-

culated integral. This is due to the exponential function not being well represented by trapezoids.

Absolute error continued to increase with the Runge-Kutta, Adams-Bashforth, and Euler methods

respectively.

Table XI: Trapezoidal integration results of an exponential function using an x step of 1.

Method Result Absolute Error

Calculated 16.085536923 0.000000000

Exact 16.085537066 0.000000143

RK4 17.656057171 1.570520247

AB2 12.728355731 3.357181192

Euler 10.271950792 5.813586131

156

9.3.1.3. Logarithmic Example and Results

The third initial value example is presented as Equation Block 31. Initial values are not

zero as this would immediately lead to a divide by zero situation.

Given: y(1) = 1

y′(x) =
1

x

(31)

The required integrations of Equation 31 are shown in Equation Block 32.

∫
y′(x) dx = y(x) = ln(x) + C1

C1 = y0 − ln(x0)∫ τ

0

y(x) dx = x ln(x)− x+ C1x
∣∣τ
0

(32)

Figure 199 shows the resulting comparison plot using a step size of 1. Again the Runge-

Kutta method produces the best approximation while the Euler method has the worst. The Adam-

Bashforth method appears to be converging to the exact solution. While the exponential function

and logarithmic functions both contain constantly changing derivatives, the logarithmic deriva-

tive decreases with increasing x values. This produces an over-approximating situation where as

the exponential function was generally under-approximated.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
x Value

1

2

y
Va

lu
e

Approximation Comparison
Logarithmic Example

Exact
Euler

RK4
AB2

Figure 199: Approximation comparison of a logarithmic function.

Table XII shows the integration results have a similar trend as seen in Table XI where

the exact trapezoidal method doesn’t match the calculated integral, and absolute error gradually

157

increases using the Runge-Kutta, Adams-Bashforth, and Euler methods respectively.

Table XII: Trapezoidal integration results of a logarithmic function.

Method Result Absolute Error

Calulated 5.545177444 0.000000000

Exact 5.545177439 0.000000006

RK4 5.488293651 0.056883794

AB2 6.000000000 0.454822556

Euler 6.416666667 0.871489222

9.3.1.4. General Approximation Result Summary

The chosen examples showed that the Runge-Kutta method typically produces better

results than the simpler Euler or Adams-Bashforth methods. Step size is an important factor to

consider when using approximation methods as phenomena may be ignored or reported in error

elsewise. Depending on step size, trapezoidal integration can produce results that are reasonable

approximations of calculated integrals.

158

9.3.2. Python Function Comparisons

Code used to compare the Python lsim and solve_ivp functions to the exact solution and

fourth order Runge-Kutta approximation is presented below. The code is very similar to the pre-

viously discussed approximation comparison code and again begins with package imports and

function definitions. The solve_ivp function was imported from the integrate methods of Scipy,

while the lsim function is part of the signal collection of functions. Only the Runge-Kutta and

trapezoidal methods are defined as functions in this code example.

1 # Package Imports
2 import numpy as np
3 import matplotlib.pyplot as plt
4

5 from scipy.integrate import solve_ivp
6 from scipy import signal
7

8 # Function Definitions
9 def rk45(fp, x0, y0, ts):
10 """
11 fp = Some derivative function of x and y
12 x0 = Current x value
13 y0 = Current y value
14 ts = time step
15 Returns y1 using Runge-Kutta method
16 """
17 k1 = fp(x0, y0)
18 k2 = fp(x0 +ts/2, y0+ts/2*k1)
19 k3 = fp(x0 +ts/2, y0+ts/2*k2)
20 k4 = fp(x0 +ts, y0+ts*k3)
21 return y0 + ts/6*(k1+2*k2+2*k3+k4)
22

23 def trapezoidalPost(x,y):
24 """
25 x = list of x values
26 y = list of y values
27 Returns integral of y over x.
28 Assumes full lists / ran post simulation
29 """
30 integral = 0
31 for ndx in range(1,len(x)):
32 integral+= (y[ndx]+y[ndx-1])/2 * (x[ndx]-x[ndx-1])

159

33 return integral

Figure 200: Python function comparison imports and definitions.

Case definitions were similar to the previous example with the addition of an lti system

definition. For simplicity, a transfer function style system was used as input to create each lti

system. More specifically, this input consisted of the numerator and denominator of the trans-

fer function as lists of descending powers $ (the Laplace ‘s’). Numerous transforms and calcu-

lus based mathematical methods found in [5], [6] and [56] were employed to calculate the exact

functions and integrals which are described in more detail after this code discussion.

34 # Case Selection
35 for caseN in range(0,3):
36 blkFlag = False # for holding plots open
37

38 if caseN == 0:
39 # step input Integrator example
40 caseName = 'Step Input Integrator Example'
41 tStart =0
42 tEnd = 4
43 numPoints = 4
44

45 U = 1
46 initState = 0
47 ic = [0,initState] # initial condition x,y
48 fp = lambda x, y: 1
49 f = lambda x, c: x+c
50 findC = lambda x, y: y-x
51 system = signal.lti([1],[1,0])
52 calcInt = 0.5*(tEnd**2) # Calculated integral
53

54 elif caseN == 1:
55 # step input Low pass example
56 caseName = 'Step Input Low Pass Example'
57 tStart =0
58 tEnd = 2
59 numPoints = 4
60

61 A = 0.25

160

62 U = 1.0
63 initState = 0
64 ic = [0,initState] # initial condition x,y
65 fp = lambda x, y: 1/A*np.exp(-x/A)# via table
66 f = lambda x, c: -np.exp(-x/A) +c
67 findC = lambda x, y : y+np.exp(-x/A)
68 system = signal.lti([1],[A,1])
69 calcInt = tEnd + A*np.exp(-tEnd/A)-A # Calculated integral
70

71 else:
72 # step multi order system
73 caseName = 'Step Input Third Order System Example'
74 tStart =0
75 tEnd = 5
76 numPoints = 5*2
77 blkFlag = True # for holding plots open
78

79 U = 1
80 T0 = 0.4
81 T2 = 4.5
82 T1 = 5
83 T3 = -1
84 T4 = 0.5
85

86 alphaNum = (T1*T3)
87 alphaDen = (T0*T2*T4)
88 alpha = alphaNum/alphaDen
89

90 num = alphaNum*np.array([1, 1/T1+1/T3, 1/(T1*T3)])
91 den = alphaDen*np.array([1, 1/T4+1/T0+1/T2, 1/(T0*T4)+1/(T2*T4)+1/(T0*T2),
92 1/(T0*T2*T4)])
93 system = signal.lti(num,den)
94

95 # PFE
96 A = ((1/T1-1/T0)*(1/T3-1/T0))/((1/T2-1/T0)*(1/T4-1/T0))
97 B = ((1/T1-1/T2)*(1/T3-1/T2))/((1/T0-1/T2)*(1/T4-1/T2))
98 C = ((1/T1-1/T4)*(1/T3-1/T4))/((1/T0-1/T4)*(1/T2-1/T4))
99

100 initState = 0 # for steady state start
101 ic = [0,0] # initial condition x,y
102 fp = lambda x, y: alpha*(A*np.exp(-x/T0)+B*np.exp(-x/T2)+C*np.exp(-x/T4))
103 f = lambda x, c:

alpha*(-T0*A*np.exp(-x/T0)-T2*B*np.exp(-x/T2)-T4*C*np.exp(-x/T4))+c↪→

104 findC = lambda x, y : alpha*(A*T0+B*T2+C*T4)

161

105 c = findC(ic[0], ic[1])
106 calcInt = (
107 alpha*A*T0**2*np.exp(-tEnd/T0) +
108 alpha*B*T2**2*np.exp(-tEnd/T2) +
109 alpha*C*T4**2*np.exp(-tEnd/T4) +
110 c*tEnd -
111 alpha*(A*T0**2+B*T2**2+C*T4**2)
112)# Calculated integral

Figure 201: Python function comparison case definitions.

Initial conditions and list initializations were performed in a similar manner as the previ-

ous example. An additional xLS variable was required to track the states associated with the lsim

function.

113 # Initialize current value dictionary
114 # Shown to mimic PSLTDSim record keeping
115 cv={
116 't' :ic[0],
117 'yRK': ic[1],
118 'ySI': ic[1],
119 'yLS': ic[1],
120 }
121

122 # Initialize running value lists
123 t=[]
124

125 # runge-kutta
126 yRK =[]
127

128 # solve ivp
129 ySI = []
130 tSI = []
131

132 # lsim
133 yLS = []
134 xLS = [] # required to track state history
135

136 # Log intial values
137 t.append(cv['t'])
138

162

139 yRK.append(cv['yRK'])
140 yLS.append(cv['yLS'])
141 xLS.append(cv['yLS'])

Figure 202: Python function comparison variable initializations.

The exact solution and Runge-Kutta methods were handled as before, but Python func-

tion inputs required slightly different input. The lsim and solve_ivp outputs also required slightly

different handling as their output was not just a single value. Again, negative indexing is used to

access the last value in an iterable object.

142 # Calculate time step
143 ts = (tEnd-tStart)/numPoints
144 # Find C from integrated equation for exact soln
145 c = findC(ic[0], ic[1])
146 # Calculate exact solution
147 tExact = np.linspace(tStart,tEnd, 1000)
148 yExact = f(tExact, c)
149

150 # Start Simulation
151 while cv['t']< tEnd:
152

153 # Calculate Runge-Kutta result
154 cv['yRK'] = rk45(fp, cv['t'], cv['yRK'], ts)
155

156 # Runge-Kutta 4(5) via solve IVP.
157 soln = solve_ivp(fp, (cv['t'], cv['t']+ts), [cv['ySI']])
158

159 # lsim solution
160 if cv['t'] > 0:
161 tout, ylsim, xlsim = signal.lsim(system, [U,U], [0,ts], xLS[-1])
162 else:
163 tout, ylsim, xlsim = signal.lsim(system, [U,U], [0,ts], initState)
164

165 # Log calculated results
166 yRK.append(cv['yRK'])
167

168 # handle solve_ivp output data
169 ySI += list(soln.y[-1])
170 tSI += list(soln.t)

163

171 cv['ySI'] = ySI[-1] # ensure correct cv
172

173 # handle lsim output data
174 cv['yLS']=ylsim[-1]
175 yLS.append(cv['yLS'])
176 xLS.append(xlsim[-1]) # this is the state
177

178 # Increment and log time
179 cv['t'] += ts
180 t.append(cv['t'])

Figure 203: Python function comparison solution calculations.

Once the simulation is complete, plotting and trapezoidal integration was carried out in

the same manner as previously discussed before the for loop restarts.

181 # Generate Plot
182 fig, ax = plt.subplots()
183 ax.set_title('Approximation Comparison\n' + caseName)
184

185 #Plot all lines
186 ax.plot(tExact,yExact,
187 c=[0,0,0],
188 linewidth=2,
189 label="Exact")
190 ax.plot(t,yRK,
191 marker='*',
192 markersize=10,
193 fillstyle='none',
194 linestyle=':',
195 c=[1,0,1],
196 label="RK45")
197 ax.plot(tSI,ySI,
198 marker='x',
199 markersize=10,
200 fillstyle='none',
201 linestyle=':',
202 c=[1,.647,0],
203 label="solve_ivp")
204 ax.plot(t,yLS,
205 marker='+',

164

206 markersize=10,
207 fillstyle='none',
208 linestyle=':',
209 c ="#17becf",
210 label="lsim")
211

212 # Format Plot
213 fig.set_dpi(150)
214 fig.set_size_inches(9, 2.5)
215 ax.set_xlim(min(t), max(t))
216 ax.grid(True, alpha=0.25)
217 ax.legend(loc='best', ncol=2)
218 ax.set_ylabel('y Value')
219 ax.set_xlabel('Time [seconds]')
220 fig.tight_layout()
221 plt.show(block = blkFlag)
222 plt.pause(0.00001)
223

224 # Trapezoidal Integration
225 exactI = trapezoidalPost(tExact,yExact)
226 SIint = trapezoidalPost(tSI,ySI)
227 RKint = trapezoidalPost(t,yRK)
228 LSint = trapezoidalPost(t,yLS)
229

230 print("\n%s" % caseName)
231 print("time step: %.2f" % ts)
232 print("Method: Trapezoidal Int\t Absolute Error from calculated")
233 print("Calc: \t%.9f\t%.9f" % (calcInt ,abs(calcInt-calcInt)))
234 print("Exact: \t%.9f\t%.9f" % (exactI ,abs(calcInt-exactI)))
235 print("RK4: \t%.9f\t%.9f" % (RKint,abs(calcInt-RKint)))
236 print("SI: \t%.9f\t%.9f" % (SIint,abs(calcInt-SIint)))
237 print("lsim: \t%.9f\t%.9f" % (LSint,abs(calcInt-LSint)))

Figure 204: Python function comparison plotting and integration code.

9.3.2.1. Integrator Example and Results

The first example is the Laplace domain integrator block shown in Figure 205.

1

$

U($) Y ($)

Figure 205: Integrator block.

165

Transformation of the block into a time domain derivative function is shown in Equation Block

33. As step input is a given, this results in a very simple differential equation.

Given: Step input, y(0) = 0

F ($) =
Y ($)

U($)
=

1

$

F ($) = Y ($)$ = U($)

L
−1{F ($)} −→ y′(t) = u(t) = 1

(33)

The required integrations are shown in Equation Block 34.

∫
y′(t) dt = y(t) = t+ C1

C1 = y0 − t0∫ τ

0

y(t) dt =
1

2
t2 + C1t

∣∣∣∣τ
0

(34)

The resulting approximation comparisons are plotted in Figure 206. While all methods

produce the same result, it is worth noting the extra approximations generated by the solve_ivp

function near the beginning of each approximation interval.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [seconds]

0

2

4

y
Va

lu
e

Approximation Comparison
Step Input Integrator Example

Exact
RK4

solve_ivp
lsim

Figure 206: Approximation comparison of an integrator block.

Table XIII shows that all methods match the calculated integral. Obviously, this particular

linear function can be accurately represented by trapezoids.

166

Table XIII: Trapezoidal integration results of an integral function.

Method Result Absolute Error

Calculated 8.000000000 0.000000000

Exact 8.000000000 0.000000000

RK4 8.000000000 0.000000000

solve_ivp 8.000000000 0.000000000

lsim 8.000000000 0.000000000

9.3.2.2. Low Pass Example and Results

A slightly more interesting example consists of the Laplace low pass filter block shown in

Figure 207.

1

1 + $A

U($) Y ($)

Figure 207: Low pass filter block.

Equation Block 35 shows the manipulation of F ($) to match a common Laplace form so that a

conversion table could be used to easily convert the equation from the frequency domain to the

time domain.

Given: Step input, A = 0.25, y(0) = 0

F ($) =
Y ($)

U($)
=

(
1

A

)(
1

$ + 1/A

)
L

−1{F ($)} −→ y′(t) =
e−t/A

A

(35)

Required integration is shown in Equation Block 36.

∫
y′(t) dt = y(t) = −e−t/A + C1

C1 = y0 + e−t0/A∫ τ

0

y(t) dt = Ae−t0/A + C1t
∣∣∣τ
0

(36)

167

The resulting approximation comparisons are shown in Figure 208. All methods produce

approximations that are very close to the exact solution. The solve_ivp function again produces

more approximations between the defined step range.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [seconds]

0.0

0.5

1.0

y
Va

lu
e

Approximation Comparison
Step Input Low Pass Example

Exact
RK4

solve_ivp
lsim

Figure 208: Approximation comparison of a low pass filter block.

Table XIV shows the integration results of the low pass example. The exact solution has

slight error from the calculated integral as trapezoidal integration provides only an approximate

solution. The solve_ivp result has the next smallest error due to the added points between defined

approximation steps. Runge-Kutta and lsim results were very similar.

Table XIV: Trapezoidal integration results a of low pass filter using a t step of 0.5.

Method Result Absolute Error

Calculated 1.750083866 0.000000000

Exact 1.750082530 0.000001336

RK4 1.680138966 0.069944900

solve_ivp 1.719657220 0.030426646

lsim 1.671851297 0.078232568

9.3.2.3. Third Order System Example and Results

A third order system that resembles the one used in the genericGov is shown in Figure

209. As the previous example showed, manipulation of Laplace transfer function blocks with

poles may be useful when it comes time to convert to the time domain. The resulting modified

block diagram is shown in Figure 210.

168

1

1 + $T0

1 + $T1

1 + $T2

1 + $T3

1 + $T4

U($) Y ($)

Figure 209: Third order system block diagram.

T1T3

T0T2T4

1

$ + 1/T0

$ + 1/T1

$ + 1/T2

$ + 1/T3

$ + 1/T4

U($) Y ($)

Figure 210: Modified third order system block diagram.

Example givens and algebraic simplifications are listed at the top of Equation 37. The

time constants chosen were those of the generic hydro governor with the exception of T2, which

was reduced by an order of magnitude so that a steady state was reached within a reasonable

amount of time. Partial fraction expansion was used to express the third order equation as sum

of first order terms. The rational behind this action was to enable a simpler inverse Laplace trans-

form.

Given: Step input, T0 = 0.4, T1 = 5.0, T2 = 4.5,

T3 = −1.0, T4 = 0.5, y(0) = 0

Let α =
T1T3

T0T2T4

F ($) = α
($ + 1/T1)($ + 1/T3)

($ + 1/T0)($ + 1/T2)($ + 1/T4)
= α

(
A

$ + 1/T0

+
B

$ + 1/T2

+
C

$ + 1/T4

)
F ($)($ + 1/T0)

∣∣
$=−1/T0

= A =

(
1/T1 − 1/T0

) (
1/T3 − 1/T0

)(
1/T2 − 1/T0

) (
1/T4 − 1/T0

)
F ($)($ + 1/T2)

∣∣
$=−1/T2

= B =

(
1/T1 − 1/T2

) (
1/T3 − 1/T2

)(
1/T0 − 1/T2

) (
1/T4 − 1/T2

)
F ($)($ + 1/T4)

∣∣
$=−1/T4

= C =

(
1/T1 − 1/T4

) (
1/T3 − 1/T4

)(
1/T0 − 1/T4

) (
1/T2 − 1/T4

)
L

−1{F ($)} −→ y′(t) = α
(
Ae−t/T0 +Be−t/T2 + Ce−t/T4

)

(37)

The relatively straight forward integrations required for an exact solution and integral are shown

169

in Equation Block 38.

∫
y′(t) dt = y(t) = −α

(
AT0e

−t/T0 +BT2e
−t/T2 + CT4e

−t/T4

)
+ C1

C1 = y0 + α
(
AT0e

−t0/T0 +BT2e
−t0/T2 + CT4e

−t0/T4

)
∫ τ

0

y(t) dt = α
(
AT 2

0 e
−t/T0 +BT 2

2 e
−t/T2 + CT 2

4 e
−t/T4

)
+ C1t

∣∣∣∣τ
0

(38)

Figure 211 shows the approximation comparison results of the third order system. Using

a half second time step produces results that are fairly similar to the exact method. As previously

seen, the solve_ivp solution produces more approximations between defined time steps.

0 1 2 3 4 5
Time [seconds]

0.5

0.0

0.5

1.0

y
Va

lu
e

Approximation Comparison
Step Input Third Order System Example

Exact
RK4

solve_ivp
lsim

Figure 211: Third order approximation comparison using half second time step.

Increasing the time step to one second, as shown in Figure 212, highlights more differ-

ences between the methods. The solve_ivp soultion still tracks the exact solution well because of

the additional approximations between time steps. Approximations of lsim match the exact solu-

tion, however, dynamics between time steps are not represented at all. The Runge-Kutta method

also ignores dynamics between approximation results and appears to under-approximate steady

state behavior.

170

0 1 2 3 4 5
Time [seconds]

0.5

0.0

0.5

1.0

y
Va

lu
e

Approximation Comparison
Step Input Third Order System Example

Exact
RK4

solve_ivp
lsim

Figure 212: Third order approximation comparison using one second time step.

Table XV lists the integration results from the half second time step test. The exact solu-

tion is near the calculated solution, but they do not match completely. The solve_ivp absolute er-

ror is the next smallest due to the additional data points generated between set time steps. While

the absolute error from the Runge-Kutta solution is calculated as slightly less than the lsim re-

sult, this is due to the large negative area both solutions ignore between t = 0 and t = 1 and the

continuous under-approximation by the Runge-Kutta method.

Table XV: Trapezoidal integration results of a third order function using a t step of 0.5.

Method Result Absolute Error

Calculated 3.351959451 0.000000000

Exact 3.351971025 0.000011574

RK4 3.425878989 0.073919538

solve_ivp 3.385138424 0.033178973

lsim 3.458377872 0.106418421

9.3.2.4. Python Approximation Result Summary

As previously stated, distance between approximations dictates much of what one can

glean from resulting solutions. As such, the full resolution solve_ivp solution provided the most

detail of the tested examples. However, the data at defined time steps were essentially the same

between the lsim and solve_ivp results. With a small enough time step, the Runge-Kutta method

approximations was also similar to the Python function approximations. When a larger time step

was used, the Runge-Kutta method did not match the exact solution in cases where the other

171

methods did.

Through these experiments and comparisons, it was shown that the lsim and solve_ivp

methods are comparable, and in some ways, better than the hand coded Runge-Kutta method.

Additionally, trapezoidal integration was shown to produce adequate results depening on the in-

put data.

9.4. Dynamic Agent Numerical Utilizations

This section is meant to better describe the handling of numerical methods by specific

agents in PSLTDSim. Specifically, window integration and the combined swing equation func-

tion are described in detail before governor and filter agent considerations about integrator wind

up and dynamic staging are presented.

9.4.1. Window Integrator

The window integrator agent used by balancing authority agents that integrate ACE ap-

plies the trapezoidal integration technique. As this agent is relatively simple, the full Python

definition is shown in Figure 213. While attempts were made to create readable code, window

integrator actions are also explained below.

1 class WindowIntegratorAgent(object):
2 """A window integrator that initializes a history of window
3 values, then updates the total window area each step."""
4

5 def __init__(self, mirror, length):
6 # Retain Inputs / mirror reference
7 self.mirror = mirror
8 self.length = length # length of window in seconds
9

10 self.windowSize = int(self.length / self.mirror.timeStep)
11

12 self.window = [0.0]*self.windowSize
13 self.windowNDX = -1 # so first step index points to 0
14

15 self.cv = {
16 'windowInt' : 0.0,
17 'totalInt' : 0.0,

172

18 }
19

20 def step(self, curVal, preVal):
21 # calculate current window Area, return value
22 self.windowNDX += 1
23 self.windowNDX %= self.windowSize
24

25 oldVal = self.window[self.windowNDX]
26 newVal = (curVal + preVal)/ 2.0 * self.mirror.timeStep
27

28 self.window[self.windowNDX] = newVal
29 self.cv['windowInt'] += newVal - oldVal
30 self.cv['totalInt'] += newVal
31

32 return self.cv['windowInt']

Figure 213: Window integrator definition.

The agent is initialized by any agent that is desired to perform window integration. Re-

quired input parameters are a reference to the system mirror and window length in seconds. The

reference to the system mirror is stored and a list of place holder values is created that is the

length of the integration window in seconds, divided by the selected time step. This division re-

sult is cast into an integer as lists cannot have float value lengths. This list of history values is

not required for integration, but it can be used to verify the correct operation of the integrator. A

window index is created with an initial value of negative one so that during the first step, the in-

dex correctly points to list item zero. A current value dictionary cv is created to keep track of the

most recent window integration and total integration values.

The parent agent is responsible for calling the window integrator step function each time

step with current and previous values of integration focus. The window index variable is incre-

mented by one, and then the modulo operator is used to ensure the index always points to a lo-

cation that exists inside the list of history values. The value located at the current index value is

stored as oldVal and later subtracted from the current window integration value. The integral be-

tween the two passed in values is calculated using the trapezoidal method and stored as newVal.

173

This newVal is then stored in the window integrator history value list at the current index, and

added to both the current value for window and total integration. The agent step ends by return-

ing the current value of the window integrator.

9.4.2. Combined Swing Equation

The full code for the combined swing equation is presented in Figure 214. The function

first checks if frequency effects should be accounted for, and then calculates the PU values re-

quired for computation of ω̇sys (fdot in the code). The calculated fdot is used by the Adams-

Bashforth and Euler solution methods if specified by the user. If the chosen integration method is

‘rk45’, the Runge-Kutta 4(5) method included in solve_ivp is used instead. While the Euler and

Adams-Bashforth methods return only the next y value, the solve_ivp method returns more out-

put variables that must be properly handled. The combined swing equation returns nothing and

makes any required changes only to the system mirror.

1 def combinedSwing(mirror, Pacc):
2 """Calculates fdot, integrates to find next f, calculates deltaF.
3 Pacc in MW, f and fdot are PU
4 """
5

6 # Handle frequency effects option
7 if mirror.simParams['freqEffects'] == 1:
8 f = mirror.cv['f']
9 else:
10 f = 1.0
11

12 PaccPU = Pacc/mirror.Sbase # for PU value
13 HsysPU = mirror.cv['Hsys']/mirror.Sbase # to enable variable inertia
14 deltaF = 1.0-mirror.cv['f'] # used for damping
15

16 # Swing equation numerical solution
17 fdot = 1/(2*HsysPU)*(PaccPU/f - mirror.Dsys*deltaF)
18 mirror.cv['fdot'] = fdot
19

20 # Adams Bashforth
21 if mirror.simParams['integrationMethod'].lower() == 'ab':
22 mirror.cv['f'] = f + 1.5*mirror.timeStep*fdot -

0.5*mirror.timeStep*mirror.r_fdot[mirror.cv['dp']-1]↪→

174

23

24 # scipy.integrate.solve_ivp
25 elif mirror.simParams['integrationMethod'].lower() == 'rk45':
26 tic = time.time() # begin dynamic agent timer
27

28 c = [HsysPU, PaccPU, mirror.Dsys, f] # known variables in swing eqn
29 cSwing = lambda t, y: 1/(2*c[0])*(c[1]/y - c[2]*(1-c[3]))
30 soln = solve_ivp(cSwing, [0, mirror.timeStep], [f])
31 mirror.cv['f'] = float(soln.y[-1][-1]) # set current freq to last value
32

33 mirror.IVPTime += time.time()-tic # accumulate and end timer
34

35 # Euler method - chosen by default
36 else:
37 mirror.cv['f'] = mirror.cv['f'] + (mirror.timeStep*fdot)
38

39 # Log values
40 # NOTE: deltaF changed 6/5/19 to more useful 1-f
41 deltaF = 1.0 - mirror.cv['f']
42 mirror.cv['deltaF'] = deltaF

Figure 214: Combined swing function definition.

9.4.3. Governor and Filter Agent Considerations

The lsim function was chosen for governor and filter dynamic calculations. This was

meant to enable a consistent solution method for these agent types. However, lsim only performs

linear simulation and non-linear actions, such as limiting, must be handled manually. Futher, to

simplify model creation and allow non-linear action, governor models were created as multiple

dynamic stages that pass values to each other. Both of these lsim specific areas are covered in

this section.

9.4.3.1. Integrator Wind Up

Non-linear system behavior must be handled outside of, or in between, an lsim solution

as lsim only handles linear simulation. A common non-linear action is limiting. An issue may

arise when limiting a pure integrator and not addressing integrator wind up. A simple example

demonstrating integrator wind up is shown in Figure 215. The system used is the same as shown

175

in Figure 205 but with an output limiter set at ±2, and the input is depicted in Figure 215.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [seconds]

5.0

2.5

0.0

2.5

5.0

y
Va

lu
e

Integrator Wind Up Example
Case 1 Output
Case 1 State

Case 2 Output
Case 2 State

Input

Figure 215: Effect of integrator wind up.

Results from Case 1 include only an output value limiter, while Case 2 also limits the

integrator state. Limiting the state prevents integrator wind up which can be seen in Case 1 be-

tween t = 2.5 and t = 7.5 and again between t = 12.5 and t = 17.5. The execution of such

limiting could be done multiple ways. In this case, a simple if statement was placed after the so-

lution that checks output and state values. The if statement, if executed, adjusts the output and/or

state values accordingly.

9.4.3.2. Combined System Comparisons

To allow for a variety of governor models without rewriting code and enable non-linear

action, the technique of using a sequence of individual blocks for each part of a specific model

was employed in current PSLTDSim governor models. Modeling differences due to interaction

of states in multi-order systems represented by a series of single order systems was explored by

simulating equivalent systems consisting of various dynamic stages. For example, the block dia-

gram shown in Figure 209 is mathematically equivalent to the block diagrams shown in Figures

216 and 217, however, the computation of each system may not be equivalent.

1

1 + $T0

(1 + $T1)(1 + $T3)

(1 + $T2)(1 + $T4)

U($) Y ($)

Figure 216: Third order system as two stages.

176

(1 + $T1)(1 + $T3)

(1 + $T0)(1 + $T2)(1 + $T4)

U($) Y ($)

Figure 217: Third order system as single stage.

Figure 216 shows the output of a third order system as calculated by various dynamic

stage models. The interaction of states affects the resulting output and it can be seen that the three

stage system does not capture system dynamics well. A two stage calculation produces output

closer to the single stage system, but some dynamics are not represented.

0 1 2 3 4 5 6 7
Time [seconds]

0.0

0.1

0.2

y
Va

lu
e

Effect of Dynamic Staging

Exact
One Stage
Two Stages
Three Stages

Figure 218: Effect of dynamic staging using one second time step.

Reducing step size, as shown in Figure 219, produces similar behavior where the three

stage output is most different from the single stage model.

0 1 2 3 4 5 6 7
Time [seconds]

0.0

0.1

0.2

y
Va

lu
e

Effect of Dynamic Staging

Exact
One Stage
Two Stages
Three Stages

Figure 219: Effect of dynamic staging using half second time step.

177

9.4.4. Numerical Utilization Summary

PSLTDSim uses various numerical methods to achieve satisfactory results. However,

PSLTDSim was designed to be a customizable simulation environment, and as more use cases

arise, previously accepted solution methods may no longer be deemed as such. While there is

no currently employed method for integrator wind up prevention, it is certainly possible. Like-

wise, experiments have shown there is a noticeable reduction in output definition when dynamic

models are separated into multiple states. Of course, modifying or creating new, dynamic mod-

els to better meet changing user needs is possible. Such modifications require some understand-

ing of the actual code. While documentation such as this can provide some assistance to such an

endeavor, actual understanding can be best gained through actual study of the available source

code.

178

10. Six Machine System Details

Relevant values from PSLF tables describing the six machine system used are presented

in this appendix. The ‘busd’ table from PSLF describing system buses is shown in Table XVI.

The ‘secdd’ table from PSLF describing system lines is shown in Table XVII. The ‘tran’ table

from PSLF describing system transformers is shown in Table XVIII. The ‘gens’ table from PSLF

describing system generators is shown in Table XIX. The ‘load’ table from PSLF describing sys-

tem loads is shown in Table XX. The ‘shunt’ table from PSLF describing system shunts is shown

in Table XXI. The dyd file used for validation is shown in Figure 220.

Table XVI: Six machine bus table.

BUS-NO NAME KV TP VSCHED V-PU DEG AREA

6 6 138.00 1 1.00 0.9537 -15.91 1

7 7 138.00 1 1.00 0.9533 -16.07 1

8 8 138.00 1 1.00 0.9532 -16.52 1

9 9 138.00 1 1.00 0.9533 -16.54 2

10 10 138.00 1 1.00 0.9543 -16.14 2

11 11 138.00 1 1.00 0.9549 -15.78 2

1 1 22.00 0 1.00 1.0000 0.00 1

2 2 22.00 2 1.00 1.0000 11.41 1

3 3 22.00 2 1.00 1.0000 1.27 2

4 4 22.00 2 1.00 1.0000 1.27 2

5 5 22.00 2 1.00 1.0000 -10.72 2

Table XVII: Six machine line table.

FROM FNAME FKV TO TNAME TKV CK SE R-PU X-PU B-PU AF AT

6 6 138.00 7 7 138.00 1 1 0.0001 0.001 0.0018 1 1

7 7 138.00 8 8 138.00 1 1 0.0001 0.001 0.0018 1 1

8 8 138.00 9 9 138.00 1 1 0.0001 0.001 0.0018 1 2

8 8 138.00 9 9 138.00 2 1 0.0001 0.001 0.0018 1 2

8 8 138.00 9 9 138.00 3 1 0.0001 0.001 0.0018 1 2

11 11 138.00 10 10 138.00 1 1 0.0001 0.001 0.0018 2 2

10 10 138.00 9 9 138.00 1 1 0.0001 0.001 0.0018 2 2

179

Table XVIII: Six machine transformer table.

FROM FNAME FKV TO TNAME TKV MVA VNOMF VNOMT R X BMAG AREA

1 1 22.00 6 6 138.00 100.00 22.00 138.00 0.00 0.10 0.00 1

2 2 22.00 7 7 138.00 100.00 22.00 138.00 0.00 0.10 0.00 1

3 3 22.00 11 11 138.00 100.00 22.00 138.00 0.00 0.10 0.00 2

4 4 22.00 11 11 138.00 100.00 22.00 138.00 0.00 0.10 0.00 2

5 5 22.00 10 10 138.00 100.00 22.00 138.00 0.00 0.10 0.00 2

Table XIX: Six machine generator table.

BUS-NO NAME1 KV1 ID PGEN QGEN IREG AREA MBASE PMAX

1 1 22.00 1 261.40 82.90 1 1 900.00 1000.00

2 2 22.00 1 220.00 77.10 2 1 900.00 1000.00

2 2 22.00 2 220.00 77.10 2 1 900.00 1000.00

3 3 22.00 1 280.00 87.10 3 2 900.00 1000.00

4 4 22.00 1 280.00 87.10 4 2 900.00 1000.00

5 5 22.00 1 90.00 49.90 5 2 900.00 1000.00

Table XX: Six machine load table.

BUS-NO NAME KV ID ST PLOAD QLOAD AREA

8 8 138.00 1 1 600.00 100.00 1

9 9 138.00 1 1 750.00 100.00 2

Table XXI: Six machine shunt table.

FROM FNAME FKV ID CK ST G-PU B-PU AREA

8 8 138.00 1 1 1 0.00 1.00 1

8 8 138.00 2 2 1 0.00 0.50 1

8 8 138.00 3 3 0 0.00 0.50 1

8 8 138.00 4 4 0 0.00 0.50 1

9 9 138.00 1 1 1 0.00 1.00 2

9 9 138.00 2 2 0 0.00 0.50 2

9 9 138.00 3 3 0 0.00 0.50 2

9 9 138.00 4 4 0 0.00 0.50 2

180

1 # Six Machine, all gens and govs the same
2 # exciters default settings
3

4 # Metering of frequency, current, and voltages
5 fmeta 1 "1" 22.00 "1 " : #9 0 1
6 ameta 1 "1" 22.00 "1 " : 0
7 vmeta 1 "1" 22.00 "1 " : 0
8

9 # current meters
10 imetr 6 ! ! ! 7 ! ! ! : #9 0
11 imetr 7 ! ! ! 8 ! ! ! : #9 0
12 imetr 8 ! ! ! 9 ! ! ! : #9 0
13 imetr 11 ! ! ! 10 ! ! ! : #9 0
14 imetr 10 ! ! ! 9 ! ! ! : #9 0
15

16 # loads (Using wlwscc on any load sets the dynamics characteristics of all loads.)
17 wlwscc 9 "9" 138.0 "1 " : #9 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0
18

19 # generators
20 genrou 1 "1" 22.00 "1 " : #9 mva=900.00 "tpdo" 6.50 "tppdo" 0.079 "tpqo" 0.53 "tppqo" 0.072 "h" 4 "d"

0.0000 "ld" 1.24 "lq" 1.22 "lpd" 0.23 "lpq" 0.36000 "lppd" 0.17 "ll" 0.14 "s1" 0.173 "s12" 0.447 "ra"
0.0000 "rcomp" 0.0000 "xcomp" 0.0000 "accel" 1.0

↪→

↪→

21 genrou 2 "2" 22.00 "1 " : #9 mva=900.00 "tpdo" 6.50 "tppdo" 0.079 "tpqo" 0.53 "tppqo" 0.072 "h" 4 "d"
0.0000 "ld" 1.24 "lq" 1.22 "lpd" 0.23 "lpq" 0.36000 "lppd" 0.17 "ll" 0.14 "s1" 0.173 "s12" 0.447 "ra"
0.0000 "rcomp" 0.0000 "xcomp" 0.0000 "accel" 1.0

↪→

↪→

22 genrou 2 "2" 22.00 "2 " : #9 mva=900.00 "tpdo" 6.50 "tppdo" 0.079 "tpqo" 0.53 "tppqo" 0.072 "h" 4 "d"
0.0000 "ld" 1.24 "lq" 1.22 "lpd" 0.23 "lpq" 0.36000 "lppd" 0.17 "ll" 0.14 "s1" 0.173 "s12" 0.447 "ra"
0.0000 "rcomp" 0.0000 "xcomp" 0.0000 "accel" 1.0

↪→

↪→

23 genrou 3 "3" 22.00 "1 " : #9 mva=900.00 "tpdo" 6.50 "tppdo" 0.079 "tpqo" 0.53 "tppqo" 0.072 "h" 4 "d"
0.0000 "ld" 1.24 "lq" 1.22 "lpd" 0.23 "lpq" 0.36000 "lppd" 0.17 "ll" 0.14 "s1" 0.173 "s12" 0.447 "ra"
0.0000 "rcomp" 0.0000 "xcomp" 0.0000 "accel" 1.0

↪→

↪→

24 genrou 4 "4" 22.00 "1 " : #9 mva=900.00 "tpdo" 6.50 "tppdo" 0.079 "tpqo" 0.53 "tppqo" 0.072 "h" 4 "d"
0.0000 "ld" 1.24 "lq" 1.22 "lpd" 0.23 "lpq" 0.36000 "lppd" 0.17 "ll" 0.14 "s1" 0.173 "s12" 0.447 "ra"
0.0000 "rcomp" 0.0000 "xcomp" 0.0000 "accel" 1.0

↪→

↪→

25 genrou 5 "5" 22.00 "1 " : #9 mva=900.00 "tpdo" 6.50 "tppdo" 0.079 "tpqo" 0.53 "tppqo" 0.072 "h" 4 "d"
0.0000 "ld" 1.24 "lq" 1.22 "lpd" 0.23 "lpq" 0.36000 "lppd" 0.17 "ll" 0.14 "s1" 0.173 "s12" 0.447 "ra"
0.0000 "rcomp" 0.0000 "xcomp" 0.0000 "accel" 1.0

↪→

↪→

26

27 # exciters
28 sexs 1 "1" 22.00 "1 " : #1 0.1 10.0 100.0 0.05 -5.0 5.0 0.08 0.0 -5.0 5.0 0.0
29 sexs 2 "2" 22.00 "1 " : #1 0.1 10.0 100.0 0.05 -5.0 5.0 0.08 0.0 -5.0 5.0 0.0
30 sexs 2 "2" 22.00 "2 " : #1 0.1 10.0 100.0 0.05 -5.0 5.0 0.08 0.0 -5.0 5.0 0.0
31 sexs 3 "3" 22.00 "1 " : #1 0.1 10.0 100.0 0.05 -5.0 5.0 0.08 0.0 -5.0 5.0 0.0
32 sexs 4 "4" 22.00 "1 " : #1 0.1 10.0 100.0 0.05 -5.0 5.0 0.08 0.0 -5.0 5.0 0.0
33 sexs 5 "5" 22.00 "1 " : #1 0.1 10.0 100.0 0.05 -5.0 5.0 0.08 0.0 -5.0 5.0 0.0
34

35 # governors
36 tgov1 1 "1" 22.00 "1 " : #1 mwcap=800.0000 0.050000 0.4 1.000000 0.0 3.0000 10.0000 0.0
37 tgov1 2 "2" 22.00 "1 " : #1 mwcap=800.0000 0.050000 0.4 1.000000 0.0 3.0000 10.0000 0.0
38 tgov1 2 "2" 22.00 "2 " : #1 mwcap=800.0000 0.050000 0.4 1.000000 0.0 3.0000 10.0000 0.0
39 tgov1 3 "3" 22.00 "1 " : #1 mwcap=800.0000 0.050000 0.4 1.000000 0.0 3.0000 10.0000 0.0
40 tgov1 4 "4" 22.00 "1 " : #1 mwcap=800.0000 0.050000 0.4 1.000000 0.0 3.0000 10.0000 0.0

Figure 220: Dyd file used in six machine validations.

181

11. Code Examples

This appendix is used to present code examples too large for inclusion in the body of the

text. Some examples span multiple pages. To adhere to document format requirements, the de-

scription of each code example is presented after the corresponding code figure.

1 # Format of required info for batch runs.
2 debug = 0
3 AMQPdebug = 0
4 debugTimer = 0
5

6 simNotes = """
7 AGC TUNING (no delay)
8 Delay over response test
9 Loss of generation in area 1 at t=2
10 Delayed action by area 2
11 AGC in both areas
12 """
13

14 # Simulation Parameters Dictionary
15 simParams = {
16 'timeStep': 1.0, # seconds
17 'endTime': 60.0*8, # seconds
18 'slackTol': 1, # MW
19 'PY3msgGroup' : 3, # number of Agent msgs per AMQP msg
20 'IPYmsgGroup' : 60, # number of Agent msgs per AMQP msg
21 'Hinput' : 0.0, # MW*sec of entire system, if !> 0.0, will be calculated in code
22 'Dsys' : 0.0, # Damping
23 'fBase' : 60.0, # System F base in Hertz
24 'freqEffects' : True, # w in swing equation will not be assumed 1 if true
25 # Mathematical Options
26 'integrationMethod' : 'rk45',
27 # Data Export Parameters
28 'fileDirectory' : "\\delme\\200109-delayScenario1\\", # relative path from cwd
29 'fileName' : 'SixMachineDelayStep1',
30 'exportFinalMirror': 1, # Export mirror with all data
31 'exportMat': 1, # if IPY: requies exportDict == 1 to work
32 'exportDict' : 0, # when using python 3 no need to export dicts.
33 'deleteInit' : 0, # Delete initialized mirror
34 'assumedV' : 'Vsched', # assummed voltage - either Vsched or Vinit
35 'logBranch' : True,
36 }

182

37

38 savPath = r"C:\LTD\pslf_systems\sixMachine\sixMachineTrips.sav"
39 dydPath = [r"C:\LTD\pslf_systems\sixMachine\sixMachineDelay.dyd"]
40 ltdPath = r".\testCases\200109-delayScenario1\sixMachineDelayStep1.ltd.py"

Figure 221: An example of a full .py simulation file.

1 # Format of required info for batch runs.
2 debug = 0
3 AMQPdebug = 0
4 debugTimer = 0
5

6 simNotes = """
7 agc with deadband and nz, area 2 perturbance TLB 4
8 """
9

10 # Simulation Parameters Dictionary
11 simParams = {
12 'timeStep': 1.0,
13 'endTime': 60.0*10,
14 'slackTol': 1,
15 'PY3msgGroup' : 3,
16 'IPYmsgGroup' : 60,
17 'Hinput' : 0.0, # MW*sec of entire system, if !> 0.0, will be calculated in code
18 'Dsys' : 0.0, # Untested
19 'fBase' : 60.0, # System F base in Hertz
20 'freqEffects' : True, # w in swing equation will not be assumed 1 if true
21 # Mathematical Options
22 'integrationMethod' : 'rk45',
23 # Data Export Parameters
24 'fileDirectory' : "\\delme\\200325-smFinal\\", # relative path from cwd
25 'fileName' : 'smAGCt4Ex1',
26 'exportFinalMirror': 1, # Export mirror with all data
27 'exportMat': 1, # if IPY: requies exportDict == 1 to work
28 'exportDict' : 0, # when using python 3 no need to export dicts.
29 'deleteInit' : 0, # Delete initialized mirror
30 'assumedV' : 'Vsched', # assummed voltage - either Vsched or Vinit
31 'logBranch' : True,
32 }
33

34 savPath = r"C:\LTD\pslf_systems\sixMachine\sixMachineLTD.sav"

183

35 dydPath = [r"C:\LTD\pslf_systems\sixMachine\sixMachineLTD.dyd"]
36 ltdPath = r".\testCases\200325-smFinals\smAGCt4Ex1.ltd.py"

Figure 222: Required .py file for external AGC event with conditional ACE.

1 # Perturbances
2 mirror.sysPerturbances = [
3 'gen 5 : step Pm 2 -150 rel',
4]
5

6 mirror.NoiseAgent = ltd.perturbance.LoadNoiseAgent(mirror, 0.05, walk=True, delay=0,
damping=0, seed=11)↪→

7

8 # Balancing Authorities
9 mirror.sysBA = {
10 'BA1':{
11 'Area':1,
12 'B': "0.9 : permax", # MW/0.1 Hz
13 'AGCActionTime': 30.00, # seconds
14 'ACEgain' : 1.0,
15 'AGCType':'TLB : 4', # Tie-Line Bias
16 'UseAreaDroop' : False,
17 'AreaDroop' : 0.05,
18 'IncludeIACE' : True,
19 'IACEconditional': True,
20 'IACEwindow' : 30, # seconds - size of window - 0 for non window
21 'IACEscale' : 1/5,
22 'IACEdeadband' : 0, # Hz
23 'ACEFiltering': 'PI : 0.04 0.0001',
24 'AGCDeadband' : None, # MW? -> not implemented
25 'GovDeadbandType' : 'nldroop', # step, None, ramp, nldroop
26 'GovDeadband' : .036, # Hz
27 'GovAlpha' : 0.016, # Hz - for nldroop
28 'GovBeta' : 0.036, # Hz - for nldroop
29 'CtrlGens': ['gen 1 : 0.5 : rampA',
30 'gen 2 1 : 0.5 : rampA',
31]
32 },
33 'BA2':{
34 'Area':2,
35 'B': "0.9 : permax", # MW/0.1 Hz
36 'AGCActionTime': 45.00, # seconds

184

37 'ACEgain' : 1.0,
38 'AGCType':'TLB : 4', # Tie-Line Bias
39 'UseAreaDroop' : False,
40 'AreaDroop' : 0.05,
41 'IncludeIACE' : True,
42 'IACEconditional': True,
43 'IACEwindow' : 45, # seconds - size of window - 0 for non window
44 'IACEscale' : 1/3,
45 'IACEdeadband' : 0, # Hz
46 'ACEFiltering': 'PI : 0.04 0.0001',
47 'AGCDeadband' : None, # MW? -> not implemented
48 'GovDeadbandType' : 'nldroop', # step, None, ramp, nldroop
49 'GovDeadband' : .036, # Hz
50 'GovAlpha' : 0.016, # Hz - for nldroop
51 'GovBeta' : 0.036, # Hz - for nldroop
52 'CtrlGens': ['gen 3 : 1.0 : rampA',]
53 },
54 }

Figure 223: Required .ltd file for external AGC event with conditional ACE.

1 mirror.NoiseAgent = ltd.perturbance.LoadNoiseAgent(mirror, 0.05, walk=True, delay=0,
damping=0, seed=11)↪→

2

3 # Balancing Authorities
4 mirror.sysBA = {
5 'BA1':{
6 'Area':1,
7 'B': "0.9 : permax", # MW/0.1 Hz
8 'AGCActionTime': 30.00, # seconds
9 'ACEgain' : 1.0,
10 'AGCType':'TLB : 4', # Tie-Line Bias
11 'UseAreaDroop' : False,
12 'AreaDroop' : 0.05,
13 'IncludeIACE' : True,
14 'IACEconditional': True,
15 'IACEwindow' : 30, # seconds - size of window - 0 for non window
16 'IACEscale' : 1/5,
17 'IACEdeadband' : 0, # Hz
18 'ACEFiltering': 'PI : 0.04 0.0001',
19 'AGCDeadband' : None, # MW? -> not implemented
20 'GovDeadbandType' : 'nldroop', # step, None, ramp, nldroop

185

21 'GovDeadband' : .036, # Hz
22 'GovAlpha' : 0.016, # Hz - for nldroop
23 'GovBeta' : 0.036, # Hz - for nldroop
24 'CtrlGens': ['gen 1 : 0.5 : rampA',
25 'gen 2 1 : 0.5 : rampA',
26]
27 },
28 'BA2':{
29 'Area':2,
30 'B': "0.9 : permax", # MW/0.1 Hz
31 'AGCActionTime': 45.00, # seconds
32 'ACEgain' : 1.0,
33 'AGCType':'TLB : 4', # Tie-Line Bias
34 'UseAreaDroop' : False,
35 'AreaDroop' : 0.05,
36 'IncludeIACE' : True,
37 'IACEconditional': True,
38 'IACEwindow' : 45, # seconds - size of window - 0 for non window
39 'IACEscale' : 1/3,
40 'IACEdeadband' : 0, # Hz
41 'ACEFiltering': 'PI : 0.04 0.0001',
42 'AGCDeadband' : None, # MW? -> not implemented
43 'GovDeadbandType' : 'nldroop', # step, None, ramp, nldroop
44 'GovDeadband' : .036, # Hz
45 'GovAlpha' : 0.016, # Hz - for nldroop
46 'GovBeta' : 0.036, # Hz - for nldroop
47 'CtrlGens': ['gen 3 : 1.0 : rampA',]
48 },
49 }
50

51 # Load and Generation Cycle Agents
52 mirror.sysGenerationControl = {
53 'BPATDispatch' : {
54 'Area': 1,
55 'startTime' : 2,
56 'timeScale' : CTRLtimeScale,
57 'rampType' : 'per', # relative percent change
58 'CtrlGens': [
59 "gen 1 : 0.5",
60 "gen 2 1 : 0.5",
61],
62 # Data from: 12/11/2019 PACE
63 'forcast' : [
64 #(time , Precent change from previous value)

186

65 (0, 0.0),
66 (1, 5.8),
67 (2, 8.8),
68 (3, 9.9),
69 (4, 4.0),
70],
71 }, #end of generation controller def
72 'CAISODispatch' : {
73 'Area': 2,
74 'startTime' : 2,
75 'timeScale' : CTRLtimeScale,
76 'rampType' : 'per', # relative percent change
77 'CtrlGens': [
78 "gen 4 : 1.0",
79],
80 # Data from: 12/11/2019 PACE
81 'forcast' : [
82 #(time , Precent change from previous value)
83 (0, 0.0),
84 (1, 0.7),
85 (2, 7.5),
86 (3, 11.2),
87 (4, 4.4),
88],
89 }, #end of generation controller def
90 }
91

92 mirror.sysLoadControl = {
93 'BPATDemand' : {
94 'Area': 1,
95 'startTime' : 2,
96 'timeScale' : CTRLtimeScale,
97 'rampType' : 'per', # relative percent change
98 # Data from: 12/11/2019 BPAT
99 'demand' : [
100 #(time , Precent change from previous value)
101 (0, 0.000),
102 (1, 3.2),
103 (2, 8.2),
104 (3, 9.3),
105 (4, 3.8),
106] ,
107 }, # end of demand agent def
108 'CAISODemand' : {

187

109 'Area': 2,
110 'startTime' : 2,
111 'timeScale' : CTRLtimeScale,
112 'rampType' : 'per', # relative percent change
113 # Data from: 12/11/2019 CAISO
114 'demand' : [
115 #(time , Precent change from previous value)
116 (0, 0.000),
117 (1, 3.0),
118 (2, 7.0),
119 (3, 10.5),
120 (4, 4.4),
121] ,
122 },# end of demand load control definition
123 }# end of loac control definitions
124

125 # Definite Time Controller Definitions
126 mirror.DTCdict = {
127 'bus8caps' : {
128 'RefAgents' : {
129 'ra1' : 'bus 8 : Vm',
130 'ra2' : 'branch 8 9 1 : Qbr', # branches defined from, to, ckID
131 },# end Referenc Agents
132 'TarAgents' : {
133 'tar1' : 'shunt 8 2 : St',
134 'tar2' : 'shunt 8 3 : St',
135 'tar3' : 'shunt 8 4 : St',
136 'tar4' : 'shunt 8 5 : St',
137 'tar5' : 'shunt 8 6 : St',
138 }, # end Target Agents
139 'Timers' : {
140 'set' :{ # set shunts
141 'logic' : "(ra1 < 1.0)", # or (ra2 < -26)",
142 'actTime' : 30, # seconds of true logic before act
143 'act' : "anyOFFTar = 1", # set any target off target = 1
144 },# end set
145 'reset' :{ # reset shunts
146 'logic' : "(ra1 > 1.04)",# or (ra2 > 26)",
147 'actTime' : 30, # seconds of true logic before act
148 'act' : "anyONTar = 0", # set any target On target = 0
149 },# end reset
150 'hold' : 90, # minimum time between actions
151 }, # end timers
152 },# end bus8caps

188

153 'bus9caps' : {
154 'RefAgents' : {
155 'ra1' : 'bus 9 : Vm',
156 'ra2' : 'branch 8 9 1 : Qbr', # branches defined from, to, ckID
157 },# end Referenc Agents
158 'TarAgents' : {
159 'tar1' : 'shunt 9 2 : St',
160 'tar2' : 'shunt 9 3 : St',
161 'tar3' : 'shunt 9 4 : St',
162 'tar4' : 'shunt 9 5 : St',
163 'tar5' : 'shunt 9 6 : St',
164 }, # end Target Agents
165 'Timers' : {
166 'set' :{ # set shunts
167 'logic' : "(ra1 < 1.0)",
168 'actTime' : 45, # seconds of true logic before act
169 'act' : "anyOFFTar = 1", # set any target off target = 1
170 },# end set
171 'reset' :{ # reset shunts
172 'logic' : "(ra1 > 1.04)",
173 'actTime' : 45, # seconds of true logic before act
174 'act' : "anyONTar = 0", # set any target On target = 0
175 },# end reset
176 'hold' : 120, # minimum time between actions
177 }, # end timers
178 },# end bus8caps
179 }# end DTCdict

Figure 224: Required .ltd file for forecast demand scenario with noise and deadbands.

189

12. Large Tables

This appendix is used to present large tables too distracting for inclusion in their respec-

tive sections.

Table XXII: Balancing authority dictionary input information.

Key Type Units Example Description

B String MW/0.1Hz ”1.0 : permax” Describes the frequency bias scaling factor B used

in the ACE calculation. Various Options exist.

AGCActionTime Float Seconds 5 Time between AGC dispatch messages.

AGCType String - ”TLB : 2” Dictates which AGC routine to use and type specific

options.

UseAreaDroop Boolean - FALSE If True, all governed generators under BA control

will use the area droop.

AreaDroop Float Hz/MW 0.05 Droop value to use if ’UseAreaDroop’ is True.

IncludeIACE Boolean - TRUE If True, include IACE in ACE calculation

IACEconditional Boolean - FALSE Adds IACE to ACE if signs of deltaw and IACE

match.

IACEwindow Integer Seconds 60 Defines the length of moving integration window to

use in IACE. If set to 0, integration takes place for

all time.

IACEscale Float - 0.0167 Value used to scale IACE.

IACEdeadband Float Hz 0.036 Absolute value of system frequency where IACE

will not be calculated below.

ACEFiltering String - PI : 0.03 0.001’ String used to dictate which filter agent is created

and filter specific parameters.

AGCDeadband Float MW 1.5 Value of ACE to ignore sending in AGC dispatch.

Not implemented as of this writing.

GovDeadbandType String - step’ Type of deadband to be applied to area governors.

GovDeadband Float Hz 0.036 Absolute value of system frequency that governors

will not respond below.

GovAlpha Float Hz 0.016 Specific to ’NLDroop’ type of deadband. Specifies

lower bound of non-linear droop.

GovBeta Float Hz 0.036 Specific to ’NLDroop’ type of deadband. Specifies

upper bound of non-linear droop.

CtrlGens List of Strings - - List of generators, participation factor, and dispatch

signal type.

190

Table XXIII: Simulation parameters dictionary input information.

Key Type Units Example Description

timeStep float Seconds 1 Simulated time between power-flow solutions

endTime float Seconds 1800 Number of seconds simulation is to run for.

slackTol float MW 0.5 MWValue that slack error must be below for returned solution to be ac-

cepted.

PY3msgGroup integer - 3 Number of messages to combine into one AMQPmessage for PY3 to IPY

communication.

IPYmsgGroup integer - 60 Number of messages to combine into one AMQPmessage for IPY to PY3

communication.

Hinput float MW sec 0 Value to use for total system inertia. Units are MW*sec. If set to 0.0, sys-

tem inertia will be calculated from the given .sav information.

Dsys float PU 0 Value of system damping used in swing equation and governor models.

While this option is available, it is untested and typically set to 0.0.

fBase float Hz 60 Value of base system frequency.

freqEffects boolean - True If True, the ω used in the swing equation will be the current system fre-

quency. If this is set to False then ω will be set equal to 1 for the swing

equation calculation

integrationMethod string - ’rk45’ This option defines how the swing equation is integrated to find current

frequency. Valid options are ’rk45’, ’ab’, and ’euler’. The default is the

’euler’ method which is a simple forward Euler integration. The ’ab’ op-

tion uses a two step Adams-Bashforth method and the ’rk45’ options uses

the scipy solve_ivp function that utilizes an explicit Runge-Kutta 4(5)

method.

fileDirectory string - ”\\delme\\” This is a relative path location from the folder where PSLTDSim is ex-

ectued in which the output files are saved to.

fileName string - ”SimTest” This is that name used to save files.

exportFinalMirror int - 1 If this value is 1 a final system mirror will be exported. If this value is 0 no

final mirror will be exported.

exportMat int - 1 If this value is 1 a MATLAB .mat file will be exported. If this value is 0 no

MATLAB .mat file will be exported.

191

13. Detailed Valve Travel Results

This appendix is used to present detailed valve travel plots from various deadband scenar-

ios that were used to populate data presented in Table IX.

0 5 10 15 20 25 30
Time [minutes]

0.2

0.4

0.6

Va
lv

e
Po

sit
io

n
[P

U]

Area 1 Valve Travel
 Case: miniWECCnoiseNoDB

Average Area Travel 0.16

Gen 17. Traveltotal: 0.16 PU
Gen 23. Traveltotal: 0.16 PU

Figure 225: Area 1 valve travel using no deadband.

0 5 10 15 20 25 30
Time [minutes]

0.6

0.7

0.8

Va
lv

e
Po

sit
io

n
[P

U]

Area 2 Valve Travel
 Case: miniWECCnoiseNoDB

Average Area Travel 0.16
Gen 30. Traveltotal: 0.16 PU
Gen 32. Traveltotal: 0.16 PU
Gen 107. Traveltotal: 0.16 PU

Figure 226: Area 2 valve travel using no deadband.

0 5 10 15 20 25 30
Time [minutes]

0.25

0.50

0.75

Va
lv

e
Po

sit
io

n
[P

U]

Area 3 Valve Travel
 Case: miniWECCnoiseNoDB

Average Area Travel 0.15
Gen 41. Traveltotal: 0.15 PU
Gen 45. Traveltotal: 0.15 PU
Gen 53. Traveltotal: 0.16 PU
Gen 59. Traveltotal: 0.15 PU

Figure 227: Area 3 valve travel using no deadband.

192

0 5 10 15 20 25 30
Time [minutes]

0.2

0.4

0.6

Va
lv

e
Po

sit
io

n
[P

U]
Area 1 Valve Travel

 Case: miniWECCnoiseStepDB
Average Area Travel 7.48

Gen 17. Traveltotal: 7.48 PU
Gen 23. Traveltotal: 7.48 PU

Figure 228: Area 1 valve travel using a step deadband.

0 5 10 15 20 25 30
Time [minutes]

0.6

0.7

0.8

Va
lv

e
Po

sit
io

n
[P

U]

Area 2 Valve Travel
 Case: miniWECCnoiseStepDB

Average Area Travel 7.52
Gen 30. Traveltotal: 7.48 PU
Gen 32. Traveltotal: 7.54 PU
Gen 107. Traveltotal: 7.54 PU

Figure 229: Area 2 valve travel using a step deadband.

0 5 10 15 20 25 30
Time [minutes]

0.25

0.50

0.75

Va
lv

e
Po

sit
io

n
[P

U]

Area 3 Valve Travel
 Case: miniWECCnoiseStepDB

Average Area Travel 6.71
Gen 41. Traveltotal: 6.44 PU
Gen 45. Traveltotal: 6.44 PU
Gen 53. Traveltotal: 7.54 PU
Gen 59. Traveltotal: 6.44 PU

Figure 230: Area 3 valve travel using a step deadband.

193

0 5 10 15 20 25 30
Time [minutes]

0.2

0.4

0.6

Va
lv

e
Po

sit
io

n
[P

U]
Area 1 Valve Travel

 Case: miniWECCnoiseNoStepDB
Average Area Travel 0.15

Gen 17. Traveltotal: 0.15 PU
Gen 23. Traveltotal: 0.15 PU

Figure 231: Area 1 valve travel using a no-step deadband.

0 5 10 15 20 25 30
Time [minutes]

0.6

0.7

0.8

Va
lv

e
Po

sit
io

n
[P

U]

Area 2 Valve Travel
 Case: miniWECCnoiseNoStepDB

Average Area Travel 0.15
Gen 30. Traveltotal: 0.15 PU
Gen 32. Traveltotal: 0.15 PU
Gen 107. Traveltotal: 0.15 PU

Figure 232: Area 2 valve travel using a no-step deadband.

0 5 10 15 20 25 30
Time [minutes]

0.25

0.50

0.75

Va
lv

e
Po

sit
io

n
[P

U]

Area 3 Valve Travel
 Case: miniWECCnoiseNoStepDB

Average Area Travel 0.14
Gen 41. Traveltotal: 0.14 PU
Gen 45. Traveltotal: 0.14 PU
Gen 53. Traveltotal: 0.15 PU
Gen 59. Traveltotal: 0.14 PU

Figure 233: Area 3 valve travel using a no-step deadband.

194

0 5 10 15 20 25 30
Time [minutes]

0.2

0.4

0.6

Va
lv

e
Po

sit
io

n
[P

U]
Area 1 Valve Travel

 Case: miniWECCnoiseNLdroopDB
Average Area Travel 0.23

Gen 17. Traveltotal: 0.23 PU
Gen 23. Traveltotal: 0.23 PU

Figure 234: Area 1 valve travel using a non-linear droop deadband.

0 5 10 15 20 25 30
Time [minutes]

0.6

0.7

0.8

Va
lv

e
Po

sit
io

n
[P

U]

Area 2 Valve Travel
 Case: miniWECCnoiseNLdroopDB

Average Area Travel 0.23
Gen 30. Traveltotal: 0.23 PU
Gen 32. Traveltotal: 0.23 PU
Gen 107. Traveltotal: 0.23 PU

Figure 235: Area 2 valve travel using a non-linear droop deadband.

0 5 10 15 20 25 30
Time [minutes]

0.25

0.50

0.75

Va
lv

e
Po

sit
io

n
[P

U]

Area 3 Valve Travel
 Case: miniWECCnoiseNLdroopDB

Average Area Travel 0.23
Gen 41. Traveltotal: 0.23 PU
Gen 45. Traveltotal: 0.23 PU
Gen 53. Traveltotal: 0.23 PU
Gen 59. Traveltotal: 0.23 PU

Figure 236: Area 3 valve travel using a non-linear droop deadband.

195

0 5 10 15 20 25 30
Time [minutes]

0.2

0.4

0.6

Va
lv

e
Po

sit
io

n
[P

U]
Area 1 Valve Travel

 Case: miniWECCuniAcc
Average Area Travel 0.19

Gen 17. Traveltotal: 0.19 PU
Gen 23. Traveltotal: 0.19 PU

Figure 237: Area 1 valve travel in a non-homogeneous deadband system.

0 5 10 15 20 25 30
Time [minutes]

0.6

0.7

0.8

Va
lv

e
Po

sit
io

n
[P

U]

Area 2 Valve Travel
 Case: miniWECCuniAcc

Average Area Travel 0.19
Gen 30. Traveltotal: 0.19 PU
Gen 32. Traveltotal: 0.19 PU
Gen 107. Traveltotal: 0.19 PU

Figure 238: Area 2 valve travel in a non-homogeneous deadband system.

0 5 10 15 20 25 30
Time [minutes]

0.25

0.50

0.75

Va
lv

e
Po

sit
io

n
[P

U]

Area 3 Valve Travel
 Case: miniWECCuniAcc

Average Area Travel 0.06
Gen 41. Traveltotal: 0.06 PU
Gen 45. Traveltotal: 0.06 PU
Gen 53. Traveltotal: 0.06 PU
Gen 59. Traveltotal: 0.06 PU

Figure 239: Area 3 valve travel in a non-homogeneous deadband system.

196

14. Additional AGC Results

This appendix is used to present figures fromAGC base case, tuning, and deadband noise

results involving Area 2, which are largely similar to Area 1 results. Conditional AGC response

to an area 2 event is also presented.

0.0 0.2 0.4 0.6 0.8 1.0
Time [minutes]

59.7

59.8

59.9

60.0

Hz

System Frequency
 Case: smAGCbase2

Frequency

Figure 240: Frequency response to generation loss event in area 2.

0.0 0.2 0.4 0.6 0.8 1.0
Time [minutes]

1.00

1.05

1.10

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 1 (BA1) Controlled Machines Pm and Pref
 Case: smAGCbase2

Pm 1 1 Norm: 353
Pref 1 1
Pm 2 1 Norm: 350
Pref 2 1

Figure 241: Area 1 controlled generation response to generation loss event in area 2.

0.0 0.2 0.4 0.6 0.8 1.0
Time [minutes]

1.00

1.05

1.10

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 2 (BA2) Controlled Machines Pm and Pref
 Case: smAGCbase2

Pm 3 1 Norm: 325
Pref 3 1

Figure 242: Area 2 controlled generation response to generation loss event in area 2 .

197

0 2 4 6 8 10
Time [minutes]

59.8

60.0

Hz
System Frequency

 Case: smAGCtune2

Frequency

Figure 243: AGC frequency response to area 2 base case scenario.

0 2 4 6 8 10
Time [minutes]

100

0

M
W

Balancing Authority ACE and Interchange Error
 Case: smAGCtune2

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 244: Calculated BA values during area 2 AGC tuning.

0 2 4 6 8 10
Time [minutes]

1.00

1.05

1.10

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 1 (BA1) Controlled Machines Pm and Pref
 Case: smAGCtune2

Pm 1 1 Norm: 353
Pref 1 1
Pm 2 1 Norm: 350
Pref 2 1

Figure 245: Area 1 controlled generation response during area 2 AGC tuning.

198

0 2 4 6 8 10
Time [minutes]

1.0

1.2

1.4

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 2 (BA2) Controlled Machines Pm and Pref
 Case: smAGCtune2

Pm 3 1 Norm: 325
Pref 3 1

Figure 246: Area 2 controlled generation response during area 2 AGC tuning.

0 2 4 6 8 10
Time [minutes]

59.8

60.0

Hz

System Frequency
 Case: smAGCdbnz2

Frequency
0.016 Hz Governor Deadband

Figure 247: AGC frequency response with noise and deadbands.

0 2 4 6 8 10
Time [minutes]

100

0

M
W

Balancing Authority ACE and Interchange Error
 Case: smAGCdbnz2

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 248: Calculated BA values with noise and deadbands.

199

0 2 4 6 8 10
Time [minutes]

1.00

1.05

1.10

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 1 (BA1) Controlled Machines Pm and Pref
 Case: smAGCdbnz2

Pm 1 1 Norm: 353
Pref 1 1
Pm 2 1 Norm: 350
Pref 2 1

Figure 249: Area 1 controlled generation response to noise and deadbands.

0 2 4 6 8 10
Time [minutes]

1.0

1.2

1.4

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 2 (BA2) Controlled Machines Pm and Pref
 Case: smAGCdbnz2

Pm 3 1 Norm: 325
Pref 3 1

Figure 250: Area 2 controlled generation response to noise and deadbands.

0 2 4 6 8 10
Time [minutes]

59.8

60.0

Hz

System Frequency
 Case: smAGCt0Ex1

Frequency
0.016 Hz Governor Deadband

Figure 251: Frequency response to event using TLB 0.

200

0 2 4 6 8 10
Time [minutes]

100

0

M
W

Balancing Authority ACE and Interchange Error
 Case: smAGCt0Ex1

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 252: Calculated BA values during an even using TLB 0.

0 2 4 6 8 10
Time [minutes]

1.00

1.05

1.10

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 1 (BA1) Controlled Machines Pm and Pref
 Case: smAGCt0Ex1

Pm 1 1 Norm: 353
Pref 1 1
Pm 2 1 Norm: 350
Pref 2 1

Figure 253: Area 1 controlled generation response to external area event using TLB 0.

0 2 4 6 8 10
Time [minutes]

1.0

1.2

1.4

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 2 (BA2) Controlled Machines Pm and Pref
 Case: smAGCt0Ex1

Pm 3 1 Norm: 325
Pref 3 1

Figure 254: Area 2 controlled generation response to internal area event using TLB 0.

201

0 2 4 6 8 10
Time [minutes]

59.8

60.0

Hz
System Frequency

 Case: smAGCt4Ex1

Frequency
0.016 Hz Governor Deadband

Figure 255: Frequency response to event using TLB 4.

0 2 4 6 8 10
Time [minutes]

100

0

M
W

Balancing Authority ACE and Interchange Error
 Case: smAGCt4Ex1

BA1 RACE
BA1 DACE
BA1 IC Error
BA2 RACE
BA2 DACE
BA2 IC Error

Figure 256: Calculated BA values during an event using TLB 4.

0 2 4 6 8 10
Time [minutes]

1.00

1.05

1.10

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 1 (BA1) Controlled Machines Pm and Pref
 Case: smAGCt4Ex1

Pm 1 1 Norm: 353
Pref 1 1
Pm 2 1 Norm: 350
Pref 2 1

Figure 257: Area 1 controlled generation response to external area event using TLB 4.

202

0 2 4 6 8 10
Time [minutes]

1.0

1.2

1.4

No
rm

al
ize

d
%

 C
ha

ng
e

[M
W

] Area 2 (BA2) Controlled Machines Pm and Pref
 Case: smAGCt4Ex1

Pm 3 1 Norm: 325
Pref 3 1

Figure 258: Area 2 controlled generation response to internal area event using TLB 4.

203

15. Additional BAAL Results

System frequency minute averages and BAAL values from long-term area 2 scenarios are

presented below.

0 50 100 150 200
Time [minutes]

0.0000

0.0005

0.0010

Fr
eq

ue
nc

y
[H

z]

+5.9999e1
Minute Average System Frequency

 Case: smLTfd

Frequency
Minute Average

Figure 259: Morning peak minute average frequency.

0 20 40 60 80 100 120
Time [minutes]

59.96

59.98

60.00

60.02

Fr
eq

ue
nc

y
[H

z]

Minute Average System Frequency
 Case: smLTwrDBnz

Frequency
Minute Average

Figure 260: Morning peak minute average frequency with deadbands and noise.

0 50 100 150 200
Time [minutes]

1.0

0.5

0.0

0.5

AC
E

[M
W

]

Area 2 (BA2) BAAL
 Case: smLTfd

RACE
BAAL
BAAL Exceeded

Figure 261: BAAL of area 2 during morning peak.

204

0 50 100 150 200
Time [minutes]

10

0

10

AC
E

[M
W

]
Area 2 (BA2) BAAL
 Case: smLTfdDBnz

RACE
BAAL
BAAL Exceeded

Figure 262: BAAL of area 2 during morning with noise and governor deadbands.

0 20 40 60 80 100 120
Time [minutes]

59.98

60.00

60.02

Fr
eq

ue
nc

y
[H

z]

Minute Average System Frequency
 Case: smLTwr

Frequency
Minute Average

Figure 263: Virtual wind ramp minute average frequency.

0 20 40 60 80 100 120
Time [minutes]

59.96

59.98

60.00

60.02

Fr
eq

ue
nc

y
[H

z]

Minute Average System Frequency
 Case: smLTwrDBnz

Frequency
Minute Average

Figure 264: Virtual wind ramp minute average frequency with deadbands and noise.

205

0 20 40 60 80 100 120
Time [minutes]

10

0

AC
E

[M
W

]
Area 2 (BA2) BAAL

 Case: smLTwr

RACE
BAAL
BAAL Exceeded

Figure 265: Area 2 virtual wind ramp BAAL under ideal conditions.

0 20 40 60 80 100 120
Time [minutes]

10

0

10

AC
E

[M
W

]

Area 2 (BA2) BAAL
 Case: smLTwrDBnz

RACE
BAAL
BAAL Exceeded

Figure 266: Area 2 virtual wind ramp BAALwith noise and governor deadbands.

	LONG-TERM DYNAMIC SIMULATION OF POWER SYSTEMS USING PYTHON, AGENT BASED MODELING, AND TIME-SEQUENCED POWER FLOWS
	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF EQUATIONS
	GLOSSARY OF TERMS
	1 Introduction
	2 Electrical Engineering Background
	2.1 Power System Basics
	2.2 Power Flow
	2.3 The Swing Equation
	2.4 Turbine Speed Governors
	2.5 Automatic Generation Control
	2.6 Reactive Power and Voltage Control

	3 Software Background
	3.1 Classical Transient Stability Simulation
	3.2 Python
	3.2.1 Python Packages
	3.2.2 Varieties of Python
	3.2.3 Python Specific Data Types

	3.3 Advanced Message Queueing Protocol
	3.4 Agent Based Modeling

	4 Software Tool
	4.1 Time-Sequenced Power Flows
	4.2 Simulation Assumptions and Simplifications
	4.2.1 General Assumptions and Simplifications
	4.2.2 Time Step Assumptions and Simplifications
	4.2.3 Combined System Frequency
	4.2.4 Distribution of Accelerating Power
	4.2.5 Governor models
	4.2.5.1 Casting Process for genericGov

	4.3 General Software Explanation
	4.3.1 Interprocess Communication
	4.3.2 Simulation Inputs
	4.3.2.1 PSLF Compatible Input
	4.3.2.2 Simulation Parameter Input (.py)
	4.3.2.3 Long-Term Dynamic Input (.ltd.py)
	4.3.2.3.1 Perturbance List
	4.3.2.3.2 Noise Agent Attribute
	4.3.2.3.3 Balancing Authority Dictionary
	4.3.2.3.4 Load Control Dictionary
	4.3.2.3.5 Generation Control Dictionary
	4.3.2.3.6 Governor Input Delay and Filtering Dictionary
	4.3.2.3.7 Governor Deadband Dictionary
	4.3.2.3.8 Definite Time Controller Dictionary

	4.3.3 Simulation Initialization
	4.3.3.1 Process Creation
	4.3.3.2 Mirror Initialization
	4.3.3.3 Dynamic Initialization Pre-Simulation Loop

	4.3.4 Simulation Loop
	4.3.5 Simulation Outputs

	4.4 Software Validation
	4.4.1 Validation Plots Explained
	4.4.1.1 Comparison Plot
	4.4.1.2 Difference Plot
	4.4.1.3 Percent Difference Plot
	4.4.1.4 Weighted Frequency Plot

	4.4.2 Six Machine System
	4.4.2.1 Simulated Scenario Descriptions
	4.4.2.2 Frequency Results
	4.4.2.3 Generator Mechanical Power Results
	4.4.2.4 Generator Real Power Results
	4.4.2.5 Voltage Magnitude Results
	4.4.2.6 Voltage Angle Results
	4.4.2.7 Generator Reactive Power Results
	4.4.2.8 Branch Current Results
	4.4.2.9 Branch Real Power Flow Results
	4.4.2.10 Branch Reactive Power Flow Results
	4.4.2.11 Six Machine Result Summary

	4.4.3 Mini WECC System
	4.4.3.1 Simulated Scenario Descriptions
	4.4.3.2 Frequency Results
	4.4.3.3 Generator Mechanical Power Results
	4.4.3.4 Generator Real Power Results
	4.4.3.5 Voltage Magnitude Results
	4.4.3.6 Voltage Angle Results
	4.4.3.7 Generator Reactive Power Results
	4.4.3.8 Branch Current Results
	4.4.3.9 Branch Real Power Flow Results
	4.4.3.10 Branch Reactive Power Flow Results
	4.4.3.11 Mini WECC Result Summary

	4.4.4 Mini WECC with PSS System
	4.4.4.1 Simulated Scenario Descriptions
	4.4.4.2 Frequency Results
	4.4.4.3 Generator Mechanical Power Results
	4.4.4.4 Generator Real Power Results
	4.4.4.5 Voltage Magnitude Results
	4.4.4.6 Voltage Angle Results
	4.4.4.7 Generator Reactive Power Results
	4.4.4.8 Branch Current Results
	4.4.4.9 Branch Real Power Flow Results
	4.4.4.10 Branch Reactive Power Flow Results
	4.4.4.11 Mini WECC with PSS Result Summary

	4.4.5 Full WECC System
	4.4.5.1 Load Step

	4.4.6 Validation Summary

	5 Engineering Applications
	5.1 Simulated Events of Interest
	5.2 Relevant NERC Standards
	5.2.1 BAL-001-2
	5.2.2 BAL-002-3
	5.2.3 BAL-003-1.1
	5.2.4 NERC Standard Summary

	5.3 Simulated Balancing Authority Controls
	5.3.1 Governor Deadbands
	5.3.2 Area Wide Governor Droops
	5.3.3 Automatic Generation Control
	5.3.3.1 Frequency Bias
	5.3.3.2 Integral of Area Control Error
	5.3.3.3 Conditional Area Control Error Summing
	5.3.3.4 Area Control Error Filtering
	5.3.3.5 Controlled Generators and Participation Factors

	5.4 Governor Deadband Effect on Valve Travel
	5.4.1 Governor Deadband Simulation Configuration
	5.4.2 Governor Deadband Simulation Results

	5.5 Automatic Generation Control Tuning
	5.5.1 AGC Simulation Configuration
	5.5.2 AGC Simulation Results
	5.5.2.1 Base Case Results
	5.5.2.2 AGC Tuning Results
	5.5.2.3 Noise and Deadband Simulation Results
	5.5.2.4 Conditional ACE Results
	5.5.2.5 BAAL Results

	5.5.3 AGC Result Summary

	5.6 Long-Term Simulation with Shunt Control
	5.6.1 Morning Peak Forecast Demand Simulation
	5.6.1.1 Morning Peak Forecast Demand Results

	5.6.2 Morning Peak Forecast Demand Result Summary
	5.6.3 Virtual Wind Ramp Simulation
	5.6.3.1 Virtual Wind Ramp Results

	5.6.4 Long-Term Simulation with Shunt Control Result Summary

	5.7 Feed-Forward Governor Action
	5.7.1 Feed-Forward Governor Simulation Configuration
	5.7.2 Feed-Forward Governor Simulation Results

	5.8 Variable System Damping and Inertia
	5.8.1 Damping and Inertia Simulation Configuration
	5.8.2 Damping and Inertia Simulation Results

	6 Conclusion
	7 Future Work
	8 Bibliography
	9 Numerical Methods
	9.1 Integration Methods
	9.1.1 Euler Method
	9.1.2 Runge-Kutta Method
	9.1.3 Adams-Bashforth Method
	9.1.4 Trapezoidal Integration

	9.2 Python Functions
	9.2.1 scipy.integrate.solve_ivp
	9.2.2 scipy.signal.lsim

	9.3 Method Comparisons via Python Code Examples
	9.3.1 General Approximation Comparisons
	9.3.1.1 Sinusoidal Example and Results
	9.3.1.2 Exponential Example and Results
	9.3.1.3 Logarithmic Example and Results
	9.3.1.4 General Approximation Result Summary

	9.3.2 Python Function Comparisons
	9.3.2.1 Integrator Example and Results
	9.3.2.2 Low Pass Example and Results
	9.3.2.3 Third Order System Example and Results
	9.3.2.4 Python Approximation Result Summary

	9.4 Dynamic Agent Numerical Utilizations
	9.4.1 Window Integrator
	9.4.2 Combined Swing Equation
	9.4.3 Governor and Filter Agent Considerations
	9.4.3.1 Integrator Wind Up
	9.4.3.2 Combined System Comparisons

	9.4.4 Numerical Utilization Summary

	10 Six Machine System Details
	11 Code Examples
	12 Large Tables
	13 Detailed Valve Travel Results
	14 Additional AGC Results
	15 Additional BAAL Results

