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Abstract: It is widely expected that NMHV amplitudes in planar, maximally supersym-

metric Yang-Mills theory require symbol letters that are not rationally expressible in terms

of momentum-twistor (or cluster) variables starting at two loops for eight particles. Re-

cent advances in loop integration technology have made this an ‘experimentally testable’

hypothesis: compute the amplitude at some kinematic point, and see if algebraic symbol

letters arise. We demonstrate the feasibility of such a test by directly integrating the most

difficult of the two-loop topologies required. This integral, together with its rotated image,

suffices to determine the simplest NMHV component amplitude: the unique component

finite at this order. Although each of these integrals involve algebraic symbol alphabets,

the combination contributing to this amplitude is — surprisingly — rational. We describe

the steps involved in this analysis, which requires several novel tricks of loop integration

and also a considerable degree of algebraic number theory. We find dramatic and unusual

simplifications, in which the two symbols initially expressed as almost ten million terms in

over two thousand letters combine in a form that can be written in five thousand terms

and twenty-five letters.
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1 Introduction

The analytic structure and functional form of scattering amplitudes computed in (pertur-

bative) quantum field theory continues to hold interesting surprises. Beyond leading order,

amplitudes are typically transcendental functions — the simplest of which are known as

generalized ‘polylogarithms’: iterated integrals over differential forms with exclusively sim-

ple (logarithmic) poles in each integration variable. Although wider classes of functions are

known to be needed for most amplitudes (see e.g. [1–12]), polylogarithms are often suffi-

cient at low loop order and particle multiplicity, and are by far the best understood. Much

of this understanding has emerged in the context of ‘symbology’ [13, 14], which exploits

the coproduct and Hopf algebra structure of these functions [15–19]. (See e.g. [20] for an

introduction to these ideas.)

One of the key aspects of symbols is that they encode complete information about the

(iterated) branch cut structure of polylogarithms in terms of an alphabet of primitive log-

arithmic branch-points called letters. Knowledge about the alphabets relevant for certain

polylogarithmic amplitudes has allowed incredible reaches into perturbation theory, well

beyond what would be possible through any known (e.g. Feynman) diagrammatic expan-

sion. Examples of such triumphs include the recent determination of certain six-particle

amplitudes in planar maximally supersymmetric (N =4) Yang-Mills theory (sYM) through

seven loops [21–29], and through four loops for seven particles [30–32].

A microcosm of progress in scattering amplitudes more broadly, these calculations

have fueled and been fueled by concrete examples. One still mysterious aspect of most

known examples in this theory is that their symbol alphabets are found to be generated by
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cluster mutations [33] — rational transformations that define cluster algebras [34]. Such

algebras naturally appear in the context of the positive Grassmannian geometry of on-shell

scattering amplitudes [35], and seem to encode physical aspects of amplitudes such as the

Steinmann relations [36–39]; they also encode further types of structure whose physical

interpretation remains less clear [40–42].

Despite the intriguing role played by cluster algebras, it has long been known that even

in planar sYM this story cannot be complete. Not only are non-polylogarithmic functions

needed for most scattering amplitudes (at sufficiently high multiplicity or loop order), but

even most polylogarithmic (Nk≥2MHV) amplitudes at one loop require symbol letters that

are not rationally related to any known cluster algebra. These algebraic roots arise, for

example, as Gram determinants in the analysis of Landau singularities (see e.g. [43–46]).

It is therefore natural to wonder what kinds of letters arise in this theory’s MHV and

NMHV amplitudes, which have been argued to be polylogarithmic to all orders [47]. The

symbol of all two-loop MHV amplitudes — computed in [48] — involve only letters drawn

from the coordinates of Grassmannian cluster algebras (which are related to canonical co-

ordinates on the space of positive momentum-twistor variables) [33, 40]. Similarly, the

symbol of the two-loop seven-point NMHV amplitude (computed in [49]) is entirely com-

posed of cluster coordinates. Whether or not this continues to hold beyond seven particles

constitutes an important open question. In particular, in [45] it was suggested that square

roots could appear in NMHV amplitudes at two loops (and in MHV amplitudes at three

loops) starting for eight particles.

In this work, we probe the existence of these algebraic roots by directly computing

a particular component of the eight-point two-loop NMHV amplitude. While we are not

currently able to compute this component in full kinematics, it is sufficient to compute

it analytically at a single (sufficiently generic) kinematic point. Note that it is, however,

necessary to consider an entire amplitude, as it is well known that local integral represen-

tations can involve ‘spurious’ symbol letters (or even ‘spurious’ non-polylogarithmic parts

— see e.g. [50, 51]) that cancel between terms. Surprisingly, in the component under study,

this is precisely what happens: the local integrals that contribute to the amplitude indi-

vidually involve quadratic roots, but these roots cancel. This of course has no implications

for whether square roots will appear in other NMHV component amplitudes.

We begin in section 2 by defining the particular component we will examine. In sec-

tion 2.1, we describe a direct integration strategy that can be used to compute it at a

kinematic point; while it is not linearly reducible in the conventional sense, we find the

integral can be divided up into parts that can be integrated after respective rationalizing

changes of the integration variables. The resulting functional form involves many spurious

algebraic letters in addition to the expected ones, so algebraic identities are required to

eliminate them at symbol level, as we describe in section 2.2. While the individual inte-

grals contributing to this component contain quadratic roots, we show in section 2.3 that

the component as a whole does not. We then conclude, discussing further questions and

potential applications.

We also present two appendices. Appendix A discusses a nice basis of R-invariants for

this amplitude, while appendix B reviews pertinent notions in algebraic number theory.

– 2 –
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We additionally include several pieces of supplementary material: the integrand of the

integral we compute as Omega1357Integrand.m, expressions in multiple polylogarithms

in Omega1357MPLs.m and Omega3571MPLs.m, and the simplified symbols we obtain

as Omega1357Symbol.m and Omega3571Symbol.m. We also include a table of prime

factorizations of the symbol letters conjectured in [45] for comparison with our results as

PrimeFactorLetters.pdf.

2 The simplest NMHV octagon component amplitude

Explicit, prescriptive formulae for all two-loop n-point NkMHV amplitude integrands for

planar sYM, which we denote by A(k),2
n , were given in [52] (see also [53]); these amplitudes

are expressed in terms of a basis of dual-conformal Feynman integrands involving only local

propagators. Each integral in this basis can be Feynman parameterized and conformally

regulated as described in [54, 55]. These integrals are not all yet known analytically.

Consider for example the local integrand representation of MHV amplitudes at two

loops [56, 57]:

A(0),2
n =

∑
1≤a<b<c
c<d<n+a

a

bc

d

N1N1 =:
∑

1≤a<b<c
c<d<n+a

Ω[a, b, c, d] . (2.1)

Here, the ‘N1’s indicate specific choices of loop-dependent numerators for these sets of

(otherwise ordinary) Feynman propagators as defined in [52]. Among these terms is the

integral

Ω
[
1, 3, 5, 7

]
=

8
1

2

3
4

5

6

7

N1N1 , (2.2)

which was referred to as ‘octagon K’ in [46], where the particular challenges to its direct

integration were described at some length (see also [58]). This integral is in fact the

most difficult integral topology required for any eight-point amplitude at two loops for the

simple reason that it is the only topology that depends on eight dual-momentum points.

(Equivalently, it is the only topology which depends on 9 conformal degrees of freedom.) In

general, the ratio function will involve all of the terms in (2.1) — including Ω[1, 3, 5, 7] —

because the 2-loop MHV amplitude is required to compute the ratio function. No analytic

expression for Ω[1, 3, 5, 7] is currently known, making the analysis of any octagon amplitude

a considerable challenge.

Luckily, the question regarding whether or not algebraic letters appear in an amplitude

can be answered for individual components. (We give a less component-oriented motivation

for this amplitude in appendix A.) Moreover, provided the kinematics are parameterized

– 3 –
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appropriately, this question can be answered at a single kinematic point. For the eight-point

NMHV amplitude, there is in fact a simplest component amplitude to consider:1

A8

(
ψ
+ 1

2
1 , φ012, ψ

+ 1
2

2 , φ023, ψ
+ 1

2
3 , φ034, ψ

+ 1
2

4 , φ041

)
(2.3)

=

∫ (
dη̃18dη̃

1
1dη̃

1
2

)(
dη̃22dη̃

2
3dη̃

2
4

)(
dη̃34dη̃

3
5dη̃

3
6

)(
dη̃46dη̃

4
7dη̃

4
8

)
A8

(
λ, λ̃, η̃

)
= 〈82〉〈24〉〈46〉〈68〉

∫ (
dη11
)(
dη23
)(
dη35
)(
dη47
)
A8

(
Z1, . . . ,Z8

)
,

where 〈ab〉:= det
(
λa, λb

)
in terms of spinor variables with pa=:λaλ̃a, and where ηa is the

fermionic component of the super momentum-twistor Za :=(za, ηa) [59–61]. This compo-

nent amplitude is singled out by the fact that it happens to vanish exactly at tree level

and one loop (see e.g. [54, 62, 63]), rendering this two-loop amplitude infrared finite and

equal to the ratio function.

Using the results of [52], it is easy to confirm that the two-loop component (2.3) in

momentum-twistor variables is simply:

∫
dη11dη

2
3dη

3
5dη

4
7 AL=2

8 =
1

〈1357〉


8

1

2

3
4

5

6

7

N1N1 −

2
3

4

5
6

7

8

1

N1N1


, (2.4)

where 〈abcd〉:= det
(
za, zb, zc, zd

)
. Notice that the sum of these integrals contributes to the

MHV amplitude (2.1), while their difference is relevant to us here. The good news is that

this component amplitude only requires one integral; the bad news is that it requires what

is arguably the hardest eight-point integral at two loops.

Following [55], it is reasonably straightforward to Feynman parameterize (2.4) without

breaking conformal invariance. We give this Feynman-parametric representation in the

supplementary material, in Omega1357Integrand.m, expressed in terms of a particular

momentum-twistor (cluster) coordinate chart (see [35, 46] for context):

Z :=


s23 1 s2s3 0 −s2s3 0 s2s3 0

−s3s4 0 s34u 1 s3s4 0 −s3s4 0

s1s4 0 −s1s4u 0 s41u 1 s1s4 0

−s1s2 0 s1s2u 0 −s1s2u 0 s12u 1

⇔ (2.5)

1Component fields of external supermultiplets are specified by their helicity and SU(4)R-charges, written

in superscript and subscript, respectively.
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where sjk:=(1+sj+sk+sjsk+tk) and si:=(1+si), introduced entirely for the sake of nota-

tional compression. Here, these coordinates correspond to the charts

s1 :=
〈2346〉〈4568〉
〈2468〉〈3456〉

, t1 :=
〈1246〉〈2345〉〈3468〉
〈1234〉〈2468〉〈3456〉

, u :=
〈1248〉〈2346〉〈2678〉〈4568〉
〈1246〉〈2478〉〈2568〉〈3468〉

, (2.6)

with s2 := r2(s1), t2 := r2(t1), etc. defined by sequential two-fold rotations r2:zi 7→ zi+2.

As described in [46], any rational parameterization of momentum twistors will be

free of square roots associated with six-dimensional Gramians, and any rational point in

momentum-twistor space can be accessed rationally in any cluster coordinate chart. And so

the question of whether or not algebraic letters arise can be answered at any rational point

in momentum-twistor space. For the analysis described below, we chose to consider the

(nearly symmetrical) point in kinematic space specified by the momentum-twistor matrix

Z −→ Z∗ :=
(
z1, . . . , zn

)
:=


5 1 1 0 −1 0 2 0

−2 0 5 1 1 0 −1 0

1 0 −2 0 5 1 1 0

−1 0 1 0 −2 0 6 1

 (2.7)

obtained from (2.5) by setting t2 = 2 and all other coordinates (si, ti, u) to 1. Landau

analysis (see [45]) suggests that (2.2) may involve the roots associated with the four-

dimensional Gramians:

∆
[
abcd

]
:=
√

(1−u−v)2−4uv with u := (ab;cd) , v := (bc;da) , (2.8)

where

(ab;cd):=
〈a− 1a b− 1b〉〈c− 1c d− 1d〉
〈a− 1a c− 1c〉〈b− 1b d− 1d〉

. (2.9)

For the kinematic point defined by (2.7), these are

∆
[
1357

]
=

1

806

√
644801 , ∆

[
2468

]
=

1

5

√
21 . (2.10)

Our question, therefore, is whether or not the roots (2.10) — or any others — arise as part

of the symbol alphabet for the component (2.4). Answering this question turned out to

require more cleverness and subtlety than expected. We shall now describe the concrete

steps involved.

2.1 Direct, (Feynman-)parametric integration of Ω[1, 3, 5, 7]

The loop-momentum integral over Ω[1, 3, 5, 7] corresponds to a five-fold parametric integral

of Feynman (or Schwinger) parameters:

Ω
[
1, 3, 5, 7

]
=:

∞∫
0

[
d3~α
]
d2~β I(α1, . . . , α4, β1, β2) . (2.11)

Here, the integrals over {α1, . . . , α4} are projective, and those over β1, β2 are not. (This

distinction is irrelevant from the viewpoint of the Cheng-Wu theorem, but reflects how the

parameterization was derived.)

– 5 –
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The principle obstruction to parametric integration is that I(~α, ~β) is not linearly re-

ducible in the sense of [64]. In particular, using compatibility-graph reduction [65] (as

implemented for example in the package HyperInt [66]2), one can readily find that at most

two integrations can be carried out without introducing algebraic roots. For instance, upon

integrating out β1 and β2 (in that order), further integration seems to be obstructed along

every path. For example, the pathway in which α1 is integrated next is obstructed by the

existence of a quadratic polynomial Q1(α1) in the denominator, as this leads to a result

that involves the square root of the discriminant of Q1; this square root involves the remain-

ing integration parameters, näıvely taking us out of the space of multiple polylogarithms.

There is a similar obstruction with respect to α4, due to a quadratic denominator factor

Q4(α4). (The obstructions in α2 and α3 are given by three quadratic polynomials each.)

Luckily, after integrating over β1 and β2, there are no terms that simultaneously depend

on both quadratic factors Q1(α1) and Q4(α4). Thus, we may divide them according to

whether or not Q1(α1) appears. Specifically, we define

∞∫
0

d2~β I(α1, . . . , α4, β1, β2) =:I(~α) =: IA + IB , (2.12)

with IB consisting of all terms that involve Q1(α1), and IA being all terms that do not

depend on Q1(α1). To be clear, IA consists of both those terms involving Q4(α4), and also

those depending on neither quadratic factor. Note that IA and IB are separately finite.

Before we describe further integrations, it is worth mentioning one potential subtlety.

We will ultimately be interested in fixing the projective redundancy of different parts of

the original integral in different ways. To do so, we must first reprojectivize these integrals

by making the replacement αi 7→ αi/(
∑
αi).

3 This is done before we set any parameter to

unity.

Let us first consider the integration of IA. Free of the quadratic obstruction Q1(α1),

we can integrate over α1 and subsequently α2, leaving us with a one-fold projective integral.

The α2 integration, however, result in terms that involve square roots of two more irre-

ducible quadratics q1(α3, α4) and q2(α3, α4). While the appearance of such factors would

generally obstruct further integration, it turns out that no single term contains both roots.

Thus, we can further divide IA into three parts: IA0 , which is free of any square roots, IA1 ,

which involves only
√
q1(α3, α4), and IA2 , which involves only

√
q2(α3, α4). After setting

the projective variable a4 = 1, we can then use a standard change of variables known as

Euler substitution (see also [67]) to rationalize
√
q1(α3, 1) and

√
q2(α3, 1), respectively, in

the latter two groups.

We can integrate each of the terms in IB following a very similar strategy. Specifically,

we first integrate out α4 and then α3, which results in terms that individually involve one

(or neither) of a pair of square roots of different quadratic polynomials, q̃1(α1, α2) and

2HyperInt is obtainable at https://bitbucket.org/PanzerErik/hyperint/wiki/Home.
3This is due to the arguments of the logarithms (and polylogarithms) introduced by previous integrations,

which are not homogeneous.
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I
(
~α, ~β

)
I
(
~α
)

=:



IA
[
63 Q1(α1)

]

IB
[
3 Q1(α1)

]

IA0

[
63 √q1,

√
q2
]

IA0

IA1

IA2

IA1

[
3
√
q1(α3, α4)

]IA2

[
3
√
q2(α3, α4)

]
IB0

[
63
√
q̃1,
√
q̃2
]IB1

[
3
√
q̃1(α1, α2)

]IB2

[
3
√
q̃2(α1, α2)

]
IB0

IB1

IB2

∫
d2~β

∫
dα1,

∫
dα2

∫
dα4,

∫
dα3

“
∫
dα3”

α4 → 1

“
∫
dα1”

α2 → 1

Figure 1. Integration strategy for Ω[1, 3, 5, 7]. Here, the final integrations are written in quotes

to clarify that this step should be understood as integration after the changes of variables made to

rationalize the quadratic roots; these changes depend on which roots exist, and so are different for

different groups IAi and IBi .

q̃2(α1, α2). Splitting these pieces in the same way as for IA, fixing α2 = 1 and changing

variables to rationalize each root, we can do the final integration.

The steps involved in this divide-and-conquer strategy are summarized in figure 1. The

result is a sum of terms, each expressed in terms of multiple polylogarithms depending

on algebraic arguments of high degree (up to 16 in some cases). These expressions can

be evaluated to arbitrarily high precision — for example, using GiNaC [68, 69] — and

have been checked to agree with the numerical (Monte Carlo) integration of the Feynman

parametric integral (in Mathematica). We attach these results as Omega1357MPLs.m

and Omega3571MPLs.m.

Unfortunately, as mentioned, the multiple polylogarithms that arise in this process

depend on many algebraic roots. In addition to the expected roots from the Landau

analysis at this kinematic point,
√

21 and
√

644801, we find that Ω
[
1, 3, 5, 7

]
and Ω

[
3, 5, 7, 1

]
each involve 85 distinct square roots, with only 12 in common between the two integrals.

Each also involves irreducible roots of four distinct fourth-order polynomials, only one of

which appears in both integrals. The vast majority of these algebraic roots are certain

to be ‘spurious’: arising entirely through the change of variables introduced in the final

stages of the integration strategy (required to rationalize the final integrations). To assess

whether or not these roots (or any others) are truly spurious, we analyze the symbol of

each integral.

2.2 Eliminating identities among ‘spurious’ algebraic letters

As described above, we are able to evaluate Ω
[
1, 3, 5, 7

]
and Ω

[
3, 5, 7, 1

]
as complicated

expressions in terms of multiple polylogarithms, which we expect to satisfy many nontrivial

relations. To investigate these relations, we take the symbol of each function.4 Doing so,

4It is sometimes colloquially stated that the symbol of a constant is zero; while this is true for the

constants we most familiarly encounter (namely, the multiple zeta values), it is not true in general. One

letter that is dropped in the symbol is 1 (which correspond to log(1) = 0). We have also dropped all

the roots of unity; if ζn = 1, then log(ζ) → 1
n

log(1) = 0. Allowing this type of transformation is called

“working modulo n-torsion” in the mathematics literature.

– 7 –
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we obtain a pair of extremely complicated expressions, each involving a large number of

spurious letters. Factoring each letter näıvely (including factoring any integer primes),

Ω
[
1, 3, 5, 7

]
has a symbol composed of 8,367,616 terms that involve 2,024 letters, while the

symbol of Ω
[
3, 5, 7, 1

]
contains 9,941,483 terms and 2,156 letters.

Clearly, these symbols must be simplified. To do so, we want to find a set of multi-

plicatively independent letters S in terms of which both of these symbols can be expressed.

Landau analysis suggests that the final alphabet S should be drawn from the union of

the two algebraic number fields Q(
√

21)∪Q(
√

644801). However, our integration proce-

dure yields a symbol with a much larger initial alphabet, involving for instance algebraic

numbers up to degree 16. Finding algebraic relations between these complicated letters

in order to reduce them to elements of S can be extremely difficult. To give the reader a

sense of this complexity, we consider some examples.

Let Pi ∈ K[X] be some degree-four polynomials (indexed by i) with coefficients5 in

K = Q(
√

21,
√

644801). Our initial alphabet includes various roots of Pi, denoted σ∗i,r for

r = 1, . . . , 4. An example of the kind of roots that arise for us are those of the fourth-degree

polynomial:

P1 = (515426609 + 641880
√

644801) + (2105546840 + 2622160
√

644801)X

+(3225674840 + 4015200
√

644801)X2 + (2240256000 + 2676800
√

644801)X3

+1120128000X4 . (2.13)

Clearly, we expect the four roots of P1 that arise in our symbol alphabet to be spurious.

Therefore, we must find some way to demonstrate that they cancel.

Actually, an alphabet merely involving σ∗i,r would not be so difficult. It turns out in

our case that the most complicated letters we see are of the type ρ− σ∗i,r, where ρ can be

an integer or a linear combination of up to two square roots. When there are two roots,

one always belongs to K. Furthermore, when ρ = m + n
√
c with m,n ∈ K and c ∈ Z

appears, then its conjugate ρ = m− n
√
c also appears.

There are two types of relations involving the roots σ∗i,r that turn out to be useful for us.

The first type involves products
∏4
r=1(ρ− σ∗i,r). These products are completely symmetric

in the roots of Pi, so they belong to an extension of the field K by ρ — in particular,

they can be written as linear combinations of square roots and integers. Actually, it turns

out that products of certain pairs of roots of Pi also yield simple answers. We believe it

should be possible to explain the existence of these latter mysterious identities using Galois

theory, but we have not performed this analysis.

The second type of identities involve products of type (ρ − σ∗i,r)(ρ − σ∗i,r), where ρ is

one of the conjugates of ρ. Expanding out this product we obtain a degree-two polynomial

in σ∗i,r with coefficients in K. Next, we search for exponents eρ corresponding to values of ρ

such that, in the product of these letters raised to power eρ, the σ∗i,r cancels and the answer

is of degree two. It turns out to be sufficient to bound the search so that |eρ| ≤ 2. The

5To be more precise, two of these minimal polynomials are with coefficients in Z, one is with coefficients

in Z[
√

21] while another has coefficients in Z[
√

644801].
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calculation of these products can be conveniently performed using SageMath [70], which

uses Pari [71].

Let us be more concrete with an example of this second type of identity. For the

polynomial P1 given in (2.13), we find the letters

a1(σ
∗
1,r):= (1668888 + 2080

√
644801) + (25600σ∗1,r + 4160

√
644801)σ∗1,r,

a2(σ
∗
1,r):= (1412136 + 1760

√
644801) + (3097600σ∗1,r + 3520

√
644801)σ∗1,r,

a3(σ
∗
1,r):= (10013328 + 12480

√
644801) + (17305600σ∗1,r + 24960

√
644801)σ∗1,r,

a4(σ
∗
1,r):= (11938968 + 14880

√
644801) + (24601600σ∗1,r + 29760

√
644801)σ∗1,r,

a5(σ
∗
1,r):= (2456474760 + 3061600

√
644801) + (5069440000σ∗1,r + 6123200

√
644801)σ∗1,r

(2.14)

(among many others involving σ∗1,r), where σ∗1,r is any root of P1. It is not hard to verify that

a1a
2
2

a3a4a5
= − 121

358670
∈ K (2.15)

using SageMath (or even Mathematica).

Fortunately, the method described above turns out to be sufficient to find all required

relations between the most complicated letters that appear in our initial symbols, allowing

us to get rid of all higher-degree roots. However, many other potentially-spurious letters

remain — in particular, there still exist linear combinations of up to two square roots, and

square roots beyond the two physical ones in (2.10).

For the letters containing square roots, we group them according to the algebraic

number fields to which they belong and compute the factorization of the principal ideal

they generate (see appendix B for more details). For this step we use again SageMath and

Pari. Using this factorization, we can find multiplicative relations between these letters.

Note that the integer prime factors we generated in the first step belong to each of these

number fields, so their decomposition in prime ideals has to be computed as well.

This factorization also contains a unit part, which is a term belonging to the group of

units of the various rings we consider. In some of the cases we encounter, the unit part

is ±1, but in others it is non-trivial. We keep a list of all the units arising during the

calculations in a given ring, and if two of them are identical we obtain a new identity by

taking the ratio. In principle a more sophisticated approach is possible.

Using these methods, we decompose our letters into a multiplicatively independent

set S. Doing so, many of the spurious letters in our symbols combine cleanly into integer

letters. Others cancel entirely, removing terms and causing other spurious letters to drop

out. In the end, we find the symbol of each function simplifies dramatically. Expressing

Ω
[
1, 3, 5, 7

]
and Ω

[
3, 5, 7, 1

]
in terms of a shared, multiplicatively independent symbol

alphabet, we find only 35 letters are needed. These letters only involve the expected

square roots: five involve
√

644801, two involve
√

21, and the rest are integer primes.

Expressed in these letters, Ω
[
1, 3, 5, 7

]
is 5316 terms long, while Ω

[
3, 5, 7, 1

]
contains 5245

terms. We attach the symbol of each in supplementary material Omega1357Symbol.m

and Omega3571Symbol.m, respectively.
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Interestingly, some of the symbol letters that contain
√

21 and
√

644801 can be con-

structed simply in dual twistor space. Namely, out of eight points z1, . . . , z8, we can form

four skew lines (z1, z2), (z3, z4), (z5, z6), (z7, z8). These four skew lines have two transver-

sals (lines that intersect all four of them). From the points of intersection on each of these

transversals we can form a cross ratio. A similar construction can be carried out starting

from the (z2, z3), . . . , (z8, z1). Some of the cross ratios that can be formed in this way

appear directly in our symbol expression for Ω
[
1, 3, 5, 7

]
and Ω

[
3, 5, 7, 1

]
.

2.3 Cancellations in the component amplitude

Individually, Ω
[
1, 3, 5, 7

]
and Ω

[
3, 5, 7, 1

]
both contain square-root letters. Now that we

have expressed them in the same alphabet, we can examine their difference Ω
[
1, 3, 5, 7

]
−

Ω
[
3, 5, 7, 1

]
, the combination that appears in this component of the NMHV amplitude.

Remarkably, this difference is free of square-root letters! Recall that we are using a multi-

plicatively independent alphabet: as such, the vanishing of square roots in Ω
[
1, 3, 5, 7

]
−

Ω
[
3, 5, 7, 1

]
requires that terms involving each of the six independent square-root-containing

letters cancel separately. We find that the difference Ω
[
1, 3, 5, 7

]
−Ω

[
3, 5, 7, 1

]
contains just

25 letters, all integer primes.

The sum Ω
[
1, 3, 5, 7

]
+ Ω

[
3, 5, 7, 1

]
contributes to the eight-point MHV amplitude.

This sum is not free of square roots, and depends on all of the letters present in the two

integrals. This observation is still consistent with the observed absence of square roots

in the alphabet of the two-loop eight-point MHV amplitude because several other root-

containing integrals contribute to this amplitude — including two other permutations of

the integral we computed here. Other cancellations, much like those we observed, must be

present in this combination.

We find that square-root letters are present in the second and third entry of Ω
[
1, 3, 5, 7

]
and Ω

[
3, 5, 7, 1

]
, but not the first or fourth entry. This is as expected, as first entries

should correspond to Mandelstam invariants while last entries are constrained by the Q

equation [49]. More specifically, first entries should be composed of four-brackets of the

form 〈i, i+ 1, j, j + 1〉. Examining our symbol, we find first entries of 2, 3, 5, 11, 13, and 31.

Computing the expected first entries at our kinematic point, we find

〈1, 2, 3, 4〉 = 1 , 〈1, 2, 4, 5〉 = 3 , 〈1, 2, 5, 6〉 = 5 , 〈1, 2, 6, 7〉 = 13 ,

〈1, 2, 7, 8〉 = 1 , 〈2, 3, 4, 5〉 = 1 , 〈2, 3, 5, 6〉 = 11 , 〈2, 3, 6, 7〉 = 31 ,

〈2, 3, 7, 8〉 = 3 , 〈1, 2, 3, 8〉 = 1 , 〈3, 4, 5, 6〉 = 1 , 〈3, 4, 6, 7〉 = 4 ,

〈3, 4, 7, 8〉 = 5 , 〈1, 3, 4, 8〉 = 11 , 〈4, 5, 6, 7〉 = 2 , 〈4, 5, 7, 8〉 = 11 ,

〈1, 4, 5, 8〉 = 26 , 〈5, 6, 7, 8〉 = 1 , 〈1, 5, 6, 8〉 = 3 , 〈1, 6, 7, 8〉 = 1 ,

(2.16)

which indeed cover all observed first entries.

We can also investigate whether the prime-number symbol entries we observe elsewhere

in the symbol can originate from the entries predicted in [45]. We have attached this

analysis as supplementary material, as PrimeFactorLetters.pdf, where we tabulate the

prime factors of each of the predicted letters at this kinematic point. We find these factors
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span all of the letters that we observe. There are additional prime factors occurring in

predicted letters in [45] that we do not observe; these are marked by an asterisk in our

table.

In addition to these observations, we find that the two square roots
√

644801 and
√

21

do not appear together in the same term of the symbol: the symbol can be separated

into terms depending on one root, terms depending on the other, and terms depending on

neither.

3 Conclusions and outlook

In this work, we have computed a component of the two-loop eight-point NMHV amplitude

in planar sYM at a specific kinematic point. We find that, while the individual integrals con-

tributing to this amplitude do have letters depending on square roots of four-dimensional

Gramians, these square roots cancel in the combination present in this component. In order

to do this, we have employed an unusual direct integration strategy of breaking the integral

into multiple integration pathways, and simplified our result from millions to thousands of

terms using algebraic number theory.

This work shows that this particular component is free of square-root letters, but it

does not establish that other components of the NMHV amplitude will not depend on

such roots. In order to establish this, we would need to compute many more integrals,

potentially of similar complexity. Alternatively, other methods may be able to compute

these amplitudes much more efficiently, yielding a conclusive answer.

The use of symbol methods with square-root letters is still largely unexplored territory.

While previous forays have involved heuristic or numerical elements (e.g. [72, 73]), our use

of factorization in prime ideals should yield a more canonical and complete analysis of the

relations between algebraic letters, and we believe similar methods should be applicable

elsewhere.

It is interesting to ask if the cancellation of square roots we observed could have been

detected at a later stage. For the individual integrals, better integration methods may

exist that would make these cancellations manifest earlier, or even avoid the introduction

of spurious roots altogether. For the full component amplitude, one might hope that some

analog of Landau analysis might be possible.
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A A proposal for representing NMHV octagon amplitudes

In this appendix we describe a particular representation of eight-point NMHV amplitudes,

analogous to the decomposition of hexagon and heptagon functions into specific bases. This

is a bit outside the line of the main result in this work, but it does provide an independent

logic behind why the particular component amplitude (2.4) plays a special role. In order

to do this, we must first introduce and motivate a small amount of new notation that we

promise will be worthwhile.

A.1 Notational preliminaries: NMHV Yangian invariants

The reader should be aware that NMHV amplitudes can be expressed in terms of so-

called R-invariants that, when expressed in momentum-twistor space, are superfunctions

defined by

R[a, b, c, d, e] :=
δ1×4

(
〈bcde〉ηa+〈cdea〉ηb+〈deab〉ηc+〈eabc〉ηd+〈abcd〉ηe

)
〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉

(A.1)

for any five (super-)momentum twistors labelled by {a, b, c, d, e}. An equivalent definition

of the R-invariant is that it is simply the five-particle NMHV tree-level amplitude involving

the momentum twistors {a, b, c, d, e}. It will turn out to be useful to consider NMHV tree-

level amplitudes involving other sets of external particles including sets of more than five.

In particular, let us use the symbol

An := A(1 · · ·n):= A(k=1),L=0
n (z1, . . . , zn) (A.2)

to denote then-point NMHV tree-level amplitude involving momentum twistors {z1, . . . , zn}.
(Recall that ‘A’ is the Fraktur-script form of the letter ‘A’.) Thus, we may define the R-

invariant simply as

R[1, 2, 3, 4, 5]:= A(1, 2, 3, 4, 5) = A5 . (A.3)

Especially at low multiplicity, we find it useful to denote tree amplitudes by which

among the ambient n twistors they do not depend. Because such notation, however conve-

nient, is liable to cause confusion when several multiplicities are discussed, we propose to

keep this information manifest in the way we write them. We denote these complements by

(a · · · b)cn:= A([n]\{a,. . . ,b}) . (A.4)
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Notice that this would allow us to write

An = A(1 · · ·n) =:()cn (A.5)

— a notation that we cannot imagine ever actually using. More realistically, however, we

should notice that in this notation the symbol for a single R-invariant would be multiplicity

dependent. For example,

R[1, 2, 3, 4, 5] = A(12345) = (6)c6 = (67)c7 = (678)c8 = · · · = (6 · · ·n)cn . (A.6)

One (BCFW) representation (among many) of the NMHV tree amplitude (A.2)

would be,

An = An−1 +

n−2∑
a=3

A(1 a −1a n −1n) =

n−2∑
a=3

n∑
b=a+2

A(1 a −1a b −1 b) ; (A.7)

but as already mentioned, we will have little recourse to decompose tree amplitudes into

smaller objects. This is in part because, while A(1 · · ·n) is in fact dihedrally-invariant in

its indices, no formula of the form (A.7) will make this manifest.

Equivalence between various dihedrally-related BCFW formulae (A.7) generates all the

functional relations among R-invariants. In general, there are
(
n−1
4

)
linearly independent

n-point NMHV Yangian invariants.

At seven particles, for example, there are 15 linearly independent superfunctions into

which any amplitude may be decomposed. Although 7 does not divide 15, most authors

(see e.g. [31, 32, 74]) have chosen to write heptagon functions in terms of the cyclic seeds

{(12)c7, (14)c7,A7} which generate 2 cyclic classes of length 7 and one cyclic singlet, A7. That

is, these authors have chosen to decompose all other 7-point superfunctions according to

the ‘elimination rules’ generated cyclically by

(13)c7 = −(34)c7 − (56)c7 − (71)c7 − (36)c7 − (51)c7 + A7 ,

(1)c7 = −(34)c7 − (56)c7 − (36)c7 + A7 .
(A.8)

Having used such eliminations, the heptagon ratio function can be written as

RL7 =:
[(

(12)c7V
7,(L)
(12)c7

+(14)c7V
7,(L)
(14)c7

+A7V
7,(L)
0

)
+cyclic7

]
. (A.9)

(We believe that a better basis for heptagon amplitudes would have been generated by

{(1)c7, (12)c7,A7}, but this is not presently our concern.) Let us now describe a similar basis

for eight-point NMHV Yangian invariants that is in a precise sense ‘optimal’.

A.2 An optimal basis for octagonal NMHV amplitudes

Unlike for seven particles (which is somewhat anomalously nice), there is no easy way

to choose among the 56 different R-invariants — 7 cyclic classes — into non-redundant

classes spanning 35 =
(
7
4

)
independent superfunctions. The situation is not obviously

much improved if we include the cyclic singlet A8, or other lower-point tree-level amplitudes.
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Including also superfunctions corresponding to tree-level amplitudes involving intermediate

subsets of the 8 legs, we have 13 cyclic classes of superfunctions, generated by{
(123)c8,(124)c8,(125)c8,(126)c8,(134)c8,(135)c8,(136)c8,(12)c8,(13)c8,(14)c8,(15)c8,(1)

c
8,A8

}
. (A.10)

From this list, how are we to choose a basis of length 35? Of the cyclic classes generated

by those in (A.10), all but two represent classes of length 8. The exceptions are A8 and

(15)c8 =A(234678), which forms a class of length 4. We are virtually forced to consider the

inclusion of this length-4 class into our basis, as any other choice would lead to even greater

redundancy.

Including A8, the four cyclic images of (15)c8 = A(234678), and some other choice of

four length-8 cyclic classes from among those generated by (A.10), we would have 37

superfunctions in all. In the best case, the two redundancies could be captured entirely by

the length-four class (as 2 divides 4 nicely), with the rest independent. It turns out that

there are 172 such choices available. The basis choice we describe presently is the one in

which the ‘elimination rules’ of all other superfunctions (in the sense of (A.8)) involve the

shortest expressions.

The basis we propose can be defined first in terms of the 37 functions generated by

the seeds

a1:= A(12345) = (678)c8 , b1:= A(12346) = (578)c8 , c1 := A(123456) = (78)c8 ,

d01:= A(123567) = (48)c8 , e1 := A(1234567) = (8)c8 , f := A(12345678) = A8 ,
(A.11)

with other basis elements generated by cyclic rotations. Before we discuss the final, non-

redundant basis, it is worthwhile to enumerate the (cyclic generators of all) elimination

rules — by which non-basis superfunctions may be expanded:

(124)c8= −(467)c8+(12)c8+(67)c8+(4)c8−A8 = −b8+c3+c8+e5−f ;

(125)c8= −(123)c8−(127)c8+(12)c8 = −a4−b3+c3 ;

(126)c8= −(128)c8+(467)c8−(67)c8−(4)c8+A8 = −a3+b8−c8−e5+f ;

∗(135)c8= (178)c8+(567)c8+(15)c8−(3)c8−A8 = a2+a8+d02+e4−f ;

(136)c8= (567)c8−(134)c8+(356)c8−(18)c8−(56)c8+(1)c8 = a8−b5+b7−c2−c7+e2 ;

(13)c8 = (567)c8+(1)c8+(3)c8−A8 = a8+e2+e4−f ;

(14)c8 = (134)c8−(467)c8−(34)c8+(4)c8 = b5−b8−c5+e5 ;

d03=(26)c8 = −(678)c8−(128)c8−(234)c8−(456)c8−(48)c8+A8 = −a1−a3−a5−a7−d
0
1+f ;

d04=(37)c8 = −(178)c8−(123)c8−(345)c8−(567)c8−(15)c8+A8 = −a2−a4−a6−a8−d
0
2+f .

(A.12)

There are a few things to note about these decompositions. As always, other superfunctions

are eliminated according to rotations of (A.12). In addition, there are two aspects of (A.12)

regarding d0i that deserve comment. First, note that the only superfunction from (A.11)

whose decomposition involves d0i (except those of the d0i ’s) is (135)c8 — indicated with a ‘∗’
in (A.12).6

The second aspect to notice about the elimination rules (A.12) is that the last two are

for d03 and d04, which are generated by our initial seeds upon rotation. As evidenced by the

6It is worth mentioning that this particular superfunction, (135)c8 , does not appear as any leading sin-

gularity (hence integral coefficient) until at three loops — where it certainly appears.
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simple fact that they have elimination rules (and also that 35 = 37−2), these two will not

be basis elements. Moreover, it is easy to see that

d01+d03 = f−a1−a3−a5−a7 and similarly, d02+d04 = f−a2−a4−a6−a8 . (A.13)

However, the differences between them are good basis elements. And up to the alternating

sign, they form a length-2 cyclic class of superfunctions. Let us define

d1 := d01−d
0
3 and d2 := d02−d

0
4 . (A.14)

These, combined with the other basis elements in (A.11), non-redundantly span the space

of 35 independent superfunctions in terms of four cyclic classes of length 8, one of length

2, and one of length 1. This is our proposed basis for eight-point NMHV amplitudes.

In this basis, the eight-point NMHV ratio function may be represented as

R
(L)
8 :=

[(
a1V

(L)
a +b1V

(L)
b

+c1V
(L)
c +d1V

(L)
d +e1V

(L)
e +fV

(L)
f

)
+cyclic8

]
. (A.15)

(As with seven points, please notice that we are adding all of these terms (8-fold-) cyclically.

This has the admittedly unfortunate effect of causing V
(0)
f to be 1/8; it will also require us

to account for the over-counting in V
(L)
d .)

For reference, at one loop, these are easy to write explicitly [54, 75]. They are

V
(1)
a = −Li2(1−v2)−Li2(1−u1u4v4)− log(u2) log(u3)− log(u1u4v4) log(v2)+ζ2 ,

V
(1)
b = Li2(1−u5v1)−Li2(1−u2u5v1)−Li2(1−u4v3)+ Li2(1−u4u7v3)

− log(u2) log(u4v3)+ log(u5v1) log(u7) ,

V
(1)
c = −Li2(1−u7)−Li2(1−u5v1)+ Li2(1−u2u5v1)−Li2(1−u2v2)+ Li2(1−u2u7v2)

− log(u4v3) log(v2)− log(u5v1) log(u7) ,

V
(1)
d = 0 ,

V
(1)
e = −Li2(1−u2u7v2)−Li2(1−u8v4)− log(u2u7v2) log(u8v4)+ζ2 ,

V
(1)
f = Li2(1−u1)+

1

2
Li2(1−v1)+ Li2(1−u1v1)−

1

2
log(v1) log(v2)+

3

4
log(v1) log(v3)

+ log(u1v4) log(u2u3v3)−ζ2 .

(A.16)

We have written these function in terms of the 12 multiplicatively independent dual-

conformally invariant cross-ratios,

u1 := (13;48), v1 := (14;58) with ui := r(i−1)(u1), vi := r(i−1)(v1) . (A.17)

Notice that Vd is zero at one loop. At two loops, it is not hard to confirm that

V
(2)
d = −1

4


8

1

2

3
4

5

6

7

N1N1 −

2
3

4

5
6

7

8

1

N1N1


. (A.18)
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B Some notions of algebraic number theory

When working with symbols, it is valuable to be able to put them into a canonical form, for

instance to decide whether two symbols are equal. As an example, many of the amplitudes

that have been computed in planar sYM to date can be uniquely expressed in terms of

a known set of Plücker coordinates. In more complicated amplitudes, a basis of symbol

letters is not generally known. In such cases, we can simply factorize each symbol letter,

as long as this factorization is unique.

It is easy to see that factorization will give rise to a unique expression when all symbol

letters are integers. However, this is not automatic once algebraic roots are introduced.

Consider, for instance, the situation where
√
−5 appears in some letters. The number 9

then has two ‘factorizations’:

9 = 3× 3 = (2 +
√
−5)(2−

√
−5) , (B.1)

where the second factorization of 9 is possible when viewed as an element of Z[
√
−5]. By

Z[
√
−5], we denote the set of numbers of type a + b

√
−5 for a, b ∈ Z, with the obvious

addition and multiplication properties.7 This set of numbers, with these operations, defines

a ring.

From the example above it looks like 9 can be factorized in two different ways, but

perhaps unique factorization can still be salvaged if some of the factors can be further

factored. It turns out that this is not what is happening here.

Before clarifying what is happening, we need to make a distinction between irreducible

and prime elements of a ring R. First, we introduce the notion of unit. The elements of R

which have multiplicative inverses are the units of R (denoted by U(R)). For the integers,

the units are ±1. An element x ∈ R is irreducible if it can not be written as a product

of two elements of R neither of which is a unit. Finally, an element x ∈ R is prime if for

any a, b ∈ R such that x divides ab, then it divides a or b. For the integers there is no

distinction between primes and irreducibles, but in general rings there is.

We now return to the above example: is 3 a prime in Z[
√
−5]? We can show that it

is not. If it were prime, it would follow from the fact that 3 divides (2 +
√
−5)(2−

√
−5)

that it also divides either 2 +
√
−5 or 2−

√
−5. But 3 divides a+ b

√
−5 only if it divides

both a and b, which is not the case here.

Is 3 irreducible instead? One can show that the units of Z[
√
−5] are ±1. It is then

a simple exercise to show that 3 is indeed irreducible (just use the definition and show

that there are no suitable solutions). So the hope that perhaps each of the terms in the

factorization can be factorized further to a prime decomposition which is the same in the

l.h.s. and r.h.s. is not fulfilled. We conclude that Z[
√
−5] is not a UFD (unique factorization

domain).

For this reason, it may look like there is no way to achieve unique factorization. But

if we enlarge our perspective a little, we can recover this desired property. We will now

7We should not think of
√
−5 as being a complex number, but rather as an abstract symbol whose

property is that it squares to −5. In fact, Z[
√
−5] can be embedded in the complex numbers in two ways,

by sending
√
−5 to each of the two roots of −5 in C.

– 16 –



J
H
E
P
0
2
(
2
0
2
0
)
0
2
5

explain how to do this. The construction we will describe is possible for rings which are

Dedekind domains.

Let us start with the familiar case of integers. In this case, to a prime p we associate

the set of all its multiples. This set has two important properties. First, it is closed under

addition; second, multiplying it by any integer lands us back in the same set. This is just

the definition of an ideal of the ring of integers Z. For the case of a prime we obtain a

prime ideal, but the construction works in general. The set of multiples of p is denoted by

(p). This is also called the ideal generated by p.

The notion of divisibility can be translated to the language of ideals: we say that a

divides b if (b) ⊆ (a). It is easy to check that this corresponds to the usual notion of

divisibility for the integers. Now that we have expressed divisibility in terms of ideals, we

may consider ideals generated by more than one element. The ideals generated by one

element, such as (p), are called principal ideals. An ideal generated by two elements a and

b is denoted by (a, b); as a set, it contains the linear combinations ma + nb where m, n

belong to the ring and a, b belong to the ideal. This satisfies all the properties of an ideal.

Ideals can be multiplied; we have (p)(q) = (pq) and (a, b)(c, d) = (ac, ad, bc, bd) and

the pattern continues in the obvious way, for ideals generated by more generators. These

ideals have some pretty obvious properties:

(a, b) = (a± b, b) , (a, b, a± b) = (a, b) , (1, a) = (1) . (B.2)

Using these rules we can compute the following products, which will be useful momentarily:

(3, 1 +
√
−5)(3, 1−

√
−5) = (9, 3 + 3

√
−5, 3− 3

√
−5, 6) = (9, 3 + 3

√
−5, 6) (B.3)

= (3)(3, 1 +
√
−5, 2) = (3)(1, 1 +

√
−5, 2) = (3)(1) = (3).

Similarly, we find

(3, 1+
√
−5)2 = (9, 3+3

√
−5, −4+2

√
−5) = (9, −6+3

√
−5, −4+2

√
−5)

= ((2+
√
−5)(2−

√
−5), −3(2−

√
−5), −4(2−

√
−5)) (B.4)

= (2−
√
−5)(2+

√
−5, −3, −4) = (2−

√
−5)(2+

√
−5, 1, −4) = (2−

√
−5).

We also have (3, 1 +
√
−5)2 = (2 +

√
−5).

Now that we have made the transition from elements of a ring to the principal ideal

they generate, we can explain the change of perspective mentioned above. Instead of

considering principal ideals, we consider ideals generated by any number of generators.

Indeed, now we can refine the factorization as follows:

(9) = (3)(3) = (2 +
√
−5)(2−

√
−5) = (3, 1 +

√
−5)2(3, 1−

√
−5)2. (B.5)

To finish, we should show that the ideals appearing in this factorization are prime. We will

not do this explicitly here.

This works in general. The factorization is unique in the following sense: any ideal

can be decomposed as a product of prime ideals, up to ordering. Finally, we have achieved

– 17 –
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unique factorization, but at the cost that the factors are some abstract, less familiar quan-

tities.

An algebraic number field is a finite extension of Q constructed as follows. Consider a

root ρ of a degree n polynomial with rational coefficients. Then, Q[ρ] is the ring generated

by rational linear combinations of powers 0 through n − 1 of ρ (higher powers can be

reduced). We also define K = Q(ρ) as the field generated by ρ (whose elements are ratios

of elements of Q[ρ]). Inside K we find the algebraic integers OK which are the elements of

K whose minimal polynomial is monic8 and with integer coefficients. It is a theorem that

the ring of algebraic integers OK of an algebraic number field K is a Dedekind domain, so

it has a unique factorization.

Some of the letters we would like to factorize are not actually algebraic integers, so

we cannot construct an ideal they generate inside OK . Nevertheless, we can construct a

fractional ideal instead, which is a slight generalization of the notion of ideal. We will

not give a full definition here, but the reader who wants to have an intuition for what a

fractional ideal is can think of p
q ·Z as a fractional ideal of Z. In other words, we also allow

denominators.

Now the strategy for computing relations between several elements of a number field

K should be clear. For each of these elements we compute the prime ideal decomposition

of the principal fractional ideal they generate. The exponents form a matrix with integer

coefficients whose rows are labeled by the elements of K and whose columns are labeled

by the prime ideals. Every element of the left kernel of this matrix yields a multiplicative

relation between the given elements of K.

Historically, it was Kummer who started developing these ideas in connection with

Fermat’s conjecture. His ideas were refined and generalized by Dedekind, Hilbert, Noether

and many others. A good reference and resource for the material described in this appendix

is [76].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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