
u n i ve r s i t y  o f  co pe n h ag e n  

Circadian rhythm of activin A and related parameters of mineral metabolism in normal
and uremic rats

Nordholm, Anders; Egstrand, Søren; Gravesen, Eva; Mace, Maria L; Morevati, Marya;
Ølgaard, Klaus; Lewin, Ewa

Published in:
Pflügers Archiv - European Journal of Physiology

DOI:
10.1007/s00424-019-02291-2

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Nordholm, A., Egstrand, S., Gravesen, E., Mace, M. L., Morevati, M., Ølgaard, K., & Lewin, E. (2019). Circadian
rhythm of activin A and related parameters of mineral metabolism in normal and uremic rats. Pflügers Archiv -
European Journal of Physiology, 471(8), 1079-1094. https://doi.org/10.1007/s00424-019-02291-2

Download date: 27. maj. 2020

https://doi.org/10.1007/s00424-019-02291-2
https://curis.ku.dk/portal/da/persons/klaus-oelgaard(3113a42d-60bc-4130-a9d8-b811327a3dc2).html
https://curis.ku.dk/portal/da/publications/circadian-rhythm-of-activin-a-and-related-parameters-of-mineral-metabolism-in-normal-and-uremic-rats(352930e3-d8c9-46a6-b19a-722430d1829c).html
https://curis.ku.dk/portal/da/publications/circadian-rhythm-of-activin-a-and-related-parameters-of-mineral-metabolism-in-normal-and-uremic-rats(352930e3-d8c9-46a6-b19a-722430d1829c).html
https://doi.org/10.1007/s00424-019-02291-2


MOLECULAR AND CELLULAR MECHANISMS OF DISEASE

Circadian rhythm of activin A and related parameters of mineral
metabolism in normal and uremic rats

Anders Nordholm1,2
& Søren Egstrand1,2

& Eva Gravesen2
& Maria L. Mace1,2

& Marya Morevati2 & Klaus Olgaard2
&

Ewa Lewin1,2

Received: 30 April 2019 /Revised: 4 June 2019 /Accepted: 5 June 2019 /Published online: 24 June 2019
# The Author(s) 2019

Abstract
Activin A is a new fascinating player in chronic kidney disease-mineral and bone disorder (CKD-MBD), which is implicated in
progressive renal disease, vascular calcification, and osteodystrophy. Plasma activin A rises early in the progression of renal
disease. Disruption of circadian rhythms is related to increased risk of several diseases and circadian rhythms are observed in
mineral homeostasis, bone parameters, and plasma levels of phosphate and PTH. Therefore, we examined the circadian rhythm of
activin A and CKD-MBD-related parameters (phosphate, PTH, FGF23, and klotho) in healthy controls and CKD rats (5/6
nephrectomy) on high-, standard- and low-dietary phosphate contents as well as during fasting conditions. Plasma activin A
exhibited circadian rhythmicity in healthy control rats with fourfold higher values at acrophase compared with nadir. The rhythm
was obliterated in CKD. Activin A was higher in CKD rats compared with controls when measured at daytime but not signif-
icantly when measured at evening/nighttime, stressing the importance of time-specific reference intervals when interpreting
plasma values. Plasma phosphate, PTH, and FGF23 all showed circadian rhythms in control rats, which were abolished or
disrupted in CKD. Plasma klotho did not show circadian rhythm. Thus, the present investigation shows, for the first time,
circadian rhythm of plasma activin A. The rhythmicity is severely disturbed by CKD and is associated with disturbed rhythms
of phosphate and phosphate-regulating hormones PTH and FGF23, indicating that disturbed circadian rhythmicity is an impor-
tant feature of CKD-MBD.
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Introduction

Activin A is a member of the transforming growth factor beta
(TGF-β) family of proteins produced by many cell types
throughout development [7]. It participates in regulation of
several biological processes, including cell differentiation,
proliferation, and inflammatory response. Systemic activin A
levels are increased in postmenopausal women, aging, and

patients with type 2 diabetes mellitus [2, 23, 45, 77].
Recently, the first report on systemic activin A elevation in
humans with uremia was provided. It was found that in pa-
tients with chronic kidney disease (CKD), serum activin A
levels increased early in the progression of renal insufficiency
[43]. Activin A not only has an important role in kidney de-
velopment and repair [50], but also an essential role in kidney
diseases, such as acute renal failure or progressive renal fibro-
sis [1, 50, 80]. It was observed that renal expression of activin
A was induced in kidney injury stressing the concept that an
endocrine factor, which is produced in kidney failure, disrupts
organ homeostasis outside the kidney and that activin Amight
be such a circulating factor [58].

Activin Amediates its biological effects through a complex
of transmembrane receptor serine/threonine kinases. Activin
A binds to activin A receptor type II (ActRllA), then forms a
complex with ALK4. Phosphorylation of ALK4 activates
Smad2/3 and forms a complex together with Smad4 that trans-
locate to the nucleus to regulate gene expression [7].
Preventing ActRllA signaling with a fusion protein, ACE-
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011, which contains the ActRIIA domain derived from the
human receptor resulted in elevation of osteoblastic bone for-
mation markers and reduction of osteoclastic bone resorption
markers in healthy postmenopausal women [64]. Recently,
systemic activation of activin receptors in the kidney, skele-
ton, vasculature, and heart in CKD mouse models of diabetic
nephropathy and Alport syndrome has been reported [1, 73,
80]. Moreover, the treatment with activin A-binding protein,
follistatin, or with RAP-011, a ligand trap of ActRllA, has
revealed an amelioration of renal fibrosis and chronic kidney
disease-mineral bone disorder (CKD-MBD) findings in CKD
models [1, 33, 51, 73, 80]. As such, increased systemic activin
A can be seen as a biomarker of CKD-MBD that can be
targeted for CKD-MBD prevention and therapy.

CKD-MBD is a major cause of excess mortality associated
with CKD [55]. CKD-MBD begins early in the course of
kidney disease and consists of renal osteodystrophy, vascular
calcification (VC), and cardiac disease together with eleva-
tions of plasma phosphate (P) and fibroblast growth factor
23 (FGF23) as well as decrease of klotho [46, 47, 55].
FGF23 is an important hormone secreted from osteocytes that
regulates PTH and vitamin D metabolism and augments renal
P excretion [49, 69, 76]. The phosphaturic action of FGF23
requires klotho, an antiaging protein which functions as co-
receptor for signal transduction [38, 78]. In more advanced
CKD-MBD secondary hyperparathyroidism (sHPT),
calcitriol deficiency, and hyperphosphatemia develop [31,
40, 46]. Elevated plasma P levels are associated with several
deleterious endpoints in CKD patients including sHPT, arteri-
al hypertension, extra-skeletal calcifications, cardiovascular
disease, fracture rates, and all-cause mortality [13, 34, 55,
63]. Even in individuals with normal kidney function, plasma
P levels are associated with long-term development of VC
[16]. The possible mechanism by which P influences cardio-
vascular mortality is by the involvement of extracellular P in
promoting the expression of an osteogenic phenotype in vas-
cular myocytes [65, 68]. A decrease in renal klotho expression
is a new component of CKD-MBD as systemic klotho is

derived from the kidney [37, 44]. The loss of klotho in CKD
is associated with VC, cardiac hypertrophy, and
osteodystrophy [27, 29, 81]. As such, CKD has similarity to
the phenotype of klotho hypomorph mice characterized by
accelerating aging [28]. Replacement of klotho has been
shown to be efficacious in both conditions [28] and klotho is
regarded a vasculo-protective factor [42]. In time, VC be-
comes manifest and irreversible even though improving
hyperphosphatemia and gene expression profile can be
reached with various pharmacological manipulations [21,
22]. However, inhibition of ActRllA signaling, in early CKD
mouse models, improves VC and renal fibrosis and increases
renal klotho [1]. As such, increased systemic activin A and
activated systemic ActRllA signaling may represent a new
critical component of CKD-MBD, which is implicated in the
onset and progression of the disease. Furthermore, activin A
may be implicated not only in CKD-MBD, but also in prema-
ture aging in CKD, as some manifestations of the phenotypes
of CKD-MBD overlap with that of premature aging, such as
decrease in klotho, medial VC, and osteoporosis [41].

Our hypothesis is that an increase in circulating levels of
activin A in CKD is associated with a disruption of the circa-
dian rhythm (CR) of plasma activin A.

Proper rhythms in hormone secretion, metabolism, cell cy-
cle, and behavior are maintained by a circadian clock; an
endogenous, self-sustaining pacemaker that operates with a
periodicity of 24 h [24]. Disruption in the proper circadian
clock results in detrimental effects on the mammalian physi-
ology [52]. Circadian rhythmicity is observed in mineral ho-
meostasis and bone parameters and has been shown for plas-
ma P and parathyroid hormone (PTH) [32, 53, 62, 70, 74].
Bone is the main reservoir of calcium and P. Activin A seems
to be a positive regulator for osteoclastic development and
bone resorption and a negative regulator for osteoblastic bone
formation in vivo [72]. The mammalian CR field has histori-
cally focused on the suprachiasmatic nucleus in the hypothal-
amus, which is essential for directing cycles of locomotor
activity [24]. However, in addition to this central pacemaker,
a molecular clock has been found in several peripheral tissues
such as intestine, vasculature, adipose tissue, and kidney [52,
71]. For most tissues, it is still needed to establish which
specific input determines the phase of the local cellular clock.

The CR of activin A has not previously been examined. In
the present investigation, the CR of plasma activin A is stud-
ied in normal and long-term CKD rats together with 24-h
rhythms of P, calcium, PTH, and the new P-regulating hor-
mones FGF23 and klotho. As plasma P and PTH levels may
be entrained by nutrient availability, we examined how these
rhythms are influenced by depletion of dietary P or high P
content in the diet, and by fasting.

The results of the present investigation in the rat established
for the first time the existence of the CR of circulating activin
A. This rhythmicity is disturbed in CKD rats and is associated
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�Fig. 1 Plasma activin A exhibits circadian rhythmicity in healthy control
rats, but the rhythm is obliterated by CKD. a Circadian rhythm of plasma
activin A in healthy controls (red), PNX LP (gray), PNX SP (blue), and
PNX HP rats (green). Controls showed circadian rhythm (p < 0.001) with
a fourfold higher value at 20:00 compared with 14:00. The rhythm was
obliterated in all PNX groups. b–e Cosinor analysis confirmed the
existence of circadian rhythm in healthy controls, p < 0.01, with
acrophase at 22:00 (b) and obliteration of rhythm in PNX LP (c), PNX
SP (d), and PNX HP rats (e). f Non-fasting (black) and fasting (gray)
plasma activin A levels in controls, PNX LP, PNX SP, and PNX HP rats.
Fasting caused an increase in controls and PNX LP rats, but not in PNX
SP or PNX HP rats. All PNX groups had higher non-fasting activin A
levels as compared with controls. *p < 0.05 and **p < 0.01 (compared
with non-fasting). ##p < 0.01 and ###p < 0.001 (compared with non-
fasting controls). PNX 5/6 partial nephrectomy, LP low-phosphate diet,
SP standard-phosphate diet, HP high-phosphate diet. Mean ± SEM (a, f).
Cosinor fit (b–e).



with disturbed CRs of P and the P-regulating hormones PTH
and FGF23.

Methods

Animals

Male Wistar rats (Charles River, Germany) were housed in a
temperature-controlled environment with a 12-h light-dark

cycle (light 07:00–19:00 h). They had ad libitum access to
water and food. The study was approved by the Danish
Animal Inspectorate (Reference no. 2012-DY-2934-00023
and 2017-15-0201-01214) and executed in accordance with
national guidelines for use of laboratory animals.

Design

Adult rats were acclimatized for 1 week before randomization
to CKD or control. Under anesthesia with Hypnorm/

Fig. 2 Plasma activin A correlated with plasma phosphate and FGF23 in
CKD rats but correlations were absent in controls. a, b Correlation
between activin A and phosphate in controls (a) and CKD rats (b)
revealed a positive correlation in CKD but not in control rats. c, d

Similarly, a correlation between activin A and FGF23 was absent in
controls (c) but present in CKD rats (d). e, f No correlation could be
demonstrated between activin A and PTH in either controls (e) or CKD
rats (f)
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Midazolam (Panum Institute, Denmark), CKD was intro-
duced by one-step 5/6 partial nephrectomy (PNX). Control
rats received a standard-phosphate (SP) diet (0.9%Ca,
0.7%P, 600 IU vitamin D3 per kg food). CKD rats received
high-phosphate (HP) diet (0.9%Ca, 1.4%P, 600 IU vitamin D3
per kg food), standard-phosphate (SP) diet, or low-phosphate
(LP) diet (0.9%Ca, 0.2%P, 600 IU vitamin D3 per kg food),
(Altromin Spezialfutter, Germany). The duration of CKD was
24 weeks.

The evaluation of circadian rhythms (CR) was followed in
four groups of rats: PNX HP (N = 26), PNX SP (N = 8), PNX
LP (N = 8), and controls (N = 26). Blood samples were col-
lected at times 08:00, 14:00, 20:00, and 02:00 h according to a
prearranged scheme ensuring no difference in the order of
phlebotomy within and between groups. All rats were only
phlebotomized once daily. Two weeks later, the fasting exper-
iment was performed in the same four groups of rats. Blood
samples were collected in the morning on two consecutive
days. Non-fasting samples were collected on day one and
fasting samples on day two. Diet was removed around 16:00
on day one resulting in 16 h of fasting.

Biochemistry

Tail blood were drawn and analyzed immediately byABL 505
(Radiometer, Denmark) for ionized calcium, sodium, potassi-
um, and pH. One milliliter of blood was drawn into heparin-
ized tubes and immediately centrifuged. Plasma was separat-
ed, divided into several tubes (to avoid freeze-thaw cycles),
and stored at − 80 °C until analysis. Blood urea nitrogen
(BUN), phosphate (P), and total calcium were measured at
the Department of Clinical Biochemistry, Rigshospitalet,
Denmark. Activin A was measured by the Quantikine
ELISA rat activin A immunoassay (R&DSystems, USA)with
intra- and inter-assay variations of 4% and 5%, respectively.
PTH and FGF23 were measured by the rat bioactive PTH
ELISA assay (Immutopics, USA) and the intact FGF23
ELISA assay (Kainos Laboratories, Japan), respectively. In
our lab, the intra- and inter-assay variations were 4% and
9% in the PTH assay [30], and 2.5% and 5% in the FGF23
assay [20]. Klotho was kindly measured by an immunoblot-
immunoprecipitation assay at the George M. O’Brien Kidney
Research Core Center (Uni. Texas Southwestern, USA) [4].

Statistics

All analyses were performed using GraphPad Prism 7.02 and
RStudio 1.0.153 (cosinor and cosinor2 packages). p ≤ 0.05
was considered significant.

Circadian fluctuations are presented as graphs with mean ±
SEM. Difference between means within the same group was
calculated by repeated measures one-way ANOVA with
Tukey’s multiple comparison test. Between-group analyses

of circadian fluctuations were performed by two-way
ANOVA with Bonferroni’s multiple comparison test.
Circadian rhythmicity was confirmed and presented by
cosinor analysis. For cosinor analyses, data was fitted to a
linear model using the least squared method minimizing the
residual sum of the squares:

Y tð Þ ¼ Mesor þ β � cos 2π � t
24

−γ � sin 2π � t
24

þ e tð Þ

where t = zeitgebertime (zt), β = A ∙ cosφ, γ = −A ∙ sinφ,
e(t) is the error term, A = amplitude, φ = acrophase. The peri-
od is fixed at 24 h. Significant rhythm is found when the 95%
confidence intervals of the acrophase do not include Mesor
(Midline Estimation Statistic of Rhythm) [11]. Acrophase is
rounded to nearest whole hour. The R software package
“cosinor” was used for fitting to a cosinor model—presented
as a double-plot (i.e., 48 h). The R software package
“cosinor2” was used for evaluating the power of the cosinor
models using an F test and coefficient of determination (r2).

Paired Student’s t test or Wilcoxon matched-pairs signed
rank test was used for comparing non-fasting and fasting with-
in the same group. Parameters between groups were calculat-
ed with unpaired Student’s t test or Mann-Whitney U test.

Results

Circadian rhythm of plasma activin A

Plasma activin A showed CR in normal rats (ANOVA
p < 0.001) with a fourfold higher value at 20:00 compared
with 14:00, p < 0.01 (Fig. 1a). The significant diurnal 24-h
rhythm of plasma activin A in normal rats was confirmed by
cosinor analysis (p < 0.01), showing acrophase at 22:00 (Fig.
1b). This circadian rhythmicity was obliterated in all CKD rats
(cosinor analysis PNX LP p = 0.36, PNX SP p = 0.16, and
PNX HP p = 0.23), even though some fluctuations of plasma
activin A levels were seen in the PNX rats on different dietary
P content (Fig. 1a, c–e).

The CR of activin A in normal rats makes the time of
sampling decisive for detection of differences in plasma levels
between normal and CKD rats as all PNX groups had higher
activin A levels when directly compared with controls at
08:00 and 14:00 (p < 0.05) but not at 20:00 and 02:00 (Fig.
1a). The only exception was PNX SP, which did not differ
from controls at 08:00.

In healthy control rats, plasma levels of activin A did not
correlate to plasma P, PTH, or FGF23 (Fig. 2a, c, e). However,
in CKD rats, significant correlations appeared between activin
A and P (p < 0.05, r2 = 0.07) and activin A and FGF23
(p < 0.05, r2 = 0.05) but not between activin A and PTH
(Fig. 2b, d, f). This may indicate different regulations and
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different sources of circulating activin A in normal and CKD
rats.

Rhythm characteristics of cosinor analysis are presented in
Supplementary Table 1.

Circadian rhythm of plasma FGF23, PTH, phosphate,
and klotho

In control rats, plasma FGF23 had relatively modest but sig-
nificant alterations during the day (ANOVA p < 0.001), (Fig.
3a). Cosinor analysis verified a significant diurnal 24-h
rhythm of plasma FGF23 (p < 0.05), with acrophase at 13:00
(Fig. 3b).

The P content in the diet had a clear impact on the basal
levels of plasma FGF23 in CKD rats with higher concentra-
tions in PNX HP rats (p < 0.0001) and lower in PNX LP rats
(p < 0.01) as compared with control rats at all time points (Fig.
3a), except PNXLP vs control at 02:00—corresponding to the
lowest value measured in control rats. Also, in PNX SP rats,
the FGF23 levels were higher than in both control and PNX
LP rats (p < 0.01), except when compared with controls at
14:00—corresponding to the highest value in control rats.
The circadian rhythmicity of plasma FGF23 was abolished
or disturbed in CKD rats (Fig. 3a, c–e). As such, the CR of
FGF23 was obliterated in PNX LP and PNX SP (cosinor
analysis p = 0.63 and p = 0.059) whereas the CR was main-
tained in PNX HP rats (cosinor analysis p < 0.05), but with
acrophase shifted from 13:00 in controls to 09:00 in PNX HP
rats.

Control rats had CR of plasma PTH (ANOVA p < 0.001),
(Fig. 4a). The CR was confirmed by cosinor analysis
(p < 0.0001), revealing acrophase at 12:00 (Fig. 4b). Again,
the circadian rhythmicity was abolished or disturbed in CKD
rats (Fig. 4a, c–e). In PNX LP rats, the CR was verified by
cosinor analysis (p < 0.05) and the development of sHPTwas
prevented. However, the rhythm was severely disturbed with

an earlier peak at 06:00 corresponding to 12:00 in controls.
PNXSP rats had significant sHPT (p < 0.0001) and significant
CR confirmed by cosinor analysis (p < 0.05) but the rhythm
was disturbed with shift in acrophase to 10:00. The PNX HP
group had severe sHPT (p < 0.0001) but the CR was
completely abolished (p = 0.53).

Plasma P exhibited significant circadian rhythmicity in
control rats (ANOVA p < 0.0001), (Fig. 5). The rhythm was
confirmed by cosinor analysis (p < 0.001), showing acrophase
at 16:00 (Fig. 5b). In CKD rats, plasma P levels were higher in
the PNX HP group (p < 0.01) and lower in the PNX LP group
(p < 0.0001) as compared with controls (Fig. 5a). The signif-
icant CR of plasma P was present in CKD rats, but acrophase
was shifted in all PNX groups (Fig. 5a, c–e). As such, the
rhythm of PNX HP rats (cosinor analysis p < 0.0001) showed
acrophase at 00:00 in contrast to the acrophase at 16:00 in
controls. The PNX SP and LP groups showed shifted
acrophase to 17:00 and 19:00, respectively, and both groups
exhibited circadian rhythmicity (p < 0.05) confirmed by
cosinor analysis (PNX LP; p < 0.05, PNX SP; p = 0.05).

Plasma klotho was measured only in controls and PNX HP
rats. No difference was present between PNX HP and control
rats and no CR was demonstrated (cosinor analysis p = 0.50
and p = 0.60), (Fig. 6a, c, d).

Plasma ionized and total calcium levels are presented in
Tables 1 and 2. The cosinor analysis did not show circadian
rhythmicity of these parameters (data not shown).

Rhythm characteristics of cosinor analysis are presented in
Supplementary Table 1.

Effect of fasting on plasma activin A, FGF23, PTH,
phosphate, and klotho

Plasma activin A increased by fasting in both normal
(p < 0.05) and PNX LP rats (p < 0.01), but this response was
obliterated in PNX SP and HP rats (Fig. 1f). All PNX groups
had higher plasma activin A levels during non-fasting condi-
tions as compared with controls (p < 0.01).

Fasting did not affect plasma FGF23 in control rats (Fig.
3f). In contrast, there was an increase in FGF23 in fasting
CKD rats of 101% in PNX LP (p < 0.01), 111% in PNX SP
(p < 0.001), and 74% in PNX HP rats (p < 0.05). PNX LP rats
had lower non-fasting FGF23 levels compared with the con-
trol group (p < 0.0001) whereas both PNX SP and PNX HP
had higher non-fasting FGF23 levels as compared with con-
trols (p < 0.01 and p < 0.0001, respectively).

Fasting caused a large significant increase of 71% in plas-
ma PTH in the control rats (p < 0.05), a 63% raise in PNX LP
(ns), a 96% increase in PNX SP (p < 0.01), and a 53% raise in
PNX HP (ns), (Fig. 4f).

Fasting resulted in increased levels of plasma P in all
groups of experimental animals: 121% in PNX LP
(p < 0.001), 48% in PNX SP (p < 0.001), and 22% in PNX
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�Fig. 3 Plasma FGF23 exhibits circadian rhythm in healthy control rats,
which is abolished or disturbed in CKD. a Circadian rhythm of plasma
FGF23 in healthy controls (red), PNX LP (gray), PNX SP (blue), and
PNX HP rats (green). Control rats showed significant circadian rhythm
(p < 0.001). The rhythm was preserved (p < 0.0001) but severely
disturbed in PNX HP rats with shift of acrophase. In both PNX LP and
SP rats, the rhythm was abolished. b–e Circadian rhythm examined by
cosinor analysis confirmed the findings of rhythmicity in healthy
controls, p < 0.01, (b), and PNX HP rats, p < 0.05 (e) as well as
obliteration in PNX LP (c) and PNX SP rats (d). Acrophase was shifted
to 09:00 in the PNX HP group (e) compared with 13:00 in controls (b). f
Non-fasting (black) and fasting (gray) plasma FGF23 levels in controls,
PNXLP, PNX SP, and PNXHP rats. Fasting caused an increase in plasma
FGF23 in all PNX groups but not in controls. *p < 0.05, **p < 0.01, and
***p < 0.001 (compared with non-fasting). ##p < 0.01 and ####p < 0.0001
(compared wi th non-fast ing cont rols) . &&&p < 0.001 and
&&&&p < 0.0001. PNX 5/6 partial nephrectomy, LP low-phosphate diet,
SP standard-phosphate diet, HP high-phosphate diet. Mean ± SEM (a, f).
Cosinor fit (b–e).
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HP (p < 0.05) as compared with a 5% increase in the control
rats (p < 0.01), (Fig. 5f). Fasting did not affect plasma klotho
in control rats nor in CKD rats (Fig. 6b).

Renal function and electrolytes Renal parameters and electro-
lytes are presented in Tables 1 and 2. All PNX groups had
higher azotemia and hyperkalemia as compared with control
rats (p < 0.05).

Discussion

Activin A is a new player in CKD-MBD of interest as a ther-
apeutic target. The present investigation in the rat establishes
for the first time the existence of a circadian rhythm (CR) of
circulating activin A, which is disturbed in CKD rats and is
associated with disturbed CRs of plasma parameters of CKD-
MBD such as plasma phosphate (P) and the P-regulating hor-
mones, PTH and FGF 23, indicating that disturbed circadian
rhythmicity is a distinctive feature of CKD-MBD.

The present finding of a considerable circadian variation in
the plasma activin A levels of more than 300% indicates a
need to standardize sample collection protocols and time-
specific reference intervals for the plasma levels. In the clini-
cal setting, these diurnal variations of plasma activin A must
be considered, when concentration changes of this CKD-
MBD marker are interpreted.

The clinical importance of the present finding showing CR
of circulating activin A has yet to be established, the same is
the case for the significance of the disturbed rhythmicity and
elevated levels of activin A. In humans, a disturbed CR is
associated with increased risk of several diseases, and the risk
of cardiovascular disease, metabolic syndrome, and cancer is
increased in shift workers [25, 52, 71, 79].

Activin A is a member of the TGF-β superfamily. It is a
cytokine expressed in a wide range of tissues and cells, where

it regulates cellular differentiation, cell proliferation, apopto-
sis, and inflammation at an autocrine/paracrine level.
Systemic activation of activin A receptors and increased cir-
culating levels of activin A have been found in animal models
of CKD-MBD [1, 58, 65, 72, 73, 80]. Recently, the first report
was provided showing that systemic activinA level is elevated
in humans with CKD, already at stage 2 [43]. Furthermore,
systemic activin A levels are associated with aging and meta-
bolic disorders where elevated activin A is an independent risk
factor for prediabetes and diabetes [36]. In obese subjects,
serum activin A levels correlate with parameters of the meta-
bolic syndrome and left ventricular diastolic dysfunction [82].
Plasma activin Awas found increased in patients with nonal-
coholic fatty lever disease [61]. The potential disturbance of
the CR of activin A in diabetes, metabolic syndrome, or in
patients with CKD remains to be thoroughly examined.

A role of CR-related mechanisms in the pathogenesis of
renal fibrosis has been proposed [10]. The key circadian gene,
Clock, was shown to mediate the oscillation of TGF-β signal-
ing and Clock-deficient mice had increased oxidative stress
and renal fibrosis [10]. Concurrently, it was found that activa-
tion of the ALK pathway by TGF-β, activin, or variation of
pH levels reset the circadian clock in Rat-1 fibroblast cells
suggesting that ALK signaling is involved in activation of
the peripheral circadian clocks [35].

The new concept of disruption in system biology in CKD
as proposed by Hruska et al. [26] was based on the observa-
tion that the injured kidneys produce circulating signals which
directly affect the vasculature, skeleton, and progression of
renal fibrosis. Activin A is such a renal repair factor, which
circulates in elevated levels in CKD. Inhibiting activin-signal-
ing blocks vascular calcification, and renal fibrosis in CKD
[1].We have previously shown that inhibin βA (Inhba), which
codes for the βA subunit (activin A is a homodimer composed
of two inhibin βA subunits), was not expressed in normal
kidney, but was significantly induced in the injured kidney
[58]. In the experimental model of unilateral ureter obstruction
(UUO), we showed that activin A was induced in the
obstructed kidney together with a twofold higher plasma level
after 10 days of obstruction, while activin Awas undetectable
in the contralateral untouched kidney. Plasma levels did not
increase in unilateral nephrectomized rats (UNX) and nor was
Inhba detectable in the remnant UNX kidney. This indicates
that kidney injury induces production of activin A with
subsequent secretion to the circulation [58]. It suggests
that activin A might be involved in the early pathophys-
iological changes occurring in CKD-MBD as recently
supported by the group of Malluche et al. [43] and further
indicates that injured kidney is an additional source of
circulating activin A, which might contribute to disturbed
circadian rhythmicity in CKD.

In an RNAseq analysis of calcified uremic rat aortas [65],
we have previously found that the expression of the Tgfbr1
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�Fig. 4 The circadian rhythm of plasma PTH in healthy control rats is
obliterated or disturbed in CKD. a Circadian rhythm of plasma PTH in
healthy controls (red), PNX LP (gray), PNX SP (blue), and PNX HP rats
(green). Control rats exhibited circadian rhythm (p < 0.001). The rhythm
was obliterated or disturbed in CKD rats with shift of acrophase in all
PNX groups. b–e Circadian rhythm examined by cosinor analysis
confirmed the rhythmicity in healthy controls, p < 0.0001, with
acrophase at 12:00 (b), and revealed a significant circadian rhythm in
both PNX LP, p < 0.05 (c) and PNX SP rats, p < 0.05 (d) but the
rhythm was completely abolished in PNX HP rats. Both PNX LP and
SP rats had disturbed rhythm with shift in acrophase to 06:00 (c) and
10:00 (d), respectively. f Non-fasting (black) and fasting (gray) plasma
PTH levels in controls, PNX LP, PNX SP, and PNX HP rats. Fasting
caused an increase in plasma PTH in controls and PNX SP rats.
*p < 0.05 and **p < 0.01 (compared with non-fasting). ##p < 0.01 and
####p < 0.0001 (compared with non-fasting controls). &p < 0.05 and
&&p < 0.01. PNX 5/6 partial nephrectomy, LP low-phosphate diet, SP
standard-phosphate diet, HP high-phosphate diet. sHPT secondary
hyperparathyroidism. Mean ± SEM (a, f). Cosinor fit (b–e)
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gene, which codes for an alternative type 1 receptor down-
stream the activin type 2A receptor, was increased, and thus
may contribute to the proposed importance of activin signal-
ing in vascular calcification. As such, the renal expression of
activin A in CKD may potentially change the physiological
role of activin A in extra-renal tissues, including in the skele-
ton and vasculature.

Based on the present results, we hypothesize that the dis-
turbed circadian rhythmicity of circulating activin A contrib-
utes to the disruption in system biology in CKD.

A clear impact of CKD and dietary P content was seen on
the evaluated parameters. CKD induced a shift in the plasma P
levels depending on the dietary P content, together with a dis-
turbance in CR, in accordance with previous findings [5, 62].

The molecular circadian clock system is ubiquitously
expressed throughout the body and drives CRs of numerous
parameters and mechanisms, probably including the CR of
plasma P. One explanation for the disturbed CR of P might
be that CKD by itself affects the molecular circadian clock
system and thereby alters the daily P fluctuations.
Hypophosphatemia might have a regulating impact on the
circadian clock genes, as recently shown in cardiac tissue
[57]. However, PNX SP and LP rats exhibited similar circa-
dian pattern, indicating that CKD rather than P content in the
diet is the key modulator of the CR of plasma P in the present
study.

It is still an open question whether a P sensor exists
that regulates plasma P levels and potentially drives the
CR of plasma P and P-regulating hormones, and it is also
not known how the potential sensor might accommodate
changes in time of day and CKD. P sensing in kidneys,

Fig. 6 Plasma klotho does not exhibit circadian rhythm in control or
CKD rats. a Stable levels of plasma klotho were found in both healthy
controls (red) and PNXHP rats (green). bNon-fasting (black) and fasting
(gray) plasma klotho levels in controls and PNX HP rats. Fasting did not

affect plasma klotho in either group. c, d Circadian rhythm by cosinor
analysis confirmed the lack of rhythmicity in controls (c) and PNX HP
rats (d). PNX 5/6 partial nephrectomy, HP high-phosphate diet. Mean ±
SEM (a, b). Cosinor fit (b, d).
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�Fig. 5 The circadian rhythm of plasma phosphate in healthy control rats
is disturbed in CKD. a Circadian rhythm of plasma phosphate in healthy
controls (red), PNX LP (gray), PNX SP (blue), and PNX HP rats (green).
All groups showed significant circadian rhythm (control p < 0.0001, PNX
LP p < 0.05, PNX SP p < 0.05, PNX HP p < 0.0001). The rhythm was
clearly disturbed in CKD rats with peaks at 20:00 in all PNX group,
compared with 14:00 in controls. b–e Circadian rhythm by cosinor
analysis confirmed the rhythmicity in healthy controls, p < 0.001 (b),
PNX LP, p < 0.05 (c), PNX SP, p = 0.05 (d), and PNX HP rats,
p < 0.0001 (e). All PNX groups had a shift in acrophase from 16:00 in
controls (b) to 19:00 in PNX LP (c), 17:00 in PNX SP (d), and 00:00 in
PNX HP (e). f Non-fasting (black) and fasting (gray) plasma phosphate
levels in controls, PNX LP, PNX SP, and PNXHP rats. Fasting caused an
increase in plasma phosphate in all groups. *p < 0.05, **p < 0.01, and
***p < 0.001 (compared with non-fasting). ##p < 0.01 and
####p < 0.0001 (compared with non-fasting controls). &&&&p < 0.0001.
PNX 5/6 partial nephrectomy, LP low-phosphate diet, SP standard-
phosphate diet, HP high-phosphate diet. Mean ± SEM (a, f). Cosinor fit
(b–e).



bone, intestine, and parathyroids, which might regulate P
homeostasis, could theoretically be involved [9, 56, 66].
A crystal model on the structure of the calcium-sensing
receptor has recently revealed several P-binding sites and
demonstrated that P reinforces the inactive state of the
receptor [19]. As such, the calcium-sensing receptor can
potentially be a part of a P-sensing mechanism in addition
to others proposed in bone and intestine [6, 8, 39].

P in the diet is associated with increased plasma FGF23
[60] and recently a direct action through PiT-2 in bone has
been described [8]. Whether P sensing in bone only relates to
FGF23 or might be related to activin A secretion is currently
unknown. A very recent study [54] indicated that the

formation of daily oscillation of plasma P levels involves the
Nampt/NAD+ system of the soft tissues, including the liver,
intestine, and kidney.

In the present investigation, plasma activin A increased in
fasting controls and PNX LP rats, but not in PNX SP or HP
rats. The physiological cause of this finding is uncertain.
Activin A is widely expressed and crucial during develop-
ment. Its most acclaimed action is in reproductive physiology
on the hypothalamic-pituitary-adrenal (HPA) axis [7]. It is
believed that the HPA axis is activated during starvation
[59]. As such, the increase in fasting controls could be the
normal response of activin A to fasting, related to the HPA
axis. Interestingly, the absent increase in plasma activin A

Table 1. Renal parameters and electrolytes

Plasma Control PNX LP

08:00 14:00 20:00 02:00 08:00 14:00 20:00 02:00

pH 7.37 ± 0.02 7.36 ± 0.02 7.34 ± 0.04 7.42 ± 0.01 7.30 ± 0.002 7.29 ± 0.02 7.37 ± 0.02 7.37 ± 0.02
K+ mM 5.8 ± 0.1 5.7 ± 0.2 5.6 ± 0.1 5.4 ± 0.1 6.2 ± 0.5 5.9 ± 0.4 6.3 ± 0.2 6.0 ± 0.2
Na+ mM 145 ± 1 146 ± 1 145 ± 1 145 ± 1 140 ± 1 142 ± 1 148 ± 2 140 ± 1
BUN mM 7.2 ± 0.1 7.3 ± 0.2 7.7 ± 0.2 7.3 ± 0.1 21.2 ± 4.0 22.4 ± 5.0 21.3 ± 4.7 21.1 ± 4.2
tCa mM 2.81 ± 0.02 2.78 ± 0.01 2.73 ± 0.04 2.77 ± 0.02 2.79 ± 0.05 2.84 ± 0.04 2.76 ± 0.04 2.81 ± 0.05
Ca2+ mM 1.43 ± 0.02 1.44 ± 0.02 1.39 ± 0.02 1.43 ± 0.02 1.42 ± 0.02 1.46 ± 0.02 1.51 ± 0.02 1.47 ± 0.02

Plasma PNX SP PNX HP
08:00 14:00 20:00 02:00 08:00 14:00 20:00 02:00

pH 7.31 ± 0.04 7.37 ± 0.02 7.35 ± 0.03 7.44 ± 0.01 7.39 ± 0.02 7.39 ± 0.01 7.28 ± 0.02 7.35 ± 0.04
K+ mM 6.4 ± 0.3 6.2 ± 0.3 6.5 ± 0.3 6.7 ± 0.3 6.4 ± 0.2 5.9 ± 0.2 6.7 ± 0.2 6.4 ± 0.2
Na+ mM 138 ± 1 142 ± 1 143 ± 1 147 ± 1 143 ± 1 143 ± 1 145 ± 1 145 ± 1
BUN mM 15.6 ± 1.7 18.0 ± 2.7 17.8 ± 3.4 21.9 ± 4.4 13.2 ± 0.5 11.5 ± 0.6 12.6 ± 0.6 13.7 ± 0.6
tCa mM 2.77 ± 0.04 2.79 ± 0.05 2.71 ± 0.05 2.77 ± 0.03 2.65 ± 0.04 2.64 ± 0.05 2.65 ± 0.07 2.65 ± 0.06
Ca2+ mM 1.36 ± 0.02 1.37 ± 0.02 1.38 ± 0.03 1.42 ± 0.02 1.30 ± 0.02 1.30 ± 0.02 1.28 ± 0.02 1.29 ± 0.03

Mean ± SEM.

PNX 5/6 partial nephrectomy, LP low-phosphate diet, SP standard-phosphate diet, HP high-phosphate diet

K+ potassium, Na+ sodium, BUN blood urea nitrogen, tCa total calcium, Ca2+ ionized calcium

Table 2 Non-fasting (NF) and fasting (F) renal parameters and electrolytes

Plasma Control PNX LP PNX SP PNX HP

NF F NF F NF F NF F

pH mM 7.37 ± 0.02 7.37 ± 0.02 7.27 ± 0.02 7.27 ± 0.03 7.39 ± 0.02 7.37 ± 0.02 7.41 ± 0.01 7.33 ± 0.01

K+ mM 5.6 ± 0.1 5.4 ± 0.2 6.5 ± 0.3 5.9 ± 0.1 6.6 ± 0.3 6.1 ± 0.2 6.4 ± 0.2 6.1 ± 0.2

Na+ mM 145 ± 1 144 ± 1 147 ± 1 142 ± 1 140 ± 0 142 ± 1 142 ± 1 142 ± 1

BUN mM 7.0 ± 0.1 5.6 ± 0.1 25.5 ± 6.0 25.9 ± 6.3 16.4 ± 1.3 17.7 ± 1.6 12.6 ± 0.6 17.7 ± 1.8

tCa mM 2.80 ± 0.02 2.75 ± 0.02 2.78 ± 0.06 2.87 ± 0.03 2.77 ± 0.05 2.84 ± 0.08 2.66 ± 0.04 2.55 ± 0.07

Ca2+ mM 1.43 ± 0.02 1.38 ± 0.01 1.43 ± 0.02 1.40 ± 0.01 1.33 ± 0.02 1.34 ± 0.02 1.29 ± 0.03 1.21 ± 0.03

Mean ± SEM.

PNX 5/6 partial nephrectomy, LP low-phosphate diet, SP standard-phosphate diet, HP high-phosphate diet

K+ potassium, Na+ sodium, BUN blood urea nitrogen, tCa total calcium, Ca2+ ionized calcium
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occurs in fasting PNX SP and HP rats, who both have signif-
icant sHPT and elevated FGF23 (in contrast to controls and
PNX LP rats). Thus, it could be speculated that the severely
disturbed mineral homeostasis in these two groups might in-
fluence the natural response of activin A to fasting.

Fasting resulted in an increase of plasma P in all groups of
rats. The P increase in fasting controls corroborates with the
findings of previous investigations [15, 67], and the catabolic
state of fasting has been shown to facilitate release of intracel-
lular ions to the circulation (e.g., P), as known from studies on
the refeeding syndrome [18]. Insulin administration causes a
decrease in plasma P due to increased uptake of P in insulin-
sensitive tissues [12]; hence, the hypoinsulinemia during
fasting might also lead to leak of intracellular P and thereby
to increased levels of plasma P.

In the present investigation, the discrepancy between
the slight increase in plasma P in control rats and the mas-
sive increase in all PNX groups, underlines the impact of
CKD on P homeostasis in the fasting condition. However,
the preserved circadian variation of plasma P in all groups
of CKD rats, independent of dietary P content and PTH
levels, may point against intestinal P sensing and hormonal
control of CR by PTH, which corroborates with a potential
importance of the Nampt/NAD+ system [54]. The present
data did not show circadian rhythmicity of plasma calcium
or ionized calcium, which is in agreement with results of
some previous studies [17].

The CR of plasma FGF23 in control rats and disturbed
rhythm in CKD is a novel finding. Whether the secretion of
FGF23 from osteocytes and osteoblasts is regulated by a local
molecular circadian clock system or whether the CR of FGF23
is secondary to the CR of regulatory hormones (e.g., PTH)
remains to be examined. In support of FGF23 being controlled
by the some circadian rhythmicity, are data showing that bone
mineralization exhibits daily fluctuations [53]. As such, induc-
tion of extra-skeletal FGF23 from bone marrow [75], kidney
[48], and heart [14] has been shown in renal disease. Renal
induction of FGF23 is located in the interstitium and not secret-
ed [48], whereas FGF23 produced in the bonemarrow seems to
be secreted to the circulation through an erythropoietin-
mediated mechanism [75]. Experimental myocardial infarction
in rodents induces myocardial FGF23 and skeletal FGF23 to-
gether with a rise in circulating FGF23 [3] and the heart might
therefore be capable of secreting FGF23. As such, like activin
A, disturbed CR of FGF23 in CKD might not only be the
consequence of abnormal bone metabolism, but also due to
extra-skeletal secretion of the hormone.

Conclusion

Activin A is a fascinating new factor in CKD-MBD of partic-
ular interest as a therapeutic target. The present study shows

for the first time a circadian rhythm and a considerable circa-
dian variation in plasma activin A levels. CKD resulted not
only in an increased circulating level of activin A, but also in a
disturbance in the circadian rhythm. A need to standardize
sample collection protocols and reference intervals for the
different plasma levels at different times of the day is stressed.
Furthermore, CKD resulted in disturbed circadian rhythms of
PTH, FGF23, and phosphate. As such, disturbed circadian
rhythmicity in mineral homeostasis is an important feature
of CKD-MBD.
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