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Introduction: Total body irradiation (TBI) is a part of the conditioning regimen for bone marrow trans-
plant.
At the Royal Marsden (Sutton, UK) and Rigshospitalet (Copenhagen, Denmark), we introduced a step

and shoot IMRT (SS IMRT) technique for TBI. This technique requires no equipment other than that used
to deliver other external beam radiation. In this paper, we describe this technique and report on data
from the two clinics.
Materials and methods: The patients were positioned supine, supported by vacuum bag(s). The entire
body of the patients were CT scanned with 5 mm slices. Multiple multi-leaf collimator (MLC) defined
fields were used.
In-vivo dosimetry was performed at the Royal Marsden for 113 patients.
Calculated doses for 18 adult and 4 paediatric patients from Rigshospitalet were extracted.

Results: The in-vivo data from the Royal Marsden showed that the mean TLD measured dose difference
was �1.9% with a standard deviation of 4.5%.
SS IMRT plans for 22 patients from Rigshospitalet resulted in mean doses to the brain, lungs and kid-

neys all within the range of 11.1–11.8 Gy, while the V(12 Gy) was below 5% for the brain, 2% for the lungs
and 0% for the kidneys.
Discussion: SS IMRT is feasible for TBI and can deliver targeted doses to the organs at risk.
� 2019 Published by Elsevier B.V. on behalf of European Society for Radiotherapy & Oncology. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Total body irradiation (TBI) is a part of the conditioning regimen
for bone marrow transplant (BMT). The target in TBI is the entire
patient body, although the lung dose is often reduced [1]. Some
centres also reduce the dose to the kidneys [2,3].

Toxicity after BMT includes interstitial pneumonitis (IP), veno-
occlusive disease (VOD) [4,5,7,9], radiation-induced cancer [8],
renal failure [9] and cataracts [10,11]. Severe interstitial pneu-
monitis is of particular concern. Although the incidence has been
reduced by infection prophylaxis, when contracted, the fatality
rate has remained roughly constant at 67% [12].

Although most of these toxicities are multifactorial, correlations
with severity and radiation dose or fractionation have been shown
for IP [13,14], VOD [13], renal complications [2] and cataracts [10].
Thus, it is pertinent to ensure that the organs at risk are not unnec-
essarily overdosed.

TBI delivery techniques vary substantially across centres, but
the most commonly used technique is large open static fields
(the open fields (OF) technique). Intensity modulated TBI with a
translating couch [15,16] and VMAT techniques [17] have also
been used.

At the Royal Marsden (Sutton, UK) and Rigshospitalet (Copen-
hagen, Denmark), we introduced a step and shoot IMRT (SS IMRT)
technique for TBI. This technique requires no equipment other than
that used to deliver other external beam radiation. This paper
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describes the SS IMRT technique, and presents dosimetric data for
113 consecutive patients treated at our clinics.

It is our hope that this description will allow other clinics to
implement this technique with their existing equipment.

The SS IMRT technique for TBI described in this paper was cre-
ated at the Royal Marsden, where the treatment planning system
(TPS) is Pinnacle and the linacs are Elekta, MLCi or Agility. This
technique was adopted and further developed at Rigshospitalet,
where the TPS is Eclipse and the linacs are Varian iX.
Fig. 2. The 40 � 40 cm jaw field and MLC defined field (limiting the field size to
5 cm greater than the phantom at the extended SSD).
Materials and method

Dosimetric verification

Prior to the clinical implementation, measurements were car-
ried out to investigate the agreement between the calculated and
measured doses. This was especially pertinent since the TPS was
commissioned for isocentric data and the TBI treatments are done
with 350 cm from the radiation source to the patient midline.

Measurements were carried out using a NACP pancake chamber
and a Unidos electrometer in a 40 � 40 � 20 cm solid water phan-
tom for 6 and 18 MV at SSDs of 340, 360, 380, 400, 420 and 440 cm
(Fig. 1); at depths of 0.1, 10, 19 and 19.9 cm in the phantom; with
and without a 1.5 cm thick plastic build-up screen; and with a
40 � 40 cm jaw field and an MLC field limiting the field to 5 cm
greater than the phantom (Fig. 2).

The doses were calculated using the same algorithm as that is
used for the clinical TBI plans (AAA v. 13.6), and a calculation grid
of 1 mm.

Patient selection

All patients who received TBI at both clinics were treated with
the SS IMRT technique described in this paper.

Fixation and scanning

The patients were positioned supine, supported by two vacuum
bags (Rigshospitalet) or in a whole body vacuum bag (the Royal
Marsden). The legs were bent such that the maximum patient
length was 165 cm, to ensure that the patients fit in the radiation
field. Care was also taken to ensure that the knees fit within the
field of view of the CT scanner Phillips BigBore (the Royal Marsden)
and a Siemens Somatom Definition (Rigshospitalet). The entire
bodies of the patients were CT scanned with 5 mm slices.
Fig. 1. The set-up used to investigate the agreement between the TPS doses and measure
with a NACP pancake chamber.
Planning

The planning target volume (PTV) was defined as the body
excluding the outer 5 mm of body and excluding the lungs. The
brain, lungs and kidneys were contoured, and autocontouring
was used for the brain and lungs (both clinics) and kidneys (the
Royal Marsden).

The distance from the radiation source to the patient’s midline
was 350 cm (Rigshospitalet) and 355 cm (the Royal Marsden). The
accelerator dose rate was 100 MU/min. Beam spoilers of 15 mm
thickness were used, and were included in the dose calculation
through an attenuation factor (the Royal Marsden) or by drawing
them in the TPS and assigning them a density of 1.09 g/cm3

(Rigshospitalet).
Multiple multileaf collimator (MLC) defined fields ere used. The

energy was selected (6 or 18 MV) to produce the best plan possible.
A plan template was used as a starting point for the plan. The tem-
plate fields used at Rigshospitalet are shown in Fig. 3. The MLC
positions and field weights were manually altered to produce an
acceptable plan. The planning aims are shown in Table 1.

During planning, the gantry rotation was set to 87� for the fields
that irradiated the patient from the right, and 273� for the fields
from the left for Rigshospitalet, and 85� and 275� for the Royal
Marsden. These angles were chosen so that the patient would be
vertically positioned below the isocentre for ease of set-up with
a hospital bed. The lungs were shielded by the MLC fields rather
than separate lung shields.

When the patient was treated, however, the gantry rotation was
the same throughout the treatment (273� or 275�). To achieve irra-
diation from both sides, the patient was rotated half way through
the treatment so that the patients’ right side faced the gantry for
ments – a 20 � 40 � 40 cm solid water phantom positioned at SSDs of 340–440 cm,



Fig. 3. Fields of one of the two lateral beams from the plan template used at Rigshospitalert. Field A targeted the entire body. In field B the dose to the oral cavity was reduced.
Fields C and D boosted the thicker body parts. Field E boosted the anatomy anterior, posterior and cranial to the lung while sparing the lung. Field F was used exclusively for
patient positioning. A similar set of fields would be used to irradiate the patient from the other side.

Table 1
Planning aims at the Royal Marsden and Rigshospitalet for high-dose TBI. Dmin is minimum dose, Dmax maximum dose.

Planning aims Rigshospitalet The Royal Marsden

Prescribed dose for high-dose TBI 12 Gy (2 Gy � 6) 14.4 Gy (1.8 Gy � 8)
Lungs V_100% < 2% V_100% < 2%
Lungs V_10.2 Gy > 95%
Lungs Mean dose as low as possible – it usually end up

around 93% (11.3 Gy)
Mean lung dose between 12 and 12.5 Gy, lower preferred
Usually 85% (12.24 Gy)

Brain V_12 Gy < 5% Dmin > 13 Gy (90%)
Dmean � prescription dose
Dmax < 15.8 Gy (110%)

Kidneys Should receive between 10.2 and 12 Gy D5% < prescription dose
Mean kidney dose between 12 and 12.5 Gy, lower
preferred

PTV (the body excluding the outer 5 mm of body and
excluding the lungs)

Dmin > 90% (10.8 Gy)

PTV (the body excluding the outer 5 mm of body and
excluding the lungs)

Dmax < 110% (13.2 Gy)

Body Dmin > 80% Dmin > 80%
Body The volume receiving more than 120% should be as

small as possible
No part of the patient should receive > 17.3 Gy (120%)
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the first half of the fields, and his or her left side faced the gantry
for the second half.

This was taken into account in a final planning step. After the
plan was approved by a physician, a ‘‘deliverable plan” was made,
which was a copy of the plan but with all gantry angles set to 273�
For the fields where the gantry rotation was changed the collima-
tor was rotated by 180�.
Fractionation

At the Royal Marsden, the standard TBI fractionation was
14.4 Gy in 8 fractions over 4 days, or 13.2 Gy in 8 fractions for acute
lymphomacytic lymphoma (ALL), if the patient was undergoing
myeloablative double umbilical cord transplant; 12 Gy in 6 frac-
tions over 3 days was used for relapsed anaplastic large cell lym-
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phoma (ALCL), a single fraction of 2–4 Gy is used for patients
undergoing reduced intensity conditioning transplant.

At Rigshospitalet, high-dose TBI for myeloablative conditioning
transplants was 12 Gy in 6 fractions of 2 Gy over 3 days with a
minimum of 6 hours in-between fractions. For non-myeloablative
conditioning transplants treatments of 1 � 2 Gy, 1 � 3 Gy or
2 � 2 Gy were also used.

Treatment

At both clinics the patient was positioned for treatment using
an extra room laser indicating the mid-line of the patient. The extra
laser was placed at 355 and 350 cm from the radiation source
respectively in the Royal Marsden and Rigshospitalet.

At Rigshospitalet, lines on the two vacuum bags used for fixa-
tion (Fig. 4) indicated their relative placement to each other.
Finally, patient positioning was fine-tuned using the set-up field
(Fig. 3F). This allowed for the patient’s head tilt, arm position and
knee position to be adjusted.
Fig. 4. Patient positioning for SS TBI at Rigshospitalet.

Fig. 5. A digitally reconstructed radiograph from a field treating the patients thora
In-vivo dosimetry at the Royal Marsden

In-vivo dosimetry was carried out at the Royal Marsden using
TLD, but not at Rigshospitalet. TLD measurements were completed
on the first fraction for 113 consecutive fractionated patients, and
repeated for the second fraction if the measured doses were out-
side tolerance. The TLDs had an individual calibration factor and
a batch calibration was done post annealing at Dmax using 10
MV, as was used for treatment. The TLDs were placed in a plastic
holder with a 2 mm Cu build-up layer to ensure measurement at
Dmax, and 2TLDs were placed in each plastic holder. Each of the
positions of the TLDs was shown with a radiopaque marker on
the planning CT scan of the patient, and individual marks were
made on the vacuum bag for the positions of the head, upper
and lower lungs and the left and right pelvis. The TLD measure-
ments were compared with predicted doses from the TPS at Dmax,
and the differences in dose were reported.

Treatment slots of one hour were booked for each fraction.

Clinical doses at Rigshospitalet

Dosimetric data from the TPS for 22 consecutive patients (4
paediatric, 18 adult) treated at Rigshospitalet with SS IMRT were
analysed. Specifically, the volume receiving 95% of the prescription
dose (D95) and 5% of the prescription dose (D5) for the PTV, and
the mean doses and V(12 Gy) to the brain, lungs and kidneys were
extracted.

Imaging

Daily imaging was carried out at Rigshospitalet but not at the
Royal Marsden.

The imaging was performed with the TheraviewTM imaging
system.

The Theraview detector was placed by the patients’ thorax and
images were acquired with the treatment fields. A clinical image is
shown in Fig. 5. The primary aim of the imaging was to ensure that
the MLC fields were delivered at the correct collimator angle, and
the secondary aim was to ensure that the patient was positioned
correctly with respect to the treatment field.
cic while shielding the lungs, and the treatment field image from TheraviewTM.
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Results

Dosimetric verification

Without a build-up screen, the differences between the mea-
sured and calculated doses were less than 7% for all measurements
except those 0.1 cm from the entrance and exit surfaces of the
phantom. At the point 0.1 cm from the entrance surface, the mea-
sured dose was greater than the calculated by up to 30% for 6 MV
and 21% for 18 MV. At the point 0.1 cm from the exit surface, the
measured dose was smaller than the calculated by up to 11% for
6 MV and 6% for 18 MV. The differences between measured and
calculated doses increased with SSD for all setups.

The use of MLCs to limit the field reduced the entrance surface
dose by 28% for 6MV and 44% for 18 MV.

With a build-up screen, the only measurement was made
0.1 cm from the phantoms entrance surface. At 340 cm SSD, the
difference between measured and calculated doses were 3.0%
(jaw field, 6MV); 9.1% (jaw field, 18MV), 4.2% (MLC field, 6MV)
and 12.5% (MLC field, 18MV).
Fig. 7. Dose volume histograms for a typical adult (top) and paediatric (bottom)
patient, showing data for brain (yellow), lungs (blue), kidneys (green) and PTV
In-vivo dosimetry

The mean TLD measured dose difference from all points (see
position of points in Fig. 6) was �1.9% with a standard deviation
of 4.5%.
(pink). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
Clinical doses at Rigshospitalet

Dose volume histograms for a typical adult (top and paediatric
(bottom) patient in Fig. 7.

The D95 for the body ranged from 10.4 to 10.9 for the adult
patients and 10.4 to 10.8 Gy for the paediatric patients (Fig. 8).
D5 ranged from 12.4 to 12.8 Gy for the adult patients and 12.5 to
12.7 Gy for the paediatric patients. Thus, the dose volume his-
togram (DVH) curve fell off quite sharply.)

The mean doses to the brain, lungs and kidneys ranged from
11.1 to 11.8 Gy.

The mean doses to the brain, lungs and kidneys were all in the
range of 11.1–11.8 Gy, while the V(12 Gy) was kept below 5% for
the brain, below 2% for the lungs and 0% for the kidneys.
Fig. 6. TLD measurement results based on 113 patients, where 3 TLDs were placed
at each measuring point in a capsule with build-up. The black horizontal lines
indicate median values; the boxes the 25th to the 75th percentiles, the black dots
beyond the black bars are considered outliers.
Discussion

Current global TBI practice is vary, with the most commonly
used technique of TBI delivery being the patient standing or lying,
in an extended SSD setup, treating the entire patient with a single
field. Compensators are used in some clinics to reduce the dose to
the thinner body parts.

Increasing numbers of centers have begun to use CT based 3-D
planning, intensity-modulated radiation therapy, and inverse plan-
ning in an effort to improve dose uniformity and organ sparing [3].

The SS IMRT technique for TBI is feasible in a clinical setting.
The two clinics prioritised different on–line verification of the TBI
treatment technique: the Royal Marsden prioritised in-vivo
dosimetry, and Rigshospitalet prioritised treatment imaging. In
general, in-vivo dosimetry could be performed with various avail-
able systems (TLDs, diodes, film or MOSFETs), and imaging could
be performed with films or in-house modified portal vision ima-
gers (this was used at RHC prior to the purchase of Theraview).

Crucially, no additional equipment purchases would be strictly
necessary in a clinic implementing SS IMRT TBI.

In this paper we focused on the technical aspects of SS IMRT TBI
rather than clinical outcomes.

Limitations of this work include that we have only demon-
strated that SS IMRT TBI can be done using two of the available
treatment planning systems. Ideally, a clinic doing TBI would have
in-vivo dosimetry and treatment imaging available, however we
cannot correlate the results of imaging and in-vivo dosimetry.
Finally, since this paper focusses on technique, it does not include
clinical outcomes.

The phantom measurements showed considerable discrepan-
cies between measured and calculated doses 1 mm from the phan-
tom surface, but less than 7% difference deeper in the phantom. It
appears the TPS does not accurately model surface doses at
extended SSDs, possibly due to scatter from the treatment room.
One approach to this is to exclude the outer fewmm of the patients
anatomy when evaluating the DVHs for the TBI plans.



Fig. 8. Distribution of D95 and D5 (the dose delivered to 95% and 5% of the body volume) and the mean doses to the brain, lungs and kidneys. Data is shown for paediatric
patients (4 patients) and for adult patients (18 patients). The red lines indicate median values, the blue boxes the 25th to 75th percentiles, the black lines the region outside
which data points are considered outliers and the red crosses are outliers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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The technique of total marrow irradiation (TMI) has gained clin-
ical implementation in the past decade. While TMI is used as the
main radiation therapy technique in trials [18], TMI is typically
used as a boost to TBI treatment rather than a treatment modality
on its own.

TMI techniques have been investigated using IMRT [19], IMRT
with couch rotations [20] and tomotherapy [21], however to our
knowledge this is the first report of IMRT delivering TBI.

Conclusion

The SS IMRT TBI technique is readily implementable in a stan-
dard linac bunker of a size that allows the 350–355 cm radiation
source to patient mid-line with no need for additional equipment.
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